Science.gov

Sample records for fuels fire ecology

  1. Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS)

    Treesearch

    James D. McIver; Scott L. Stephens; James K. Agee; Jamie Barbour; Ralph E. J. Boerner; Carl B. Edminster; Karen L. Erickson; Kerry L. Farris; Christopher J. Fettig; Carl E. Fiedler; Sally Haase; Stephen C. Hart; Jon E. Keeley; Eric E. Knapp; John F. Lehmkuhl; Jason J. Moghaddas; William Otrosina; Kenneth W. Outcalt; Dylan W. Schwilk; Carl N. Skinner; Thomas A. Waldrop; C. Phillip Weatherspoon; Daniel A. Yaussy; Andrew Youngblood; Steve Zack

    2012-01-01

    The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments....

  2. Fire, fuel treatments, and ecological restoration: Conference proceedings; 2002 16-18 April; Fort Collins, CO

    Treesearch

    Philip N. Omi; Linda A. Joyce

    2003-01-01

    Recent fires have spawned intense interest in fuel treatment and ecological restoration activities. Scientists and land managers have been advocating these activities for years, and the recent fires have provided incentives for federal, state, and local entities to move ahead with ambitious hazard reduction and restoration projects. Recent fires also have increased...

  3. National Fire Fuels and Risks Assessment Using Remote Sensing and Ecological Modeling: Prototype Results

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Rollins, M.

    2003-12-01

    Hazardous fuel reduction, ecosystem rehabilitation and restoration, and firefighting safety, are land management priorities emphasized by recent national fire policies such as the National Fire Plan. Implementation of these policies requires geospatial data of vegetation conditions, fire fuels, risks, and ecosystem status developed consistently nationwide that can be used at multiple scales (i.e., local, regional, and national). A new research and development project called LANDFIRE has been conducted to develop an integrated methodology to produce geospatial fire data and predictive models for the land management community and a broad range of other applications. Main deliverables include mapped potential and existing vegetation types and structure variables, various biophysical data layers, fire fuels models, fire risk layers, as well as state-of-the-art computer models for assessing fire risk, behavior and effects. In this presentation, we will review research results and findings of the LANDFIRE project using results from a prototype study covering central Utah Uinta and Wasatch ecosystems. Particularly we will describe how a consistent and operational vegetation mapping component may be achieved by integrating machine-learning algorithms, field reference data, satellite imagery, and ecologically significant biophysical variables. We will discuss how remotely sensed vegetation cover types and structure can be successfully converted to fire fuel classes and risk layers which are necessary input into fire behavior and fire effect models. Finally we will discuss challenges and opportunities for national implementation of the methodology.

  4. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    SciTech Connect

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior

  5. Fire and fire ecology: Concepts and principles

    Treesearch

    Mark A. Cochrane; Kevin C. Ryan

    2009-01-01

    Fire has been central to terrestrial life ever since early anaerobic microorganisms poisoned the atmosphere with oxygen and multicellular plant life moved onto land. The combination of fuels, oxygen, and heat gave birth to fire on Earth. Fire is not just another evolutionary challenge that life needed to overcome, it is, in fact, a core ecological process across much...

  6. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Treesearch

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  7. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests

    Treesearch

    Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...

  8. Ecological forestry in the Southeast: Understanding the ecology of fuels

    Treesearch

    R.J. Mitchell; J.K. Hiers; J. O’Brien; G. Starr

    2009-01-01

    Fire is a dominant disturbance within many forested ecosystems worldwide. Understanding the complex feedbacks among vegetation as a fuel for fire, the effects of fuels on fire behavior, and the impact of fire behavior on future vegetation are critical for sustaining biodiversity in fire-dependent forests. Nonetheless, understanding in fire ecology has been limited in...

  9. Forest Fire Ecology.

    ERIC Educational Resources Information Center

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  10. Forest Fire Ecology.

    ERIC Educational Resources Information Center

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  11. Fire ecology of western Montana forest habitat types

    Treesearch

    William C. Fischer; Anne F. Bradley

    1987-01-01

    Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  12. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  13. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  14. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  15. Fire ecology of the forest habitat types of northern Idaho

    Treesearch

    Jane Kapler Smith; William C. Fischer

    1997-01-01

    Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.

  16. Predicting fire severity using surface fuels and moisture

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2012-01-01

    Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...

  17. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  18. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

    Treesearch

    Russell A. Parsons; William E. Mell; Peter McCauley

    2011-01-01

    Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...

  19. Fires, ecological effects of

    Treesearch

    W. J. Bond; Robert Keane

    2017-01-01

    Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...

  20. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    PubMed

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-06-23

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  1. Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models

    Treesearch

    Robert E. Keane; Eva Karau

    2010-01-01

    Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology...

  2. Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey

    2007-01-01

    In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...

  3. Fire behavior in masticated fuels: a review

    Treesearch

    Jesse K. Kreye; Nolan W. Brewer; Penelope Morgan; J. Morgan Varner; Alistair M.S. Smith; Chad M. Hoffman; Roger D. Ottmar

    2014-01-01

    Mastication is an increasingly common fuels treatment that redistributes ‘‘ladder’’ fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely...

  4. Radiant flux density, energy density, and fuel consumption in mixed-oak forest surface fires

    Treesearch

    R.L. Kremens; M.B. Dickinson; A.S. Bova

    2012-01-01

    Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as...

  5. Fire resistant nuclear fuel cask

    DOEpatents

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  6. Fire ecology of Montana forest habitat types east of the Continental Divide

    Treesearch

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  7. Public acceptance of wildland fire and fuel management: Panel responses in seven locations

    Treesearch

    Eric Toman; Bruce Shindler; Sarah McCaffrey; James. Bennett

    2014-01-01

    Wildland fire affects both public and private resources throughout the United States. A century of fire suppression has contributed to changing ecological conditions and accumulated fuel loads. Managers have used a variety of approaches to address these conditions and reduce the likelihood of wildland fires that may result in adverse ecological impacts and threaten...

  8. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  9. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  10. Two keys for appraising forest fire fuels.

    Treesearch

    George R. Fahnestock

    1970-01-01

    This is an attempt to characterize forest fire fuels in a new way. The immediate purpose is to provide means for recognizing and tentatively evaluating, in the field, the fire spread potential and the crowning potential of fuels on the basis of readily observed characteristics without need for prior technical knowledge of vegetation or experience with fire. The medium...

  11. Ecological foundations for fire management in North American forest and shrubland ecosystems

    Treesearch

    J.E. Keeley; G.H. Aplet; N.L. Christensen; S.G. Conard; E.A. Johnson; P.N. Omi; D.L. Peterson; T.W. Swetnam

    2009-01-01

    This synthesis provides an ecological foundation for management of the diverse ecosystems and fire regimes of North America based on scientific principles of fire interactions with vegetation, fuels, and biophysical processes. Although a large amount of scientific data on fire exists, most of those data have been collected at small spatial and temporal scales. Thus, it...

  12. Evolutionary fire ecology: lessons learned from pines.

    PubMed

    Pausas, Juli G

    2015-05-01

    Macroevolutionary studies of the genus Pinus provide the oldest current evidence of fire as an evolutionary pressure on plants and date back to ca. 125 million years ago (Ma). Microevolutionary studies show that fire traits are variable within and among populations, especially among those subject to different fire regimes. In addition, there is increasing evidence of an inherited genetic basis to variability in fire traits. Added together, pines provide compelling evidence that fire can exert an evolutionary pressure on plants and, thus, shape biodiversity. In addition, evolutionary fire ecology is providing insights to improve the management of pine forests under changing conditions. The lessons learned from pines may guide research on the evolutionary ecology of other taxa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fuels planning: science synthesis and integration; environmental consequences fact sheet 06: wildland fire use: the "other" treatment option

    Treesearch

    Anne Black

    2004-01-01

    Fire suppression has reduced acres burned to an average of 2 million acres a year. An unfortunate result of this has been the accumulation of even more above-normal fuel loads in many areas. This paper discusses (1) the important ecological role of fire, (2) using fire as a fuels treatment, and (2) the benefits and risks of fire.

  14. Fuel fire tests of selected assemblies

    NASA Astrophysics Data System (ADS)

    Kydd, G.; Spindola, K.; Askew, G. K.

    1982-04-01

    A varing assortment of clothing assemblies was tested in the Fuel Fire Test Facility at the Naval Air Development Center. Included was a Nomex-Kevlar Cloque Coverall which had relatively good protection from fuel flames.

  15. The national Fire and Fire Surrogate study: Effects of fuel reduction methods on forest vegetation structure and fuels

    USGS Publications Warehouse

    Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; Mciver, J.; Bailey, J.D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.; Stephens, S.L.; Waldrop, T.A.; Yaussy, D.A.; Youngblood, A.

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an informationtheoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment. ?? 2009 by the Ecological Society of America.

  16. Fire ecology of the forest habitat types of central Idaho

    Treesearch

    M. F. Crane; William C. Fischer

    1986-01-01

    Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.

  17. Biologists add fuel to Yellowstone fire

    SciTech Connect

    Stevens, W.K.

    1990-06-01

    Two scientists associated with the National Park Service have completed a 10 year study of forest fires in Yellowstone National Park. They traced back 200 years by studying trees and the park records of rainfall and fires. They state that the park policy of not fighting fires started by lightning has no effect on the forest ecology. Critics of the policy cite the massive destruction of the forest in the 1988 summer fires in Yellowstone as evidence that the policy is misguided. The researchers state that their findings show that their reconstruction of the forest ecology show fighting the fires has no effect on the overall succession.

  18. Flame characteristics for fires in southern fuels

    Treesearch

    Ralph M. Nelson

    1980-01-01

    A flame model and analytical method are used to derive forest fire flame characteristics. Approximate solutions are used to express flame lengths, angles, heights, and tip velocities of headfires and calm-air fires in terms of fire intensity. Equations are compared with data from low-intensity controlled burns in southern fuels and with data from the literature.

  19. Wildland fire: Nature’s fuel treatment

    Treesearch

    Brian Cooke; Sean Parks; Carol Miller; Lisa Holsinger; Cara Nelson; Zack Holden; Scott Baggett; Benjamin Bird

    2016-01-01

    Every year wildland fires affect much more acreage in the United States compared to controlled burns. Like controlled burns, wildland fire can help promote biological diversity and healthy ecosystems. But despite these facts, wildland fire is not often considered as a fuel treatment in the United States. Scientists working with the U.S. Forest Service’s Rocky Mountain...

  20. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem

    PubMed Central

    Blarquez, Olivier; Carcaillet, Christopher

    2010-01-01

    Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years

  1. Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    PubMed Central

    Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  2. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.

  3. Aids to determining fuel models for estimating fire behavior

    Treesearch

    Hal E. Anderson

    1982-01-01

    Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....

  4. The National Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels.

    PubMed

    Schwilk, Dylan W; Keeley, Jon E; Knapp, Eric E; McIver, James; Bailey, John D; Fettig, Christopher J; Fiedler, Carl E; Harrod, Richy J; Moghaddas, Jason J; Outcalt, Kenneth W; Skinner, Carl N; Stephens, Scott L; Waldrop, Thomas A; Yaussy, Daniel A; Youngblood, Andrew

    2009-03-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an information-theoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment.

  5. Fire retardant foams developed to suppress fuel fires

    NASA Technical Reports Server (NTRS)

    Fish, R.; Gilwee, W. J.; Parker, J. A.; Riccitiello, S. R.

    1968-01-01

    Heat insulating polyurethane foam retards and suppresses fuel fires. Uniformly dispersed in the foam is a halogenated polymer capable of splitting off hydrogen halide upon heating and charring of the polyurethane.

  6. An Evaluation of Fuel-Reduction Treatments Across a Landscape Gradient in Piedmont Forests: Preliminary Results of the National Fire and Fire Surrogate Study

    Treesearch

    Thomas A. Waldrop; Dallas W. Glass; Sandra Rideout; Victor B. Shelburne

    2004-01-01

    The National Fire and Fire Surrogate (NFFS) Study is a large-scale study of the impacts of fuel-reduction treatments on ecological and economic variables. This paper examines prescribed burning and thinning as fuel-reduction treatments on one site of the national study, the southeastern Piedmont. Fuel loads were examined across a landscape gradient before and after...

  7. Chaparral & Fire Ecology: Role of Fire in Seed Germination.

    ERIC Educational Resources Information Center

    Steele, Nancy L. C.; Keeley, Jon E.

    1991-01-01

    An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…

  8. Chaparral & Fire Ecology: Role of Fire in Seed Germination.

    ERIC Educational Resources Information Center

    Steele, Nancy L. C.; Keeley, Jon E.

    1991-01-01

    An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…

  9. Wildland fire use: the dilemma of managing and restoring natural fire and fuels in United States wilderness

    Treesearch

    David J. Parsons; Peter B. Landres; Carol Miller

    2003-01-01

    The management of natural fire and fuels in wilderness areas of the United States presents a significant dilemma to federal land managers.Wilderness fire management requires balancing mandates to both preserve natural conditions and minimize the impacts of human activities.It also requires consideration of ecological and social values both within and outside of...

  10. Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling

    USGS Publications Warehouse

    Keane, Robert E.; Burgan, Robert E.; Van Wagtendonk, Jan W.

    2001-01-01

    Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.

  11. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.

    2006-01-01

    In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.

  12. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Treesearch

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  13. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  14. Sensitivity of fire behavior simulations to fuel model variations

    Treesearch

    Lucy A. Salazar

    1985-01-01

    Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...

  15. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    USGS Publications Warehouse

    Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

  16. Relationships of fire ecology and avian communities in North America

    Treesearch

    Victoria A. Saab; Natasha B. Kotliar; William M. Block

    2005-01-01

    Wild and managed fires have become increasingly prevalent across North America since the 1980’s. Interest and concern about the influence of fire on ecological systems has also increased (Laverty and Williams 2000, USDA 2000). We summarize a symposium on fire and avian ecology, identifying patterns and differences in bird responses to various fire conditions...

  17. GIS tools, courses, and learning pathways offered by The National Interagency Fuels, Fire, and Vegetation Technology Transfer (NIFTT)

    Treesearch

    Heather Heward; Kathy H. Schon

    2009-01-01

    As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...

  18. The Fire and Fuels Extension to the Forest Vegetation Simulator

    Treesearch

    Elizabeth Reinhardt; Nicholas L. Crookston

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...

  19. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling

    PubMed Central

    Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy

    2015-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652

  20. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling.

    PubMed

    Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy

    2014-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

  1. The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels

    Treesearch

    Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James Mciver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction...

  2. LANDFIRE: Collaboration for National Fire Fuel Assessment

    USGS Publications Warehouse

    Zhu, Zhi-Liang

    2006-01-01

    The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.

  3. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 02: fire hazard

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...

  4. Apparatus for firing solid fuels

    SciTech Connect

    Lovgren, A.

    1984-05-08

    This invention relates to a boiler installation for the combustion of solid fuels, for example forest waste material in the form of e.g. bark and/or chips, peat pellets, coal etc., which installation comprises a furnace located in connection to a heat medium portion and a grate located in the furnace. The grate feeds fuel from a fuel charge opening through the furnace while the fuel is being combusted, from which furnace the flue gases flow to the heat medium portion and continue to a chimney. The installation also includes at least one intake for controlled supply of combustion air in the form of at least primary and secondary combustion air. In order to improve the efficiency degree of such boiler installations and to render possible efficient and complete combustion of forest waste material and other biologic fuels, which may have a high moisture content, the rear portion of the grate means of the boiler installation, seen in the direction of movement, is located outside of the furnace space proper but connected thereto for forming a zone in connection to the charge opening for a certain drying of the fuel before it is fed into the furnace by the grate. The grate comprises transverse dogs running on a grate plane for advancing the fuel through the furnace, which grate plane is located above an arrangement for the supply of the primary combustion air from below to the fuel, and below the air intakes for the secondary combustion air.

  5. Fire and the Environment: Ecological and Cultural Perspectives

    Treesearch

    Stephen C. Nodvin; Thomas A. Waldrop; [Editors

    1991-01-01

    Forty-one papers based on oral presentations are included under four categories: Fire Ecology; Fire Management; Cultural; and Fire History. In addition, three papers are presented from a special session on the 1988 fires in the Greater Yellowstone Area and fourteen papers are presented from a poster session.

  6. National fire danger assessment and ecosystem restoration using remote sensing and ecological modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Rollins, M.

    Hazardous fuel reduction, ecosystem rehabilitation and restoration, and firefighting safety, are land management priorities emphasized by recent national fire policies such as the National Fire Plan. Implementation of these policies requires geospatial data of vegetation conditions, fire fuels, risks, and ecosystem status developed consistently nationwide that can be used at multiple scales (i.e., local, regional, and national). A new research and development project called LANDFIRE is being conducted to develop an integrated methodology to produce geospatial fire data and predictive models for the land management community and a broad range of other applications. Main deliverables include mapped potential and existing vegetation types and vegetation structure parameters, various biophysical data layers, fire fuels models, fire risk layers, as well as state-of-the-art computer models for assessing fire risk, behavior and effects. In this presentation, we will review research results and findings of the LANDFIRE project using results from a prototype study covering central Utah Uinta and Wasatch ecosystems. Particularly we will describe how a consistent and operational vegetation mapping component may be achieved by integrating machine-learning algorithms, field reference data, satellite imagery, and ecologically significant biophysical variables. We will discuss how remotely sensed vegetation cover types and structure can be successfully converted to fire fuel classes and risk layers which are necessary input into fire behavior and fire effect models. Finally we will discuss challenges and opportunities for national implementation of the methodology.

  7. Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival

    Treesearch

    Brandon M. Collins; Adrian J. Das; John J. Battles; Danny L. Fry; Kevin D. Krasnow; Scott L. Stephens

    2014-01-01

    Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest...

  8. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  9. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.

    2010-01-01

    Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.

  10. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests

    USGS Publications Warehouse

    Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.

    2009-01-01

    Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical

  11. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment

    USGS Publications Warehouse

    Rollins, Matthew G.

    2009-01-01

    LANDFIRE is a 5-year, multipartner project producing consistent and comprehensive maps and data describing vegetation, wildland fuel, fire regimes and ecological departure from historical conditions across the United States. It is a shared project between the wildland fire management and research and development programs of the US Department of Agriculture Forest Service and US Department of the Interior. LANDFIRE meets agency and partner needs for comprehensive, integrated data to support landscape-level fire management planning and prioritization, community and firefighter protection, effective resource allocation, and collaboration between agencies and the public. The LANDFIRE data production framework is interdisciplinary, science-based and fully repeatable, and integrates many geospatial technologies including biophysical gradient analyses, remote sensing, vegetation modelling, ecological simulation, and landscape disturbance and successional modelling. LANDFIRE data products are created as 30-m raster grids and are available over the internet at www.landfire.gov, accessed 22 April 2009. The data products are produced at scales that may be useful for prioritizing and planning individual hazardous fuel reduction and ecosystem restoration projects; however, the applicability of data products varies by location and specific use, and products may need to be adjusted by local users.

  12. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  13. Investigation of Fire-Vulnerability-Reduction Effectiveness of Fire-Resistant Diesel Fuel in Armored Vehicular Fuel Tanks

    DTIC Science & Technology

    1980-09-30

    Page 1 Six Generations of Fire-Resistant Fuel Formulations Investigated by the U.S. Army.................................. 2 Referee-Grade-Base-Fuel...A. Background Information Six generations of fire-resistant fuel have ,een investigated by the Army, and these are summarized in Table 1. (2,3) The...8217. . ’ , I TABLE I. SIX GENERATIONS OF FIRE-RESISTANT FUEL FORMULATIONS INVESTIGATED BY THE U.S. ARMY 1. Fuel gellation just prior to hazard

  14. Introduction-2nd Fire Behavior and Fuels Conference: The fire environment-innovations, management, and policy

    Treesearch

    Wayne Cook; Bret W. Butler

    2007-01-01

    The 2nd Fire Behavior and Fuels Conference: Fire Environment -- Innovations, Management and Policy was held in Destin, FL, March 26-30, 2007. Following on the success of the 1st Fire Behavior and Fuels Conference, this conference was initiated in response to the needs of the National Wildfire Coordinating Group -- Fire Environment Working Team.

  15. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Treesearch

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  16. A Conceptual Framework for Fire Ecology in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Gedalof, Z.

    2010-12-01

    Climate interacts with forest dynamics and wildfire at a range of spatial and temporal scales. The purpose of this talk is to describe (and ideally discuss) an emerging conceptual model that describes how scale dependent patterns of climatic variability (a top-down control) interact with processes of vegetation development and topography (bottom-up controls) to give rise to characteristic disturbance regimes and observed patterns of wildfire throughout North America. At the shortest timescales (synoptic to seasonal), climate influences fine fuel moisture, ignition frequency, and rates of wildfire spread. At intermediate timescales (annual to interannual), climate affects the relative abundance and continuity of fine fuels, as well as the abundance and moisture content of coarser fuels. At longer timescales (decadal to centennial) climate determines the assemblage of species that can survive at a particular location. Interactions between these species’ characteristics and the influence of climatic processes on wildfire activity give rise to the characteristic disturbance regime and vegetation structure at a given location. Large-scale modes of climatic variability such as the El Niño - Southern Oscillation and the Pacific Decadal Oscillation affect patterns in wildfire by influencing the relative frequencies of shorter scale processes. Because the importance of these processes varies depending on topographic position and the ecology of the dominant vegetation the effects of these modes varies both within and between regions. Global climatic change is effectively a centennial to millennial scale process, and so its effects can be understood as resulting from interactions between the observed patterns of higher frequency processes, as well as processes of vegetation change whose temporal evolution exceeds the length of the observational record. Statistical models of future fire that are based on historical fire climate relations and regionally downscaled climate

  17. Research on Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1981-12-01

    dielectric loss measurement to monitor the water content of these emulsions . Microwave dielectric loss at a fre- quency of about 23 to 24 GHz is specific...diesel fuel micro- emulsions could be prepared and that they exhibit reduced mist flammability and self-extinguishing pool fires at temperatures...68 21 Transient NMR Data for an FRF and Its Components. . . . 76 22 Typical Effects of Aging on Dielectric Constant of W/O Emulsions

  18. Chapter 2: Fire and Fuels Extension: Model description

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz

    2003-01-01

    The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...

