ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…
NASA Astrophysics Data System (ADS)
Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.
2014-02-01
The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
History of United States Energy. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The…
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…
United States transportation fuel economics (1975 - 1995)
NASA Technical Reports Server (NTRS)
Alexander, A. D., III
1975-01-01
The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…
Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu
2010-01-01
The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...
Renewable Fuel Standard Program
Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
Code of Federal Regulations, 2010 CFR
2010-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschenhofer, J.H.
1995-12-31
Fuel cells are finally coming into their own. A world that 10 years ago was unaware of the concept can now witness approximately 200 of the units in operation in 15 countries. As a result, an increasing number of utility planners and decision makers are asking how do fuel cells fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to use for stationary power generation may prove taxing. Admittedly, the complexity of fuel cell development coupled with the amount of subject material and claims-versus-reality may seem overwhelming. This paper is intended tomore » provide a road map of major fuel cell development in the United States, focusing on what has been done recently and what is expected in the near future.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef
2016-04-01
This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.
Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian
2004-01-01
A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.
Carbonate fuel cells: Milliwatts to megawatts
NASA Astrophysics Data System (ADS)
Farooque, M.; Maru, H. C.
The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on coal-derived gases, diesel, and other logistic fuels. Innovative carbonate fuel cell/turbine hybrid power plant designs promising record energy conversion efficiencies approaching 75% have also emerged. This paper will review the historical development of this unique technology from milliwatt-scale laboratory cells to present megawatt-scale commercial power plants.
The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...
Overview of the U.S. DOE Accident Tolerant Fuel Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton
2013-09-01
The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining ormore » improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.« less
Leveraging land development returns to finance transportation infrastructure improvements.
DOT National Transportation Integrated Search
2011-03-01
The United States faces a crisis in transportation finance. Increasing fuel prices coupled with increasing : demand for fuel-efficient cars is driving down fuel consumption, and the associated fuel tax revenues. At : the same time, the demand for new...
Transient Testing of Nuclear Fuels and Materials in the United States
NASA Astrophysics Data System (ADS)
Wachs, Daniel M.
2012-12-01
The United States has established that transient irradiation testing is needed to support advanced light water reactors fuel development. The U.S. Department of Energy (DOE) has initiated an effort to reestablish this capability. Restart of the Transient Testing Reactor (TREAT) facility located at the Idaho National Laboratory (INL) is being considered for this purpose. This effort would also include the development of specialized test vehicles to support stagnant capsule and flowing loop tests as well as the enhancement of postirradiation examination capabilities and remote device assembly capabilities at the Hot Fuel Examination Facility. It is anticipated that the capability will be available to support testing by 2018, as required to meet the DOE goals for the development of accident-tolerant LWR fuel designs.
Susan J. Prichard; Eva C. Karau; Roger D. Ottmar; Maureen C. Kennedy; James B. Cronan; Clinton S. Wright; Robert E. Keane
2014-01-01
Reliable predictions of fuel consumption are critical in the eastern United States (US), where prescribed burning is frequently applied to forests and air quality is of increasing concern. CONSUME and the First Order Fire Effects Model (FOFEM), predictive models developed to estimate fuel consumption and emissions from wildland fires, have not been systematically...
World wide IFC phosphoric acid fuel cell implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.M. Jr
1996-04-01
International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Curtis; Charles Forsberg; Humberto Garcia
2015-05-01
We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less
Fuel consumption models for pine flatwoods fuel types in the southeastern United States
Clinton S. Wright
2013-01-01
Modeling fire effects, including terrestrial and atmospheric carbon fluxes and pollutant emissions during wildland fires, requires accurate predictions of fuel consumption. Empirical models were developed for predicting fuel consumption from fuel and environmental measurements on a series of operational prescribed fires in pine flatwoods ecosystems in the southeastern...
Sandra Rideout-Hanzak; Lucy Brudnak; Thomas A. Waldrop
2006-01-01
Current methods of assessing the characteristics of forest fuels are time-consuming, expensive, and impractical in the mountainous terrain of the southeastern United States. A photo guide to fuels is being developed. It will be a quick, inexpensive, and easy-to-use tool for various management applications in the Southern Appalachian Mountains. Fuels data and photos...
A diesel fuel processor for fuel-cell-based auxiliary power unit applications
NASA Astrophysics Data System (ADS)
Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef
2017-07-01
Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.
AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…
Fireplaces and Fireplace Fuels.
ERIC Educational Resources Information Center
Metz, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…
Results of a diesel multiple unit fuel tank blunt impact test
DOT National Transportation Integrated Search
2017-04-04
The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014
DOT National Transportation Integrated Search
2014-12-03
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
Requirements to the procedure and stages of innovative fuel development
NASA Astrophysics Data System (ADS)
Troyanov, V.; Zabudko, L.; Grachyov, A.; Zhdanova, O.
2016-04-01
According to the accepted current understanding under the nuclear fuel we will consider the assembled active zone unit (Fuel assembly) with its structural elements, fuel rods, pellet column, structural materials of fuel rods and fuel assemblies. The licensing process includes justification of safe application of the proposed modifications, including design-basis and experimental justification of the modified items under normal operating conditions and in violation of normal conditions, including accidents as well. Besides the justification of modified units itself, it is required to show the influence of modifications on the performance and safety of the other Reactor Unit’ and Nuclear Plant’ elements (e.g. burst can detection system, transportation and processing operations during fuel handling), as well as to justify the new standards of fuel storage etc. Finally, the modified fuel should comply with the applicable regulations, which often becomes a very difficult task, if only because those regulations, such as the NP-082-07, are not covered modification issues. Making amendments into regulations can be considered as the only solution, but the process is complicated and requires deep grounds for amendments. Some aspects of licensing new nuclear fuel are considered the example of mixed nitride uranium -plutonium fuel application for the BREST reactor unit.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed
2016-08-31
The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOT National Transportation Integrated Search
2017-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOT National Transportation Integrated Search
2016-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015
DOT National Transportation Integrated Search
2015-12-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Gas cooled fuel cell systems technology development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1986-01-01
The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L.; Duleep, K. G.; Upreti, Girish
Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012
DOT National Transportation Integrated Search
2012-11-12
This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013
DOT National Transportation Integrated Search
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Wigeland
Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and themore » resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.« less
Process Development Unit. NREL's Thermal and Catalytic Process Development Unit can process 1/2 ton per biomass to fuels and chemicals Affiliated Research Programs Thermochemical Process Integration, Scale-Up
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
An alternative transportation fuels update : a case study of the developing E85 industry.
DOT National Transportation Integrated Search
2011-10-01
As the United States imports more than half of its oil and overall consumption continues to climb, : the 1992 Energy Policy Act established the goal of having alternative fuels replace at least ten : percent of petroleum fuels used in the trans...
Oxygen electrodes for rechargeable alkaline fuel cells. II
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.
1990-01-01
The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.
Oxygen electrodes for rechargeable alkaline fuel cells-II
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.
1989-01-01
The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
NASA Astrophysics Data System (ADS)
Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong
A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.
Development of a high power density 2.5 kW class solid oxide fuel cell stack
NASA Astrophysics Data System (ADS)
Yokoo, M.; Mizuki, K.; Watanabe, K.; Hayashi, K.
2011-10-01
We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.
United States Air Force Infrastructure Energy Strategic Plan
2008-09-01
sulfur diesel ( LSD ) fuel to ultra-low sulfur diesel (ULSD) fuel throughout the Air Force. As bases converted from LSD to ULSD, 820 tracking had to be...direction; develops initiatives, ideas, and poten- tial strategies; and further develops command policy, guidance, and execution strategies. Shaw AFB
Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Pozsgai, C.
1992-01-01
Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less
Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A
2013-01-01
A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1996-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.
A novel unitized regenerative proton exchange membrane fuel cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1995-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
John A. Stanturf; Robert Rummer; M. Wimberly; Timothy G. Rials; Philip. A. Araman; Rodney Busby; James Granskog; Leslie Groom
2003-01-01
Prescribed fire is used routinely in the southern United States to reduce fuel loading and decrease the risk of catastrophic wildfires, improve forest health, and manage threatened and endangered species. With rapid human population growth, southern forests have become fragmented by an extensive road network and intertwined with urban uses in a wildland-urban interface...
Alternative Fuels Data Center: Idle Reduction Research and Development
researchers at Argonne National Laboratory completed their analysis of the full fuel-cycle effects of idle Laboratory analyzed the full fuel-cycle effects of current idle reduction technologies. Researchers compared , electrified parking spaces, APUs, and several combinations of these. They compared effects for the United
2008-07-01
electric ship with all power generation supplied by a PEM Fuel Cell System. The basic unit of this fuel cell system is being developed by the...substantial problem. Further, as reforming techniques improve in the coming years, the weight of the fuell cells will likely decrease. In comparison to...19 Figure 12: 500 kW ONR Fuel Cell Concept
Life cycle analysis of fuel production from fast pyrolysis of biomass.
Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q
2013-04-01
A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5
NASA Astrophysics Data System (ADS)
Terekhov, D. V.; Dunaev, V. I.
2014-02-01
The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.
Compact gasoline fuel processor for passenger vehicle APU
NASA Astrophysics Data System (ADS)
Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen
Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those component volumes. Therefore, the packaging utilizes rectangular catalyst bricks and integrates flow ducts into the heat exchangers. A concept is presented with a 25 l fuel processor volume including thermal isolation for a 3 kW el auxiliary power unit. The overall size of the system, i.e. including stack, air supply and auxiliaries can be estimated to 44 l.
Michael H. Taylor; Kimberly Rollins; Mimako Kobayashi; Robin J. Tausch
2013-01-01
In this article we develop a simulation model to evaluate the economic efficiency of fuel treatments and apply it to two sagebrush ecosystems in the Great Basin of the western United States: the Wyoming Sagebrush Steppe and Mountain Big Sagebrush ecosystems. These ecosystems face the two most prominent concerns in sagebrush ecosystems relative to wildfire: annual grass...
Ace in the Hole: Fischer-Tropsch Fuels and National Security
2010-05-24
German might.”9 As the Allies’ strategic bombing campaign destroyed German refineries and choked imports from Rumanian refineries , Germany relied more...hydrocarbon structure.53 The 16 synthetic fuel contains no impurities, providing a superior aviation fuel with no sulfur emissions or particulates, and... emissions , Congress effectively killed CTL fuel development in the United States with an amendment to the Energy Independence and Security Act so that
Major design issues of molten carbonate fuel cell power generation unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.P.
1996-04-01
In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less
DOT National Transportation Integrated Search
2011-12-20
Wind turbines located on sites known as wind farms have become popular in the United States and elsewhere because they may be able to reduce, if not replace, the use of fossil fuels for energy production. The development of wind farms has been partic...
Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek
2016-01-01
A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...
What utility companies should known about fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschenhofer, J.H.; Weinstein, R.E.
1996-11-01
Fuel cells are warming up. A world that ten years ago was unaware of the concept now can witness approximately 200 fuel cell units operating in 15 countries. An increasing number of utility company planners and decision makers have begun to ask whether fuel cells might fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to consider may prove taxing. The multiplicity of fuel cells and their development programs, coupled with the amount of subject material and claims-versus-reality, may seem complex. Also to be reckoned with is the changing utility environment thatmore » might portend well for distributed generation with technologies such as fuel cells. This paper provides a road map of major fuel cell development in the US. It offers some views about the impact of the changing utility environment on fuel cells.« less
Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Hackler, I. M.
1986-01-01
The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.
Synthetic fuels for ground transportation with special emphasis on hydrogen
NASA Technical Reports Server (NTRS)
Singh, J. J.
1975-01-01
The role of various synthetic fuels, for ground transportation in the United States, was examined for the near term (by 1985) and the longer term applications (1985-2000 and beyond 2000). Feasible options include synthetic oil, methanol, electric propulsion, and hydrogen. It is concluded that (1) the competition during the next 50 years will be for the fuels of all types, rather than among the fuels; (2) extensive domestic oil and gas exploration should be initiated concurrent with the development of several alternate fuels and related ancillaries; and (3) hydrogen, as an automotive fuel, seems to be equivalent to gasoline for optimum fuel to air mixtures. As a pollution free, high energy density fuel, hydrogen deserves consideration as the logical replacement for the hydrocarbons. Several research and development requirements, essential for the implementation of hydrogen economy for ground transportation, were identified. Extensive engineering development and testing activities should be initiated to establish hydrogen as the future automotive fuel, followed by demonstration projects and concerted efforts at public education.