  19. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Treesearch

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  20. Fire ecology of a tree glacial refugium on a nunatak with a view on Alpine glaciers.

    PubMed

    Carcaillet, Christopher; Blarquez, Olivier

    2017-08-14

    In paleoecology, the function of biomass as a fire driver has become a focus of attention in cold ecosystems, and concerns have been raised about climate in this context. Little is known about the fire frequency and fire-plant relationships during glaciation when woodlands were limited and the climate was cold. Fire history and tree biomass were reconstructed from sedimentary charcoal and macroremains, respectively, archived in lake sediments from the western Alps. Two nunataks were investigated, both with lacustrine sediments covering the last 21 000 yr at least. During the Last Glacial Maximum (LGM) and the Lateglacial, fires occurred only on the nunatak sheltering woody plants. Cembra pine (Pinus cembra) and larch (Larix decidua) survived above glaciers during the LGM, thus evidencing a biological refugium and supporting the nunatak theory. We highlighted a long-term relationship between fires and dominant trees over the last 21 000 yr, where fire frequencies track the global climate and the local changes in tree biomass. Glacial climate (dry, cold) does not rule out fires. Fuel load and composition were significant fire drivers, with cembra pine dominating during colder periods with rare fires, and larch during the warmer Holocene with frequent fires. These findings increase knowledge of fire ecology in cold environments, and open perspectives in tree population genetics by considering new areas of tree glacial refugia in Europe. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. An Integrated Model for Identifying Linkages Between the Management of Fuel Treatments, Fire and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Anderson, S.; Moritz, M.; Plantinga, A.; Tague, C.

    2015-12-01

    Vegetation fuel treatments (e.g. thinning, prescribed burning) are a frequent tool for managing fire-prone landscapes. However, predicting how fuel treatments may affect future wildfire risk and associated ecosystem services, such as forest water availability and streamflow, remains a challenge. This challenge is in part due to the large range of conditions under which fuel treatments may be implemented, as response is likely to vary with species type, rates of vegetation regrowth, meteorological conditions and physiographic properties of the treated site. It is also due to insufficient understanding of how social factors such as political pressure, public demands and economic constraints affect fuel management decisions. To examine the feedbacks between ecological and social dimensions of fuel treatments, we present an integrated model that links a biophysical model that simulates vegetation and hydrology (RHESSys), a fire spread model (WMFire) and an empirical fuel treatment model that accounts for agency decision-making. We use this model to investigate how management decisions affect landscape fuel loads, which in turn affect fire severity and ecosystem services, which feedback to management decisions on fuel treatments. We hypothesize that this latter effect will be driven by salience theory, which predicts that fuel treatments are more likely to occur following major wildfire events. The integrated model provides a flexible framework for answering novel questions about fuel treatments that span social and ecological domains, areas that have previously been treated separately.

  2. Rx fire laws: tools to protect fire: the `ecological imperative?

    Treesearch

    Dale Wade; Steven Miller; Johnny Stowe; James Brenner

    2006-01-01

    The South is the birthplace of statutes and ordinances that both advocate and protect the cultural heritage of woods burning, which has been practiced in this region uninterrupted for more than 10,000 years. We present a brief overview of fire use in the South and discuss why most southern states recognized early on that periodic fire was necessary to sustain fire...

  3. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Treesearch

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  4. Fuel fire tests of selected assemblies. Interim report

    SciTech Connect

    Kydd, G.; Spindola, K.; Askew, G.K.

    1982-04-13

    A varing assortment of clothing assemblies was tested in the Fuel Fire Test Facility at the Naval Air Development Center. Included was a Nomex-Kevlar Cloque Coverall which had relatively good protection from fuel flames.

  5. Integrating simple stochastic fire spread model with the Regional Hydro-Ecological Simulation System

    NASA Astrophysics Data System (ADS)

    Kennedy, M. C.; McKenzie, D.

    2012-12-01

    Fire has an important role in watershed dynamics, and it is unclear how the interaction between fire and hydrological processes will be modified in a changing climate. Detailed landscape models of fire spread and fire effects require comprehensive data, are computationally intensive, and are subject to cumulative error from uncertainties in many parameters. In contrast, statistical models draw attributes such as extent, frequency, and severity a priori from selected distributions that are estimated from current data, implicitly assuming a stationary driving process that may not hold under climate change. We are designing a relatively simple stochastic model of fire spread (WMFire) that will be coupled with the Regional Hydro-Ecological Simulation System (RHESSys), for projecting the effects of climatic change on mountain watersheds. The model is an extension of exogenously constrained dynamic percolation (ECDP), wherein spread is controlled primarily by a spread probability from burning pixels, and which has been shown to have the capacity to identify dominant controls on cross-scale properties of low-severity fire regimes. Each year RHESSys will pass projected pixel-level values of fuel, fuel moistures, wind speed and wind direction to the fire spread model. Spread probabilities will then be calculated from the fuel load, fuel moisture, and orientation of the pixel relative to the slope gradient and wind direction. The stochastic structure of the spread model will subsume the uncertainties in future patterns of fire spread, fuels and climate. WMFire is being calibrated by and evaluated against current known fire regime properties for watersheds in the Pacific Northwest (USA) using Monte Carlo inference.

  6. Fire Resistant Fuel for Military Compression Ignition Engines

    DTIC Science & Technology

    2013-12-04

    to statistically optimize and quantify FRF emulsion stability. Variables include: temperature (hot or cold ), base fuel, amount and type of emulsifier...developing a fire resistant fuel water emulsion and how the use of JP-8, as intended by the single fuel forward concept, affects this development. 15...This paper will discuss some of the aspects and limitations of developing a fire resistant fuel water emulsion and how the use of JP-8, as intended

  7. Burning Issues: Integrating the Curriculum with a Fire Ecology Unit.

    ERIC Educational Resources Information Center

    Stone, Kris; Comstock, Kathy

    2002-01-01

    Describes strategies for integrating fire ecology concepts into the curriculum and meeting state mandated learning goals. Addresses 1st grade science, chemistry, industrial technology, and 7th grade social studies. (Author/MM)

  8. Burning Issues: Integrating the Curriculum with a Fire Ecology Unit.

    ERIC Educational Resources Information Center

    Stone, Kris; Comstock, Kathy

    2002-01-01

    Describes strategies for integrating fire ecology concepts into the curriculum and meeting state mandated learning goals. Addresses 1st grade science, chemistry, industrial technology, and 7th grade social studies. (Author/MM)

  9. Public acceptance of wildland fire and fuel management: panel responses in seven locations.

    PubMed

    Toman, Eric; Shindler, Bruce; McCaffrey, Sarah; Bennett, James

    2014-09-01

    Wildland fire affects both public and private resources throughout the United States. A century of fire suppression has contributed to changing ecological conditions and accumulated fuel loads. Managers have used a variety of approaches to address these conditions and reduce the likelihood of wildland fires that may result in adverse ecological impacts and threaten communities. Public acceptance is a critical component of developing and implementing successful management programs. This study examines the factors that influence citizen support for agency fuel reduction treatments over time-particularly prescribed fire and mechanical vegetation removal. This paper presents findings from a longitudinal study examining resident beliefs and attitudes regarding fire management and fuels treatments in seven states: Arizona, Colorado, Oregon, Utah, Michigan, Minnesota, and Wisconsin. The study was implemented in two phases over a 6-year period using mail surveys to residents of communities adjacent to federal lands in each location. Questions replicated measures from the original project as well as some new items to allow a more in-depth analysis of key concepts. The study design enables comparisons over time as well as between locations. We also assess the factors that influence acceptance of both prescribed fire and mechanical vegetation removal. Findings demonstrate a relative stability of attitudes toward fuels management approaches over time and suggest that this acceptance is strongly influenced by confidence in resource managers and beliefs that the treatments would result in positive outcomes.

  10. Assessing Live Fuel Moisture For Fire Management Applications

    Treesearch

    David R. Weise; Roberta A. Hartford; Larry Mahaffey

    1998-01-01

    The variation associated with sampling live fuel moisture was examined for several shrub and canopy fuels in southern California, Arizona, and Colorado. Ninety-five % confidence intervals ranged from 5 to % . Estimated sample sizes varied greatly. The value of knowing the live fuel moisture content in fire decision making is unknown. If the fuel moisture is highly...

  11. The role of nongovernmental organizations in fire education, fuels reduction, and forest restoration: a call for collaboration

    Treesearch

    Timothy Ingalsbee; Daniel Henry; Oshana Catranides; Todd. Schulke

    2008-01-01

    Successfully educating homeowners and communities about wildland fire ecology and management, reducing hazardous fuels, and restoring fire-adapted forest ecosystems will place enormous demands on the budgets, resources, and staff of federal agencies for several decades to come. This work can be aided by collaboration with non-governmental organizations (NGOs) that are...

  12. The effectiveness and limitations of fuel modeling using the fire and fuels extension to the Forest Vegetation Simulator

    Treesearch

    Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner

    2014-01-01

    Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...

  13. Fire and avian ecology in North America: Process influencing pattern

    Treesearch

    Victoria A. Saab; Hugh D. W. Powell

    2005-01-01

    We summarize the findings from 10 subsequent chapters that collectively review fire and avian ecology across 40 North American ecosystems. We highlight patterns and future research topics that recur among the chapters. Vegetation types with long fire-return intervals, such as boreal forests of Canada, forests at high elevations, and those in the humid Pacific Northwest...

  14. Toward a more ecologically informed view of severe forest fires

    Treesearch

    Richard L. Hutto; Robert E. Keane; Rosemary L. Sherriff; Christopher T. Rota; Lisa A. Eby; Vicki Saab

    2016-01-01

    We use the historical presence of high-severity fire patches in mixed-conifer forests of the western United States to make several points that we hope will encourage development of a more ecologically informed view of severe wildland fire effects. First, many plant and animal species use, and have sometimes evolved to depend on, severely burned forest...

  15. Fuels and predicted fire behavior in the southern Appalachian Mountains and fire and fire surrogate treatments

    Treesearch

    Thomas Waldrop; Ross J. Phillips; Dean A. Simon

    2010-01-01

    This study tested the success of fuel reduction treatments for mitigating wildfire behavior in an area that has had little previous research on fire, the southern Appalachian Mountains. A secondary objective of treatments was to restore the community to an open woodland condition. Three blocks of four treatments were installed in a mature hardwood forest in western...

  16. Wildland fire emissions, carbon and climate: Characterizing wildland fuels

    Treesearch

    David R. Weise; Clinton S. Wright

    2013-01-01

    Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and...

  17. Exploring information needs for wildland fire and fuels management

    Treesearch

    Carol Miller; Peter Landres

    2004-01-01

    We report the results of a questionnaire and workshop that sought to gain a better and deeper understanding of the contemporary information needs of wildland fire and fuels managers. Results from the questionnaire indicated that the decision to suppress a wildland fire was most often influenced by factors related to safety and that the decision to allow a fire to burn...

  18. Fuel moisture - a guide for evaluating severity of fire seasons

    Treesearch

    Richard J. Barney

    1964-01-01

    Field personnel in all forest fire protection agencies need some simple but reasonably accurate method for evaluating severity of the fire season as it progresses and of comparing severity of the current season with that of preceding fire seasons. This paper proposes use of records of average fuel moisture percentages cumulated continuously for 5-day periods throughout...

  19. Estimating fuel consumption during prescribed fires in Arkansas

    Treesearch

    Virginia L. McDaniel; James M. Guldin; Roger W. Perry

    2012-01-01

    While prescribed fire is essential to maintaining numerous plant communities, fine particles produced in smoke can impair human health and reduce visibility in scenic areas. The Arkansas Smoke Management Program was established to mitigate the impacts of smoke from prescribed fires. This program uses fuel loading and consumption estimates from standard fire-behavior...

  20. Conservation education for Fire, Fuel and Smoke Program

    Treesearch

    Wayne Cook

    2009-01-01

    The mission of Conservation Education for the Fire, Fuel and Smoke (FFS) Program is to develop and deliver high-quality, science-based education about wildland fire to students, educators, the general public, and agency staff. Goals: 1) Increase awareness of the scope and content of FFS research. 2) Improve understanding of fundamental concepts in wildland fire science...

  1. Remote sensing fire and fuels in southern California

    Treesearch

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  2. Post-fire logging reduces surface woody fuels up to four decades following wildfire

    Treesearch

    David W. Peterson; Erich Kyle Dodson; Richy J. Harrod

    2015-01-01

    Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...

  3. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    Treesearch

    Nolan W. Brewer; Alistair M.S. Smith; Jeffery A. Hatten; Philip E. Higuera; Andrew T. Hudak; Roger D. Ottmar; Wade T. Tinkham

    2013-01-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is...

  4. Fuel models and fire potential from satellite and surface observations

    USGS Publications Warehouse

    Burgan, R.E.; Klaver, R.W.; Klarer, J.M.

    1998-01-01

    A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.

  5. Fire ecology in the southeastern United States

    USGS Publications Warehouse

    ,

    2000-01-01

    Fire has played an important role in the structure of natural ecosystems throughout North America. As a natural process, fire helps clear away dead and dying plant matter and increases the production of native species that occur in fire prone habitats. It also reduces the invasion of exotic species and the succession to woody species in pitcher plant bogs, pine savannas, coastal prairies, marshes, and other natural plant communities of the southeastern United States.

  6. Ecology: human role in Russian wild fires.

    PubMed

    Mollicone, Danilo; Eva, Hugh D; Achard, Frédéric

    2006-03-23

    Anomalies in temperature and precipitation in northern Russia over the past few years have been viewed as manifestations of anthropogenic climate change, prompting suggestions that this may also account for exceptional forest fires in the region. Here we examine the number of forest-fire events across the boreal Russian Federation for the period 2002 to 2005 in 'intact' forests, where human influence is limited, and in 'non-intact' forests, which have been shaped by human activity. Our results show that there were more fires in years during which the weather was anomalous, but that more than 87% of fires in boreal Russia were started by people.

  7. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods

    Treesearch

    James B. Cronan; Clinton S. Wright; Maria Petrova

    2015-01-01

    Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...

  8. Fuel treatment guidebook: illustrating treatment effects on fire hazard

    Treesearch

    Morris Johnson; David L. Peterson; Crystal Raymond

    2009-01-01

    The Guide to Fuel Treatments (Johnson and others 2007) analyzes potential fuel treatments and the potential effects of those treatments for dry forest lands in the Western United States. The guide examines low- to mid-elevation dry forest stands with high stem densities and heavy ladder fuels, which are currently common due to fire exclusion and various land management...

  9. A mathematical model for predicting fire spread in wildland fuels

    Treesearch

    Richard C. Rothermel

    1972-01-01

    A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.

  10. An examination of fire spread thresholds in discontinuous fuel beds

    Treesearch

    Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak

    2010-01-01

    Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...

  11. Living with fire: Fire ecology and policy for the twenty-first century [book review

    Treesearch

    Carol Miller

    2010-01-01

    This is a well-written polemic about the failure of fire policy and management in the United States. The book contains enough ecology and history for nonspecialists to understand the complexities of the policy and management dilemmas that we face today. The authors provide a particularly good treatment of the diversity of roles that fire plays in different ecosystems,...

  12. Alternative fuels in fire debris analysis: biodiesel basics.

    PubMed

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  13. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Treesearch

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  14. Chapter 1: Fire and fuels reduction

    Treesearch

    B.M. Collins; S.L. Stephens

    2012-01-01

    Fire will continue to be a major management challenge in mixed-conifer forests in the Sierra Nevada. Fire is a fundamental ecosystem process in these forests that was largely eliminated in the 20th century. Fire reintroduction is a critical goal but is subject to constraints such as smoke production, risk of fire moving outside designated boundaries, the expanding...

  15. The use of fuel breaks in landscape fire management

    USGS Publications Warehouse

    Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.

  16. Fuel Consumption and Fire Emissions Estimates in Siberia: Impact of Vegetation Types, Meteorological Conditions, Forestry Practices and Fire Regimes

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey

    2015-04-01

    Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.

  17. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 5: Fire suppression activities

    Treesearch

    Charles W. McHugh; Paul Gleason

    2003-01-01

    The purpose of this report is to document the suppression actions taken during the Hayman Fire. The long duration of suppression activities (June 8 through July 18), and multiple incident management teams assigned to the fire, makes this a challenging task. Original records and reports produced independently by the various teams assigned to different portions of the...

  18. Ecological fire use for ecological fire management: Managing large wildfires by design

    Treesearch

    Timothy Ingalsbee

    2015-01-01

    Past fire exclusion policies and fire suppression actions have led to a historic "fire deficit" on public wildlands. These sociocultural actions have led to unprecedented environmental changes that have created conditions conducive to more frequent large-scale wildfires. Politicians, the newsmedia, and agency officials portray large wildland fires as...

  19. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    PubMed

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  20. Research and Development wildland fire and fuels accomplishments and outcomes

    Treesearch

    Matthew Rollins; Carlos Rodriguez-Franco; Tara Haan; Susan Conard

    2017-01-01

    The Research and Development (R&D) Wildland Fire and Fuels program at the Forest Service, an agency of the U.S. Department of Agriculture, continues to be an internationally renowned program for generating critical and essential data, knowledge, and applications for all phases of wildland fire management and response. This report provides a primer on the...

  1. Fuelbreaks and other fuel modification for wildland fire control

    Treesearch

    Lisle Green

    1977-01-01

    In Mediterranean climates, the shrubby plant cover and the coniferous forest above it are vulnerable to frequent large fires. The fuelbreak, a strip of land in a strategic area-such as a ridgetop-where fuel modification and often type conversion can be accomplished, is an approach to fire suppression being widely applied in the Western United States, particularly...

  2. Evaluating wildland fire danger and prioritizing vegetation and fuels treatments

    Treesearch

    Paul F. Hessburg; Keith M. Reynolds; Robert E. Keane; Kevin M. James; R. Brion Salter

    2008-01-01

    We present a decision-support application that evaluates danger of severe wildland fire and prioritizes subwatersheds for vegetation and fuels treatment. We demonstrate the use of the system with an example from the Rocky Mountain region in Utah; a planning area of 4.8 million ha encompassing 575 subwatersheds. In a logic model, we evaluate fire danger as a function of...

  3. Fuel treatments and fire severity: A meta-analysis

    Treesearch

    Erik J. Martinson; Philip N. Omi

    2013-01-01

    We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies...

  4. Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests

    Treesearch

    Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose

    2006-01-01

    Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...

  5. Modeling fuels and fire effects in 3D: Model description and applications

    Treesearch

    Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn

    2016-01-01

    Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...

  6. Human ecological intervention and the role of forest fires in human ecology.

    PubMed

    Caldararo, N

    2002-06-26

    The present text is a summary of research on the relationship between forest fires and human activities. Numerous theories have been created to explain changes in forests during the late Pleistocene and early Holocene, and a general understanding has developed in the past 50 years regarding natural fire regimes. The present summary is directed to assess the validity of these theories. A re-analysis of the literature argues that the intense forest fires we experience today are an artifact of human intervention in forest ecology, especially by the reduction of herbivores and are relatively recent, approximately 100,000-250,000 BP. The history of fire, especially in the context of the increased dominance of humans, has produced a progressively fire-adapted ecology, which argues for human-free wildlife areas and against prescribed burns under many circumstances.

  7. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO₂ allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011.

  8. Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho

    NASA Astrophysics Data System (ADS)

    Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.

    2013-12-01

    There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded

  9. Predicting fire behavior in palmetto-gallberry fuel complexes

    Treesearch

    W A. Hough; F. A. Albini

    1978-01-01

    Rate of spread, fireline intensity, and flame length can be predicted with reasonable accuracy for backfires and low-intensity head fires in the palmetto-gallberry fuel complex of the South. This fuel complex was characterized and variables were adjusted for use in Rothermel's (1972) spread model. Age of rough, height of understory, percent of area covered by...

  10. Fire-BGC: A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains. Forest Service research paper

    SciTech Connect

    Keane, R.E.; Morgan, P.; Running, S.W.

    1996-03-01

    An ecological process model of vegetation dynamics mechanistically simulates long-term stand dynamics on coniferous landscapes of the Northern Rocky Mountains. This model is used to investigate and evaluate cumulative effects of various fire regimes, including prescribed burning and fire exclusion, on the vegetation and fuel complex of a simulation landscape composed of many stands. Detailed documentation of the model FIRE-BGC (a FIRE BioGeoChemical succession model) with complete discussion of all model parameters is followed with results of an application of the FIRE-BGC to a whitebark pine landscape in the Bob Marshall Wilderness Complex. Simulation results of several management scenarios are contrasted to predict the fate of whitebark pine over 200 years. Model testing reveals predictions within 10 to 30 percent of observed values.

  11. Plasma-cyclone technology for firing solid fuels

    NASA Astrophysics Data System (ADS)

    Karpenko, Yu. E.; Messerle, V. E.; Karpenko, E. I.; Basargin, A. P.

    2014-08-01

    A new coal combustion technology is described, which involves preparation of fuel for combustion by subjecting it to electrothermochemical treatment followed by vortex firing of pulverized-coal fuel in a cyclone chamber with removing the molten mineral part of the fuel. A procedure for stepped calculation of the plasma-cyclone process is presented, which includes stage-wise determination of gas flow state parameters, mineral part of fuel, and geometrical characteristics of the chamber. The results of experimental investigations confirming the main theoretical statements are given. The solid fuel plasma-cyclone combustion technology application field including power-generating and power-processing areas is defined.

  12. Fuel age and fire spread: Natural conditions versus opportunities for fire suppression

    USGS Publications Warehouse

    Halsey, Richard W.; Keeley, Jon E.; Wilson, Kit

    2009-01-01

    Wildfires are driven and restrained by an interplay of variables that can lead to many potential outcomes. As every wildland firefighter learns in basic training, the ability of a fire to spread is determined by three basic variables: fuel type and condition, weather, and topography. Fire suppression obviously plays a significant role in determining fire spread as well, so firefighter activity becomes an additional variable.

  13. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect

    HARRIS, J.P.

    2003-10-14

    The purpose of the calculation documented here is to support in-tank vehicle fuel fire accident frequencies in the Documented Safety Analysis. This analysis demonstrates that the frequency of the pool fire and deflagration scenarios of the in-tank vehicle fuel fire/deflagration accident are ''extremely unlikely'' to ''unlikely.'' The chains of events that result in each scenario are presented in this document and are the same as used in previous analyses of this accident. Probabilities and frequencies are developed for each event, using wherever possible, information from RPP-13121, Tables B-1 and B-2, and from the River Protection Project ORPS. The estimated probabilities are considered reasonably conservative, but do not necessarily assume the worst possible outcomes or the most conservative possible cases. A sensitivity analysis performed in Section 4.2 shows that if the probability of either the ignition of fuel event or the fuel flows into riser event were underestimated by an order of magnitude, the accident frequency for a pool fire could increase and shift into the ''unlikely'' category. If the probability of an increase in riser strikes, or an increase in broken risers, unignited fuel entering a riser, or a fuel ignition source being present in a tank were underestimated by an order of magnitude, the accident frequency for a deflagration would remain in the ''unlikely'' category. When the likelihood of a broken riser is increased by an order of magnitude, a pool fire remains in the ''extremely unlikely'' category. The DSA accident analysis indicates that an unmitigated flammable gas deflagration resulting from an induced gas release event or an organic solvent fire occurring in either an SST or a DST is an anticipated event (> 10{sup -2}). Deflagration in a DST annulus is considered unlikely (> 10{sup -4} to {le}10{sup -2}). These frequencies clearly bound those of the in-tank vehicle fuel fire family of accidents.

  14. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal

  15. Use of expert knowledge to develop fuel maps for wildland fire management [chapter 11

    Treesearch

    Robert E. Keane; Matt Reeves

    2012-01-01

    Fuel maps are becoming an essential tool in fire management because they describe, in a spatial context, the one factor that fire managers can control over many scales ­ surface and canopy fuel characteristics. Coarse-resolution fuel maps are useful in global, national, and regional fire danger assessments because they help fire managers effectively plan, allocate, and...

  16. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Treesearch

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  17. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Treesearch

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  18. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  19. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    NASA Astrophysics Data System (ADS)

    Brewer, Nolan W.; Smith, Alistair M. S.; Hatten, Jeffery A.; Higuera, Philip E.; Hudak, Andrew T.; Ottmar, Roger D.; Tinkham, Wade T.

    2013-03-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is important in determining how persistent charred residues are following a fire within specific fuel types. Additionally, understanding how mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential for understanding how this management technique, employed in many fire-prone forest types, may influence stand-level black carbon in soils. In this experimental study, 15 masticated fuel beds, conditioned to three fuel moisture ranges, were burned, and production rates of pyrogenic carbon and soot-based black carbon were evaluated. Pyrogenic carbon was determined through elemental analysis of the post-fire residues, and soot-based black carbon was quantified with thermochemical methods. Pyrogenic carbon production rates ranged from 7.23% to 8.67% relative to pre-fire organic carbon content. Black carbon production rates averaged 0.02% in the 4-8% fuel moisture group and 0.05% in the 13-18% moisture group. A comparison of the ratio of black carbon to pyrogenic carbon indicates that burning with fuels ranging from 13% to 15% moisture content resulted in a higher proportion of black carbon produced, suggesting that the precursors to black carbon were indiscriminately consumed at lower fuel moistures. This research highlights the importance of fuel moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel beds.

  20. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests. ?? 2009 by the Ecological Society of America.

  1. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel... government 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150...

  2. Using BEHAVEPlus for predicting fire behavior in southern Appalachian hardwood stands subjected to fuel reduction treatments

    Treesearch

    Helen H. Mohr; Thomas A. Waldrop; Dean M. Simon

    2010-01-01

    There is a crucial need for fuel reduction in United States forests due to decades of fuel accumulation resulting from fire exclusion. The National Fire and Fire Surrogate Study (FFS) addresses this issue by examining the effects of three fuel reduction treatments on numerous response variables. At an FFS site in the southern Appalachian Mountains, fuels were altered...

  3. Characteristics of forest fuels, fire and emissions

    Treesearch

    Charles K. McMahon

    1983-01-01

    Introduction Forest fires can be divided into two broad classes--wildfires and prescribed fires. Wildfires, whether caused by nature (lightning, etc.) or by the accidental or malicious acts of man, are not planned by forest managers and do not occur under controlled conditions. They can be relatively tame, covering only a few hectares and burning...

  4. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs.

  5. Fire-resistant pits: Reducing the probability of accidental plutonium dispersal from fuel fires

    SciTech Connect

    Stephens, D.R.

    1992-03-01

    Reductions in risk of Pu dispersal from hydrocarbon fuel fires were estimated using pool and spill fire data. Improvements in FRP temperature capabilities, on a system-independent basis, lead to the following estimated reductions in risk, using three probabilistic temperature distributions normalized to a temperature capability of 640[degree]C (the melting point of plutonium): 1OOO[degree]C - factor of 3 to 5; 11OO[degree]C - factor of 10 to 13; and 1200[degree]C - factor of 120 to 300. The above values would, of course, vary for a different normalization temperature. These values were derived to be as system-independent as possible. Incorporation of fuel fire durations or of longer time-averaging (than the two minutes employed in this study) would tend to increase these FRP improvement factors. Incorporation of propellant fires, burning metal or of combined impact/fire accidents would tend to decrease them. Further studies of fuel fire durations, particularly of a fuel fire duration model, is recommended, as is an uncertainty analysis of the temperature distributions.

  6. Radiation intensity of lignite-fired oxy-fuel flames

    SciTech Connect

    Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo

    2008-10-15

    The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

  7. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  8. Aerosol spectral optical depths: Jet fuel and forest fire smokes

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.

    1990-12-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral optical depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  9. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  10. Relative impact of weather vs. fuels on fire regimes in coastal California

    Treesearch

    Jon E. Keeley

    2008-01-01

    Extreme fire weather is of over riding importance in determining fire behavior in coastal chaparral and on these landscapes fire suppression policy has not resulted in fire exclusion. There is regional variation in foehn winds, which are most important in southern California. Under these severe fire weather conditions fuel age does not constrain fire behavior. As a...

  11. Fire ecology of ponderosa pine and the rebuilding of fire-resilient ponderosa pine ecosystems

    Treesearch

    Stephen A. Fitzgerald

    2005-01-01

    The ponderosa pine ecosystems of the West have change dramatically since Euro-American settlement 140 years ago due to past land uses and the curtailment of natural fire. Today, ponderosa pine forests contain over abundance of fuel, and stand densities have increased from a range of 49-124 trees ha-1 (20-50 trees acre-1) to...

  12. Extraction of alternative fuels from fire debris samples*.

    PubMed

    Kuk, Raymond J; Spagnola, Michael V

    2008-09-01

    Alternative fuels, specifically biodiesel, biodiesel blends, and E85 fuel, have been gaining a market share over the past few years. With the emergence of these fuels, fire debris analysts should be able to recognize their characteristics since these fuels may be encountered in casework. In this study, pure biodiesel (B100) and a 20% blend of pure biodiesel with petroleum diesel (B20) are examined as liquids and are extracted from debris samples using both passive headspace concentration and solvent extraction. Typical fire debris instrumental conditions are used to analyze these samples. Components of B100 and B20 may be observed in debris samples extracted using the passive headspace concentration method, but the chromatographic patterns are different from the pure liquid samples. When solvent extraction is used as a secondary extraction method on debris samples, the resulting patterns are consistent with the pure liquids of B100 and B20. E85 fuel, a blend of 85% ethanol and 15% gasoline, can be extracted using a typical fire debris extraction technique but requires slight modifications to typical fire debris instrumental conditions. E85 is shown at various stages of evaporation to demonstrate the resiliency of the ethanol. Additionally, samples of E85 were placed on carpet, burned and extinguished to demonstrate the effects of the suppression medium on the retention of ethanol.

  13. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  14. Implementation of the fire and fire surrogate study— a national research effort to evaluate the consequences of fuel reduction treatments

    Treesearch

    Andrew Youngblood; Kerry L. Metlen; Eric E. Knapp; Kenneth W. Outcalt; Scott L. Stephens; Thomas A. Waldrop; Daniel Yaussy

    2005-01-01

    Many fire-dependent forests today are denser, contain fewer large trees, have higher fuel loads, and greater fuel continuity than occurred under historical fire regimes. These conditions increase the probability of unnaturally severe wildfires. Silviculturists are increasingly being asked to design fuel reduction treatments to help protect existing and future forest...

  15. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    Treesearch

    Robert E. Keane; James K. Agee; Peter Fule; Jon E. Keeley; Carl Key; Stanley G. Kitchen; Richard Miller; Lisa A. Schulte

    2008-01-01

    The perception is that today's large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States...

  16. Fuel consumption and fire emissions estimates using Fire Radiative Power, burned area and statistical modelling on the fire event scale

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Leimbach, David; Guenther, Felix; Barradas, Carol; Hoffmann, Anja

    2016-04-01

    Fire Radiative Power (FRP) retrieved by infrared sensors, such as flown on several polar orbiting and geostationary satellites, has been shown to be proportional to fuel consumption rates in vegetation fires, and hence the total radiative energy released by a fire (Fire Radiative Energy, FRE) is proportional to the total amount of biomass burned. However, due to the sparse temporal coverage of polar orbiting and the coarse spatial resolution of geostationary sensors, it is difficult to estimate fuel consumption for single fire events. Here we explore an approach for estimating FRE through temporal integration of MODIS FRP retrievals over MODIS-derived burned areas. Temporal integration is aided by statistical modelling to estimate missing observations using a generalized additive model (GAM) and taking advantage of additional information such as land cover and a global dataset of the Canadian Fire Weather Index (FWI), as well as diurnal and annual FRP fluctuation patterns. Based on results from study areas located in savannah regions of Southern and Eastern Africa and Brazil, we compare this method to estimates based on simple temporal integration of FRP retrievals over the fire lifetime, and estimate the potential variability of FRP integration results across a range of fire sizes. We compare FRE-based fuel consumption against a database of field experiments in similar landscapes. Results show that for larger fires, this method yields realistic estimates and is more robust when only a small number of observations is available than the simple temporal integration. Finally, we offer an outlook on the integration of data from other satellites, specifically FireBird, S-NPP VIIRS and Sentinel-3, as well as on using higher resolution burned area data sets derived from Landsat and similar sensors.

  17. Fuels and fire behavior dynamics on large-scale savanna fires in Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; van Wilgen, B. W.; Trollope, W. S. W.; McRae, D. J.; Mason, J. A.; Weirich, F.; Potgieter, A. L. F.

    1996-10-01

    Biomass characterization and fire behavior documentation were carried out on two large (>2000 ha) experimental fires conducted in arid savanna fuels in Kruger National Park in September 1992. Prefire fuel loads, fuel consumption, spread rates, flame zone characteristics, and in-fire and perimeter wind field dynamics were measured in order to determine overall energy release rates for each fire. Convection column dynamics were also measured in support of airborne trace gas and particulate measurements. Energy release rates varied significantly between the two fires, and this was strongly reflected in convection column development. The lower-intensity fire produced a weak, poorly defined smoke plume, while a well-developed column with a capping cumulus top developed during the higher intensity fire. Further experimental burning studies, in savannas with higher fuel loads, are recommended to further explore the fire behavior-convection column dynamics relationship investigated in this study.

  18. Appraising fuels and flammability in western aspen: a prescribed fire guide

    Treesearch

    James K. Brown; Dennis G. Simmerman

    1986-01-01

    Describes a method for appraising fuels and fire behavior potential in aspen forests to guide the use of prescribed fire and the preparation of fire prescriptions. Includes an illustrated classification of aspen fuels; appraisals of fireline intensity, rate of spread, adjective ratings for fire behavior and probability of burn success; and evaluations of seasonal...

  19. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  20. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... limited to, the following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric...

  1. Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival

    USGS Publications Warehouse

    Collins, Brandon M.; Das, Adrian J.; Battles, John J.; Fry, Danny L.; Krasnow, Kevin D.; Stephens, Scott L.

    2014-01-01

    Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest resilience either positively or negatively depending on the specific elements examined, as well as treatment type, timing, and intensity. In this study, we use overstory tree growth responses, measured seven years after the most common fuel treatments, to estimate forest health. Across the five species analyzed, observed mortality and future vulnerability were consistently low in the mechanical-only treatment. Fire-only was similar to the control for all species except Douglas-fir, while mechanical-plus-fire had high observed mortality and future vulnerability for white fir and sugar pine. Given that overstory trees largely dictate the function of forests and services they provide (e.g., wildlife habitat, carbon sequestration, soil stability) these results have implications for understanding longer-term impacts of common fuel treatments on forest resilience.

  2. Firefighters United for Safety, Ethics, and Ecology (FUSEE): Torchbearers for a new fire management paradigm

    Treesearch

    Timothy Ingalsbee; Joseph Fox; Patrick Withen

    2007-01-01

    Firefighters United for Safety, Ethics, and Ecology (FUSEE) is a nonprofit organization promoting safe, ethical, ecological wildland fire management. FUSEE believes firefighter and community safety are ultimately interdependent with ethical public service, wildlands protection, and ecological restoration of fire-adapted ecosystems. Our members include current, former,...

  3. Engine Experiments with Fire Safe Fuels

    DTIC Science & Technology

    1975-01-01

    unlimited prepared by U. S. Army Fuels and Lubricants Research Laboratory Southwest Research Institute San Antonio, Texas under contract to U. S. Army...Mobility Equipment Research & Development Center Petroleum and Material Department Fort Belvoir, Virginia Contract No. DAAK02-73-C-0221 January 1975...vehicle fuel tank system. One approach currently being investigated involves using halogenated hydrocargors and is principally a result of research done by

  4. Fuel and fire behavior prediction in big sagebrush

    Treesearch

    James K. Brown

    1982-01-01

    Relationships between height of big sagebrush and crown area, fuel loading, bulk density, size distribution of foliage and stemwood, and fraction dead stemwood are presented. Based upon these relationships, modeled rate-of-fire spread and fireline intensity are shown for sagebrush ranging in height from 20 to 120 em and in coverage from 10 to 40 percent. Verification...

  5. Evaluating wildland fire danger and prioritizing vegetation and fuels treatments

    Treesearch

    Paul F. Hessburg; Keith M. Reynolds; Robert E. Keane; Kevin M. James; R. Brion Salter

    2010-01-01

    We present a prototype decision support system for evaluating wild-land fire danger and prioritizing subwatersheds for vegetation and fuels treatment. We demonstrate the use of the system with an example from the Rocky Mountain region in the State of Utah, which represents a planning area of about 4.8 million ha and encompasses 575 complete subwatersheds. In a logic...

  6. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  7. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 04: role of silviculture in fuel treatments

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.

  8. The national fire and fire surrogate study: early results and future challenges

    Treesearch

    Thomas A. Waldrop; James McIver

    2006-01-01

    Fire-adapted ecosystems today have dense plant cover and heavy fuel loads as a result of fire exclusion and other changes in land use practices. Mechanical fuel treatments and prescribed fire are powerful tools for reducing wildfire potential, but the ecological consequences of their use is unknown. The National Fire and Fire Surrogate Study examines the effects of...

  9. Hazards Management in Grand County, Colorado-Fire Fuels Characterization

    USGS Publications Warehouse

    Cole, Christopher; Lile, Elizabeth; Briggs, Jennifer

    2009-01-01

    The USGS Fire Science Initiative is designed to identify potential wildfire risks and related hazards and to mitigate their effects on people, property, and natural resources. The USGS Rocky Mountain Geographic Science Center (RMGSC) plays an integral role in the fire science demonstration project targeting Grand County, Colo., which uses remote sensing imagery, other geospatial data, and advanced classification techniques to produce inventories and assessments of the current state of the ecosystem. The data gathered - extent of tree mortality and insect infestation, changes in fire fuels, susceptibility to post-fire effects, distribution of wildland-urban interface areas, etc. - will give much needed information to decisionmakers on the Federal, State, and local levels.

  10. Wood-fired fuel cells in an isolated community

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D.; Guiney, D. J.

    Fuel cells have the potential for generating electricity very efficiently, and because of their modular construction, retain the same efficiency at any scale. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered CO 2 neutral. A combined heat and power (CHP) system consisting of a fuel cell integrated with wood gasification (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently, even at small-scales. The "isolated community" (IC) could be an island, or simply where grid-supplied electricity is weak or non-existent. The IC was taken to consist of 200 people and three retail outlets. Heat and electricity use profiles for this IC were produced and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case, an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired phosphoric acid fuel cell (PAFC) system was found to be suitable where high heat/electricity values were required, but had low electrical efficiency. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient and suitable for small-scale electricity generation purposes. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features of an IC with regard to the high cost of importing other fuel, and/or lack of grid electricity, could still make these systems attractive options.

  11. Fuel-flexible burner apparatus and method for fired heaters

    DOEpatents

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.; Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  12. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  13. Forest fuels, prescribed fire, and air quality

    Treesearch

    J. Alfred Hall

    1972-01-01

    The combustion products (smoke) from forest wildfires or prescribed burns are often considered on a par with any other emission that might affect air quality. But enough is known about smoke from woody fuels to indicate that its importance is limited almost entirely to visibility obstruction, an effect that can be minimized by proper timing and preparation for burning...

  14. Development and mapping of fuel characteristics and associated fire potentials for South America

    Treesearch

    M. Lucrecia Pettinari; Roger D. Ottmar; Susan J. Prichard; Anne G. Andreu; Emilio. Chuvieco

    2014-01-01

    The characteristics and spatial distribution of fuels are critical for assessing fire hazard, fuel consumption, greenhouse gas emissions and other fire effects. However, fuel maps are difficult to generate and update, because many regions of the world lack fuel descriptions or adequate mapped vegetation attributes to assign these fuelbeds spatially across the landscape...

  15. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour--a simulation study.

    PubMed

    Penman, T D; Collins, L; Price, O F; Bradstock, R A; Metcalf, S; Chong, D M O

    2013-12-15

    Large budgets are spent on both suppression and fuel treatments in order to reduce the risk of wildfires. There is little evidence regarding the relative contribution of fire weather, suppression and fuel treatments in determining the risk posed from wildfires. Here we undertake a simulation study in the Sydney Basin, Australia, to examine this question using a fire behaviour model (Phoenix Rapidfire). Results of the study indicate that fire behaviour is most strongly influenced by fire weather. Suppression has a greater influence on whether a fire reaches 5 ha in size compared to fuel treatments. In contrast, fuel treatments have a stronger effect on the fire size and maximum distance the fire travels. The study suggests that fire management agencies will receive additional benefits from fuel treatment if they are located in areas which suppression resources can respond rapidly and attempt to contain the fires. No combination of treatments contained all fires, and the proportion of uncontained fires increased under more severe fire weather when the greatest number of properties are lost. Our study highlights the importance of alternative management strategies to reduce the risk of property loss.

  16. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Treesearch

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  17. Status of native fishes in the western United States and issues for fire and fuels management

    USGS Publications Warehouse

    Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better

  18. Fuel dynamics by using Landscape Ecology Indices in the Alto Mijares, Spain

    NASA Astrophysics Data System (ADS)

    Iqbal, J.; Garcia, C. V.

    2009-04-01

    Land abandonment in Mediterranean regions has brought about a number of management problems, being an increased wildfire activity prevalent among them. Agricultural neglect in highlands resulted in reduced anthropogenic disturbances and greater landscape homogeneity in areas such as the Alto Mijares in Spain. It is widely accepted that processes like forest fires, influence structure of the landscape and vice versa. Fire-prone Mediterranean flora is well adapted to this disturbance, exhibiting excellent succession capabilities; but higher fuel loads and homogeneous conditions may ally to promote vegetation recession when the fire regime is altered by land abandonment. Both succession and recession make changes to the landscape structure and configuration. However, these changes are difficult to quantify and characterize. If landscape restoration of these forests is a management objective, then developing a quantitative knowledge base for landscape fuel dynamics is a prerequisite. Four classified LandsatTM satellite images were compared to quantify changes in landscape structure between 1984 and 1998. An attempt is made to define landscape level dynamics for fuel development after reduced disturbance and fuel accumulation that leads to catastrophic fires by using landscape ecology indices. By doing so, indices that best describe the fuel dynamics are pointed. The results indicate that low-level disturbance increases heterogeneity, thus lowers fire hazard. No disturbance or severe disturbance increases homogeneity because of vegetation succession and may lead to devastating fires. These fires could be avoided by human induced disturbance like controlled burning, harvesting, mechanical works for fuel reduction and other silviculture measures; thus bringing in more heterogeneity in the region. The Alto Mijares landscape appears to be in an unstable equilibrium where succession and recession are at tug of war. The effects are evident in the general absence of the climax

  19. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 01: forest structure and fire hazard overview

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...