Development of on-board fuel metering and sensing system
NASA Astrophysics Data System (ADS)
Hemanth, Y.; Manikanta, B. S. S.; Thangaraja, J.; Bharanidaran, R.
2017-11-01
Usage of biodiesel fuels and their blends with diesel fuel has a potential to reduce the tailpipe emissions and reduce the dependence on crude oil imports. Further, biodiesel fuels exhibit favourable greenhouse gas emission and energy balance characteristics. While fossil fuel technology is well established, the technological implications of biofuels particularly biodiesel is not clearly laid out. Hence, the objective is to provide an on-board metering control in selecting the different proportions of diesel and bio-diesel blends. An on-board fuel metering system is being developed using PID controller, stepper motors and a capacitance sensor. The accuracy was tested with the blends of propanol-1, diesel and are found to be within 1.3% error. The developed unit was tested in a twin cylinder diesel engine with biodiesel blended diesel fuel. There was a marginal increase (5%) in nitric oxide and 14% increase in smoke emission with 10% biodiesel blended diesel at part load conditions.
The study of integrated coal-gasifier molten carbonate fuel cell systems
NASA Technical Reports Server (NTRS)
1983-01-01
A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2013 CFR
2013-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2014 CFR
2014-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
Oxygen electrodes for rechargeable alkaline fuel cells, 3
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.; Mccatty, S. A.
1991-01-01
The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008
DOT National Transportation Integrated Search
2008-12-01
In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…
Trying not to get burned: Understanding homeowners' wildfire risk-mitigation behaviors
Hannah Brenkert-Smith; Patricia A. Champ; Nicholas Flores
2012-01-01
Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation...
Dual fuel injection piggyback controller system
NASA Astrophysics Data System (ADS)
Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim
2017-09-01
Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.
Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit
NASA Astrophysics Data System (ADS)
Samsun, Remzi Can; Krupp, Carsten; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef
2016-01-01
As auxiliary power units in trucks and aircraft, fuel cell systems with a diesel and kerosene reforming capacity offer the dual benefit of reduced emissions and fuel consumption. In order to be commercially viable, these systems require a quick start-up time with low energy input. In pursuit of this end, this paper reports an electrical start-up strategy for diesel fuel processing. A transient computational fluid dynamics model is developed to optimize the start-up procedure of the fuel processor in the 28 kWth power class. The temperature trend observed in the experiments is reproducible to a high degree of accuracy using a dual-cell approach in ANSYS Fluent. Starting from a basic strategy, different options are considered for accelerating system start-up. The start-up time is reduced from 22 min in the basic case to 9.5 min, at an energy consumption of 0.4 kW h. Furthermore, an electrical wire is installed in the reformer to test the steam generation during start-up. The experimental results reveal that the generation of steam at 450 °C is possible within seconds after water addition to the reformer. As a result, the fuel processor can be started in autothermal reformer mode using the electrical concept developed in this work.
Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo
2015-01-01
Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505
Fuel Cell Buses in U.S. Transit Fleets : Summary of Experiences and Current Status
DOT National Transportation Integrated Search
2007-09-01
This report reviews past and present fuel cell bus technology development and implementation, specifically focusing on experiences and progress in the United States. This review encompasses results from the U.S. Department of Energy (DOE)/National Re...
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
Proceedings of the Fuel Cells `97 Review Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors andmore » end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.« less
Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2
Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.; ...
2017-04-28
High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less
Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.
High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less
Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K.; Braff, William
2009-01-01
In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
...: * * * under certain conditions, an ignition source may develop in the wing tank vapour space, due to... tank vapour space, due to insufficient clearance between the wiring along the Fuel Quantity Tank Units... develop in the wing tank vapour space, due to insufficient clearance between the wiring along the Fuel...
Automotive Fuel and Exhaust Systems.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…
CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION
Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Fuel processors for fuel cell APU applications
NASA Astrophysics Data System (ADS)
Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.
The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…
Eric R. Scholl; Thomas A. Waldrop
1999-01-01
Although prescribed burning is common in the Southeastern United States, most fuel models apply to only western forests. This paper documents a fuel classification system that was developed for plantations of loblolly and longleaf pines for the Upper Coastal Plain region. Multivariate analysis of variance and discriminant function analysis were used to confirm eight...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Gikakis, Christina
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.
Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models
Keith Grabner; John Dwyer; Bruce Cutter
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...
An Optimization Framework for Driver Feedback Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2013-01-01
Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less
OSPREY Model Development Status Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veronica J Rutledge
2014-04-01
During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University,more » and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a...-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil fuel for delivery to an oil fired boiler, the equipment used for the preparation of heated oil fuel for...
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
2013-01-01
of the Safety of Chemicals in Foods , Drugs and Cosmetics – Dermal Toxicity. Association of Food and Drug Officials of the United States, Topeka, KS...Air Force is developing alternative fuels to decrease dependence on foreign oil. All new fuels are potentially hazardous to Air Force personnel and...oil. All new fuels are potentially hazardous to Air Force personnel and require toxicity evaluation. The objective of the dermal irritation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalak, S.
1995-12-31
The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong tomore » a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.« less
Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Kinchin, C.; McCormick, R.
The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.
Robert A. Mickler; Miriam Rorig; Christopher D. Geron; Gary L. Achtemier; Andrew D. Bailey; Candice Krull; David Brownlie
2007-01-01
Wildland fuels have been accumulating in the United States during at least the past half-century due to wildland fire management practices and policies. The additional fuels contribute to intense fire behavior, increase the costs of wildland fire control, and contribute to the degradation of local and regional air quality. The management of prescribed and wildland fire...
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…
Virginia L. McDaniel; Roger W. Perry; Nancy E. Koerth; James M. Guldin
2016-01-01
Accurate fuel load and consumption predictions are important to estimate fire effects and air pollutant emissions. The FOFEM (First Order Fire Effects Model) is a commonly used model developed in the western United States to estimate fire effects such as fuel consumption, soil heating, air pollutant emissions, and tree mortality. However, the accuracy of the model in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.; Palmer, Joe
2016-11-01
The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less
NASA Astrophysics Data System (ADS)
Musulin, Mike, II
The continued failure of synthetic fuels development in the United States to achieve commercialization has been documented through the sporadic periods of mounting corporate and government enthusiasm and high levels of research and development efforts. Four periods of enthusiasm at the national level were followed by waning intervals of shrinking financial support and sagging R&D work. The continuing cycle of mobilization and stagnation has had a corresponding history in Kentucky. To better understand the potential and the pitfalls of this type of technological development the history of synthetic fuels development in the United States is presented as background, with a more detailed analysis of synfuels development in Kentucky. The first two periods of interest in synthetic fuels immediately after the Second World War and in the 1950s did not result in any proposed plants for Kentucky, but the third and fourth periods of interest created a great deal of activity. A theoretically grounded case study is utilized in this research project to create four different scenarios for the future of synthetic fuels development. The Kentucky experience is utilized in this case study because a fifth incarnation of synthetic fuels development has been proposed for the state in the form of an integrated gasification combined cycle power plant (IGCC) to utilize coal and refuse derived fuel (RDF). The project has been awarded a grant from the U.S. Department of Energy Clean Coal Technology program. From an examination and analysis of these periods of interest and the subsequent dwindling of interest and participation, four alternative scenarios are constructed. A synfuels breakthrough scenario is described whereby IGCC becomes a viable part of the country's energy future. A multiplex scenario describes how IGCC becomes a particular niche in energy production. The status quo scenario describes how the old patterns of project failure repeat themselves. The fourth scenario describes how synfuels and other conventional energy sources are rejected in favor of conservation, use of nuclear facilities, and use of alternative fuels.
Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change
NASA Astrophysics Data System (ADS)
Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi
Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.
NASA Astrophysics Data System (ADS)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.
A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.
A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less
Microbial fuel cells as pollutant treatment units: Research updates.
Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong
2016-10-01
Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
OTEC to hydrogen fuel cells - A solar energy breakthrough
NASA Astrophysics Data System (ADS)
Roney, J. R.
Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.
Scale-up of Carbon/Carbon Bipolar Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
David P. Haack
2009-04-08
This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the developmentmore » and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.« less
History of Significant Vehicle and Fuel Introductions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirk, Matthew; Alleman, Teresa; Melendez, Margo
This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy (DOE)-sponsored multi-agency project initiated to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development is designed to deliver maximum energy savings, emissions reduction, and on-road performance.
Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases
2016-07-01
waste disposal strategy is to simplify the technology development goals. Specifically, we recommend a goal of reducing total net energy consumption ...to net zero. The minimum objective should be the lowest possible fuel consumption per unit of waste disposed. By shifting the focus from W2E to waste...over long distances increases the risks to military personnel and contractors. Because fuel is a limited resource at FOBs, diesel fuel consumption
BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel
2015-09-01
BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less
Can industry`s `fourth` fossil fuel establish presence in US?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armor, A.F.; Dene, C.E.
1996-09-01
After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion nowmore » fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.« less
Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)
NASA Technical Reports Server (NTRS)
McLaughlin, Russell
2013-01-01
NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.
NASA Astrophysics Data System (ADS)
Klaiber, Thomas
The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent, Bill; Gangi, Jennifer; Curtin, Sandra
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less
2009 Fuel Cell Market Report, November 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less
Introducing the global carbon cycle to middle school students with a 14C research project
NASA Astrophysics Data System (ADS)
Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.
2012-12-01
Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
Association between biomass fuel and pulmonary tuberculosis: a nested case-control study.
Kolappan, C; Subramani, R
2009-08-01
To quantify the association between biomass fuel usage and sputum-positive pulmonary tuberculosis. A tuberculosis prevalence survey was conducted in a random sample of 50 rural units (villages) and three urban units in the Tiruvallur district of Tamilnadu, India during the period 2001-2003. Additional data regarding exposure to tobacco smoking, alcohol consumption, biomass fuel usage and Standard of Living Index (SLI) were also collected from the study participants. A nested case-control study was carried out in this population. Cases are defined as bacteriological-positive cases diagnosed by either sputum smear or culture examination. For each case, five age- (within +/-5 years of age) and sex-matched controls were selected randomly from the non-cases residing in the same village/unit. Thus, 255 cases and 1275 controls were included in this study. The unadjusted OR measured from univariate analysis for biomass fuel is 2.9 (95% CI 1.8 to 4.7). The adjusted OR measured from multivariate analysis using Cox regression is 1.7 (95% CI 1.0 to 2.9). Thirty-six percent of cases are attributable to biomass fuel usage. The findings from this case-control study add to the evidence for an independent association between biomass smoke and pulmonary tuberculosis. Improvement in standards of living brought about by economic development will lead to more people using cleaner fuels for cooking than biomass fuel which in turn will lead to a reduction in the occurrence of pulmonary tuberculosis in the community.
Finch, Warren Irvin
1997-01-01
The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.
Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit
Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... means million British thermal unit(s). Operating hour means any hour that fossil fuel is fired in the...
ERIC Educational Resources Information Center
Indiana State Dept. of Public Instruction, Indianapolis. Div. of Curriculum.
Energy education units (consisting of a general teacher's guide and nine units containing a wide variety of energy lessons, resources, learning aids, and bibliography) were developed for the Indiana Energy Education Program from existing energy education materials. The units were designed to serve as an entire curriculum, resource document,…
Hydrogen production econometric studies. [hydrogen and fossil fuels
NASA Technical Reports Server (NTRS)
Howell, J. R.; Bannerot, R. B.
1975-01-01
The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...
Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam
2015-03-01
Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... and value added tax on fuel (passenger vehicles) (United Kingdom). 252.229-7009 Section 252.229-7009... Relief from customs duty and value added tax on fuel (passenger vehicles) (United Kingdom). As prescribed in 229.402-70(i), use the following clause: Relief from Customs Duty and Value Added Tax on Fuel...
Code of Federal Regulations, 2010 CFR
2010-10-01
... and value added tax on fuel (passenger vehicles) (United Kingdom). 252.229-7009 Section 252.229-7009... Relief from customs duty and value added tax on fuel (passenger vehicles) (United Kingdom). As prescribed in 229.402-70(i), use the following clause: Relief from Customs Duty and Value Added Tax on Fuel...
Code of Federal Regulations, 2013 CFR
2013-10-01
... and value added tax on fuel (passenger vehicles) (United Kingdom). 252.229-7009 Section 252.229-7009... Relief from customs duty and value added tax on fuel (passenger vehicles) (United Kingdom). As prescribed in 229.402-70(i), use the following clause: Relief from Customs Duty and Value Added Tax on Fuel...