  20. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale

    PubMed Central

    Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.

    2013-01-01

    Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917

  1. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support

    Treesearch

    Zachary A. Holden; W. Matt Jolly

    2011-01-01

    Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the...

  2. Microemulsion-Type Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1984-12-31

    Temperature Flow--Minimum Temperatures 2 . Low-Temperature Filtration--Suction Versus Pressure 3. Is FRF Newtonian? 4 . Additive Effects D . Engine...oxyethylene groups (Igepal DM-430) C. H o(C( 2 CH2 0) 7H C H1 9 19 d ) A proprietary anionic phosphate ester derivative of the polyethoxy- lated...AD-A157 i25 MICROEMULSION-TYPE FIRE-RESISTANT DIESEL FUEL(U) i/ 2 SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AND LUBRICANTS RESEARCH LAB W D

  3. Wood-fired fuel cells in selected buildings

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    The positive attributes of fuel cells for high efficiency power generation at any scale and of biomass as a renewable energy source which is not intermittent, location-dependent or very difficult to store, suggest that a combined heat and power (CHP) system consisting of a fuel cell integrated with a wood gasifier (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently. Phosphoric acid fuel cell (PAFC) systems, fuelled by natural gas, have already been used in a range of CHP applications in urban settings. Some of these applications are examined here using integrated biomass gasification/fuel cell systems in CHP configurations. Five building systems, which have different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired PAFC system was found to have low electrical efficiency (13-16%), but much of the heat could be recovered, so that the overall efficiency was 64-67%, suitable where high heat/electricity values are required. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient for electricity generation (24-27%), with an overall energy efficiency of 60-63%. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features

  4. Fire patterns among ecological zones in the California desert, 1984–2013

    USGS Publications Warehouse

    Brooks, Matthew L.; Matchett, John R.

    2016-01-01

    shrub, juniper-pinyon, sagebrush). That approach does not distinguish how the relative proportions of vegetation types comprising each ecological zone varies among California desert regions, or explain how the ecotones between the zones shift upslope with decreasing latitude moving from the cold deserts in the north to the warm deserts in the south. These limitations hinder their application to specific areas within the desert bioregion. We derived ecological zones derived from 43 LANDFIRE vegetation biophysical setting types, plus various non-wildland (e.g. developed urban/agriculture/roads) and non-burnable (e.g. open water/barren) areas (Rollins 2009). We also omitted from analyses non-wildland and non-burnable areas (2,003,148 ha [4,949,887 ac]), and focused instead on the remaining burnable wildland areas (9,025,152 ha [22,301,636 ac]). The 43 biophysical setting types were grouped into 13 general vegetation types, which were further grouped into four elevation-based ecological zones plus one riparian zone according to their constituent plant associations. The resulting 5 ecological zones were then intersected with the boundaries of the 5 desert regions of the California to create a map and associated burnable wildland area statistics. A diagram was also created illustrating the relative elevational positions of each ecological zone and vegetation type along a latitudinal gradient from cold deserts to warm deserts.These data were developed to assess the distribution of wildfire regimes across California deserts for the chapter "Southeast Deserts Bioregion" in the book "Fire in California's Ecosystems, Second Edition" published by University of California Press. Miles, S. R. and C. B. Goudy. 1997. Ecological subregions of California: section and subsection descriptions. USDA Forest Service, Pacific Southwest Region, R5-EM-TP-005, San Francisco, CA.Rollins Matthew G. (2009) LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment

  5. Comparison of hypothetical LNG and fuel oil fires on water.

    PubMed

    Lehr, William; Simecek-Beatty, Debra

    2004-02-27

    Large spills of refined petroleum products have been an occasional occurrence over the past few decades. This has not been true for large spills of liquefied natural gas (LNG). This paper compares the likely similarities and differences between accidental releases from a ship of sizable quantities of these different hydrocarbon fuels, their subsequent spreading, and possible pool-fire behavior. Quantitative estimates are made of the spread rate and maximum slick size, burn rate, and duration; effective thermal radiation; and subsequent soot generation.

  6. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    NASA Astrophysics Data System (ADS)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  7. Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests

    Treesearch

    B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez

    2013-01-01

    Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...

  8. Fuels and fire in land-management planning: Part 3. Costs and losses for management options.

    Treesearch

    Wayne G. Maxwell; David V. Sandberg; Franklin R. Ward

    1983-01-01

    An approach is illustrated for computing expected costs of fire protection; fuel treatment; fire suppression; damage values; and percent of area lost to wildfire for a management or rotation cycle. Input is derived from Part 1, a method for collecting and classifying the total fuel complex, and Part 2, a method for appraising and rating probable fire behavior. This...

  9. Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.

    SciTech Connect

    Scott, Joe, H.

    2009-07-23

    The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growth—those tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS-simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

  10. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using

  11. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 2: Description and interpretations of fire behavior

    Treesearch

    Mark A. Finney; Charles W. McHugh; Roberta Bartlette; Kelly Close; Paul Langowski

    2003-01-01

    This report summarizes the progress of the Hayman Fire, its behavior, and the influence of environmental conditions. Data were obtained from narratives from fire behavior analysts assigned to the fire management teams, discussions with fire management staff, meteorology from local weather stations and Bradshaw and others (2003), photographs, satellite imagery, and...

  12. The 2002 Hayman Fire - ecological benefit or catastrophe? An understory plant community perspective

    Treesearch

    Paula Fornwalt

    2013-01-01

    Fire has long been a keystone ecological process in Western forests. In ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) forests of the Colorado Front Range, historical fires are believed to have been "mixed severity" in nature. That means that these fires are believed to have typically burned within a range of severities from low severity...

  13. Measuring Ecological Effects of Prescribed Fire Using Birds as Indicators of Forest Conditions

    Treesearch

    Nathaniel E. Seavy; John D. Alexander

    2006-01-01

    To evaluate the ecological effects of prescribed fire, bird and vegetation surveys were conducted in four study areas of the Klamath National Forest where prescribed fires are being used for management. Bird and vegetation data were collected at sites treated with prescribed fire and nearby untreated control sites. Data were collected at stations from 2000 (pre-...

  14. Socio-ecological factors influencing the use of fire to maintain and restore ecosystem health

    USDA-ARS?s Scientific Manuscript database

    Fire suppression in grassland systems adapted to fire is a major factor that has contributed to recruitment of woody species into grasslands worldwide. Even though the ecology of restoring these fire prone systems back to a grassland state is becoming clearer, the major hurdle to reintroducing histo...

  15. Ecology of fire in shortgrass prairie of the southern Great Plains

    Treesearch

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  16. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Treesearch

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  17. The ecological importance of mixed-severity fires: Nature's phoenix [Book Review

    Treesearch

    Carolyn H. Sieg

    2016-01-01

    The stated goal of a recent book, The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix, edited by Dominick A. DellaSala and Chad T. Hansen, is to provide a global reference on the benefits of mixed- and high-severity fires. Note that the goal is not to provide an objective reference on the ecological aspects of mixed- and high-severity fires. Rather, the...

  18. Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province

    Treesearch

    Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza

    2001-01-01

    Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...

  19. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical type (ABC) fire suppression system listed or approved as an engineered dry chemical extinguishing... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall be... suppression system shall provide automatic fire detection and automatic fire suppression for all areas within...

  20. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical type (ABC) fire suppression system listed or approved as an engineered dry chemical extinguishing... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall be... suppression system shall provide automatic fire detection and automatic fire suppression for all areas within...

  1. Fuel Management-An Integral Part of Fire Management: Trans-Tasman Perspective

    Treesearch

    Jim Gould

    2006-01-01

    Although Australia and New Zealand have quite different fire climates and fuels, the common understanding of fire behaviour underlies many facets of fire management in both countries. Fire management is the legal responsibility of various government land management agencies that manage public lands and individuals, local governments or corporations that manage private...

  2. Linking complex forest fuel structure and fire behavior at fine scales

    Treesearch

    EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez

    2012-01-01

    Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...

  3. 14 CFR 121.233 - Fuel lines and fittings in designated fire zones.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel lines and fittings in designated fire zones. 121.233 Section 121.233 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....233 Fuel lines and fittings in designated fire zones. Fuel lines and fittings in each designated...

  4. 14 CFR 125.131 - Fuel lines and fittings in designated fire zones.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel lines and fittings in designated fire zones. 125.131 Section 125.131 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.131 Fuel lines and fittings in designated fire zones. Fuel lines and fittings in...

  5. An overview of the fire and fuels extension to the forest vegetation simulator

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston

    2000-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...

  6. Modeling hazardous fire potential within a completed fuel treatment network in the northern Sierra Nevada

    Treesearch

    Brandon M. Collins; Heather A. Kramer; Kurt Menning; Colin Dillingham; David Saah; Peter A. Stine; Scott L. Stephens

    2013-01-01

    We built on previous work by performing a more in-depth examination of a completed landscape fuel treatment network. Our specific objectives were: (1) model hazardous fire potential with and without the treatment network, (2) project hazardous fire potential over several decades to assess fuel treatment network longevity, and (3) assess fuel treatment effectiveness and...

  7. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Treesearch

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  8. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground diesel fuel storage facilities. 75.1912 Section 75.1912 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall...

  9. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  10. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  11. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  12. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  13. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  14. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Treesearch

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  15. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE PAGES

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...

    2017-06-18

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  16. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    USGS Publications Warehouse

    Keane, Robert E.; Agee, James K.; Fule, Peter; Keeley, Jon E.; Key, Carl H.; Kitchen, Stanley G.; Miller, Richard; Schulte, Lisa A.

    2008-01-01

    The perception is that today’s large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States by important ecosystems written by regional experts. The ecosystems are (1) ponderosa pine–Douglas-fir, (2) sagebrush–grasslands, (3) piñon–juniper, (4) chaparral, (5) mixed-conifer, and (6) spruce–fir. This review found that large fires were common on most historical western US landscapes and they will continue to be common today with exceptions. Sagebrush ecosystems are currently experiencing larger, more severe, and more frequent large fires compared to historical conditions due to exotic cheatgrass invasions. Historical large fires in south-west ponderosa pine forest created a mixed severity mosaic dominated by non-lethal surface fires while today’s large fires are mostly high severity crown fires. While large fires play an important role in landscape ecology for most regions, their importance is much less in the dry piñon–juniper forests and sagebrush–grasslands. Fire management must address the role of large fires in maintaining the health of many US fire-dominated ecosystems.

  17. The domestication of fire: the relationship between biomass fuel, fossil fuel and burns.

    PubMed

    Albertyn, R; Rode, H; Millar, A J W; Peck, M D

    2012-09-01

    Primitive man's discovery and use of fire had a tremendous impact on modern development. It changed lifestyles, and brought with it new fuel sources and cooking methods. It also introduced devastation, injury, pain, disfigurement, and loss of life, and the need to continuously develop management, training and prevention programs. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. Fuels and fire in land-management planning. Part 1. Forest-fuel classification.

    Treesearch

    Wayne G. Maxwell; Franklin R. Ward

    1981-01-01

    This report describes a way to collect and classify the total fuel complex within a planning area. The information can be used as input for appraising and rating probable fire behavior and calculating expected costs and losses from various land uses and management alternatives, reported separately as Part 2 and Part 3 of this series. This total package can be used...

  19. Optimizing spatial and temporal treatments to maintain effective fire and non-fire fuels treatments at landscape scales

    Treesearch

    J. Greg Jones; Woodam Chung; Carl Seielstad; Janet Sullivan; Kurt Krueger

    2010-01-01

    There is a recognized need to apply and maintain fuel treatments to reduce catastrophic wildland fires. A number of models and decision support systems have been developed for addressing different aspects of fuel treatments while considering other important resource management issues and constraints. Although these models address diverse aspects of the fuel treatment-...

  20. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels

    Treesearch

    Jesse K. Kreye; Leda N. Kobziar; Wayne C. Zipperer

    2013-01-01

    Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yetlittle research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida...

  1. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    PubMed

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined.

  2. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel

    2016-10-01

    Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.

  3. Development and demonstration of smoke plume, fire emissions, and pre- and postprescribed fire fuel models on North Carolina Coastal Plain forest ecosystems

    Treesearch

    Robert A. Mickler; Miriam Rorig; Christopher D. Geron; Gary L. Achtemier; Andrew D. Bailey; Candice Krull; David Brownlie

    2007-01-01

    Wildland fuels have been accumulating in the United States during at least the past half-century due to wildland fire management practices and policies. The additional fuels contribute to intense fire behavior, increase the costs of wildland fire control, and contribute to the degradation of local and regional air quality. The management of prescribed and wildland fire...

  4. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests.

    PubMed

    Stephens, Scott L; Moghaddas, Jason J; Edminster, Carl; Fiedler, Carl E; Haase, Sally; Harrington, Michael; Keeley, Jon E; Knapp, Eric E; McIver, James D; Metlen, Kerry; Skinner, Carl N; Youngblood, Andrew

    2009-03-01

    Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical

  5. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 1: Fire weather, meteorology, and climate

    Treesearch

    Larry Bradshaw; Roberta Bartlette; John McGinely; Karl Zeller

    2003-01-01

    The Hayman Fire in June 2002 was heavily influenced by antecedent regional weather conditions, culminating in a series of daily weather events that aligned to produce widely varying fire behavior. This review of weather conditions associated with the Hayman Fire consists of two parts: 1) A brief overview of prior conditions as described by a regional climate review and...

  6. Climate change, fire management, and ecological services in the southwestern US

    USGS Publications Warehouse

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  7. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems

    USGS Publications Warehouse

    Bond, William J.; Keeley, Jon E.

    2005-01-01

    It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.

  8. D. McKenzie, C. Miller and D.A. Falk, eds. The Landscape Ecology of Fire [book review

    Treesearch

    Eric J. Gustafson

    2012-01-01

    In the Foreword of this volume is the statement that "landscape ecology is the 'glue' that holds ecosystem theory together and nowhere is that more evident than in the study of wildland fire ecology." The Landscape Ecology of Fire summarizes how landscape ecology has contributed to, and been formed by, the study...

  9. Ecological effects of the Wickersham Dome fire near Fairbanks, Alaska.

    Treesearch

    L.A. Viereck; C.T. Dyrness

    1979-01-01

    The Wickersham Dome fire occurred in late June 1971 and burned over 6 300 hectares of predominantly black spruce forest land. Shortly after the fire was controlled, studies of the effects of the fire on various components of the biotic community were undertaken. Results reported here are mainly for the first 3 years after the fire.

  10. Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE

    SciTech Connect

    Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

    1999-11-13

    Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

  11. The Use of Silviculture and Prescribed Fire to Manage Stand Structure and Fuel Profiles in a Multi-aged Lodgepole Pine Forest

    Treesearch

    Colin C. Hardy; Helen Y. Smith; Ward McCaughey

    2006-01-01

    This paper presents several components of a multi-disciplinary project designed to evaluate the ecological and biological effects of two innovative silvicultural treatments coupled with prescribed fire in an attempt to both manage fuel profiles and create two-aged stand structures in lodgepole pine. Two shelterwood silvicultural treatments were designed to replicate as...

  12. Using the Cropland Data Layer to Develop Fire Fuels Maps for Fire Emissions Modeling in the Conterminous US

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; French, N. H.; Hamermesh, N.; Billmire, M.

    2011-12-01

    Spatial quantification of smoke emissions from biomass fires, including wildfire, prescribed fire, or cropland burning, requires information on the material burning. The type of biomass, also referred to as fuel, and the density of the biomass, known as fuel loading, are two factors considered when calculating the amount of biomass consumed and emissions released during a burn. For non-agricultural systems, fuel characteristics that influence fire conditions and emissions have been mapped across the US using the Fuel Characterization and Classification System (FCCS) developed at the US Forest Service's Pacific Northwest Research Station. FCCS information on fuel type and loading has been used in fire consumption and emissions models for several applications. We present new data on fuels for agricultural lands, including rangelands and croplands, not previously quantified within FCCS. These fuel descriptions are being integrated into the FCCS and mapped for the Conterminous US. We present a new set of maps of FCCS fuels for the Conterminous US that integrates croplands and other agricultural lands into the existing FCCS map. Cropland mapping is taken from the annual U.S. Department of Agriculture National Agricultural Statistics Service Cropland Data Layer. The annually updated FCCS map can be used to make spatially comprehensive estimates of fire emissions across the country for emissions inventories, pollution mapping, and carbon cycling studies.

  13. Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA

    Treesearch

    Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile

    2011-01-01

    Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...

  14. Fire hazard after prescribed burning in a gorse shrubland: implications for fuel management.

    PubMed

    Marino, Eva; Guijarro, Mercedes; Hernando, Carmen; Madrigal, Javier; Díez, Carmen

    2011-03-01

    Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas.

  15. Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system

    Treesearch

    Richard C. Rothermel; Ralph A. Wilson; Glen A. Morris; Stephen S. Sackett

    1986-01-01

    Describes a model for predicting moisture content of fine fuels for use with the BEHAVE fire behavior and fuel modeling system. The model is intended to meet the need for more accurate predictions of fine fuel moisture, particularly in northern conifer stands and on days following rain. The model is based on the Canadian Fine Fuel Moisture Code (FFMC), modified to...

  16. Sustainable Forest Management Support Based on the Spatial Distribution of Fuels for Fire Management

    Treesearch

    José Germán Flores Garnica; Juan de Dios Benavides Solorio; David Arturo Moreno Gonzalez

    2006-01-01

    Fire behavior simulation is based mainly on the fuel model-concept. However, there are great difficulties to develop the corresponding maps, therefore it is suggested the generation of four fuel maps (1-hour, 10-hours, 100-hours and alive). These maps will allow a better definition of the spatial variation of forest fuels, even within a zone classified as a given fuel...

  17. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 05: fuel treatment principles for complex landscapes

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.

  18. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological

  19. Importance of fuel treatment for limiting moderate-to-high intensity fire: Findings from comparative fire modeling

    Treesearch

    Geoffrey J. Cary; Ian D. Davies; Ross A. Bradstock; Robert E. Keane; Mike D. Flannigan

    2017-01-01

    Context: Wildland fire intensity influences natural communities, soil properties, erosion, and sequestered carbon. Measuring effectiveness of fuel treatment for reducing area of higher intensity unplanned fire is argued to be more meaningful than determining effect on total unplanned area burned. Objectives...

  20. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire

    Treesearch

    Mark A. Finney; Roberta Bartlette; Larry Bradshaw; Kelly Close; Brandon M. Collins; Paul Gleason; Wei Min Hao; Paul Langowski; John McGinely; Charles W. McHugh; Erik Martinson; Phillip N. Omi; Wayne Shepperd; Karl Zeller

    2003-01-01

    The Hayman Fire started on June 8, 2002, about 1.5 miles southwest of Tappan Mountain on the south side of County Highway 77, in Park County, Colorado (fig. 1). It was first reported at about 1 acre in size at approximately 1655 hours (appendix C). An aggressive initial attack response consisted of air tankers, helicopters, engines, and ground crews, but they were...

  1. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  2. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  3. Mediterranean maquis fuel model development and mapping to support fire modeling

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Arca, B.; Pellizzaro, G.; Salis, M.; Ventura, A.; Spano, D.; Duce, P.

    2009-04-01

    Fuel load data and fuel model maps represent a critical issue for fire spread and behaviour modeling. The availability of accurate input data at different spatial and temporal scales can allow detailed analysis and predictions of fire hazard and fire effects across a landscape. Fuel model data are used in spatially explicit fire growth models to attain fire behaviour information for fuel management in prescribed fires, fire management applications, firefighters training, smoke emissions, etc. However, fuel type characteristics are difficult to be parameterized due to their complexity and variability: live and dead materials with different size contribute in different ways to the fire spread and behaviour. In the last decades, a strong help was provided by the use of remote sensing imagery at high spatial and spectral resolution. Such techniques are able to capture fine scale fuel distributions for accurate fire growth projections. Several attempts carried out in Europe were devoted to fuel classification and map characterization. In Italy, fuel load estimation and fuel model definition are still critical issues to be addressed due to the lack of detailed information. In this perspective, the aim of the present work was to propose an integrated approach based on field data collection, fuel model development and fuel model mapping to provide fuel models for the Mediterranean maquis associations. Field data needed for the development of fuel models were collected using destructive and non destructive measurements in experimental plots located in Northern Sardinia (Italy). Statistical tests were used to identify the main fuel types that were classified into four custom fuel models. Subsequently, a supervised classification by the Maximum Likelihood algorithm was applied on IKONOS images to identify and map the different types of maquis vegetation. The correspondent fuel model was then associated to each vegetation type to obtain the fuel model map. The results show the

  4. Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes

    Treesearch

    B.M. Collins; S.L. Stephens; J.J. Moghaddas; J. Battles

    2010-01-01

    Placing fuel reduction treatments across entire landscapes such that impacts associated with high-intensity fire are lessened is a difficult goal to achieve, largely because of the immense area needing treatment. As such, fire scientists and managers have conceptually developed and are refining methodologies for strategic placement of fuel treatments that...