Code of Federal Regulations, 2012 CFR
2012-10-01
... and value added tax on fuel (passenger vehicles) (United Kingdom). 252.229-7009 Section 252.229-7009... Relief from customs duty and value added tax on fuel (passenger vehicles) (United Kingdom). As prescribed in 229.402-70(i), use the following clause: Relief from Customs Duty and Value Added Tax on Fuel...
Code of Federal Regulations, 2011 CFR
2011-10-01
... and value added tax on fuel (passenger vehicles) (United Kingdom). 252.229-7009 Section 252.229-7009... Relief from customs duty and value added tax on fuel (passenger vehicles) (United Kingdom). As prescribed in 229.402-70(i), use the following clause: Relief from Customs Duty and Value Added Tax on Fuel...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
Development of compact fuel processor for 2 kW class residential PEMFCs
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Listed
2011-12-01
The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russianmore » Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.« less
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
Automotive Fuel and Exhaust Systems.
ERIC Educational Resources Information Center
Irby, James F.; And Others
Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…
James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris
2004-01-01
Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...
Biorefinery developments for advanced biofuels from a widening array of biomass feedstocks
USDA-ARS?s Scientific Manuscript database
When the United States passed the Renewable Fuel Standards (RFS) of 2007 into law it mandated that, by the year 2022, 36 billion gallons of biofuels be produced annually in the U.S. to displace petroleum. This targeted quota, which required that at least half of domestic transportation fuel be “adva...
Liquid hydrogen as a propulsion fuel, 1945-1959
NASA Technical Reports Server (NTRS)
Sloop, J. L.
1978-01-01
A historical review is presented on the research and development of liquid hydrogen for use as a propulsion fuel. The document is divided into three parts: Part 1 (1945-1950); Part 2 (1950-1957); and Part 3 (1957-1958), encompassing eleven topics. Two appendixes are included. Hydrogen Technology Through World War 2; and Propulsion Primer, Performance Parameters and Units.
Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainscough, C.; McLarty, D.; Sullivan, R.
2013-10-01
This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.
R. D. Bergman; D. L. Reed; A. M. Taylor; D. P. Harper; D. G. Hodges
2015-01-01
Developing renewable energy sources with low environmental impacts is becoming increasingly important as concerns about consuming fossil fuel sources grow. Cultivating, harvesting, drying, and densifying raw biomass feedstocks into pellets for easy handling and transport is one step forward in this endeavor. However, the corresponding environmental performances must be...
2003-10-13
04ANNUAL-524 Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit Joseph Conover, Harry...used or the main engines are restarted. Integration of a solid oxide fuel cell (SOFC) auxiliary power unit into a military vehicle has the...presented which show the fuel usage and capability impacts of incorporating a fuel cell APU into the electrical system of a Bradley M2A3 Diesel
Near-term capital spending in the North American power industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burt, B.; Mullins, S.
2007-01-15
The article provides a snapshot of activity in the four distinct North American electric power generation niches - coal, nuclear, gas and renewables. Consideration of capacity and investment levels are a viable way of comparing growth trends. Coal still remains the fuel of choice for most new North American units. Between now and 2010 some 25 coal-fired units are scheduled to come on-line; another 246 units are in earlier stages of development. In 2005, spending on renewable energy development surpassed investment in gas-fired unit construction for the first time. 4 photos.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, J.; Cropley, C.C.
Technology for the direct desulfurization of unprocessed diesel fuel using regenerable copper-based mixed metal oxide sorbents was developed for incorporation in modular phosphoric acid fuel cell (PAFC) generators. Removal of greater 60% of the sulfur in diesel fuel was demonstrated, and sorbent sulfur loadings of approximately 1 wt% were attained. Preliminary studies indicated that the sorbents are regenerable, with up to 70% of the sorbed sulfur removed during regeneration. Incorporation of this technology into a PAFC power plant should reduce the weight of the sulfur removal unit by a minimum of 25%.
Summary of Fuel Cell Programs at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla
2000-01-01
The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.
NASA Technical Reports Server (NTRS)
1979-01-01
Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... 2020 and by 80% of 1990 levels by 2050. Power generation is a major source of carbon emissions, with 74% of power generated in the United Kingdom coming from fossil fuels. As the government seeks to reduce... power. Highly developed, sophisticated, and diversified, the UK market is the single largest export...
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel T. Hennessy
2010-06-15
Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs andmore » implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.« less
An overview of US energy options: Supply- and demand-side history and prospects
NASA Technical Reports Server (NTRS)
Hirshberg, A. S.
1977-01-01
An overview was provided of nonsolar energy policy options available to the United States until solar energy conversion and utilization devices can produce power at a cost competitive with that obtained from fossil fuels. The economics of the development of new fossil fuel sources and of mandatory conservation measures in energy usage were clarified in the context of the historic annual rate of increase in U.S. energy demand. An attempt was made to compare the costs and relative efficiencies of energy obtainable from various sources by correlating the many confusing measurement units in current use.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...
2008 Fuel Cell Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.« less
The Increasing Importance of Deposition of Reduced Nitrogen in the United States
Rapid development of agricultural activities and fossil fuel combustion in the United States has led to a great increase in reactive nitrogen (Nr) emissions in the second half of the twentieth century. These emissions have been linked to excess nitrogen (N) deposition (i.e. depos...
Stratified charge rotary engine for general aviation
NASA Technical Reports Server (NTRS)
Mount, R. E.; Parente, A. M.; Hady, W. F.
1986-01-01
A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.
Used Pallets as a Source of Pellet Fuel: Current Industry Status
P.B. Aruna; Jan G. Laarman; Philip A. Araman; Edward Coulter; Frederick Cubbage
1997-01-01
U.S. companies discard approximately 4 billion board feet per year of wood pallets and containers. Manufacturing fuel pellets from this wasted wood may be an alternative to disposal. This study traces the development of biomass energy and the wood pellet industry in the United States and considers the production aspects of making pellets from used pallets. In addition...
ERIC Educational Resources Information Center
Carolan, Michael S.
2009-01-01
This article develops a broad sociological understanding of why biofuels lost out to leaded gasoline as the fuel par excellence of the twentieth century, while drawing comparisons with biofuels today. It begins by briefly discussing the fuel-scape in the United States in the late nineteenth and early twentieth centuries, examining the farm…
Estimating small mammal abundance on fuels treatment units in southwestern ponderosa pine forests
Sarah J. Converse; Brett G. Dickson; Gary C. White; William M. Block
2004-01-01
In many North American forests, post-European settlement fire suppression efforts have resulted in the excessive accumulation of forest fuels and changes to the historic fire regime, thereby increasing the risk of catastrophic wildfires (Cooper 1960; Dodge 1972; Covington and Moore 1994). To reduce this risk, it is necessary to develop treatments that will remove...
Comparison of selected foreign plans and practices for spent fuel and high-level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.
1990-04-01
This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal ofmore » spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.« less
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
Fuel cell power trains for road traffic
NASA Astrophysics Data System (ADS)
Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard
Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregson, Michael Warren; Mo, Tin; Sorenson, Ken Bryce
The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratoriesmore » has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.« less
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Fuel quality processing study, volume 1
NASA Astrophysics Data System (ADS)
Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.
1981-04-01
A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.
Fuel quality processing study, volume 1
NASA Technical Reports Server (NTRS)
Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.
1981-01-01
A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.
Validation of behave fire behavior predictions in oak savannas
Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and...-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate Be...
40 CFR 60.2875 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...
40 CFR 60.2875 - What definitions must I know?
Code of Federal Regulations, 2011 CFR
2011-07-01
... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yust, B.L.
The relationship between fuels used by households in a rural region of Leyte Province, the Philippines, and the variables that can affect the type and amount of fuel used were examined. Data were drawn from interviews conducted in a previous study with 150 female heads of households from 10 villages near Baybay, Leyte. Within a family-ecosystem framework, a multiple regression model was developed to identify predictors of fuel use in the households. Inputs to the system included the following independent variables representing aspects of household environments; (1) natural--geographic location of the village, (2) technical--cook stove and equipment ownership, (3) economic--distancemore » to fuel sources and number of hectares of land owned, and (4) cultural-cooking fuel preference. Two regression equations were developed. The first used as the dependent variable the number of units of each of four specific fuels used in the household in one week: wood, coconut fronds, and coconut shells, and coconut husks with shells. The second used as the dependent variable an aggregate measure, barrel oil equivalent (boe), of the quantity of all fuels used in the household in one week. The households in this study were primarily dependent on biomass fuels gathered by family members; a limited quantity of commercial fuels was used.« less
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
Code of Federal Regulations, 2013 CFR
2013-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2010 CFR
2010-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2011 CFR
2011-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
Code of Federal Regulations, 2012 CFR
2012-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
A Stirling engine for use with lower quality fuels
NASA Astrophysics Data System (ADS)
Paul, Christopher J.
There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.
A contemporary carbon balance for the Northeast region of the United States.
Lu, Xiaoliang; Kicklighter, David W; Melillo, Jerry M; Yang, Ping; Rosenzweig, Bernice; Vörösmarty, Charles J; Gross, Barry; Stewart, Robert J
2013-01-01
Development of regional policies to reduce net emissions of carbon dioxide (CO2) would benefit from the quantification of the major components of the region's carbon balance--fossil fuel CO2 emissions and net fluxes between land ecosystems and the atmosphere. Through spatially detailed inventories of fossil fuel CO2 emissions and a terrestrial biogeochemistry model, we produce the first estimate of regional carbon balance for the Northeast United States between 2001 and 2005. Our analysis reveals that the region was a net carbon source of 259 Tg C/yr over this period. Carbon sequestration by land ecosystems across the region, mainly forests, compensated for about 6% of the region's fossil fuel emissions. Actions that reduce fossil fuel CO2 emissions are key to improving the region's carbon balance. Careful management of forested lands will be required to protect their role as a net carbon sink and a provider of important ecosystem services such as water purification, erosion control, wildlife habitat and diversity, and scenic landscapes.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
ERIC Educational Resources Information Center
King, Chris
2014-01-01
The revised National Curriculum for Science for key stages 3 and 4 (ages 11-16) in England provides the opportunity to develop a new coherent approach to teaching about the carbon cycle, the use of carbon as a fuel and the resulting issues. The Earth Science Education Unit (ESEU) intends to develop a new workshop to support the teaching of this…
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
International nuclear fuel cycle fact book. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
International Nuclear Fuel Cycle Fact Book. Revision 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
Commercialization of proton exchange membrane fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wismer, L.
1996-04-01
Environmental concerns with air quality and global warming have triggered strict federal ambient ozone air quality standards. Areas on non-attainment of these standards exist across the United States. Because it contains several of the most difficult attainment areas, the State of California has adopted low emission standards including a zero emission vehicle mandate that has given rise to development of hybrid electric vehicles, both battery-powered and fuel-cell powered. Fuel cell powered vehicles, using on-board hydrogen as a fuel, share the non-polluting advantage of the battery electric vehicle while offering at least three times the range today`s battery technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, S.; Ramsay, W.
1982-01-01
Two related papers (one by each author) examine some of the problems and point out some complexities that must be taken into account in evaluating the alcohol option. Islam notes particularly Brazil's dilemma in relinquishing its domination of world sugar markets in favor of fuel-alcohol programs that will offer more resilience to future oil shocks. Ramsay stresses the practicability of alcohol for fuel import replacement compared to other synthetic fuels; he prefers the alcohol-from-grain option, especially when considered within the context of government incentives and availability of idle land. 24 references. (DCK)
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallerman, G.; Gray, R.J.
An instrument for crushing-strength determinations of uncoated and pyrolytic-carbon-coated fuel particles (50 to 500 mu in diameter) was developed to relate the crushing strength of the particles to their fabricability. The instrument consists of a loading mechanism, load cell, and a power supply-readout unit. The information that can be obtained by statistical methods of the data analysis is illustrated by results on two batches of fuel particles. (auth)
NASA Technical Reports Server (NTRS)
Helenbrook, R. D.; Colt, J. Z.
1977-01-01
An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... gas-fired turbines for compressor units A2 and A3 and restaging of centrifugal compressors for units.... CP11-133-000] National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of... assessment (EA) for National Fuel Gas Supply Corporation's (National Fuel) proposed Northern Access Project...
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.
2011-10-01
The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.