  5. Photo Series for Quantifying Fuels and Assessing Fire Risk in Giant Sequoia Groves

    Treesearch

    David R. Weise; Aaron Gelobter; Sally M. Haase; Stephen S. Sackett

    1997-01-01

    Fuels and stand inventory data are presented for giant sequoia by using 18 different photos located in giant sequoia/mixed conifer stands in the Sierra Nevada of California. Total fuel loading ranges from 7 to 72 tons/acre. The stands have been subjected to a variety of disturbances including timber harvesting, wildfire, prescribed fire, and recreational use. Fire...

  6. Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains

    Treesearch

    James K. Brown; Michael A. Marsden; Kevin C. Ryan; Elizabeth D. Reinhardt

    1985-01-01

    Relationships for predicting duff reduction, mineral soil exposure, and consumption of downed woody fuel were determined to assist in planning prescribed fires. Independent variables included lower and entire duff moisture contents, loadings of downed woody fuels, duff depth, National Fire-Danger Rating System 1,000-hour moisture content, and Canadian Duff Moisture...

  7. Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States

    Treesearch

    Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar

    2012-01-01

    Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...

  8. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.

    PubMed

    Price, Owen F; Gordon, Christopher E

    2016-10-01

    Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire.

  9. Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels

    Treesearch

    Christopher R. Keyes; J. Morgan Varner

    2007-01-01

    There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...

  10. An analytical framework for quantifying wildland fire risk and fuel treatment benefit

    Treesearch

    Joe H. Scott

    2006-01-01

    Federal wildland fire management programs have readily embraced the practice of fuel treatment. Wildland fire risk is quantified as expected annual loss ($ yr –1 or $ yr –1 ac –1). Fire risk at a point on the landscape is a function of the probability of burning at that point, the relative frequency...

  11. Personal and organizational influences to the use of fire and fuels research by federal agency managers

    Treesearch

    Vita Wright

    2008-01-01

    The Joint Fire Science Program (JFSP) and the National Fire Plan (NFP) spend considerable amounts of money on fire and fuels research. From Fiscal Year 1998-2006, the JFSP spent approximately $145 million, and from Fiscal Year 2001-2005, the NFP spent approximately $104 million on research. For the costs of research to be fully realized, it is critical that science...

  12. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques

    Treesearch

    Patrick Brose; Dale Wade

    2002-01-01

    A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...

  13. Weather, fuels, and topography impede wildland fire spread in western US landscapes

    Treesearch

    Lisa Holsinger; Sean A. Parks; Carol Miller

    2016-01-01

    As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet...

  14. How fuel treatment types, locations, and amounts impact landscape-scale fire behavior and carbon dynamics

    Treesearch

    Christopher A. Dicus; Kevin J. Osborne

    2015-01-01

    When managing for fire across a large landscape, the types of fuel treatments, the locations of treatments, and the percentage of the landscape being treated should all interact to impact not only potential fire size, but also carbon dynamics across that landscape. To investigate these interactions, we utilized a forest growth model (FVS-FFE) and fire simulation...

  15. Ecological effects of the Hayman Fire - Part 4: Forest succession

    Treesearch

    William H. Romme; Claudia M. Regan; Merrill R. Kaufmann; Laurie Huckaby; Thomas T. Veblen

    2003-01-01

    The ecosystems within the area that burned in the Hayman Fire have a long history of fire (see part 1 of this chapter). It follows, therefore, that all of the native species and populations in this area probably have one or more mechanisms for enduring fire or becoming reestablished after fire and that no native species is likely to become extinct as a result of the...

  16. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Meyer, C. P.; Roxburgh, S. H.; Polglase, P. J.

    2015-05-01

    Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.

  17. Assessing ecological departure from reference conditions with the Fire Regime Condition Class (FRCC) Mapping Tool

    Treesearch

    Stephen W. Barrett; Thomas DeMeo; Jeffrey L. Jones; J.D. Zeiler; Lee C. Hutter

    2006-01-01

    Knowledge of ecological departure from a range of reference conditions provides a critical context for managing sustainable ecosystems. Fire Regime Condition Class (FRCC) is a qualitative measure characterizing possible departure from historical fire regimes. The FRCC Mapping Tool was developed as an ArcMap extension utilizing the protocol identified by the Interagency...

  18. Ecological restoration of an old-growth longleaf pine stand utilizing prescribed fire

    Treesearch

    J. Morgan Varner; John S. Kush; Ralph S. Meldahl

    2000-01-01

    Ecological restoration using prescribed fire has been underway for 3 years in an uncut, old-growth longleaf pine (Pinus palustris) stand located in south Alabama. The longleaf pine ecosystem requires frequent (once every 1-10 years) surface fire to prevent succesion to later several stages. Before this study began, this stand had not burned in >...

  19. Fire and fuels research at Fort Valley and Long Valley Experimental Forests (P-53)

    Treesearch

    Stephen S. Sackett; Sally M. Haase

    2008-01-01

    Fire research began on the Fort Valley and Long Valley Experimental Forests in the mid 1970s. The U.S. Forest Service and other agencies in the Southwest (BIA and state) had been utilizing prescribed fire to reduce piled hazardous fuels from harvesting. Most managers had not viewed the use of prescribed fire to reduce natural fuels on a broad scale positively. The use...

  20. Extinguishing in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1981-01-01

    The fire extinguishant storage temperature requirements were examined for several commercially available dry chemicals. Particular emphasis was placed on the development of dry powder extinguishant that, when discharged into a jet engine fuel leak fire, would stick to the hot surfaces. Moreover, after putting out the initial fire, these extinguishants would act as antireignition catalysts, even when the fuel continued to leak onto the heated surface.

  1. Fire and fuels research at Fort Valley and Long Valley Experimental Forests

    Treesearch

    Stephen S. Sackett

    2008-01-01

    Fire research began on the Fort Valley and Long Valley Experimental Forests in the mid 1970s. The U.S. Forest Service and other agencies in the Southwest (BIA and state) had been utilizing prescribed fire to reduce piled hazardous fuels from harvesting. Most managers had not viewed the use of prescribed fire to reduce natural fuels on a broad scale positively. The use...

  2. Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States.

    SciTech Connect

    Andreu, Anne G.; Shea, Dan; Parresol, Bernard, R.; Ottmar, Roger, D.

    2012-01-01

    Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed potential surface fire behavior with the Fuel Characteristic Classification System (FCCS), a tool which uses inventoried fuelbed inputs to predict fire behavior. Using inventory data from 629 plots established in the upper Atlantic Coastal Plain, South Carolina, we constructed FCCS fuelbeds representing median fuel characteristics by major forest type and age class. With a dry fuel moisture scenario and 6.4 km h{sub 1} midflame wind speed, the FCCS predicted moderate to high potential fire hazard for the majority of the fuelbeds under study. To explore fire hazard under potential future fuel conditions, we developed fuelbeds representing the range of quantitative inventorydata for fuelbed components that drive surface fire behavior algorithms and adjusted shrub species composition to represent 30% and 60% relative cover of highly flammable shrub species. Results indicate that the primary drivers of surface fire behavior vary by forest type, age and surface fire behavior rating. Litter tends to be a primary or secondary driver in most forest types. In comparison to other surface fire contributors, reducing shrub loading results in reduced flame lengths most consistently across forest types. FCCS fuelbeds and the results from this project can be used for fire hazard mitigation planning throughout the southern Atlantic Coastal Plain where similar forest types occur. The approach of building simulated fuelbeds across the range of available surface fuel data produces sets of incrementally different fuel characteristics that can be applied to any dynamic forest types in which surface fuel conditions change rapidly.

  3. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2001-02-05

    The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies--Task 1; (2) Perform re-burn experiments--Task 2; (3) Fabricate fixed bed gasifier/combustor--Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels--Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.--Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report--Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code.

  4. An assessment of the crash fire hazard of liquid hydrogen fueled aircraft

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The crash fire hazards of liquid hydrogen fueled aircraft relative to those of mission equivalent aircraft fueled either with conventional fuel or with liquefied methane were evaluated. The aircraft evaluated were based on Lockheed Corporation design for 400 passenger, Mach 0.85, 5500 n. mile aircraft. Four crash scenarios were considered ranging from a minor incident causing some loss of fuel system integrity to a catastrophic crash. Major tasks included a review of hazardous properties of the alternate fuels and of historic crash fire data; a comparative hazard evluation for each of the three fuels under four crash scenarios a comprehensive review and analysis and an identification of areas further development work. The conclusion was that the crash fire hazards are not significantly different when compared in general for the three fuels, although some fuels showed minor advantages in one respect or another.

  5. Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle

    Treesearch

    Michael J. Jenkins

    2011-01-01

    Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...

  6. Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles.

    PubMed

    Youngblood, Andrew; Grace, James B; McIver, James D

    2009-03-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin + burn), and control. Burn and thin + burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which

  7. Investigation of Fuel Oil/Lube Oil Spray Fires On Board Vessels. Volume 3.

    DTIC Science & Technology

    1998-11-01

    U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-01-99, III Investigation of Fuel ...4. Title and Subtitle Investigation of Fuel Oil/Lube Oil Spray Fires On Board Vessels - Volume Appendix C: LMIS Events and Associated Event Trees...measures (technological advancements as well as safety management systems) for preventing or mitigating the impacts of fuel oil or lube oil spray fires on

  8. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    USGS Publications Warehouse

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  9. Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.

    PubMed

    Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy

    2017-03-01

    Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities.

  10. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Meyer, C. P.; Roxburgh, S. H.; Polglase, P. J.

    2014-09-01

    Experimental fires were conducted in a combustion wind tunnel facility to explore the role of fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy (off-axis ICOS). A dilution system was employed with the off-axis ICOS technique to prevent spectral broadening of the CO emissions peak and to enable simultaneous quantification of N2O and CO. The forward rate of spread was 20 times faster and the Byram fireline intensity was 20 times higher for heading fires compared to flanking and backing fires. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions factors decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting. The primary implication of this study is that prescribed fire practices might be modified to mitigate greenhouse gas emissions from forested landscapes by the preferential application of flanking and backing fires over heading fires. Future research could involve wind tunnel testing with

  11. An experimental and modeling study of fires in ventilated ducts; Part 1: Liquid fuels

    SciTech Connect

    Comitis, S.C.; Glasser, D.; Young, B.D. . Dept. of Chemical Engineering)

    1994-03-01

    A theoretical model for fire propagation through a fuel-lined duct with a radially well-mixed axial flow is presented. The gas-phase is modeled as a steady-state process whereas the condensed-phase (fuel source) is taken to be the cause of transient fire propagation along the duct. Experiments were performed in a small-scale duct where fire propagation and gas temperature histories were acquired. Experimental results confirm hypotheses of pseudo-steady-state gas-phase processes. Theory and experiment display transient fire propagation for typical duct fire scenarios where initial fuel mass loading is constant with respect to duct length. The phenomena observed, as predicted by theory, is an initial jump'' of the fully developed combustion process followed by convergence to a steady-state constant fire propagation speed. The theory is in all important aspects able to quantitatively model the experimental results.

  12. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 4: Relation of roads to burn severity

    Treesearch

    Charles W. McHugh; Mark A. Finney

    2003-01-01

    Effects of roads on fire behavior intensity and severity can be studied directly or indirectly. A direct study of road effects would include uses by fire suppression, burnout operations, and delay of fire progress at the roadside. Interpretations after the fire burns are easily confounded by the unknown nature of suppression activities and fire arrival time, and fire...

  13. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests.

    PubMed

    Zylstra, Philip; Bradstock, Ross A; Bedward, Michael; Penman, Trent D; Doherty, Michael D; Weber, Rodney O; Gill, A Malcolm; Cary, Geoffrey J

    2016-01-01

    The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.

  14. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests

    PubMed Central

    Bedward, Michael; Penman, Trent D.; Doherty, Michael D.; Weber, Rodney O.; Gill, A. Malcolm; Cary, Geoffrey J.

    2016-01-01

    The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this. PMID:27529789

  15. Fire managers field guide: hazardous fuels management in subtropical pine flatwoods and tropical pine rocklands

    Treesearch

    Joseph J. O’Brien; Kathryn A. Mordecai; Leslie Wolcott

    2010-01-01

    This publication is a field guide to tactics and techniques for dealing with hazardous fuels in subtropical pine flatwoods and tropical pine rocklands. The guide covers prescribed fire, mechanical, chemical, and other means for reducing and managing wildland fuels in these systems. Also, a list of exotic plants that contribute to hazardous fuel problems is included...

  16. Testing woody fuel consumption models for application in Australian southern eucalypt forest fires

    Treesearch

    J.J. Hollis; S. Matthews; Roger Ottmar; S.J. Prichard; S. Slijepcevic; N.D. Burrows; B. Ward; K.G. Tolhurst; W.R. Anderson; J S. Gould

    2010-01-01

    Five models for the consumption of coarse woody debris or woody fuels with a diameter larger than 0.6 cm were assessed for application in Australian southern eucalypt forest fires including: CONSUME models for (1) activity fuels, (2) natural western woody and (3) natural southern woody fuels, (4) the BURNUP model and (5) the recommendation by the Australian National...

  17. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  18. Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed

    Treesearch

    X. Zhou; S. Mahalingam; D. Weise

    2005-01-01

    Prescribed burning in chaparral, currently used to manage wildland fuels and reduce wildfire hazard, is often conducted under marginal burning conditions. The relative importance of the fuel and environmental variables that determine fire spread success in chaparral fuels is not quantitatively understood. Based on extensive experimental study, a two-dimensional...

  19. Small-scale fuel variation alters fire intensity and shrub abundance in a pine savanna.

    PubMed

    Thaxton, Jarrod M; Platt, William J

    2006-05-01

    Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.

  20. Steel construction solid fuel firing boiler for civil heating applications

    SciTech Connect

    Jahier, G.

    1985-05-14

    A novel steel construction solid-fuel firing boiler for civil heating applications comprises a space portion defined by side, bottom, cover, front and rear walls forming therein an interspace for water to be heated, a firestone block burner in the space portion separating a fuel containing upper zone and a lower zone where a flame extends and flue gas is conveyed, the burner defining at a top face thereof a housing with a bottom hole for communicating the upper and lower zones and accommodating therein a refractory material body having a structure for holding overlying embers. The housing bottom and the refractory material body define a channel opening at the hole and communicating with an air distribution chamber in the front wall for conveying secondary combustion air. The boiler further comprises an electric fan with an automatic control circuit and primary and secondary combustion air outlet in communication with the upper zone and the distribution chamber, a smoke box, a loading door on the front wall, an inspection door and a communication port between the upper zone and the smoke box closed by a manually operated gate.

  1. Using a prescribed fire to test custom and standard fuel models for fire behaviour prediction in a non-native, grass-invaded tropical dry shrubland

    Treesearch

    Andrew D. Pierce; Sierra McDaniel; Mark Wasser; Alison Ainsworth; Creighton M. Litton; Christian P. Giardina; Susan Cordell; Ralf Ohlemuller

    2014-01-01

    Questions: Do fuel models developed for North American fuel types accurately represent fuel beds found in grass-invaded tropical shrublands? Do standard or custom fuel models for firebehavior models with in situ or RAWS measured fuel moistures affect the accuracy of predicted fire behavior in grass-invaded tropical shrublands? Location: Hawai’i Volcanoes National...

  2. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  3. Mastication and prescribed fire impacts on fuels in a 25-year old ponderosa pine plantation, southern Sierra Nevada

    Treesearch

    Alicia L. Reiner; Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott N. Dailey

    2009-01-01

    Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and...

  4. Fire ecology and bird populations in eastern deciduous forests

    Treesearch

    Vanessa L. Artman; Todd F. Hutchinson; Jeffrey D. Brawn; Jeffrey D. Brawn

    2005-01-01

    Eastern deciduous forests are located across the central portion of eastern North America and provide habitat for a wide diversity of bird species. The occurrence of fi re in the region has been associated with the presence of humans for over 10,000 yr. While pre-European fire regimes are poorly understood, fire is widely thought to have promoted and maintained large...

  5. Cargo Fire Hazards and Hazard Control for the Supplement Fuel Supply Assembly (SFSA).

    DTIC Science & Technology

    1980-08-01

    spilled as a result of the fuel hose failure. Fire water from the supply ship can be used to disperse the spilled fuel so that a boat can be dispatched...aided by agitating the spill. This agitation can be accomplished with the use of fire water monitor nozzles on a utili- ty/fire boat to be discussed...in the next section. Fire water nozzles available for the craft used to fill the Dracones can also be used for spill control purposes should a spill

  6. Fire in Wildland ecosystems—opening comments

    Treesearch

    Tom Nichols

    1995-01-01

    More than 25 years ago, the pioneering work in fire ecology by Harold Biswell and others encouraged the incorporation of prescribed fire into fire management policies. However, the use in California of prescribed fire in fuels treatment, wilderness management, or ecosystem maintenance programs has not been particularly extensive. Only a fraction of wilderness areas,...

  7. Dry forests of the Northeastern Cascades Fire and Fire Surrogate project site, Mission Creek, Okanogan-Wenatchee National Forest

    Treesearch

    James K. Agee; John F. (comps.) Lehmkuhl

    2009-01-01

    The Fire and Fire Surrogate (FFS) project is a large long-term metastudy established to assess the effectiveness and ecological impacts of burning and fire "surrogates" such as cuttings and mechanical fuel treatments that are used instead of fire, or in combination with fire, to restore dry forests. One of the 13 national FFS sites is the Northeastern...

  8. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel.

  9. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  10. Ecological effects of the Hayman Fire - Part 6: Fire-induced changes in aquatic ecosystems

    Treesearch

    Jeffrey L. Kershner; Lee MacDonald; Lynn M. Decker; David Winters; Zamir Libohova

    2003-01-01

    The watersheds within the Hayman Fire area represent a mosaic of ephemeral, intermittent, and perennial streams of various sizes. Given the intensity of the fire, the effects on these streams will often vary from mild to severe. For example, the vegetation along streams in the upper Wigwam Creek drainage was almost completely removed by the intense fire that moved...

  11. Managing fire and fuels in a warmer climate

    Treesearch

    David L. Peterson

    2010-01-01

    This historical perspective on fire provides a window into the future of fire in the Pacific Northwest. Although fire will always be more common in the interior portion of the region, a warmer climate could bring more fire to the westside of the Cascade Range where summers are typically dry and will probably become drier. If future climate resembles the climate now...

  12. A suite of fire, fuels, and smoke management tools

    Treesearch

    Roger D. Ottmar; Clint S. Wright; Susan J. Prichard

    2009-01-01

    The Fire and Environmental Research Applications Team (FERA) of the Forest Service, Pacific Northwest Research Station, is an interdisciplinary team of scientists that conduct primary research on wildland fire and provide decision support for fire hazard and smoke management. The team is committed to providing easy-to-use tools that help managers in their fire and...

  13. Crown fuel spatial variability and predictability of fire spread

    Treesearch

    Russell A. Parsons; Jeremy Sauer; Rodman R. Linn

    2010-01-01

    Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...

  14. Fires and fuels: Vegetation change over time in the Zuni Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Wylie, Luke Anthony

    The Zuni Mountains are a region that has been dramatically changed by human interference. Anthropogenically, fire suppression practices have allowed a buildup of fuels and caused a change in the fire-adapted ponderosa pine ecosystem such that the new ecosystem now incorporates many fire-intolerant species. As a result, the low-severity fires that the ecosystem once depended on to regenerate the forest are much reduced, and these low-severity fires are now replaced by crown-level infernos that threaten the forest and nearby towns. In order to combat these effects, land managers are implementing fuel reduction practices and are striving to better understand the local ecosystem. In this study, a predictive fire spread model (FARSITE) was implemented to predict spatio-temporal distribution of fire in the Zuni Mountains based on change in vegetation types that are most prone to fire. Using Landsat imagery and historical fire spread data from 2001 to 2014, the following research questions were investigated: (1) What variables are responsible for fire spread in the Zuni Mountains, New Mexico? (2) Which areas are prone to destructive and canopy level fires? and (3) How have the fuel model types that are most conducive to fire spread changed in the past twenty years? The utilization of spatial modeling and remote sensing to understand the interaction of meteorological variables and vegetation in predicting fire spread in this region is a novel approach. This study showed that (i) fires are more likely to occur in the valleys and high elevation grassland areas of the Zuni Mountains, (ii) certain vegetation types including grass and shrub lands in the area present a greater danger to canopy fire than others, and (iii) that these vegetation types have changed in the past sixteen years.

  15. Fuels planning: science synthesis and integration; environmental consequences fact sheet 09: Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS)

    Treesearch

    Elizabeth Reinhardt

    2005-01-01

    FFE-FVS is a model linking stand development, fuel dynamics, fire behavior and fire effects. It allows comparison of mid- to long-term effects of management alternatives including harvest, mechanical fuel treatment, prescribed fire, salvage, and no action. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user...

  16. Mapping Fuels on the Okanogan and Wenatchee National Forests

    Treesearch

    Crystal L. Raymond; Lara-Karena B. Kellogg; Donald McKenzie

    2006-01-01

    Resource managers need spatially explicit fuels data to manage fire hazard and evaluate the ecological effects of wildland fires and fuel treatments. For this study, fuels were mapped on the Okanogan and Wenatchee National Forests (OWNF) using a rule-based method and the Fuels Characteristic Classification System (FCCS). The FCCS classifies fuels based on their...

  17. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  18. FIRE HAZARDS ANALYSIS FOR THE FUEL SUPPLY SYSTEM - ESF PACKAGE 1E

    SciTech Connect

    N.M. Ruonavaara

    1995-04-12

    The purpose of the fire hazards analysis is to comprehensively assess the risk from fire within individual fire areas in accordance with US. Department of Energy (DOE) Order 5480.7h (Reference 4.4.7.4). This document will assess the fire hazard risk within the Exploratory Studies Facility (ESF) fuel supply system, Package 1E, and evaluate whether the following objectives are met: (1) Ensure that property damage from fire and related perils do not exceed an acceptable level. (2) Provide input to the facility Safety Analysis Report (SAR).

  19. Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.

    2012-04-01

    Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  20. Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.

  1. Improving solid oxide fuel cell performance by a single-step co-firing process

    NASA Astrophysics Data System (ADS)

    Dai, Hailu; Chen, Han; He, Shoucheng; Cai, Guifan; Guo, Lucun

    2015-07-01

    Solid oxide fuel cells (SOFCs) with Sm0.2Ce0.8O2-δ (SDC) as the electrolyte are successfully prepared by a single-step co-firing process with the sintering temperature as low as 1100 °C. Different from the conventional SOFC preparation procedure that involves multistep firing processes, the single-step co-firing preparation procedure simplifies the fuel cell preparation procedure and additionally improves the fuel cell performance. The cell prepared by the single-step process exhibits the maximum power density of 289 mW cm-2 at 700 °C, while the cell prepared by the conventional method is only 211 mW cm-2, with an increase of 37% been achieved. The impedance analysis reveals that the single co-firing procedure not only improves the contact between the electrolyte and electrodes, but also lowers the cell polarization resistance, thus leading to a better fuel cell performance.

  2. Uncertainties in fuel loading and fire consumption calculations and the Smoke and Emissions Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Larkin, N.; Solomon, R.; Strand, T.; Raffuse, S. M.; Craig, K.

    2009-12-01

    Fire and fuel managers often need to know how much fuel will be consumed by a fire, and how much smoke the fire will produce. Many factors influence the end result, including fuel type, loading, and moisture, quantity of live and dead fuels, terrain, and meteorology. A variety of fuel models and consumption models have been developed to help provide estimated quantities of fuel consumption and subsequent smoke production. We present results from this work, done as part of the Smoke and Emissions Model Intercomparison Project that show that the specific choice of model and model coupling can have a large effect on the final answer. We have used four different consumption models (CONSUME3, EPM, FEPS, and FOFEM) with three different fuel loading maps (NFDRS, Hardy, FCCS) to bracket the simulated results. A new web-based database viewer now allows both scientists and land and fire managers to directly compare various results by selecting a fuel loading map and consumption model. For model users interested in information for a specific fire these comparisons can be useful in understanding the uncertainties resulting from different model choices.

  3. Developing Ecological Criteria for Prescribed Fire in South Florida Pine Rockland Ecosystems

    USGS Publications Warehouse

    Snyder, James R.; Ross, Michael S.; Koptur, Suzanne; Sah, Jay P.

    2005-01-01

    The pine rocklands of South Florida, characterized by a rich herbaceous flora with many narrowly endemic taxa beneath an overstory of south Florida slash pine (Pinus elliottii var. densa), are found in three areas: the Miami Rock Ridge of southeastern peninsular Florida, the Lower Florida Keys, and slightly elevated portions of the southern Big Cypress National Preserve. Fire is an important element in these ecosystems, since in its absence the pine canopy is likely to be replaced by dense hardwoods, resulting in loss of the characteristic pineland herb flora. Prescribed fire has been used in Florida Keys pine forests since the creation of the National Key Deer Refuge (NKDR), with the primary aim of reducing fuels. Because fire can also be an effective tool in shaping ecological communities, we conducted a 4-year research study which explored a range of fire management options in NKDR. The intent of the study was to provide the Fish and Wildlife Service and other land managers with information regarding when and where to burn in order to perpetuate these unique forests. In 1998 we initiated a burning experiment in a randomized complete block design. Three treatments were to be carried out in a single well-defined block in each of two characteristic understory types during each year from 1998 through 2000. One understory type was characterized by a relatively sparse shrub layer and a well-developed herb layer ('open'), and the second had a dense shrub layer and poorly developed herb layer ('shrubby'). The three burn treatments were: (a) summer burn, (b) winter burn, and (c) no burn, or control. Three 1- ha plots were established in each block, and randomly assigned to the three treatments. Though the first year experimental burns were carried out without incident, constraints posed by external factors, including nationwide and statewide prohibitions on prescribed burning due to wildfires in other regions, delayed the experimental burns and precluded collection of

  4. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2015-09-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the Composite Burn Index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a Generalised Linear Mixed Model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire fuel structure. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  5. The Bee Fire: a case study validation of BEHAVE in chaparral fuels

    Treesearch

    David Weise; A. Gelobter; J. Regelbrugge; J. Millar

    2002-01-01

    The Bee Fire burned 9,620 acres of grass and chaparral in the San Bernardino National Forest in southern California from June 29 to July 2, 1996. Rate of spread data were determined from successive fire perimeters and compared with rate of spread predicted by the Rothermel rate of spread model using fuel model 4 (heavy brush) and a custom fuel model for chamise...

  6. Consumption and reaccumulation of forest fuels in oak shelterwood stands managed with prescribed fire

    Treesearch

    Patrick H. Brose

    2016-01-01

    In the shelterwood-burn technique, a moderate- to high-intensity growing-season prescribed fire is essential to achieve desired oak regeneration goals. These levels of fire intensity are dependent on the increased fuel loadings created by the preceding first removal cut. However, the loadings of forest fuels and their fluctuation during implementation of the...

  7. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    PubMed

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  8. Practical tools for assessing potential crown fire behavior and canopy fuel characteristics

    Treesearch

    Martin E. Alexander; Miguel G. Cruz

    2015-01-01

    This presentation recapitulates the main points made at a technology and information transfer workshop held in advance of the conference that provided overviews of two software applications, developed by the authors, for use in assessing crown fire behavior and canopy fuel characteristics. These are the Crown Fire Initiation and Spread (CFIS) software system and the...

  9. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Treesearch

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  10. Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada

    Treesearch

    J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens

    2010-01-01

    Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...

  11. An application of LANDSAT digital technology to forest fire fuel type mapping

    NASA Technical Reports Server (NTRS)

    Kourtz, P. H.

    1977-01-01

    The role of digital classifications suitable as fuel maps was examined. A Taylor enhancement was produced for an 8 million hectare fire control region showing water, muskeg, coniferous, deciduous and mixed stands, clearcut logging, burned areas, regeneration areas, nonforested areas and large forest roads. Use of the map by fire control personnel demonstrated its usefulness for initial attack decision making.

  12. Relationships between models used to analyze fire and fuel management alternatives

    Treesearch

    Nicholas L. Crookston; Werner A. Kurz; Sarah J. Beukema; Elizabeth D. Reinhardt

    2000-01-01

    Needs for analytical tools, the roles existing tools play, the processes they represent, and how they might interact are elements of key findings generated during a workshop held in Seattle February 17-18, 1999. The workshop was attended by 26 Joint Fire Science Program (JFSP) stakeholders and researchers. A focus of the workshop was the Fire and Fuels Extension to the...

  13. The evaluation of meta-analysis techniques for quantifying prescribed fire effects on fuel loadings.

    Treesearch

    Karen E. Kopper; Donald McKenzie; David L. Peterson

    2009-01-01

    Models and effect-size metrics for meta-analysis were compared in four separate meta-analyses quantifying surface fuels after prescribed fires in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests of the Western United States. An aggregated data set was compiled from eight published reports that contained data from 65 fire treatment units....

  14. Modeling fuel treatment impacts on fire suppression cost savings: A review

    Treesearch

    Matthew P. Thompson; Nathaniel M. Anderson

    2015-01-01

    High up-front costs and uncertain return on investment make it difficult for land managers to economically justify large-scale fuel treatments, which remove trees and other vegetation to improve conditions for fire control, reduce the likelihood of ignition, or reduce potential damage from wildland fire if it occurs. In the short-term, revenue from harvested...

  15. Using fire to increase the scale, benefits and future maintenance of fuels treatments

    Treesearch

    Malcolm P. North; Brandon M. Collins; Scott L Stephens

    2012-01-01

    The Forest Service is implementing a new planning rule and starting to revise forest plans for many of the 155 National Forests. In forests that historically had frequent fire regimes, the scale of current fuels reduction treatments has often been too limited to affect fire severity and the Forest Service has predominantly focused on suppression. In addition to...

  16. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems

    Treesearch

    Robert E. Keane

    2013-01-01

    Wildland fuelbeds are exceptionally complex, consisting of diverse particles of many sizes, types and shapes with abundances and properties that are highly variable in time and space. This complexity makes it difficult to accurately describe, classify, sample and map fuels for wildland fire research and management. As a result, many fire behaviour and effects software...

  17. Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire-Suppressed Landscapes

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Viers, Joshua H.; Quinn, James F.; North, Malcolm

    2010-11-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher ( Martes pennanti) activity points (from radio telemetry) and California spotted owl ( Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief.

  18. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes.

    PubMed

    Underwood, Emma C; Viers, Joshua H; Quinn, James F; North, Malcolm

    2010-11-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief.

  19. Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire-Suppressed Landscapes

    PubMed Central

    Viers, Joshua H.; Quinn, James F.; North, Malcolm

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief. PMID:20872142

  20. 76 FR 80832 - Fire Pots and Gel Fuel; Advance Notice of Proposed Rulemaking; Request for Comments and Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... COMMISSION 16 CFR Part Chapter II Fire Pots and Gel Fuel; Advance Notice of Proposed Rulemaking; Request for....regulations.gov . FOR FURTHER INFORMATION CONTACT: Rohit Khanna, Fire Program Area Team Leader, Office of... firepots and gel fuel are used together, they can present serious burn and fire hazards. Firepots and...

  1. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Treesearch

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  2. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  3. Fire characterization and object thermal response for a large flat plate adjacent to a large JP-4 fuel fire

    SciTech Connect

    Gritzo, L.A.; Moya, J.L.; Murray, D.

    1997-01-01

    A series of three 18.9 m diameter JP-4 pool fire experiments with a large (2.1 m X 4.6 m), flat plate calorimeter adjacent to the fuel pool were recently performed. The objectives of these experiments were to: (1) gain a better understanding of fire phenomenology, (2) provide empirical input parameter estimates for simplified, deterministic Risk Assessment Compatible Fire Models (RACFMs), (3) assist in continuing fire field model code validation and development, and (4) enhance the data base of fire temperature and heat flux to object distributions. Due to different wind conditions during each experiment, data were obtained for conditions where the plate was not engulfed, fully-engulfed and partially engulfed by the continuous flame zone. Results include the heat flux distribution to the plate and flame thermocouple temperatures in the vicinity of the plate and at two cross sections within the lower region of the continuous flame zone. The results emphasize the importance of radiative coupling (i.e. the cooling of the flames by a thermally massive object) and convective coupling (including object-induced turbulence and object/wind/flame interactions) in determining the heat flux from a fire to an object. The formation of a secondary flame zone on an object adjacent to a fire via convective coupling (which increases the heat flux by a factor of two) is shown to be possible when the object is located within a distance equal to the object width from the fire.

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  5. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests.

    PubMed

    Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng

    2009-07-01

    records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.

  6. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada

    NASA Astrophysics Data System (ADS)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.

    2016-12-01

    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  7. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2016-01-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  8. Fuels planning: Managing forest structure to reduce fire hazard

    Treesearch

    David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt

    2003-01-01

    Prior to the 20th century, low intensity fires burned regularly in most arid to semiarid forest ecosystems, with ignitions caused by lightning and humans (e.g., Baisan and Swetnam 1997, Allen et al. 2002, Hessl et al. 2004). Low intensity fires controlled regeneration of fire sensitive (e.g., grand fir [Abies grandis]) species (Arno and Allison-Bunnell 2002), promoted...

  9. An examination of fuel particle heating during fire spread

    Treesearch

    Jack D. Cohen; Mark A. Finney

    2010-01-01

    Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...

  10. Use of multiple opportunity fuels in coal-fired cyclone boilers

    SciTech Connect

    Tillman, D.A.; Hus, P.; Hughes, E.

    1999-07-01

    Northern Indiana Public Service Company (NIPSCO), with support from USDOE-EERE, the USDOE Federal Energy Technology Center, and EPRI, is installing a materials handling system to fire a combination of wood waste and petroleum coke with the base coal in the No.7 boiler of Bailly Generating Station. The No.7 boiler is a 160 MW{sub e} (net) unit fired with four cyclones. It is typically fired with a blend of Illinois coal and Western coal. The gaseous combustion products from this boiler are ducted to a precipitator and then to a Pure Air scrubber for sulfur oxides removal. The Pure Air scrubber converts the SO{sub 2} into artificial gypsum. Typically the unit burns about 70 tons/hr of coal at full load. The Bailly Generating Station program, being implemented by Foster Wheeler Development Corporation, involves blending petroleum coke and wood waste with coal for combination opportunity fuel firing. Multiple fuel firing is intended to capture the advantages of each fuel: high volatility of biofuels and high Btu content of petroleum coke are among these characteristics. The objective of the program, then, is to reduce fuel costs at the station while improving combustion. The program involves constructing a fuel handling and blending system, and then testing the impacts of individual opportunity fuels with coal plus blends of opportunity fuels with coal. This paper reviews the program concept, the combustion modeling, the blending system design, and the results of baseline and laboratory testing to date.

  11. Understanding effects of fire suppression, fuels treatment, and wildfire on bird communities in the Klamath-Siskiyou ecoregion

    Treesearch

    John D. Alexander; C. John Ralph; Bill Hogoboom; Nathaniel E. Seavy; Stewart Janes

    2004-01-01

    Although fire management is increasingly recognized as an important component of conservation in Klamath-Siskiyou ecosystems, empirical evidence on the ecological effects of fire in this region is limited. Here we describe a conceptual model as a framework for understanding the effects of fire and fire management on bird abundance. This model identifies three major...

  12. The dynamics and drivers of fuel and fire in the Portuguese public forest.

    PubMed

    Fernandes, Paulo M; Loureiro, Carlos; Guiomar, Nuno; Pezzatti, Gianni B; Manso, Filipa T; Lopes, Luís

    2014-12-15

    The assumption that increased wildfire incidence in the Mediterranean Basin during the last decades is an outcome of changes in land use warrants an objective analysis. In this study we examine how annual area burned (BA) in the Portuguese public forest varied in relation to environmental and human-influenced drivers during the 1943-2011 period. Fire behaviour models were used to describe fuel hazard considering biomass removal, cover type changes, area burned, post-disturbance fuel accumulation, forest age-classes distribution and fuel connectivity. Biomass removal decreased rapidly beyond the 1940s, which, along with afforestation, increased fuel hazard until the 1980s; a subsequent decline was caused by increased fire activity. Change point analysis indicates upward shifts in BA in 1952 and in 1973, both corresponding to six-fold increases. Fire weather (expressed by the 90th percentile of the Canadian FWI during summer) increased over the study period, accounting for 18 and 36% of log(BA) variation before 1974 and after 1973, respectively. Regression modelling indicates that BA responds positively to fire weather, fuel hazard and number of fires in descending order of importance; pre-summer and 2-year lagged precipitation respectively decrease and increase BA, but the effects are minor and non-significant when both variables are included in the model. Land use conflicts (expressed through more fires) played a role, but it was afforestation and agricultural abandonment that supported the fire regime shifts, explaining weather-drought as the current major driver of BA as well. We conclude that bottom-up factors, i.e. human-induced changes in landscape flammability and ignition density, can enhance or override the influence of weather-drought on the fire regime in Mediterranean humid regions. A more relevant role of fuel control in fire management policies and practices is warranted by our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience

  14. Large hydrocarbon fuel pool fires: physical characteristics and thermal emission variations with height.

    PubMed

    Raj, Phani K

    2007-02-09

    In a recent paper [P.K. Raj, Large LNG fire thermal radiation-modeling issues and hazard criteria revisited, Process Safety Progr., 24 (3) (2005)] it was shown that large, turbulent fires on hydrocarbon liquid pools display several characteristics including, pulsating burning, production of smoke, and reduced thermal radiation, with increasing size. In this paper, a semi-empirical mathematical model is proposed which considers several of these important fire characteristics. Also included in this paper are the experimental results for the variation of the fire radiance from bottom to top of the fire (and their statistical distribution) from the largest land spill LNG pool fire test conducted to date. The purpose of the model described in this paper is to predict the variation of thermal radiation output along the fire plume and to estimate the overall thermal emission from the fire as a function its size taking into consideration the smoke effects. The model utilizes experimentally measured data for different parameters and uses correlations developed from laboratory and field tests with different fuels. The fire dynamics and combustion of the fuel are modeled using known entrainment and combustion efficiency parameter values. The mean emissive power data from field tests are compared with model predictions. Model results for the average emissive powers of large, hypothetical LNG fires are indicated.

  15. Relationship of post-fire ground cover to surface fuel loads and consumption in longleaf pine ecosystems

    Treesearch

    Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Clint S. Wright

    2014-01-01

    The RxCADRE research team collected multi-scale measurements of pre-, during, and post-fire variables on operational prescribed fires conducted in 2008, 2011, and 2012 in longleaf pine ecosystems in the southeastern USA. Pre- and post-fire surface fuel loads were characterized in alternating pre- and post-fire clip plots systematically established within burn units....

  16. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States: Prescribed fire

    Treesearch

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2014-01-01

    Fire has had a profound historical role in shaping dry mixed conifer forests in the western United States. However, the uncertainty and complexity of prescribed fires raises the question “Is fire always the best option for treating fuels?” The decision to use prescribed fire is dependent upon several factors.

  17. Photo guide for estimating fuel loading and fire behavior in mixed-oak forests of the Mid-Atlantic Region

    Treesearch

    Patrick H. Brose

    2009-01-01

    A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.

  18. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Treesearch

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  19. Modelling the Ecological Vulnerability to Forest Fires in Mediterranean Ecosystems Using Geographic Information Technologies

    NASA Astrophysics Data System (ADS)

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M. Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V.

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  20. Sunflower seed hulls as supplementary fuel to coal-fired power plants

    SciTech Connect

    Brudenell, W.N.; Holland, R.J.

    1981-01-01

    The use of biomass as a supplementary fuel to fossil-fuel power plants is gaining increasing attention due to escalating energy costs. The design of a sunflower seed hulls combustion system for an existing lignite-fired power plant is presented in this paper. 5 refs.

  1. Effects of fire and fuels management on water quality in eastern North America

    Treesearch

    R. K. Kolka

    2012-01-01

    Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...

  2. Linking Fuel Inventories With Atmospheric Data for Assessment of Fire Danger

    Treesearch

    Christopher W. Woodall; Joseph Charney; Greg Liknes; Brian Potter

    2006-01-01

    Combining forest fuel maps and real-time atmospheric data may enable creation of more dynamic and comprehensive fire danger assessments. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service, with real-time atmospheric data to create a more dynamic index...

  3. Fuel dynamics and fire behaviour in Australian mallee and heath vegetation

    Treesearch

    Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson

    2007-01-01

    In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...

  4. A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest

    Treesearch

    Jason J. Moghaddas; Larry Craggs

    2007-01-01

    Fuel treatments are being implemented on public and private lands across the western United States. Although scientists and managers have an understanding of how fuel treatments can modify potential fire behaviour under modelled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell...

  5. Evaluating ASTER satellite imagery and gradient modeling for mapping and characterizing wildland fire fuels

    Treesearch

    Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak

    2004-01-01

    Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...

  6. Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho

    Treesearch

    Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak

    2004-01-01

    Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...

  7. The national fire and fire surrogate study: vegetation changes over 11 years of fuel reduction treatments in the southern Appalachian Mountains

    Treesearch

    Thomas A. Waldrop; Helen H. Mohr; Ross J. Phillips; Dean M. Simon

    2014-01-01

    At the Appalachian site of the National Fire and Fire Surrogate Study, prescribed burning was repeated three times and chainsaw felling of shrubs was done twice between 2002 and 2012. Goals were to reduce fuel loading and to promote restoration of an open woodland community. Chainsaw felling created a vertical fuel break, but the effect was temporary, and no...

  8. Technologies of Physical Monitoring and Mathematical Modeling for Estimation of Ground Forest Fuel Fire Condition

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Bazarov, Alexandr V.

    2016-02-01

    Description of new experimental installations for the control of parameters of environment with a view of monitoring of forest fires presented in article. Stationary and mobile variants developed. Typical results of operation of installations during a fire-dangerous season of 2015 in vicinities of Ulan-Ude (Republic Buryatiya, Russia) presented. One-dimensional mathematical model of forest fuel drying which can be used for monitoring of forest fire danger with attraction of environmental parameters data during fire-dangerous season offered. Verification of mathematical model with use of known experimental data spent.

  9. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions.

    PubMed

    North, Malcolm; Hurteau, Matthew; Innes, James

    2009-09-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and releases in replicated plots before and after treatment, and against a reconstruction of active-fire stand conditions for the same forest in 1865. Total live-tree carbon was substantially lower in modern fire-suppressed conditions (and all of the treatments) than the same forest under an active-fire regime. Although fire suppression has increased stem density, current forests have fewer very large trees, reducing total live-tree carbon stocks and shifting a higher proportion of those stocks into small-diameter, fire-sensitive trees. Prescribed burning released 14.8 Mg C/ha, with pre-burn thinning increasing the average release by 70% and contributing 21.9-37.5 Mg C/ha in milling waste. Fire suppression may have incurred a double carbon penalty by reducing stocks and contributing to emissions with fuels-treatment activities or inevitable wildfire combustion. All treatments reduced fuels and increased fire resistance, but most of the gains were achieved with understory thinning, with only modest increases in the much heavier overstory thinning. We suggest modifying current treatments to focus on reducing surface fuels, actively thinning the majority of small trees, and removing only fire-sensitive species in the merchantable, intermediate size class. These changes would retain most of the current carbon-pool levels, reduce prescribed burn and potential future wildfire emissions, and favor stand development of large, fire-resistant trees that can better stabilize carbon stocks.