Analysis of dynamic requirements for fuel cell systems for vehicle applications
NASA Astrophysics Data System (ADS)
Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen
Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative to conventional combustion engines, as long as there is a sufficient amount of power output from the fuel cell available for low operating temperatures. An optimized air supply system meets the requirements for transient operation in vehicles; however, specially designed machines are necessary-in particular smaller, integrated units. The electrical storage device helps to minimize fuel cell system response times for transient operation. An even more important point is that the fuel cell can be downsized. Utilizing this potential can reduce cost, space and weight. Fuel processing is preferable for auxiliary power units, since they have to operate in vehicles that use either gasoline or diesel fuel. High losses during the start-up phase can be avoided by using a battery to buffer the highly fluctuating power demands. Only advanced control methods are acceptable for controlling the operation of a fuel cell system with several components. Fuel cell systems can be developed and precisely optimized through the use of simulation tools, within an accelerated development process.
Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion
NASA Astrophysics Data System (ADS)
Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha
Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.
Models of unit operations used for solid-waste processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, G.M.; Glaub, J.C.; Diaz, L.F.
1984-09-01
This report documents the unit operations models that have been developed for typical refuse-derived-fuel (RDF) processing systems. These models, which represent the mass balances, energy requirements, and economics of the unit operations, are derived, where possible, from basic principles. Empiricism has been invoked where a governing theory has yet to be developed. Field test data and manufacturers' information, where available, supplement the analytical development of the models. A literature review has also been included for the purpose of compiling and discussing in one document the available information pertaining to the modeling of front-end unit operations. Separate analytics have been donemore » for each task.« less
DOE perspective on fuel cells in transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, R.
1996-04-01
Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less
Caloric Value of Some Forest Fuels of the Southern United States
Walter A. Hough
1969-01-01
The caloric value of a variety of southern forest fuels was determined in an oxygen bomb calorimeter. High heat values ranged between about 3,600 and 5,200 cal./g. for fuels as sampled and between 4,500 and 5,600 cal./g. for fuels on an ash-free basis. Additional tests of forest fuels from the Southern, Eastern, and North Central United States showed a...
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
ERIC Educational Resources Information Center
Goodson, Ludy
This student guide is for Unit 5, Fuel and Carburetion Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting and servicing the fuel and carburetion systems. A companion review exercise book and posttests are available separately as CE 031 218-219. An introduction tells how this unit fits…
Estimated United States Transportation Energy Use 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Simon, A J; Belles, R D
A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within themore » transportation sector.« less
Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine
NASA Astrophysics Data System (ADS)
Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan
2012-06-01
A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.
Aircraft Trajectory Optimization and Contrails Avoidance in the Presence of Winds
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Chen, Neil Y.
2010-01-01
There are indications that persistent contrails can lead to adverse climate change, although the complete effect on climate forcing is still uncertain. A flight trajectory optimization algorithm with fuel and contrails models, which develops alternative flight paths, provides policy makers the necessary data to make tradeoffs between persistent contrails mitigation and aircraft fuel consumption. This study develops an algorithm that calculates wind-optimal trajectories for cruising aircraft while avoiding the regions of airspace prone to persistent contrails formation. The optimal trajectories are developed by solving a non-linear optimal control problem with path constraints. The regions of airspace favorable to persistent contrails formation are modeled as penalty areas that aircraft should avoid and are adjustable. The tradeoff between persistent contrails formation and additional fuel consumption is investigated, with and without altitude optimization, for 12 city-pairs in the continental United States. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a two percent increase in total fuel consumption can reduce the total travel times through contrail regions by more than six times. Allowing further increase in fuel consumption does not seem to result in proportionate decrease in contrail travel times.
transformational technologies that reduce the nation's dependence on foreign energy imports; reduce U.S. energy ; and ensure that the United States maintains its leadership in developing and deploying advanced energy
Active Control of Combustor Instability Shown to Help Lower Emissions
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Chang, Clarence T.
2002-01-01
In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
Will Kentucky lead the way in synthetic fuels production? A history lesson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musulin, M.
2008-07-01
At four times in the history of the United States, synthetic fuels have been used as the energy savior of the country, from the period immediately following the second World War to the mid 1980s when the Synthetic Fuels Corporation was unceremoniously demolished by the Reagan administration. The Center for Applied Energy Research at the University of Kentucky has been a major player in the game and the state of Kentucky has received much funding for synthetic fuels development since the 1970s. The article traces the history of developments in the field. The fate of the development has in themore » author's opinion been influenced by the misalignment of three 'spheres of influence' - in essence the political economy, environmental/regulatory issues, and the technological innovation process. Synthetic fuels can now become an integral part of what is called a 'multiplex energy strategy' and Kentucky again has the opportunity to build on its prior experience and embrace a new paradigm regarding how clean energy solutions based on gasification technologies can aid the USA. 4 photos.« less
NASA Astrophysics Data System (ADS)
Bao, Cheng; Cai, Ningsheng; Croiset, Eric
2011-10-01
Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.
NASA Astrophysics Data System (ADS)
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Wang, Michael
The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH 4 emissions, which are the third largest anthropogenic CH 4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuelmore » production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET ®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.« less
Direct fuel cell power plants: the final steps to commercialization
NASA Astrophysics Data System (ADS)
Glenn, Donald R.
Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each rated at 500 kW, are on-site and will be installed to the BOP upon completion of the BOP pretests now in the final stages. Full operation and commencement of the formal demonstration is to begin late this year. Now five years old, the Fuel Cell Commercialization Group (FCCG) has grown to include over 30 buyers. The Group's Committees have been actively working with FCE personnel to hone the plant's performance, configuration and cost/benefit trade-offs to assure a market-responsive unit results from the collaboration. A standard contract has been developed for use with the FCCG buyers to streamline the purchase agreement negotiations for the early units. These are essential steps to support a market entry for the 2.8 MW power plant in 1999. The paper details the program's progress and provides additional information on the current demonstration and stack test efforts, with comparisons to earlier test data. Recent accomplishments and planned efforts to affect market entry of the first production units is reviewed as well.
Code of Federal Regulations, 2011 CFR
2011-01-01
... President of the United States of America A Proclamation From the air we breathe to the water we drink, the... drinking water. The United States Environmental Protection Agency (EPA) was created in 1970 to protect... through pollution prevention and the development of clean-energy alternatives to fossil fuels. The...
The Big E (Energy). 4-H Member Guide, Unit 2.
ERIC Educational Resources Information Center
Caldwell, William; And Others
This activity and record book is designed for unit 2 (ages 12-14) of the Nebraska 4-H Energy Project. Aims, energy attitudes to be developed, and instructions are provided for each activity. Activities include: (1) a word search of energy-related words (with definitions provided); (2) determining fuel waste; (3) reading electric/gas meters and…
Development for Women? The 1981-85 Moroccan Plan Considered.
ERIC Educational Resources Information Center
Howard-Merriam, Kathleen
The approach to improving the socioeconomic condition of women in rural Morocco is based on the premise that the family is the key social unit. Women, as the effective pillars of that unit, will automatically benefit from government sponsored family programs. The Moroccan woman's access to food, water, fuel, medical care, personal safety, and rest…
Mapping relative fire regime condition class for the Western United States
James P. Menakis; Melanie Miller; Thomas Thompson
2004-01-01
In 1999, a coarse-scale map of Fire Regime Condition Classes (FRCC) was developed for the conterminous United States (US) to help address contemporary fire management issues and to quantify changes in fuels from historical conditions. This map and its associated data have been incorporated into national policies (National Fire Plan, Forest Health Initiative) and...
New procedure speeds cold start, protects turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallard, R.E.; Jordan, C.A.
1995-09-01
System dispatch from today`s power plants must consider availability of purchase power (buy and sell), fuel prices, and unit availability and efficiency. To gain the best combination of these factors, steam units must be capable of quick removal and return to service. However, unit startups are expensive, time consuming nd operationally demanding. For example, excessive thermal stresses can be catastrophic to a unit. With those factors in mind, Jacksonville Electric Authority (JEA) developed the ``valve open start`` procedure described here.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Argonne explains nuclear recycling in 4 minutes
Willit, Jim; Williamson, Mark; Haynes, Amber
2018-05-30
Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
...; Transport Refrigeration Units; Request for Authorization; Opportunity for Public Hearing and Comment AGENCY... Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs...''), regarding its ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU...
NASA Technical Reports Server (NTRS)
Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.
1993-01-01
This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Vegetable oils and animal fats for diesel fuels: a systems study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.
1982-01-01
This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J
2016-12-15
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency.
Life-cycle analysis of alternative aviation fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-07-23
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Life-Cycle Analysis of Alternative Aviation Fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-06-01
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Modeling Seasonality in Carbon Dioxide Emissions From Fossil Fuel Consumption
NASA Astrophysics Data System (ADS)
Gregg, J. S.; Andres, R. J.
2004-05-01
Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels using monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. From these data, the goal is to develop mathematical models that describe the seasonal flux in consumption for each type of fuel, as well as the total emissions for the nation. The time series models have two components. First, the general long-term yearly trend is determined with regression models for the annual totals. After removing the general trend, two alternatives are considered for modeling the seasonality. The first alternative uses the mean of the monthly proportions to predict the seasonal distribution. Because the seasonal patterns are fairly consistent in the United States, this is an effective modeling technique. Such regularity, however, may not be present with data from other nations. Therefore, as a second alternative, an ordinary least squares autoregressive model is used. This model is chosen for its ability to accurately describe dependent data and for its predictive capacity. It also has a meaningful interpretation, as each coefficient in the model quantifies the dependency for each corresponding time lag. Most importantly, it is dynamic, and able to adapt to anomalies and changing patterns. The order of the autoregressive model is chosen by the Akaike Information Criterion (AIC), which minimizes the predicted variance for all models of increasing complexity. To model the monthly fuel consumption, the annual trend is combined with the seasonal model. The models for each fuel type are then summed together to predict the total carbon dioxide emissions. The prediction error is estimated with the root mean square error (RMSE) from the actual estimated emission values. Overall, the models perform very well, with relative RMSE less than 10% for all fuel types, and under 5% for the national total emissions. Development of successful models is important to better understand and predict global environmental impacts from fossil fuel consumption.
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
Energy and resource consumption
NASA Technical Reports Server (NTRS)
1973-01-01
The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Gikakis, Christina
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less
Pamela Jakes; Sam Burns; Antony Cheng; Emily Saeli; Kristen Nelson Rachel Brummel; Stephanie Grayzeck; Victoria Sturtevant; Daniel Williams
2007-01-01
Community wildfire protection plans (CWPPs) are being developed and implemented in communities across the United States. In a series of case studies, researchers found that the process of developing a CWPP can lead to benefits beyond those associated with fuels reduction, including enhancing social networks, developing learning communities, and building community...
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.
2013-12-01
Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3.2 MW), to another FLIR deployed with an oblique view from atop a 36 m boom lift (2.1 MW), demonstrated reasonable agreement. Unit-level estimates of FRE will also be compared to estimates of surface fuel consumption (~5 Mg/ha) that were summarized at the unit level from pre- and post-fire clip plots of surface fuel biomass. At AGU, we will also compare predictions of surface fuel loads to estimates of energy release, as mapped at 3 m resolution from these independent remotely sensed data sources. These results will serve to demonstrate our ability to remotely measure and relate fuel loads to fire behavior at a landscape level.
Development of dryland oilseed production systems in northwestern region of the USA
USDA-ARS?s Scientific Manuscript database
This report addresses the development of dryland oilseed crops to provide feedstock for production of biofuels in semiarid portions of the northwestern United States. Bioenergy feedstocks derived from Brassica oilseed crops have been considered for production of hydrotreated renewable jet fuel, but...
NASA Astrophysics Data System (ADS)
Gemmen, R. S.; Johnson, C. D.
Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.
NASA Astrophysics Data System (ADS)
Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro
2017-02-01
The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.
Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel
NASA Astrophysics Data System (ADS)
Lawrence, Jeremy; Boltze, Matthias
An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2010 CFR
2010-07-01
... component failure or condition. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation
DOT National Transportation Integrated Search
2009-04-01
The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportation's Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admini...
Porous silicon-based direct hydrogen sulphide fuel cells.
Dzhafarov, T D; Yuksel, S Aydin
2011-10-01
In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.
NASA Astrophysics Data System (ADS)
Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.
2013-03-01
The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.
Net change in forest density, 1873-2001. Using historical maps to monitor long-term forest trends.
Greg C. Liknes; Mark D. Nelson; Daniel J. Kaisershot
2013-01-01
European settlement of the United States and utilization of forests are inextricably linked. Forest products fueled development, providing the building blocks for railroads, bridges, ships, and homes. Perhaps because of the importance of its forests, the United States has a rich cartographic history documenting its resources. Long-term, broad-scale monitoring efforts...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...