  10. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  11. Ecological and ecophysiological attributes and responses to fire in eastern oak forests

    Treesearch

    Marc D. Abrams

    2006-01-01

    Prior to European settlement vast areas of the eastern U. S. deciduous forest were dominated by oak species. Evidence indicates that periodic understory fire was an important ecological factor in the historical development of oak forests. During European settlement of the late 19th and early 20th century, much of the Eastern United States was impacted by land clearing...

  12. Applied Ecology and Control of Imported Fire Ants and Argentine Ants

    USDA-ARS?s Scientific Manuscript database

    The red imported fire ant, Solenopsis invicta Buren, and Argentine ant, Linepithema humile (Mayr), are invasive species that are major pests in urban, natural, and agricultural habitats. The goal of this dissertation was to study aspects the chemical sensitivity, behavior, and ecology of each specie...

  13. Fire vs. fossil fuel: all CO2 emissions are not created equal

    NASA Astrophysics Data System (ADS)

    Landry, J.-S.; Matthews, H. D.

    2015-09-01

    Fire is arguably the most influential natural disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. Nevertheless, fire has not been the subject of dedicated studies in coupled climate-carbon models with interactive vegetation until very recently. Hence, previous studies resorted to results from simulations of fossil fuel emissions to estimate the effects of fire-induced CO2 emissions. While atmospheric CO2 molecules are all alike, fundamental differences in their origin suggest that the effects from fire emissions on the global carbon cycle and temperature are irreconcilable with the effects from fossil fuel emissions. The main purpose of this study is to illustrate the consequences from these fundamental differences between CO2 emissions from fossil fuels and non-deforestation fires (i.e., following which the natural vegetation can recover) using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects - should therefore be avoided, particularly when these comparisons involve gross fire emissions. Our results also support the notion that most net emissions occur relatively soon after fire regime shifts and then progressively approach zero, whereas gross emissions stabilize around a new value that is a poor indicator of the cumulative net emissions caused by the fire regime shift. Overall, our study

  14. Association between Residential Proximity to Fuel-Fired Power Plants and Hospitalization Rate for Respiratory Diseases

    PubMed Central

    Liu, Xiaopeng; Lessner, Lawrence

    2012-01-01

    Background: Air pollution is known to cause respiratory disease. Unlike motor vehicle sources, fuel-fired power plants are stationary. Objective: Using hospitalization data, we examined whether living near a fuel-fired power plant increases the likelihood of hospitalization for respiratory disease. Methods: Rates of hospitalization for asthma, acute respiratory infection (ARI), and chronic obstructive pulmonary disease (COPD) were estimated using hospitalization data for 1993–2008 from New York State in relation to data for residences near fuel-fired power plants. We also explored data for residential proximity to hazardous waste sites. Results: After adjusting for age, sex, race, median household income, and rural/urban residence, there were significant 11%, 15%, and 17% increases in estimated rates of hospitalization for asthma, ARI, and COPD, respectively, among individuals > 10 years of age living in a ZIP code containing a fuel-fired power plant compared with one that had no power plant. Living in a ZIP code with a fuel-fired power plant was not significantly associated with hospitalization for asthma or ARI among children < 10 years of age. Living in a ZIP code with a hazardous waste site was associated with hospitalization for all outcomes in both age groups, and joint effect estimates were approximately additive for living in a ZIP code that contained a fuel-fired power plant and a hazardous waste site. Conclusions: Our results are consistent with the hypothesis that exposure to air pollution from fuel-fired power plants and volatile compounds coming from hazardous waste sites increases the risk of hospitalization for respiratory diseases. PMID:22370087

  15. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  16. Beyond "fire temperatures": calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels

    Treesearch

    Anthony S. Bova; Matthew B. Dickinson

    2008-01-01

    The maximum temperatures of thermocouples, temperature-sensitive paints, and calorimeters exposed to flames in wildland fires are often called "fire temperatures" but are determined as much by the properties and deployment of the measurement devices as by the fires themselves. Rather than report device temperatures that are not generally comparable among...

  17. Weather, fuels, fire behavior, plumes, and smoke - the nexus of fire meteorology

    Treesearch

    Scott L. Goodrick; Timothy J. Brown; W. Matt Jolly

    2017-01-01

    In a pair of review papers, Potter (2012a, 2012b) summarized the significant fire weather research findings over about the past hundred years. Our scientific understanding of wildland fire-atmosphere interactions has evolved: from simple correlations supporting the notion that hot, dry, and windy conditions lead to more intense fires, we have moved towards more...

  18. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect

    N.M. Ruonavaara

    1995-01-18

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  19. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Treesearch

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  20. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior.

    PubMed

    Blauw, Luke G; Wensink, Niki; Bakker, Lisette; van Logtestijn, Richard S P; Aerts, Rien; Soudzilovskaia, Nadejda A; Cornelissen, J Hans C

    2015-09-01

    Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior. We hypothesized that both the magnitude and variance of nonadditivity in flammability parameters are greater in moist than in dry fuel beds. We conducted a series of experimental burns in monocultures and 2-species mixtures with two ericaceous dwarf shrubs and two bryophyte species from temperate fire-prone heathlands. For a set of fire behavior parameters, we found that magnitude and variability of nonadditive effects are, on average, respectively 5.8 and 1.8 times larger in moist (30% MC) species mixtures compared to dry (10% MC) mixed fuel beds. In general, the moist mixtures caused negative nonadditive effects, but due to the larger variability these mixtures occasionally caused large positive nonadditive effects, while this did not occur in dry mixtures. Thus, at moister conditions, mixtures occasionally pass the moisture threshold for ignition and fire spread, which the monospecific fuel beds are unable to pass. We also show that the magnitude of nonadditivity is highly species dependent. Thus, contrary to common belief, the strong nonadditive effects in mixtures can cause higher fire occurrence at moister conditions. This new integration of surface fuel moisture and species interactions will help us to better understand fire behavior in the complexity of natural ecosystems.

  1. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior

    PubMed Central

    Blauw, Luke G; Wensink, Niki; Bakker, Lisette; van Logtestijn, Richard S P; Aerts, Rien; Soudzilovskaia, Nadejda A; Cornelissen, J Hans C

    2015-01-01

    Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior. We hypothesized that both the magnitude and variance of nonadditivity in flammability parameters are greater in moist than in dry fuel beds. We conducted a series of experimental burns in monocultures and 2-species mixtures with two ericaceous dwarf shrubs and two bryophyte species from temperate fire-prone heathlands. For a set of fire behavior parameters, we found that magnitude and variability of nonadditive effects are, on average, respectively 5.8 and 1.8 times larger in moist (30% MC) species mixtures compared to dry (10% MC) mixed fuel beds. In general, the moist mixtures caused negative nonadditive effects, but due to the larger variability these mixtures occasionally caused large positive nonadditive effects, while this did not occur in dry mixtures. Thus, at moister conditions, mixtures occasionally pass the moisture threshold for ignition and fire spread, which the monospecific fuel beds are unable to pass. We also show that the magnitude of nonadditivity is highly species dependent. Thus, contrary to common belief, the strong nonadditive effects in mixtures can cause higher fire occurrence at moister conditions. This new integration of surface fuel moisture and species interactions will help us to better understand fire behavior in the complexity of natural ecosystems. PMID:26380709

  2. Fire, Fuel, and Smoke Science Program: 2012 Research Accomplishments

    Treesearch

    Diane M. Smith; Colin C. Hardy

    2012-01-01

    In 2012, the nation experienced one of the largest wildland fire seasons in US history. More than 9 million acres burned, overwhelming fire-suppression budgets, burning homes and other structures, and taking the lives of both firefighters and civilians around the country. In Montana alone, 1.1 million acres burned, resulting in the largest wildfire year since 1910. As...

  3. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  4. Determinants of trust for public lands: fire and fuels management on the bitterroot national forest.

    PubMed

    Lijeblad, Adam; Borrie, William T; Watson, Alan E

    2009-04-01

    Management of public lands occurs today with high levels of scrutiny and controversy. To succeed, managers seek the support, involvement, and endorsement of the public. This study examines trust as an indicator of managerial success and attempts to identify and measure the components that most influence it. A review of trust literature yielded 14 attributes that were hypothesized to contribute to trust, grouped into the three dimensions of Shared Norms and Values, Willingness to Endorse, and Perceived Efficacy. Operationalizing these attributes and dimensions, a telephone survey was administered to a sample of Montana, USA, residents living adjacent to the Bitterroot National Forest (n = 1,152). Each of the attributes was measured in the context of federal lands fire and fuel management. Structural equation modeling showed that all 14 attributes were found to be influential contributors to levels of trust. Results suggest that if managers are to maintain or increase levels of public trust, they need to consider each of trust's attributes as they make social, ecological, and economic resource decisions.

  5. Determinants of Trust for Public Lands: Fire and Fuels Management on the Bitterroot National Forest

    NASA Astrophysics Data System (ADS)

    Lijeblad, Adam; Borrie, William T.; Watson, Alan E.

    2009-04-01

    Management of public lands occurs today with high levels of scrutiny and controversy. To succeed, managers seek the support, involvement, and endorsement of the public. This study examines trust as an indicator of managerial success and attempts to identify and measure the components that most influence it. A review of trust literature yielded 14 attributes that were hypothesized to contribute to trust, grouped into the three dimensions of Shared Norms and Values, Willingness to Endorse, and Perceived Efficacy. Operationalizing these attributes and dimensions, a telephone survey was administered to a sample of Montana, USA, residents living adjacent to the Bitterroot National Forest ( n = 1,152). Each of the attributes was measured in the context of federal lands fire and fuel management. Structural equation modeling showed that all 14 attributes were found to be influential contributors to levels of trust. Results suggest that if managers are to maintain or increase levels of public trust, they need to consider each of trust’s attributes as they make social, ecological, and economic resource decisions.

  6. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests

    Treesearch

    J. Kevin Hiers; Joseph J. O’Brien; R. J. Mitchell; John M. Grego; E. Louise Loudermilk

    2009-01-01

    In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlookedowing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diversevegetation in these ecosystems varies at these fine scales. This diversity could be...

  7. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland-urban interface during the Wallow Fire, Arizona, USA

    Treesearch

    Maureen C. Kennedy; Morris C. Johnson

    2014-01-01

    Fuel reduction treatments are implemented in the forest surrounding the wildland–urban interface (WUI) to provide defensible space and safe opportunity for the protection of homes during a wildfire. The 2011 Wallow Fire in Arizona USA burned through recently implemented fuel treatments in the wildland surrounding residential communities in the WUI, and those fuel...

  8. Fire regime: history and definition of a key concept in disturbance ecology.

    PubMed

    Krebs, Patrik; Pezzatti, Gianni B; Mazzoleni, Stefano; Talbot, Lee M; Conedera, Marco

    2010-06-01

    "Fire regime" has become, in recent decades, a key concept in many scientific domains. In spite of its wide spread use, the concept still lacks a clear and wide established definition. Many believe that it was first discussed in a famous report on national park management in the United States, and that it may be simply defined as a selection of a few measurable parameters that summarize the fire occurrence patterns in an area. This view has been uncritically perpetuated in the scientific community in the last decades. In this paper we attempt a historical reconstruction of the origin, the evolution and the current meaning of "fire regime" as a concept. Its roots go back to the 19th century in France and to the first half of the 20th century in French African colonies. The "fire regime" concept took time to evolve and pass from French into English usage and thus to the whole scientific community. This coincided with a paradigm shift in the early 1960s in the United States, where a favourable cultural, social and scientific climate led to the natural role of fires as a major disturbance in ecosystem dynamics becoming fully acknowledged. Today the concept of "fire regime" refers to a collection of several fire-related parameters that may be organized, assembled and used in different ways according to the needs of the users. A structure for the most relevant categories of parameters is proposed, aiming to contribute to a unified concept of "fire regime" that can reconcile the physical nature of fire with the socio-ecological context within which it occurs.

  9. Advanced Oxy-Fuel-Fired Front-End System

    SciTech Connect

    2004-03-01

    Oxy-gas-fired front-end technology promises significantly reduced energy usage. The glass industry is widely recognized as one of the most energy-intensive manufacturing industries in the United States.

  10. Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth; Kane, Jeffrey M.

    2016-01-01

    Prescribed fire is a widely used forest management tool, yet the long-term effectiveness of prescribed fire in reducing fuels and fire hazards in many vegetation types is not well documented. We assessed the magnitude and duration of reductions in surface fuels and modeled fire hazards in coniferous forests across nine U.S. national parks in California and the Colorado Plateau. We used observations from a prescribed fire effects monitoring program that feature standard forest and surface fuels inventories conducted pre-fire, immediately following an initial (first-entry) prescribed fire and at varying intervals up to >20 years post-fire. A subset of these plots was subjected to prescribed fire again (second-entry) with continued monitoring. Prescribed fire effects were highly variable among plots, but we found on average first-entry fires resulted in a significant post-fire reduction in surface fuels, with litter and duff fuels not returning to pre-fire levels over the length of our observations. Fine and coarse woody fuels often took a decade or longer to return to pre-fire levels. For second-entry fires we found continued fuels reductions, without strong evidence of fuel loads returning to levels observed immediately prior to second-entry fire. Following both first- and second-entry fire there were increases in estimated canopy base heights, along with reductions in estimated canopy bulk density and modeled flame lengths. We did not find evidence of return to pre-fire conditions during our observation intervals for these measures of fire hazard. Our results show that prescribed fire can be a valuable tool to reduce fire hazards and, depending on forest conditions and the measurement used, reductions in fire hazard can last for decades. Second-entry prescribed fire appeared to reinforce the reduction in fuels and fire hazard from first-entry fires.

  11. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  12. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    PubMed

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  13. Mapping Live Fuel Moisture and the relation to drought and post fire events for Southern California region

    NASA Astrophysics Data System (ADS)

    Hatzopoulos, N.; Kim, S. H.; Kafatos, M.; Nghiem, S. V.; Myoung, B.

    2016-12-01

    Live Fuel Moisture is a dryness measure used by the fire departments to determine how dry is the current situation of the fuels from the forest areas. In order to map Live Fuel Moisture we conducted an analysis with a standardized regressional approach from various vegetation indices derived from remote sensing data of MODIS. After analyzing the results we concluded mapping Live Fuel Moisture using a standardized NDVI product. From the mapped remote sensed product we observed the appearance of extremely high dry fuels to be highly correlated with very dry years based on the overall yearly precipitation. The appearances of the extremely dry mapped fuels tend to have a direct association with fire events and observed to be a post fire indicator. In addition we studied the appearance of extreme dry fuels during critical months when season changes from spring to summer as well as the relation to fire events.

  14. White-tailed deer ecology and management on Fire Island

    USGS Publications Warehouse

    Underwood, H.B.

    2005-01-01

    Deer populations have grown dramatically on Fire Island National Seashore (FIlS) since 1983. Trend data reveal a dichotomy in deer dynamics. In the eastern half of the island, deer density appears to have stabilized between 25-35 deer/km2. In the western half of the island, deer densities are 3-4 times as high in residential communities. Concomitant with that increase has been a general decline in physical stature of some animals, visible impacts on island vegetation, especially in the Sunken Forest, and a perceived increase in the frequency of human and deer interactions. Intensive research on FIlS has shown that deer occupy relatively predictable home ranges throughout the year, but can and do move up and down the island. Impacts of deer on vegetation are most dramatic in the Sunken Forest. Most obvious are the effects of browsing on the herb layer of the Sunken Forest. The least obvious, but perhaps more significant impact is the stark lack of regeneration of canopy tree species since about 1970, which coincides with the initiation of the deer population irruption. A number of herbs and shrubs have been greatly reduced in the understory, and their propagules from the soil. Deer do not readily transmit the bacterium that causes Lyme disease to other organisms, but deer are important hosts for adult ticks which underscores their importance in the transmission pathway of the disease to humans. Deer on FIlS, while occasionally docile, are still wild animals and should be treated as such. Some animals are relatively unafraid of humans due to the absence of predation and a lack of harassment. This in turn has contributed to a longstanding tradition of feeding deer by many residents and visitors, particularly in western portions of the island. Feeding affects both the behavior and population dynamics of deer inhabiting Fire Island. Recent efforts to reduce deer feeding by visitors and residents have been very effective. Ongoing experiments with Porcine Zona Pellucida

  15. Pre-fire and post-fire surface fuel and cover measurements collected in the southeastern United States for model evaluation and development - RxCADRE 2008, 2011 and 2012

    Treesearch

    Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek

    2016-01-01

    A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...

  16. Research on fire-resistant diesel fuel. Interim report 1 Oct 79-31 Dec 81

    SciTech Connect

    Weatherford, W.D. Jr; Fodor, G.E.; Kanakia, M.D.; Naegeli, D.W.; Wright, B.R.

    1981-12-01

    When development of aqueous fire-resistant diesel fuel (FRF) was previously reported, it was shown that clear-to-hazy water-in-fuel, diesel fuel micro-emulsions could be prepared and that they exhibit reduced mist flammability and self-extinguishing pool fires at temperatures above the base fuel flash point. It was also demonstrated that unmodified diesel engines start, idle, and run without difficulty on such fuels. Research has been continued to establish compositional requirements for base fuels, surfactants, and water used in FRF formulations. DF-2, DF-1, DF-A, and NATO diesel fuel samples were obtained from refineries, bulk storage, and service stations. Aromatic concentrate (AC) products from various sources were evaluated for use in adjusting the total aromatic ring carbon (TARC) content of FRF formulations. Neat base fuel and AC-containing base fuel TARC effects on microemulsification efficacy were established for water containing various amounts of total dissolved solids and for the amide/amine/soap emulsifier with various levels of total acid number.

  17. Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Soja, A. J.; Ivanova, G. A.; Petkov, A.; Ponomarev, E. I.; Conard, S. G.

    2012-12-01

    Wildfire is one of the main disturbance factors in the boreal zone of Russia. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russia vary substantially due to differences in ecosystem classification and mapping, burned area calculations, and estimates of fuel consumption. We examined uncertainties in different parameters used to estimate biomass burning emissions. Several fire datasets (Institute of Forest burned area product, MCD45, MCD64, MOD14/MYD14, official data) were compared to estimate uncertainties in area burned in Siberia. Area burned was found to differ significantly by data source, with satellite data being by an order of magnitude greater than ground-based data. Differences between mapped ecosystems were also compared and contrasted on the basis of five land cover maps (GLC-2000, Globcover-2009, MODIS Collection 4 and 5 Global Land Cover, and the Digitized Ecosystem map of the Former Soviet Union) to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. The examination of land cover maps showed that estimates of relative proportion of fire by ecosystem type varied substantially for the same year from map to map. Fuel consumption remains one of the main uncertainties in estimates of biomass burning emissions in Siberia. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Global climate change is expected to result in increase of fire hazard and area burned, leading to impacts on global air

  18. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  19. A fuel treatment reduces potential fire severity and increases suppression efficiency in a Sierran mixed conifer forest

    Treesearch

    Jason J. Moghaddas

    2006-01-01

    Fuel treatments are being widely implemented on public and private lands across the western U.S. While scientists and managers have an understanding of how fuel treatments can modify potential fire behavior under modeled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell Fire...

  20. Fuel loads and simulated fire behavior in "old-stage" beetle-infested ponderosa pine of the Colorado Plateau

    Treesearch

    E. Matthew Hansen; Morris C. Johnson; Barbara J. Bentz; James C. Vandygriff; A. Steven. Munson

    2015-01-01

    Recent bark beetle outbreaks in western North America have led to concerns regarding changes in fuel profiles and associated changes in fire behavior. Data are lacking for a range of infestation severities and time since outbreak, especially for relatively arid cover types. We surveyed fuel loads and simulated fire behavior for ponderosa pine stands of the...

  1. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  2. Fire Extinguishing Performance of Firebane on JP-8 Jet Fuel Fires

    DTIC Science & Technology

    2012-04-17

    agent used, and effectiveness on the fires. Compressed air foam systems were used for the evaluations, the recommended agent delivery method for...the engine protocol pool fire ....................................... 14 Figure 6. Firebane 1115 foam blanket during engine nacelle test...15 Figure 7. 50-percent Firebane 1115 foam blanket during engine nacelle test .............................. 15

  3. Configuration and performance of the indirect-fired fuel cell bottomed turbine cycle

    NASA Astrophysics Data System (ADS)

    Micheli, P. L.; Williams, M. C.; Parsons, E. L., Jr.

    The natural gas, indirect-fired fuel cell bottomed turbine cycle (NG-IFFC) is introduced as a novel power plant system for the distributed power and on-site markets in the 20-200 megawatt (MW) size range. The novel indirect-fired carbonate fuel cell bottomed turbine cycle (NG-IFCFC) power plant system configures the ambient pressure carbonate fuel cell with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations from ASPEN simulations present material and energy balances with expected power output. The results indicate efficiencies and heat rates for the NG-IFCFC are comparable to conventionally bottomed carbonate fuel cell steam bottomed cycles, but with smaller and less expensive components.

  4. Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential

    Treesearch

    Marco A. Contreras; Russell A. Parsons; Woodam Chung

    2012-01-01

    Land managers have been using fire behavior and simulation models to assist in several fire management tasks. These widely-used models use average attributes to make stand-level predictions without considering spatial variability of fuels within a stand. Consequently, as the existing models have limitations in adequately modeling crown fire initiation and propagation,...