10 CFR 503.25 - Public interest.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.25..., during the construction of an alternate-fuel fired unit, the petitioner may substitute, in lieu of the... during the construction of an alternate fuel fired unit to be owned or operated by the petitioner; and (2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia
NASA Astrophysics Data System (ADS)
Susanto, H.; Suria, T.; Pranolo, S. H.
2018-03-01
The gaseous fuel from biomass gasification might reduce the consumption of diesel fuel by 70%. The investment cost of the whole unit with a capacity of 45 kWe was about IDR 220 million in 2008 comprised of 24% for gasification unit, 54% for diesel engine and electric generator, 22% for transportation of the whole unit from Bandung to the site in South Borneo. The gasification unit was made in local workshop in Bandung, while the diesel-generator was purchased also in a local market. To anticipate the development of biomass based electricity in remote areas, an economic analysis has been made for implementations in 2019. A specific investment cost of 600 USD/kW has been estimated taking account to the escalation and capacity factors. Using a discounted factor of 11% and biomass cost in the range of 0.03-0.07 USD/kg, the production cost of electricity would be in the range of 0.09-0.16 USD/kWh. This production cost was lower than that of diesel engine fueled with full oil commonly implemented in many remote areas in Indonesia at this moment. This production cost was also lower than the Feed in Tariff in some regions established by Indonesian government in 2017.
Production of ethanol from newly developed and improved winter barley cultivars
USDA-ARS?s Scientific Manuscript database
Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climates such as the mid-Atlantic and northeastern United States. Ten recently developed and improved winter barley cultivars and breeding lines, including five hulled and fiv...
Flower Power: Prospects for Photosynthetic Energy
ERIC Educational Resources Information Center
Poole, Alan D.; Williams, Robert H.
1976-01-01
This report focuses on the prospects and possibilities for using biomass as an energy source for the United States. However, the greatest potential for utilizing biomass as fuel exists in energy-starved developing nations, since it appears possible to develop biomass technologies keeping capital inputs low in relation to labor inputs. (BT)
USDA-ARS?s Scientific Manuscript database
Biofuel feedstocks are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. Changes in...
Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.
2003-01-01
Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Cold weather effects on Dresden Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anagnostopoulos, H.
1995-03-01
Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere tomore » the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.« less
Dual membrane hollow fiber fuel cell and method of operating same
NASA Technical Reports Server (NTRS)
Ingham, J. D.; Lawson, D. D. (Inventor)
1978-01-01
A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.
Fuel cell programs in the United States for stationary power applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.
1996-04-01
The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less
Fuel efficiency through new airframe technology
NASA Technical Reports Server (NTRS)
Leonard, R. W.
1982-01-01
In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.
Aircraft engine and auxiliary power unit emissions from combusting JP-8 fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimm, L.T.; Sylvia, D.A.; Gerstle, T.C.
1997-12-31
Due to safety considerations and in an effort to standardize Department of Defense fuels, the US Air Force (USAF) replaced the naptha-based JP-4, MIL-T-5624, with the kerosene-based JP-8, MIL-T-83133, as the standard turbine fuel. Although engine emissions from combustion of JP-4 are well documented for criteria pollutants, little information exists for criteria and hazardous air pollutants from combustion of JP-8 fuel. Due to intrinsic differences between these two raw fuels, their combustion products were expected to differ. As part of a broader engine testing program, the Air Force, through the Human Systems Center at Brooks AFB, TX, has contracted tomore » have the emissions characterized from aircraft engines and auxiliary power units (APUs). Criteria pollutant and targeted HAP emissions of selected USAF aircraft engines were quantified during the test program. Emission test results will be used to develop emission factors for the tested aircraft engines and APUs. The Air Force intends to develop a mathematical relationship, using the data collected during this series of tests and from previous tests, to extrapolate existing JP-4 emission factors to representative JP-8 emission factors for other engines. This paper reports sampling methodologies for the following aircraft engine emissions tests: F110-GE-100, F101-GE-102, TF33-P-102, F108-CF-100, T56-A-15, and T39-GE-1A/C. The UH-60A helicopter engine, T700-GE-700, and the C-5A/B and C-130H auxiliary power units (GTCP165-1 and GTCP85-180, respectively) were also tested. Testing was performed at various engine settings to determine emissions of particulate matter, carbon monoxide, nitrogen oxides, sulfur oxides, total hydrocarbon, and selected hazardous air pollutants. Ambient monitoring was conducted concurrently to establish background pollutant concentrations for data correction.« less
Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B
2014-07-01
This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
2012 - 2016 Corporate Average Fuel Economy compliance and effects modeling system documentation
DOT National Transportation Integrated Search
2010-03-01
The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportation's Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admini...
2017 - 2025 Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation.
DOT National Transportation Integrated Search
2012-08-31
The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportations Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admi...
Nuclear safety. Technical progress journal, October 1996--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less
Study of component technologies for fuel cell on-site integrated energy systems
NASA Technical Reports Server (NTRS)
Lee, W. D.; Mathias, S.
1980-01-01
Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.
Phased Development of Accident Tolerant Fue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon M.; Carmack, W. Jon
2016-09-01
The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modelingmore » predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology readiness levels (TRL) defined for nuclear fuel development. TRL 1–3 corresponds to the “proof-of-concept” stage (Phase 1), TRL 4–6 to “proof-of-principle” (Phase 2), and TRL 7–9 to “proof-of-performance” (Phase 3). This paper will provide an overview of the anticipated activities within each phase of development and will provide an update on the current ATF development status.« less
ERIC Educational Resources Information Center
Baird, Stephen L.
2004-01-01
The technological literacy standards were developed to act as a beacon for educators to guide them in their quest to develop a population of technically literate citizens who possess the skills, abilities, and knowledge necessary to actively and constructively participate in the democratic, technologically dependent society of the United States.…
Alternative Aviation Fuel Experiment (AAFEX)
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.;
2011-01-01
The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes
On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzolino, Raffaello, E-mail: raffaello.cozzolino@unicusano.it; Tribioli, Laura
2015-03-10
Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor,more » two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.« less
Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)
2009-01-01
A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2013 CFR
2013-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2014 CFR
2014-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2012 CFR
2012-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2011 CFR
2011-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Fossil Fuel Fired Steam... www.regulations.gov . Title: NSPS for Fossil Fuel Fired Steam Generating Units(Renewal). ICR Numbers.... Respondents/Affected Entities: Owners or operators of fossil fuel fired steam generating units. Estimated...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.
ERIC Educational Resources Information Center
Berndt, Don; Stengel, Ron
These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…
Morris C. Johnson; David L. Peterson; Crystal L. Raymond
2007-01-01
Guide to Fuel Treatments analyzes a range of fuel treatments for representative dry forest stands in the Western United States with overstories dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and pinyon pine (Pinus edulis). Six silvicultural options (no thinning; thinning...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... will no longer accept nominations for the transportation of jet fuel or distillates, violates the...., United Airlines, Inc., UPS Fuel Services, Inc. v. Enterprise TE Products Pipeline Company, LLC; Notice of... LLC; MFA Oil Company; Southwest Airline Co.; United Airlines, Inc.; and UPS Fuel Services, Inc...
Evaluating the Military Potential of a Developing Nation’s Space Program: A Case Study of Brazil
1991-09-01
decided to create Empresa Brasileira de Aeronautica (EMBRAER). EMBRAER was a mixed public/private sector aircraft company. The government was given 51% of...the space launch market. Solid fuel missiles are easier to hide, transport , and fire than are liquid fuel systems like the Scud. These advantages make...In 1965, The Brazilian Air Force Ministry created the Space Activities Institute (IAE-Instituto de Atividades Espaciais). In 1966, the United States
NASA Astrophysics Data System (ADS)
Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. N.; Ageev, A. V.
2018-05-01
This is the second paper in a series of publications summarizing the international experience in the development of low-emission combustors (LEC) for land-based, large (above 250 MW) gas-turbine units (GTU). The purpose of this series is to generalize and analyze the approaches used by various manufacturers in designing flowpaths for fuel and air in LECs, managing fuel combustion, and controlling the fuel flow. The efficiency of advanced GTUs can be as high as 43% (with an output of 350-500 MW) while the efficiency of 600-800 MW combined-cycle units with these GTUs can attain 63.5%. These high efficiencies require a compression ratio of 20-24 and a temperature as high as 1600°C at the combustor outlet. Accordingly, the temperature in the combustion zone also rises. All the requirements for the control of harmful emissions from these GTUs are met. All the manufacturers and designers of LECs for modern GTUs encounter similar problems, such as emissions control, combustion instability, and reliable cooling of hot path parts. Methods of their elimination are different and interesting from the standpoint of science and practice. One more essential requirement is that the efficiency and environmental performance indices must be maintained irrespective of the fuel composition or heating value and also in operation at part loads below 40% of rated. This paper deals with Mitsubishi Series M701 GTUs, F, G, or J class, which have gained a good reputation in the power equipment market. A design of a burner for LECs and a control method providing stable low-emission fuel combustion are presented. The advantages and disadvantages of the use of air bypass valves installed in each liner to maintain a nearly constant air to fuel ratio within a wide range of GTU loads are described. Methods for controlling low- and high-frequency combustion instabilities are outlined. Upgrading of the cooling system for the wall of a liner and a transition piece is of great interest. Change over from effusion (or film) cooling to convective steam cooling and convective air cooling has considerably increased the GTU efficiency.
Development of Methods to Evaluate Safer Flight Characteristics
NASA Technical Reports Server (NTRS)
Basciano, Thomas E., Jr.; Erickson, Jon D.
1997-01-01
The goal of the proposed research is to begin development of a simulation that models the flight characteristics of the Simplified Aid For EVA Rescue (SAFER) pack. Development of such a simulation was initiated to ultimately study the effect an Orbital Replacement Unit (ORU) has on SAFER dynamics. A major function of this program will be to calculate fuel consumption for many ORUs with different masses and locations. This will ultimately determine the maximum ORU mass an astronaut can carry and still perform a self-rescue without jettisoning the unit. A second primary goal is to eventually simulate relative motion (vibration) between the ORU and astronaut. After relative motion is accurately modeled it will be possible to evaluate the robustness of the control system and optimize performance as needed. The first stage in developing the simulation is the ability to model a standardized, total, self-rescue scenario, making it possible to accurately compare different program runs. In orbit an astronaut has only limited data and will not be able to follow the most fuel efficient trajectory; therefore, it is important to correctly model the procedures an astronaut would use in orbit so that good fuel consumption data can be obtained. Once this part of the program is well tested and verified, the vibration (relative motion) of the ORU with respect to the astronaut can be studied.
Diesel fuel to dc power: Navy & Marine Corps Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.
1996-12-31
During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
Rocky Mountain Research Station USDA Forest Service
2005-01-01
The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.
Kelley; Dana A. , Farooque; Mohammad , Davis; Keith
2007-10-02
A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.
Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganda, Francesco; Dixon, Brent; Hoffman, Edward
The purpose of this work is to present a new methodology, and associated computational tools, developed within the U.S. Department of Energy (U.S. DOE) Fuel Cycle Option Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantify and compare the economic performance of different baseload generating technologies, including of nuclear: it is the cost of electricity which renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricitymore » of fuel cycles at mass balance equilibrium, which is termed LCAE (Levelized Cost of Electricity at Equilibrium). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed, which has been called the “island approach” because of its logical structure: a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities, called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB®, has been developed to calculate the LCAE of complex fuel cycles with the “island” computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fuel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper NE-COST will be used to quantify, as examples, the economic performance of (1) current Light Water Reactors (LWR) once-through systems; (2) continuous plutonium recycling in Fast Reactors (FR) with driver and blanket; (3) Recycling of plutonium bred in FR into LWR. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified.« less
Eddy-Current Detection of Weak Bolt Heads
NASA Technical Reports Server (NTRS)
Messina, C. P.
1987-01-01
Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
George A. Marchetti
1999-12-15
Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.
Neat methanol fuel cell power plant
NASA Astrophysics Data System (ADS)
Abens, S.; Farooque, M.
1985-12-01
Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew B
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
Buttner, William; Rivkin, C.; Burgess, R.; ...
2017-02-04
Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less
NASA Astrophysics Data System (ADS)
Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.
2017-10-01
Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Analyzing trade-offs between fuels management, suppression, and damages from wildfire
D. Evan Mercer; Robert G. Haight; Jeffrey P. Prestemon
2008-01-01
With expenditures to suppress wildfires in the United States increasing rapidly during the past couple of decades, fire managers, scientists, and policy makers have begun an intense effort to develop alternative approaches to managing wildfire.
ERIC Educational Resources Information Center
Musgrove, P.
1978-01-01
Explores the possibility of installing offshore windmills to provide electricity and to save fuel for the United Kingdom. Favors their deployment in clusters to facilitate supervision and minimize cost. Discusses the power output and the cost involved and urges their quick development. (GA)
Analysis of railroad energy efficiency in the United States.
DOT National Transportation Integrated Search
2013-05-01
The purpose of this study is to provide information about railroad fuel efficiency that may be useful in evaluating transportation energy policies and assessing the sustainability of potential projects. The specific objectives are to (1) develop rail...
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
NASA Astrophysics Data System (ADS)
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Elizabeth D. Reinhardt; Robert E. Keane; David E. Calkin; Jack D. Cohen
2008-01-01
Many natural resource agencies and organizations recognize the importance of fuel treatments as tools for reducing fire hazards and restoring ecosystems. However, there continues to be confusion and misconception about fuel treatments and their implementation and effects in fire-prone landscapes across the United States. This paper (1) summarizes objectives, methods,...
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist
2014-01-01
Several mechanical approaches to managing vegetation fuels hold promise when applied to the dry mixed conifer forests in the western United States. These are most useful to treat surface, ladder, and crown fuels. There are a variety of techniques to remove or alter all kinds of plant biomass (live, dead, or decomposed) that affect forest resilience. It is important for...
40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... subcategory of units designed to burn gas 2 (other) fuels. (iv) You may not average across the units designed to burn liquid, units designed to burn solid fuel, and units designed to burn gas 2 (other...
Optimization of site layout for change of plant operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuwer, S.M.; Kasperski, E.; Joseph, T.D.
1995-12-31
Several of the Florida Power & Light operating fossil power plants have undergone significant site layout changes as well as changes in plant operation. The FPL Fort Lauderdale Plant was repowered in 1992 which consisted of using four (4) Westinghouse 501F Combustion Turbines rated at 158 Mw each, to repower two (2) existing steam turbines rates at 143 Mw each. In 1991, a physical security fence separation occurred between Turkey Point Plants`s fossil fueled Units 1&2, and its nuclear fueled Units 3&4. As a result of this separation, certain facilities common to both the nuclear side and fossil side ofmore » the plant required relocating. Also, the Sanford and Manatee Plants were evaluated for the use of a new fuel as an alternative source. Manatee Plant is currently in the licensing process for modifications to burn a new fuel, requiring expansion of backened clean-up equipment, with additional staff to operate this equipment. In order to address these plant changes, site development studies were prepared for each plant to determine the suitability of the existing ancillary facilities to support the operational changes, and to make recommendations for facility improvement if found inadequate. A standardized process was developed for all of the site studies. This proved to be a comprehensive process and approach, that gave FPL a successful result that all the various stake holders bought into. This process was objectively based, focused, and got us to where we need to be as quickly as possible. As a result, this paper details the outline and various methods developed to prepare a study following this process, that will ultimately provide the optimum site development plan for the changing plant operations.« less
Diesel Mechanics: Fuel Systems.
ERIC Educational Resources Information Center
Foutes, William
This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…
A case for biofuels in aviation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown atmore » major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.« less
75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
...On January 2, 2009, the Environmental Protection Agency (EPA or the Agency) issued an Advanced Notice of Proposed Rulemaking (ANPRM) to solicit comment on which non-hazardous secondary materials that are used as fuels or ingredients in combustion units are solid wastes under the Resource Conservation and Recovery Act (RCRA). The meaning of ``solid waste'' as defined under RCRA is of particular importance since it will determine whether a combustion unit is required to meet emissions standards for solid waste incineration units issued under section 129 of the Clean Air Act (CAA) or emissions standards for commercial, industrial, and institutional boilers issued under CAA section 112. CAA section 129 states that the term ``solid waste'' shall have the meaning ``established by the Administrator pursuant to [RCRA].'' EPA is proposing a definition of non-hazardous solid waste that would be used to identify whether non-hazardous secondary materials burned as fuels or used as ingredients in combustion units are solid waste. EPA is also proposing that non-hazardous secondary materials that have been discarded, and are therefore solid wastes, may be rendered products after they have been processed (altered chemically or physically) into a fuel or ingredient product. This proposed rule is necessary to identify units for the purpose of developing certain standards under sections 112 and 129 of the CAA. In addition to this proposed rule, EPA is concurrently proposing air emission requirements under CAA section 112 for industrial, commercial, and institutional boilers and process heaters, as well as air emission requirements under CAA section 129 for commercial and industrial solid waste incineration units.
Continuous AE crack monitoring of a dissimilar metal weldment at Limerick Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, P.H.; Friesel, M.A.; Dawson, J.F.
1993-12-01
Acoustic emission (AE) technology for continuous surveillance of a reactor component(s) to detect crack initiation and/or crack growth has been developed at Pacific Northwest Laboratory (PNL). The technology was validated off-reactor in several major tests, but it had not been validated by monitoring crack growth on an operating reactor system. A flaw indication was identified during normal inservice inspection of piping at Philadelphia Electric Company (PECO) Limerick Unit 1 reactor during the 1989 refueling outage. Evaluation of the flaw indication showed that it could remain in place during the subsequent fuel cycle without compromising safety. The existence of this flawmore » indication offered a long sought opportunity to validate AE surveillance to detect and evaluate crack growth during reactor operation. AE instrumentation was installed by PNL and PECO to monitor the flaw indication during two complete fuel cycles. This report discusses the results obtained from the AE monitoring over the period May 1989 to March 1992 (two fuel cycles).« less
Analysis of H2 storage needs for early market non-motive fuel cell applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco
Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In additionmore » to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.« less
A direct methanol fuel cell system to power a humanoid robot
NASA Astrophysics Data System (ADS)
Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong
In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.
Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.
2018-01-01
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency. PMID:29706688
Status of commercial phosphoric acid fuel cell system development
NASA Technical Reports Server (NTRS)
Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.
1981-01-01
In both the electric utility and onsite integrated energy system applications, reducing cost and increasing reliability are the main technology drivers. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, was materials. The differences in approach among the three major participants (United Technologies Corporation, Westinghouse Electric Corporation/Energy Research Corporation, and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.
NASA Technical Reports Server (NTRS)
Williams, J. R.
1974-01-01
Air pollution resulting from the use of fossil fuels is discussed. Phenomena relating to the emission of CO2 such as the greenhouse effect and multiplier effect are explored. Particulate release is also discussed. The following recommendations are made for the elimination of fossil fuel combustion products in the United States: development of nuclear breeder reactors, use of solar energy systems, exploration of energy alternatives such as geothermal and fusion, and the substitution of coal for gas and oil use.
2015-12-01
stewardship by reducing reliance on fossil fuels . The Navy is actively 17 developing and participating in energy, environmental and climate change ...maintenance and fuel costs. B. U.S./DOD OIL DEPENDENCE AND ITS IMPACT ON ENVIRONMENT The following section discusses the United States and DOD’s...usinventoryreport.html The Intergovernmental Panel on Climate Change suggests that increasing concentrations of GHGs could have caused the temperature increases over
NASA Astrophysics Data System (ADS)
Khomenok, L. A.
2007-09-01
Problems related to efficient afterburning of fuel in the medium of gas-turbine unit exhaust gases, as well as new design arrangements of gas-jet burners used in the chambers for afterburning fuel in heat-recovery boilers at cogeneration stations equipped with combined-cycle plants, are considered. Results obtained from comparative experimental investigations of different gas-jet flame stabilizers at a test facility are presented, and the advantages of jet-ejector stabilizers are demonstrated.
A light hydrocarbon fuel processor producing high-purity hydrogen
NASA Astrophysics Data System (ADS)
Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan
This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.
TOPAZ II Anti-Criticality Device Rapid Prototype
NASA Astrophysics Data System (ADS)
Campbell, Donald R.; Otting, William D.
1994-07-01
The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.
Liu, Changzheng; Greene, David
2014-12-01
The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allowmore » a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.« less
U.S. Army PEM fuel cell programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, A.S.; Jacobs, R.
The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less
Hodoscope Cineradiography Of Nuclear Fuel Destruction Experiments
NASA Astrophysics Data System (ADS)
De Volpi, A.
1983-08-01
Nuclear reactor safety studies have applied cineradiographic techniques to achieve key information regarding the durability of fuel elements that are subjected to destructive transients in test reactors. Beginning with its development in 1963, the fast-neutron hodoscope has recorded data at the TREAT reactor in the United States of America. Consisting of a collimator instrumented with several hundred parallel channels of detectors and associated instrumentation, the hodoscope measures fuel motion that takes place within thick-walled steel test containers. Fuel movement is determined by detecting the emission of fast neutrons induced in the test capsule by bursts of the test reactor that last from 0.3 to 30 s. The system has been designed so as to achieve under certain typical conditions( horizontal) spatial resolution less than lmm, time resolution close to lms, mass resolution below 0.1 g, with adequate dynamic range and recording duration. A variety of imaging forms have been developed to display the results of processing and analyzing recorded data.*
Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, R.D.; McIlvried, H.G.; Gray, D.
1995-12-31
For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less
NASA Astrophysics Data System (ADS)
Eisler, Matthew Nicholas
The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in controlled conditions. While such demonstrations typically led to short-term investments in further research, they also generated expectations for long-lived and affordable fuel cells using hydrocarbons. However, developing commercial fuel cell technology was an expensive and arduous process, one that few sponsors were willing to support for long in the absence of rapid progress. Despite this mixed record, the fuel cell has become a powerful symbol of technological perfection that continues to inspire further research and dreams of energy plenitude.
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
2013 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, S.
2014-12-01
This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.
2011 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelman, R.
2012-10-01
This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.
Railroad Embankment Stabilization Demonstration for High-Speed Rail Corridors
DOT National Transportation Integrated Search
2003-02-09
The development of high-speed railroad corridors in the United States is being considered by Congress as a fuel efficient and economical alternative to air or highway passenger travel. The exisiting infrastructure is, in many ways, suitable for freig...
2016 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp C; Elchinger, Michael A; Tian, Tian
The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
2015 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Tian, Tian
The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
Comparison of hecter fuel with export aviation gasoline
NASA Technical Reports Server (NTRS)
Dickinson, H C; Gage, V R; Sparrow, S W
1921-01-01
Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)
Advanced techniques for repair of irradiated PWR fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaab, H.; Westphal, M.
Kraftwerk union has recently designed and built a portable repair unit for use in nuclear power plants for repair of defective fuel assemblies where space limitations do not allow permanent installation of repair equipment. This new equipment is designed to be easily disassembled and decontaminated. The main component of the equipment is the fuel assembly reconstitution unit (FARU) which is placed on the floor of the spent fuel pool. The use of the FARU is described in the paper.
Morris C. Johnson; Maureen C Kennedy; David L. Peterson
2011-01-01
We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...
26 CFR 48.4041-7 - Dual use of taxable liquid fuel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... or boat. For example, tax applies to diesel fuel sold to operate the mixing unit on a concrete mixer truck if the mixing unit is operated by means of a power take-off from the motor of the vehicle... a preliminary determination of the number of gallons of fuel used to propel the vehicle. In order to...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the... British thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and... auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ...
Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly
2009-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...
ERIC Educational Resources Information Center
Morse, David T.
This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 5, Fuel and Carburetion Systems; available separately as CE 031 217. Focus of the posttests is the inspecting and servicing of the fuel and carburetion systems. One multiple choice posttest is provided that covers the 10 performance objectives…
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward K. Levy; Nenad Sarunac; Harun Bilirgen
2006-03-01
U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less
Salis, Michele; Del Giudice, Liliana; Arca, Bachisio; Ager, Alan A; Alcasena-Urdiroz, Fermin; Lozano, Olga; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo
2018-04-15
Wildfire spread and behavior can be limited by fuel treatments, even if their effects can vary according to a number of factors including type, intensity, extension, and spatial arrangement. In this work, we simulated the response of key wildfire exposure metrics to variations in the percentage of treated area, treatment unit size, and spatial arrangement of fuel treatments under different wind intensities. The study was carried out in a fire-prone 625 km 2 agro-pastoral area mostly covered by herbaceous fuels, and located in Northern Sardinia, Italy. We constrained the selection of fuel treatment units to areas covered by specific herbaceous land use classes and low terrain slope (<10%). We treated 2%, 5% and 8% of the landscape area, and identified priority sites to locate the fuel treatment units for all treatment alternatives. The fuel treatment alternatives were designed create diverse mosaics of disconnected treatment units with different sizes (0.5-10 ha, LOW strategy; 10-25 ha, MED strategy; 25-50 ha, LAR strategy); in addition, treatment units in a 100-m buffer around the road network (ROAD strategy) were tested. We assessed pre- and post-treatment wildfire behavior by the Minimum Travel Time (MTT) fire spread algorithm. The simulations replicated a set of southwestern wind speed scenarios (16, 24 and 32 km h -1 ) and the driest fuel moisture conditions observed in the study area. Our results showed that fuel treatments implemented near the existing road network were significantly more efficient than the other alternatives, and this difference was amplified at the highest wind speed. Moreover, the largest treatment unit sizes were the most effective in containing wildfire growth. As expected, increasing the percentage of the landscape treated and reducing wind speed lowered fire exposure profiles for all fuel treatment alternatives, and this was observed at both the landscape scale and for highly valued resources. The methodology presented in this study can support the design and optimization of fuel management programs and policies in agro-pastoral areas of the Mediterranean Basin and herbaceous type landscapes elsewhere, where recurrent grassland fires pose a threat to rural communities, farms and infrastructures. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Jacobs, Clinton O.
The report is an evaluation of the effectiveness of the 12 instructional units developed around the use of the Briggs-Stratton Model 80302, 3HP, 8 cu. in. displacement engine having a fuel induction system similar in construction to farm tractor types. The evaluation procedure used was the "one-group Pre-test and Post-test" research method. The…
Development of Residential SOFC Cogeneration System
NASA Astrophysics Data System (ADS)
Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki
2011-06-01
Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for importers who import gasoline into the United States by truck. 80.1349 Section 80.1349... FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1349 Alternative sampling and testing requirements for importers who import gasoline into the United States by...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Supply Chain-based Solution to Prevent Fuel Tax Evasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzese, Oscar; Capps, Gary J; Daugherty, Michael
The primary source of funding for the United States transportation system is derived from motor fuel and other highway use taxes. Loss of revenue attributed to fuel-tax evasion has been assessed to be somewhere between $1 billion per year, or approximately 25% of the total tax collected. Any solution that addresses this problem needs to include not only the tax-collection agencies and auditors, but also the carriers transporting oil products and the carriers customers. This paper presents a system developed by the Oak Ridge National Laboratory for the Federal Highway Administration which has the potential to reduce or eliminate manymore » fuel-tax evasion schemes. The solution balances the needs of tax-auditors and those of the fuel-hauling companies and their customers. The technology was deployed and successfully tested during an eight-month period on a real-world fuel-hauling fleet. Day-to-day operations of the fleet were minimally affected by their interaction with this system. The results of that test are discussed in this paper.« less
Evaluation of On-Road Vehicle Emission Trends in the United States
NASA Astrophysics Data System (ADS)
Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.
2010-12-01
Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.
Techno-Economic Analysis of Scalable Coal-Based Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S. C.
Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO 2 recycling unit.« less
A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose
1989-01-01
An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.
A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit
NASA Astrophysics Data System (ADS)
Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose
1989-03-01
An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.
Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A
2016-10-01
Chemical looping combustion (CLC) is an inherent CO 2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO 2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO 2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO 2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe 2 O 3 , CuO, and mixed carrier-Fe 2 O 3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.
Johnson, Derek; Heltzel, Robert; Nix, Andrew; Darzi, Mahdi; Oliver, Dakota
2018-05-01
Natural gas from shale plays dominates new production and growth. However, unconventional well development is an energy intensive process. The prime movers, which include over-the-road service trucks, horizontal drilling rigs, and hydraulic fracturing pumps, are predominately powered by diesel engines that impact air quality. Instead of relying on certification data or outdated emission factors, this model uses new in-use emissions and activity data combined with historical literature to develop a national emissions inventory. For the diesel only case, hydraulic fracturing engines produced the most NO x emissions, while drilling engines produced the most CO emissions, and truck engines produced the most THC emissions. By implementing dual-fuel and dedicated natural gas engines, total fuel energy consumed, CO 2 , CO, THC, and CH 4 emissions would increase, while NO x emissions, diesel fuel consumption, and fuel costs would decrease. Dedicated natural gas engines offered significant reductions in NO x emissions. Additional scenarios examined extreme cases of full fleet conversions. While deep market penetrations could reduce fuel costs, both technologies could significantly increase CH 4 emissions. While this model is based on a small sample size of engine configurations, data were collected during real in-use activity and is representative of real world activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...
The Status of Solar Energy as Fuel.
ERIC Educational Resources Information Center
Hall, D. O.
1979-01-01
Discused is the biological conversion of solar energy via photosynthesis into stored energy in the form of biomass. Detailed are the research and development programs on biomass of the United States, Canada, Australia, New Zealand, Europe, Brazil, Philippines, Sahel, India, and China. (BT)
2014 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp
The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
2015 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Tian, Tian
The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
75 FR 68177 - Airworthiness Directives; The Boeing Company Model 757 and 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... and FUEL CONFIG discrete signals from the fuel quantity processor unit, and alerts the flightcrew of a... the FUEL CONFIG discrete signal, which disables both the FUEL CONFIG and LOW FUEL messages. Such... depleted below the minimum of 2,200 pounds. The EICAS receives both the LOW FUEL and FUEL CONFIG discrete...
HSCT Sector Combustor Hardware Modifications for Improved Combustor Design
NASA Technical Reports Server (NTRS)
Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.
2005-01-01
An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.
Jennifer L. Long; Melanie Miller; James P. Menakis; Robert E. Keane
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required a system for classifying vegetation composition, biophysical settings, and vegetation structure to facilitate the mapping of vegetation and wildland fuel characteristics and the simulation of vegetation dynamics using landscape modeling. We developed...
Development of coarse-scale spatial data for wildland fire and fuel management
Kirsten M. Schmidt; James P. Menakis; Colin C. Hardy; Wendall J. Hann; David L. Bunnell
2002-01-01
We produced seven coarse-scale, 1-km2 resolution, spatial data layers for the conterminous United States to support national-level fire planning and risk assessments. Four of these layers were developed to evaluate ecological conditions and risk to ecosystem components: Potential Natural Vegetation Groups, a layer of climax vegetation types representing site...
Development and applications of the LANDFIRE forest structure layers
Chris Toney; Birgit Peterson; Don Long; Russ Parsons; Greg Cohn
2012-01-01
The LANDFIRE program is developing 2010 maps of vegetation and wildland fuel attributes for the United States at 30-meter resolution. Currently available vegetation layers include ca. 2001 and 2008 forest canopy cover and canopy height derived from Landsat and Forest Inventory and Analysis (FIA) plot measurements. The LANDFIRE canopy cover layer for the conterminous...
Rationale for continuing R&D in indirect coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, D.; Tomlinson, G.
1995-12-31
The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coalmore » liquids will become competitive with petroleum.« less
Barton D. Clinton; James M. Vose; Erika C. Cohen
2012-01-01
Across the Eastern United States, there is on average an estimated 36 MT haâ1 (16 tons acâ1) of dead woody fuel (Chojnacky and others 2004). Variations in fuel type, size, and flammability make the selection of treatment options critical for effective fuels management. The region is a complex landscape characterized by...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
ERIC Educational Resources Information Center
Goodson, Ludy
This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 5, Fuel and Carburetion Systems, available separately as CE 031 217. Focus of the exercises and pretests is inspecting and servicing the fuel and carburetion systems. Pretests and performance checklists are provided for each of the…
Science information for informing forest fuel management in dry forests of the western United States
Sarah McCaffrey; Russell Graham
2007-01-01
Land managers need timely and straightforward access to the best scientific information available for informing decisions on how to treat forest fuels in the dry forests of the western United States. However, although there is a tremendous amount of information available for informing fuels management decisions, often, it is in a form that is difficult to use or of...
NASA Astrophysics Data System (ADS)
Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen
2015-08-01
A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
NASA Astrophysics Data System (ADS)
Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.
2017-11-01
Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.
30 CFR 75.1906 - Transport of diesel fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transport of diesel fuel. 75.1906 Section 75... diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety... fuel storage facilities. (c) Safety cans that leak must be promptly removed from the mine. (d) Diesel...
The LANDFIRE Total Fuel Change Tool (ToFuΔ) user’s guide
Smail, Tobin; Martin, Charley; Napoli, Jim
2011-01-01
LANDFIRE fuel data were originally developed from coarse-scale existing vegetation type, existing vegetation cover, existing vegetation height, and biophysical setting layers. Fire and fuel specialists from across the country provided input to the original LANDFIRE National (LF_1.0.0) fuel layers to help calibrate fuel characteristics on a more localized scale. The LANDFIRE Total Fuel Change Tool (ToFu∆) was developed from this calibration process. Vegetation is subject to constant change – and fuels are therefore also dynamic, necessitating a systematic method for reflecting changes spatially so that fire behavior can be accurately accessed. ToFuΔ allows local experts to quickly produce maps that spatially display any proposed fuel characteristics changes. ToFu∆ works through a Microsoft Access database to produce spatial results in ArcMap based on rule sets devised by the user that take into account the existing vegetation type (EVT), existing vegetation cover (EVC), existing vegetation height (EVH), and biophysical setting (BpS) from the LANDFIRE grid data. There are also options within ToFu∆ to add discrete variables in grid format through use of the wildcard option and for subdividing specific areas for different fuel characteristic assignments through the BpS grid. The ToFu∆ user determines the size of the area for assessment by defining a Management Unit, or “MU.” User-defined rule sets made up of EVT, EVC, EVH, and BpS layers, as well as any wildcard selections, are used to change or refine fuel characteristics within the MU. Once these changes have been made to the fuel characteristics, new grids are created for fire behavior analysis or planning. These grids represent the most common ToFu∆ output. ToFuΔ is currently under development and will continue to be updated in the future. The current beta version (0.12), released in March 2011, is compatible with Windows 7 and will be the last release until the fall of 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.
Energy availability in a country is of great importance to its economy and to raising and maintaining its standard of living. In 1994, the United States consumed more than 88 quadrillion Btu (quads) of energy and spent about $500 billion on fuels and electricity. Fortunately, the United States is well endowed with energy sources, notably fossil fuels, and possesses a considerable nuclear power industry. The United States also has significant renewable energy resources and already exploits much of its hydropower resources, which represent 10% of electricity production. Nevertheless, in 1994, the United States imported about 45% of the petroleum productsmore » it consumed, equivalent to about 17 quads of energy. This dependence on imported oil puts the country at risk of energy supply disruptions and oil price shocks. Previous oil shocks may have cost the country as much as $4 billion (in 1993 dollars) between 1973 and 1990. Moreover, the production and use of energy from fossil fuels are major sources of environmental damage. The corresponding situation in many parts of the world is more challenging. Developing countries are experiencing rapid growth in population, energy demand, and the environmental degradation that often results from industrial development. The near-term depletion of energy resources in response to this rapid growth runs counter to the concept of ''sustainable development''--development that meets the needs of today without compromising the ability of future generations to meet their own needs. Energy research and development (R&D) to improve efficiency and to develop and deploy energy alternatives may be viewed, therefore, as an insurance policy to combat the dangers of oil shocks and environmental pollution and as a means of supporting sustainable development. These considerations guide the energy policy of the United States and of the U.S. Department of Energy (DOE). In its strategic plan, DOE identifies the fostering of ''a secure and reliable energy system that is environmentally and economically sustainable'' as the first component of its mission. The strategic goal established for energy resources, identified as one of DOE's four businesses, is for ''the Department of Energy and its partners [to] promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.'' DOE has also identified four strategic goals for its programs in energy resources: (1) strengthening the economy and raising living standards through improvements in the energy field; (2) protecting the environment by reducing the adverse environmental impacts associated with energy production, distribution, and use; (3) keeping America secure by reducing vulnerabilities to global energy market shocks; and (4) enhancing American competitiveness in a growing world energy market.« less
NASA Astrophysics Data System (ADS)
Hill, F. K.; Vonbriesen, R.
1980-12-01
The feasibility of space heating and cooling 200 multifamily on-base housing units using nonreversible heat pumps and ground water from 1000 ft. depth was studied. The 200 housing units are a part of the 1452 main base multifamily housing complex which is heated from a high temperature and pressure water line. The main system will be converted from natural gas to coal in 1984. Relative cost, amortization periods, and fossil fuel projections are compared.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
NASA Astrophysics Data System (ADS)
Ivanov, A.; Chikishev, E.
2017-01-01
The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.
Torrefaction of wood pellets: New solutions
NASA Astrophysics Data System (ADS)
Zaichenko, V. M.; Shterenberg, V. Ya.
2017-10-01
The current state of the market of conventional and torrefied wood pellets and the trends of its development have been analyzed. The advantages and disadvantages of pellets of both types have been compared with other alternative fuels. The consumer segment in which wood pellets are the most competitive has been determined. The original torrefaction technology using exhaust gas heat from a standard gas engine that was developed at the Joint Institute for High Technologies and the scheme of an experimental unit for the elaboration of the technology have been presented. The scheme of the combined operation of a torrefaction unit and a standard hot water boiler, which makes it possible to utilize the heat of exhaust steam-and-gas products of torrefaction with the simultaneous prevention of emissions of harmful substances into the environment, has been proposed. The required correlation between the capacity of the torrefaction unit and the heating boiler house has been estimated for optimal operation under the conditions of the isolated urban village in a region that is distant from the areas of extraction of traditional fuels and, at the same time, has quite sufficient resources of raw materials for the production of wood pellets.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwick, J D; Moore, E B
1984-01-01
Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less
2012 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelman, R.
2013-10-01
This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.
DOT National Transportation Integrated Search
2014-05-01
Currently, transportation and energy sectors are developed, managed, and operated independently of : one another. Due to the non-renewable nature of fossil fuels, energy security has evolved into a : strategic goal for the United States. The transpor...
Development of advanced strain diagnostic techniques for reactor environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.
2013-02-01
The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less
Optimizing the use of a John Deere bundling unit in a southern logging system
Steven Meadows; Tom Gallagher; Dana Mitchell
2009-01-01
With the current energy crisis and with petroleum prices skyrocketing, all sources of alternative fuels need to be explored. John Deereâs Biomass Bundler unit is an effective machine for harvesting forest residues, which can be used as a source of fuel wood and/or a feedstock for bioâfuel production. This project aims to explore an...
Accelerating Technology Development through Integrated Computation and Experimentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhawat, Dushyant; Srivastava, Rameshwar D.; Ciferno, Jared
2013-08-15
This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28-Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solventsmore » for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).« less
Summary of Part 75 Administrative Processes: Table 6
Learn how to submit information for a new unit, new stack or new FGD; unit shutdown and restart, long term cold storage (LTCS), expected restart date, postponement of Appendix E testing, backup fuel used, and notice of combustion of emergency fuel.
40 CFR 52.351 - United States Postal Service substitute Clean Fuel Fleet Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... State Implementation Plan, carbon monoxide NAAQS, United States Postal Service substitute clean-fuel... of section 246 of the Clean Air Act for the Denver Metropolitan carbon monoxide nonattainment area.... [66 FR 64758, Dec. 14, 2001] ...
Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Blaise Paul
Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients.more » Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).« less
Economic environmental dispatch using BSA algorithm
NASA Astrophysics Data System (ADS)
Jihane, Kartite; Mohamed, Cherkaoui
2018-05-01
Economic environmental dispatch problem (EED) is an important issue especially in the field of fossil fuel power plant system. It allows the network manager to choose among different units the most optimized in terms of fuel costs and emission level. The objective of this paper is to minimize the fuel cost with emissions constrained; the test is conducted for two cases: six generator unit and ten generator unit for the same power demand 1200Mw. The simulation has been computed in MATLAB and the result shows the robustness of the Backtracking Search optimization Algorithm (BSA) and the impact of the load demand on the emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy
The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been storedmore » on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.« less
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Safeguard monitoring of direct electrolytic reduction
NASA Astrophysics Data System (ADS)
Jurovitzki, Abraham L.
Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2). Electrochemical analysis was demonstrated to be effective at detecting even very dilute concentrations of actinides as evidence for a diversion attempt.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.951 General. (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure... unit is permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No fuel pump...
30 CFR 75.1906 - Transport of diesel fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety...
30 CFR 75.1906 - Transport of diesel fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety...
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Automotive Fuel Systems.
ERIC Educational Resources Information Center
Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, operation, and repair of the carburetor, fuel pump, and other related fuel system components and parts. The course is comprised of six units: (1) Fundamentals of Fuel Systems, (2) Fuel Pumps, (3) Fuel Lines and Filters, (4) Carburetors,…
NASA Technical Reports Server (NTRS)
Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick
2006-01-01
The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.
Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling
Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.
2013-01-01
Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.
NASA Technical Reports Server (NTRS)
1975-01-01
Energy consumption in the United States has risen in response to both increasing population and to increasing levels of affluence. Depletion of domestic energy reserves requires consumption modulation, production of fossil fuels, more efficient conversion techniques, and large scale transitions to non-fossile fuel energy sources. Widening disparity between the wealthy and poor nations of the world contributes to trends that increase the likelihood of group action by the lesser developed countries to achieve political and economic goals. The formation of anticartel cartels is envisioned.
Standalone BISON Fuel Performance Results for Watts Bar Unit 1, Cycles 1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarno, Kevin T.; Pawlowski, Roger; Stimpson, Shane
2016-03-07
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is moving forward with more complex multiphysics simulations and increased focus on incorporating fuel performance analysis methods. The coupled neutronics/thermal-hydraulics capabilities within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) have become relatively stable, and major advances have been made in analysis efforts, including the simulation of twelve cycles of Watts Bar Nuclear Unit 1 (WBN1) operation. While this is a major achievement, the VERA-CS approaches for treating fuel pin heat transfer have well-known limitations that could be eliminated through better integration with the BISON fuel performance code. Severalmore » approaches are being implemented to consider fuel performance, including a more direct multiway coupling with Tiamat, as well as a more loosely coupled one-way approach with standalone BISON cases. Fuel performance typically undergoes an independent analysis using a standalone fuel performance code with manually specified input defined from an independent core simulator solution or set of assumptions. This report summarizes the improvements made since the initial milestone to execute BISON from VERA-CS output. Many of these improvements were prompted through tighter collaboration with the BISON development team at Idaho National Laboratory (INL). A brief description of WBN1 and some of the VERA-CS data used to simulate it are presented. Data from a small mesh sensitivity study are shown, which helps justify the mesh parameters used in this work. The multi-cycle results are presented, followed by the results for the first three cycles of WBN1 operation, particularly the parameters of interest to pellet-clad interaction (PCI) screening (fuel-clad gap closure, maximum centerline fuel temperature, maximum/minimum clad hoop stress, and cumulative damage index). Once the mechanics of this capability are functioning, future work will target cycles with known or suspected PCI failures to determine how well they can be estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilger, Fred; Halstead, Robert J.; Ballard, James D.
2013-07-01
Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for themore » selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)« less
Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang
A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
78 FR 45842 - Airworthiness Directives; CFM International, S. A. Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... of the delta-P valve in the hydro-mechanical unit (HMU) fuel control caused by exposure to type TS-1... hydro- mechanical unit (HMU) fuel control part numbers (P/Ns) in paragraphs (c)(1) and (c)(2) of this AD...
David L.R. Affleck; Brian R. Turnquist
2012-01-01
Fueled by the insistencies of wildfire mitigation, bioenergy development, and carbon sequestration, there is growing demand for reliable characterizations of crown and stem biomass stocks in conifer forests of the Interior Northwest, United States (western Montana, northern Idaho, and eastern Washington). Predictive equations for crown biomass have been developed for...
Estimated United States Residential Energy Use in 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Johnson, D M; Simon, A J
2011-12-12
A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy.more » The flow patterns represent a comprehensive systems view of energy used within the residential sector.« less
NASA Technical Reports Server (NTRS)
Simons, S. N.; Maag, W. L.
1978-01-01
The electrical and thermal energy utilization efficiencies of a 500 unit apartment complex are analyzed and compared for each of three energy supply systems. Two on-site integrated energy systems, one powered by diesel engines and the other by phosphoric-acid fuel cells were compared with a conventional system which uses purchased electricity and on-site boilers for heating. All fuels consumed on-site are clean, synthetic fuels (distillate fuel oil or pipeline quality gas) derived from coal. Purchased electricity was generated from coal at a central station utility. The relative energy consumption and economics of the three systems are analyzed and compared.
Physics Features of TRU-Fueled VHTRs
Lewis, Tom G.; Tsvetkov, Pavel V.
2009-01-01
The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less
Space shuttle orbiter auxiliary power unit development challenges
NASA Technical Reports Server (NTRS)
Lance, R.; Weary, D.
1985-01-01
When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.
Energy Options: Challenge for the Future
ERIC Educational Resources Information Center
Hammond, Allen L.
1972-01-01
Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)
Next steps in determining the overall sustainability of perennial bioenergy crops
USDA-ARS?s Scientific Manuscript database
Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...
Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
Choi, Dong Gu; Kreikebaum, Frank; Thomas, Valerie M; Divan, Deepak
2013-09-17
Adoption of electric vehicles (EVs) would affect the costs and sources of electricity and the United States efficiency requirements for conventional vehicles (CVs). We model EV adoption scenarios in each of six regions of the Eastern Interconnection, containing 70% of the United States population. We develop electricity system optimization models at the multidecade, day-ahead, and hour-ahead time scales, incorporating spatial wind energy modeling, endogenous modeling of CV efficiencies, projections for EV efficiencies, and projected CV and EV costs. We find two means to reduce total consumer expenditure (TCE): (i) controlling charge timing and (ii) unlinking the fuel economy regulations for CVs from EVs. Although EVs provide minimal direct GHG reductions, controlled charging provides load flexibility, lowering the cost of renewable electricity. Without EVs, a 33% renewable electricity standard (RES) would cost $193/vehicle-year more than the reference case (10% RES). Combining a 33% RES, EVs with controlled charging and unlinking would reduce combined electric- and vehicle-sector CO2 emissions by 27% and reduce gasoline consumption by 59% for $40/vehicle-year more than the reference case. Coordinating EV adoption with adoption of controlled charging, unlinked fuel economy regulations, and renewable electricity standards would provide low-cost reductions in emissions and fuel usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuta, Judith M.; Adkins, Harold E.
2013-08-30
As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al.,more » 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.« less
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
Fission Surface Power for the Exploration and Colonization of Mars
NASA Technical Reports Server (NTRS)
Houts, Mike; Porter, Ron; Gaddis, Steve; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise
2006-01-01
The colonization of Mars will require abundant energy. One potential energy source is nuclear fission. Terrestrial fission systems are highly developed and have the demonstrated ability to safely produce tremendous amounts of energy. In space, fission systems not only have the potential to safely generate tremendous amounts of energy, but could also potentially be used on missions where alternatives are not practical. Programmatic risks such as cost and schedule are potential concerns with fission surface power (FSP) systems. To be mission enabling, FSP systems must be affordable and programmatic risk must be kept acceptably low to avoid jeopardizing exploration efforts that may rely on FSP. Initial FSP systems on Mars could be "workhorse" units sized to enable the establishment of a Mars base and the early growth of a colony. These systems could be nearly identical to FSP systems used on the moon. The systems could be designed to be safe, reliable, and have low development and recurring costs. Systems could also be designed to fit on relatively small landers. One potential option for an early Mars FSP system would be a 100 kWt class, NaK cooled system analogous to space reactors developed and flown under the U.S. "SNAP" program or those developed and flown by the former Soviet Union ("BUK" reactor). The systems could use highly developed fuel and materials. Water and Martian soil could be used to provide shielding. A modern, high-efficiency power conversion subsystem could be used to reduce required reactor thermal power. This, in turn, would reduce fuel burnup and radiation damage .effects by reducing "nuclear" fuels and materials development costs. A realistic, non-nuclear heated and fully integrated technology demonstration unit (TDU) could be used to reduce cost and programmatic uncertainties prior to initiating a flight program.
NASA Astrophysics Data System (ADS)
Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua
2018-01-01
China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Miller, James F.
Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.
Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News
| NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to potential cost-effective scenarios for using small fuel cell power units to increase the range of medium fuel for range extension when necessary. By using hydrogen as a range-extending fuel, the BEV can
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
142. STANDBY PRESSURE CONTROL UNIT FOR FUEL AND LIQUID OXYGEN ...
142. STANDBY PRESSURE CONTROL UNIT FOR FUEL AND LIQUID OXYGEN IN SOUTHWEST PORTION OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fossil fuels only, the annual CO2 emissions for all fuels combined. Reporting CO2 emissions by type of fuel is not required. (ii) For units that burn both fossil fuels and biomass, the annual CO2 emissions from combustion of all fossil fuels combined and the annual CO2 emissions from combustion of all...
Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles
-sector vehicle fleets are the primary users for most of these fuels and vehicles, but individual conventional fuels and vehicles helps the United States conserve fuel and lower vehicle emissions. Biodiesel , animal fats, or recycled cooking grease for use in diesel vehicles. Icon of a vehicle Diesel Vehicles