  5. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Saqib Mukhtar; Soyuz Priyadarsan, Ph.D.; Arunvel Thangamani, ME

    2003-01-01

    It has been observed from the review that very limited experimental study has been conducted on using FB as re-burn fuel and there exists no model using FB as re-burn fuel. The objective of the current research is to develop a simplified numerical model for NOx reduction process with FB volatiles as the re-burn fuel and compare results with experimental data. In order to satisfy the objective, the proposed work has been divided into 4 tasks. (1) Modeling the combustion process involving the main fuel, ammonia mixture in the main burner. (2) Developing of a simple mixing model of main gases with reburn jet. (3) Selection of a suitable overall global mechanism of reactions for the re-burn fuels, coupling the reaction model with the mixing model and thereby developing the complete re-burn model. (4) Comparing the simulation results with the experimental results obtained from TAMU combustion facility.

  6. What's the fire danger now? Linking fuel inventories with atmospheric data

    Treesearch

    Christopher W. Woodall; Joseph J. Charney; Greg C. Liknes; Brian E. Potter

    2005-01-01

    The combination of forest fuel maps with real-time atmospheric data may enable the creation of more dynamic and comprehensive assessments of fire danger. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the USDA Forest Service, with real-time atmospheric data for the creation of a more dynamic index...

  7. Fire-resistant fuel program analysis and program management documentation. Final report, December 1985-January 1986

    SciTech Connect

    Dye, C.A.

    1986-01-31

    There was an urgent need to transition management of the Fire Resistant Fuel (FRF) Program from the Materials Fuels and Lubricants Laboratory (MFLL) to the Logistics Support Directorate (LSD). It is recommended that the LSD develop program management documentation (PMD) that supports a Milestone I review as soon as possible to include the following: System Concept Paper, Concept Formulation Package and a Test Evaluation Master Plan. This report describes programmatic analyses and subsequent programmatic recommendations.

  8. Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals

    NASA Astrophysics Data System (ADS)

    Smith, Alistair M. S.; Tinkham, Wade T.; Roy, David P.; Boschetti, Luigi; Kremens, Robert L.; Kumar, Sanath S.; Sparks, Aaron M.; Falkowski, Michael J.

    2013-12-01

    Satellite based fire radiant energy retrievals are widely applied to assess biomass consumed and emissions at regional to global scales. A known potential source of uncertainty in biomass burning estimates arises from fuel moisture but this impact has not been quantified in previous studies. Controlled fire laboratory experiments are used in this study to examine the biomass consumed and the radiant energy release (Fire Radiative Energy, FRE, (MJ)) for western white pine needle fuels burned with water content (WC, unitless) from 0.01 to 0.14. Results indicate a significant relationship: FRE per kilogram of fuel consumed = -5.32 WC + 3.025 (r2 = 0.83, n = 24, P < 0.001) and imply that not taking into account fuel moisture variations in the assumed relationship between FRE and fuel consumed can lead to systematic biases. A methodological framework to derive a revised formula that enables the estimation of biomass consumed from FRE, which explicitly takes into account fuel water content, is presented.

  9. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  10. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  11. Development of coarse-scale spatial data for wildland fire and fuel management

    Treesearch

    Kirsten M. Schmidt; James P. Menakis; Colin C. Hardy; Wendall J. Hann; David L. Bunnell

    2002-01-01

    We produced seven coarse-scale, 1-km2 resolution, spatial data layers for the conterminous United States to support national-level fire planning and risk assessments. Four of these layers were developed to evaluate ecological conditions and risk to ecosystem components: Potential Natural Vegetation Groups, a layer of climax vegetation types representing site...

  12. The influence of experimental wind disturbance on forest fuels and fire characteristics

    Treesearch

    Jeffery B. Cannon; Joseph J. O' Brien; Louise Loudermilk; Matthew Dickinson; Chris J. Peterson

    2014-01-01

    Current theory in disturbance ecology predicts that extreme disturbances in rapid succession can lead to dramatic changes in species composition or ecosystem processes due to interactions among disturbances. However, the extent to which less catastrophic, yet chronic, disturbances such as wind damage and fire interact is not well studied. In this study, we simulated...

  13. Resistance of mixed subalpine forest to fire frequency changes: the ecological function of dwarf pine (Pinus mugo ssp. mugo)

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Carcaillet, Christopher; Blarquez, Olivier; Lami, Andrea; Musazzi, Simona; Trevisan, Renata

    2014-04-01

    The availability of fuel and climate are major factors responsible for forest fire activity over time. Here, we tested the hypothesis that forest ecosystems containing a high shrub biomass, which constitutes a fuel load, and affected by a warmer climate, which is associated with drier conditions and a longer fire season, are more prone to fire. Fire occurrence and woody vegetation histories were reconstructed for a subalpine site (Lago di Colbricon Inferiore) in the Dolomites, part of the eastern Italian Alps, for the past 13,000 years. The modern wet climate prevents fire in this area, in spite of the warm summers and an abundant biomass of dwarf pine (Pinus mugo) and three other conifer tree species (Pinus cembra, Picea abies, and Larix decidua). Past fire history reconstructed from sedimentary charcoal showed a median fire return interval of 140 years (30-735 yr fire-1), with a high variability (SD ± 170 years) throughout the Holocene, suggesting that the past environment was more favourable to fire than the modern one, probably due to a drier climate or to different fuel availability. The subalpine community containing P. mugo remained stable for the past 9000 years, despite the variability of the fire return interval. Interestingly, the fire frequency is higher at Lago di Colbricon than at sites in the western Alps that lack P. mugo, suggesting that this species tolerates fire disturbance. In fact, it probably favours the spread of fire due to its flammable biomass, prostrated form, and dense layering canopy, thus offsetting the influence of the wet climate. Since the 19th century, the removal of dwarf pine to promote subalpine grasslands may have suppressed fires in this region.

  14. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  15. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  16. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    USGS Publications Warehouse

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  17. Soils under fire: soils research and the Joint Fire Science Program.

    Treesearch

    Heather E. Erickson; Rachel. White

    2008-01-01

    Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and...

  18. Wildland fire and fuel management: principles for effective communication

    Treesearch

    Eric Toman; Bruce Shindler

    2006-01-01

    In this paper we discuss four principles identified through recent research for effective citizen-agency communication and examine their use in accomplishing fire management objectives. Principles include the following: (1) effective communication is a product of effective planning; (2) both unidirectional (one-way) and interactive approaches are part of successful...

  19. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs

    Treesearch

    Greg Dillon; James Menakis; Frank Fay

    2015-01-01

    Federal wildfire managers often want to know, over large landscapes, where wildfires are likely to occur and how intense they may be. To meet this need we developed a map that we call wildland fire potential (WFP) - a raster geospatial product that can help to inform evaluations of wildfire risk or prioritization of fuels management needs across very large spatial...

  20. Forest fuels and potential fire behaviour 12 years after variable-retention harvest in lodgepole pine

    Treesearch

    Justin S. Crotteau; Christopher R. Keyes; Elaine K. Sutherland; David K. Wright; Joel M. Egan

    2016-01-01

    Variable-retention harvesting in lodgepole pine offers an alternative to conventional, even-aged management. This harvesting technique promotes structural complexity and age-class diversity in residual stands and promotes resilience to disturbance. We examined fuel loads and potential fire behaviour 12 years after two modes of variable-retention harvesting (...

  1. Physical characteristics of shrub and conifer fuels for fire behavior models

    Treesearch

    Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise

    2017-01-01

    The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...

  2. An evaluation of hardwood fuel models for planning prescribed fires in oak shelterwood stands

    Treesearch

    Patrick H. Brose

    2017-01-01

    The shelterwood burn technique is becoming more accepted and used as a means of regenerating eastern mixed-oak (Quercus spp.) forests on productive upland sites. Preparation is important to successfully implement this method; part of that preparation is selecting the proper fuel model (FM) for the prescribed fire. Because of the mix of leaf litter...

  3. Particulate Matter Emissions for Fires in the Palmetto-Gallberry Fuel Type

    Treesearch

    Darold E. Ward

    1983-01-01

    Fire management specialists in the southeastern United States needing guides for predicting or assessing particulate matter emission factors, emission rates, and heat release rate can use the models presented in this paper for making these predictions as a function of flame length in the palmetto-gallberry fuel type.

  4. Forest fuel treatments in western North America: merging silvicultural and fire management.

    Treesearch

    Morris C. Johnson; David L. Peterson

    2005-01-01

    For many years silviculture and fire management have mostly been separate forestry disciplines with disparate objectives and activities. However, in order to accomplish complex and multiple management objectives related to forest structure, fuels, and fxe disturbance, these two disciplines must be effectively integrated in science and practice. We have linked...

  5. Changes in canopy fuels and fire behavior after ponderosa pine restoration treatments: A landscape perspective

    Treesearch

    J. P. Roccaforte; P. Z. Fule

    2008-01-01

    (Please note, this is an abstract only) We modeled crown fire behavior and assessed changes in canopy fuels before and after the implementation of restoration treatments in a ponderosa pine landscape at Mt. Trumbull, Arizona. We measured 117 permanent plots before (1996/1997) and after (2003) thinning and burning treatments. The plots are evenly distributed across the...

  6. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event

    Treesearch

    Susan J. Prichard; Maureen C. Kennedy

    2014-01-01

    Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State...

  7. Fuels planning: science synthesis and integration; environmental consequences fact sheet 05: prescriptions and fire effects

    Treesearch

    Melanie Miller

    2004-01-01

    Fuels planning: science synthesis and integration; environmental consequences fact sheet 5: prescriptions and fire effects. Miller, Melanie. 2004. Res. Note RMRS-RN-23-5-WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2 p. While our understanding of the causes for variation in postfire effects is increasing, burn...

  8. Simulating fire and forest dynamics for a coordinated landscape fuel treatment project in the Sierra Nevada

    Treesearch

    Brandon M. Collins; Scott L. Stephens; Gary B. Roller; John Battles

    2011-01-01

    We evaluate an actual landscape fuel treatment project that was designed by local U. S. Forest Service managers in the northern Sierra Nevada. We model the effects of this project at reducing landscape-level fire behavior at multiple time steps, up to nearly 30 yr beyond treatment implementation. Additionally, we modeled planned treatments under multiple diameter-...

  9. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes

    Treesearch

    Emma C. Underwood; Joshua H. Viers; James F. Quinn; Malcolm. North

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet...

  10. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Treesearch

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  11. Beyond fuel treatment effectiveness: Characterizing interactions between fire and treatments in the US

    Treesearch

    Kevin Barnett; Sean A. Parks; Carol Miller; Helen T. Naughton

    2016-01-01

    In the United States, fuel reduction treatments are a standard land management tool to restore the structure and composition of forests that have been degraded by past management. Although treatments can have multiple purposes, their principal objective is to create landscape conditions where wildland fire can be safely managed to help achieve long-term land management...

  12. Pre-fire fuel reduction treatments influence plant communities and exotic species 9 years after a large wildfire

    Treesearch

    Kristen L. Shive; Amanda M. Kuenzi; Carolyn H. Sieg; Peter Z. Fule

    2013-01-01

    We used a multi-year data set from the 2002 Rodeo-Chediski Fire to detect post-fire trends in plant community response in burned ponderosa pine forests. Within the burn perimeter, we examined the effects of pre-fire fuels treatments on post-fire vegetation by comparing paired treated and untreated sites on the Apache-Sitgreaves National Forest.We sampled these paired...

  13. Different interest group views of fuels treatments: survey results from fire and fire surrogate treatments in a Sierran mixed conifer forest, California, USA

    Treesearch

    Sarah McCaffrey; Jason J. Moghaddas; Scott L. Stephens

    2008-01-01

    The present paper discusses results from a survey about the acceptance of and preferences for fuels treatments of participants following a field tour of the University of California Blodgett Forest Fire and Fire Surrogate Study Site. Although original expectations were that tours would be composed of general members of the public, individual tour groups ultimately were...

  14. Seasonal Avifauna Reponses to Fuel Reduction Treatments in the Upper Piedmont of South Carolina: Results From Phase 1 of the National Fire and Fire Surrogate Study

    Treesearch

    Laura A. Zebehazy; J. Drew Lanham; Thomas A. Waldrop

    2004-01-01

    We examined avian species and assemblage responses to prescribed burns and thinning in a southeastern Piedmont pine and mixed pine-hardwood forest as part of the National Fire and Fire Surrogate Study (NFFS) examining the effects of fuel reduction on forest health. Point counts conducted during the non-breeding and breeding seasons of 2000-2002 showed that winter bird...

  15. Effects of Fuel-Reduction Techniques on Vegetative Composition of Piedmont Loblolly-Shortleaf Pine Communities: Preliminary Results of the National Fire and Fire Surrogate Study

    Treesearch

    Ross J. Phillips; Thomas A. Waldrop; Gregg L. Chapman; Helen H. Mohr; Mac A. Callaham; Charles T. Flint

    2004-01-01

    As part of the National Fire and Fire Surrogate (NFFS) Study, prescribed burning, thinning, and a combination of burning and thinning were conducted in loblolly ( Pinus taeda L.) and shortleaf pine ( P. echinata Mill.) communities in the Piedmont of South Carolina to test the effectiveness of these treatments for fuel reduction. Treatment implementation resulted in an...

  16. Proceedings of the 2002 fire conference: managing fire and fuels in the remaining wildlands and open spaces of the Southwestern United States

    Treesearch

    Marcia G. Narog

    2008-01-01

    Many issues confront scientists, land managers, policymakers, and the public who deal with or are affected by management of fire and fuels across the southwestern United States (Utah, Colorado, Arizona, Nevada, New Mexico, and California). The 2002 Fire Conference was convened to tackle these concerns. It began with a plenary session addressing the central problems of...

  17. Response of white-footed mice (Peromyscus leucopus) to fire and fire surrogate fuel reduction treatments in a southern Appalachian hardwood forest

    Treesearch

    Cathryn H. Greenberg; David L. Otis; Thomas A. Waldrop

    2006-01-01

    An experiment conducted as part of the multidisciplinary National Fire and Fire Surrogate Study was designed to determine effects of three fuel reduction techniques on small mammals and habitat structure in the southern Appalachian mountains. Four experimental units, each >14-ha were contained within each of three replicate blocks at the Green River Game Land,...

  18. Extinction of in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1983-01-01

    The dry chemicals discussed here are seen as having a greater weight effectiveness than the halons in current use for controlling fuel-leak fires, especially in the presence of high airflow rates. The commercial dry chemicals K2CO3, KHCO3, and KC2N2H3O3 are found to be more effective than CF2ClBr and CF3Br in delaying the hot-surface reignition of fuel-leak fires after initial extinguishment. Experimental dry chemical formulations of potassium dawsonite, KAl(OH)2CO3, and of KCl and KI are seen as being even more weight effective than the above-mentioned commercial dry chemicals. It is noted, however, that the suitability and effectiveness of dry chemicals in controlling engine nacele fires has not yet been demonstrated in test aircraft.

  19. Extinction of in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1983-01-01

    The dry chemicals discussed here are seen as having a greater weight effectiveness than the halons in current use for controlling fuel-leak fires, especially in the presence of high airflow rates. The commercial dry chemicals K2CO3, KHCO3, and KC2N2H3O3 are found to be more effective than CF2ClBr and CF3Br in delaying the hot-surface reignition of fuel-leak fires after initial extinguishment. Experimental dry chemical formulations of potassium dawsonite, KAl(OH)2CO3, and of KCl and KI are seen as being even more weight effective than the above-mentioned commercial dry chemicals. It is noted, however, that the suitability and effectiveness of dry chemicals in controlling engine nacele fires has not yet been demonstrated in test aircraft.

  20. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  1. Ecological effects of the Hayman Fire - Part 1: Historical (pre-1860) and current (1860-2002) fire regimes

    Treesearch

    William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan

    2003-01-01

    To address historical and current fire regimes in the Hayman landscape, we first present the concepts of “historical range of variability” and ”fire regime” to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference

  3. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  4. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  5. Intercomparison of Fire Size, Fuel Loading, Fuel Consumption, and Smoke Emissions Estimates on the 2006 Tripod Fire, Washington, USA

    Treesearch

    Stacy A. Drury; Narasimhan Larkin; Tara T. Strand; ShihMing Huang; Scott J. Strenfel; Theresa E. O' Brien; Sean M. Raffuse

    2014-01-01

    Land managers rely on prescribed burning and naturally ignited wildfires for ecosystem management, and must balance trade-offs of air quality, carbon storage, and ecosystem health. A current challenge for land managers when using fire for ecosystem management is managing smoke production. Smoke emissions are a potential human health hazard due to the production of fine...

  6. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Unknown

    2002-07-01

    Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for different fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.

  7. Understory vegetation response in longleaf pine forests to fire and fire surrogate treatments for wildfire hazard reduction and ecological restoration

    Treesearch

    Dale G. Brockway; Kenneth W Outcalt

    2005-01-01

    The principal objective is to quantify the responses of the understory plant community to fire and fire surrogate treatments, specifically plant species composition, foliar cover, species richness, diversity, and evenness changes resulting from (1) fire exclusion in the untreated control, (2) prescribed fire, (3) thinning, (4) thinning plus prescribed fire, and (5)...

  8. Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest

    Treesearch

    Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens

    2015-01-01

    Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...

  9. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  10. Interactions among the mountain pine beetle, fires, and fuels

    Treesearch

    Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz

    2014-01-01

    Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...

  11. Development of Army Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1979-12-01

    The prime FRF candidates have comprised diesel fuel with either 10 percent water and 6 percent emulsifier (FRF-A), or 5 percent water, 3 percent...SOURI * Il SOURCE CANVAS I INVESTIGATE SCREENIT WTERT- ERDO FRULANDO COMPOSITION EFFECTSIWTERHNSOURESOFOMLTN LAOATR AND AECHDI-AC I IEEFCSSCE F L-AIIY

  12. Plains Prickly Pear Cactus Response to Fire and Fuel Loads

    USDA-ARS?s Scientific Manuscript database

    Management of prickly pear on rangelands has lead to numerous studies aimed at understanding prickly pear response to various natural and human induced treatments. Information is lacking on Plains prickly pear response to varied fuel loads. Pads of clones from three soil types (claypan, gravel, si...

  13. A surface fuel classification for estimating fire effects

    Treesearch

    Duncan C. Lutes; Robert E. Keane; John F. Caratti

    2009-01-01

    We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...

  14. The influence of an incomplete fuels treatment on fire behavior and effects in the 2007 Tin Cup Fire, Bitterroot National Forest, Montana

    Treesearch

    Michael Harrington; Erin Noonan-Wright

    2010-01-01

    Extensive forested areas have received fuels treatments in recent decades and significant funding is available for additional treatments in an attempt to mitigate undesirable high wildfire intensities and impacts. Fuel treatment successes and failures in moderating fire behavior and effects can be found in quantified and anecdotal reports. Questions remain about the...

  15. Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario

    SciTech Connect

    Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

    2006-11-15

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some

  16. Investigation of Mechanism of Potential Aircraft Fuel Tank Vent Fires and Explosions Caused by Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The nature of the potential fuel tank vent fire and explosion hazard is discussed in relation to present vent exit design practice, available knowledge of atmospheric electricity as a source of ignition energy, and the vent system vapor space environment. Flammable mixtures and possible ignition sources may occur simultaneously as a rare phenomena according to existing knowledge. There is a need to extend the state of science in order to make possible vent design which is aimed specifically at minimizing fire and explosion hazards.

  17. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    DTIC Science & Technology

    2011-07-01

    cameras were installed around the test pan and an underwater GoPro ® video camera recorded the fire from below the layer of fuel. 3.2.2. Camera Images...Distribution A: Approved for public release; distribution unlimited. 3.2.3. Video Images A GoPro video camera with a wide angle lens recorded the tests...camera and the GoPro ® video camera were not used for fire suppression experiments. 3.3.2. Test Pans Two ¼-in thick stainless steel test pans were

  18. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  19. Literature Review on the Effects of Prescription Fire on theEcology of Site 300

    SciTech Connect

    Preston, R

    2011-03-14

    Lawrence Livermore National Laboratory has historically conducted prescription burns across approximately 2,000 acres of Site 300 on an annual basis to safeguard test facilities and operations from the risk of wildfire encroachment. Prescription burns began in 1960, and although fire frequency varies among the designated burn areas, all have been burned at least once. A patchwork of native perennial grassland communities and associated special-status plant and animal populations occur onsite in many areas that have been receiving these treatments. Because the size and locations of prescription burns may shift in coming years, an evaluation is warranted to determine how these shifts may affect listed biota, including rare plants, and the distinct ecological conditions present on the site. This report presents the results of a literature review conducted by ICF International (ICF) to collect basic information on native perennial grasslands in California, the influence of fire on these grasslands, and management tools for restoring and maintaining them. The objective of this study was to review the scientific literature on California native grasslands and summarize the current state of knowledge pertaining to the possible effects -- both beneficial and detrimental -- of prescribed fire on the ecology of Site 300. The results of this review are intended to inform future management practices that may be carried out at Site 300 to maintain the plant and wildlife communities and to ensure that the ecological conditions benefit the special-status species that inhabit the Site. This review is also intended to identify a study approach to investigate changes over the next 10 years in the burned areas and in areas where burning will be discontinued.

  20. Small oil-fired heating equipment: The effects of fuel quality

    SciTech Connect

    Litzke, W.

    1993-08-01

    The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

  1. Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario

    SciTech Connect

    Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

    2007-01-01

    On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some

  2. Effectiveness of post-fire seeding at the Fitzner-Eberhardt Arid Land Ecology Reserve, Washington

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2011-01-01

    In August 2007, the Milepost 17 and Wautoma fires burned a combined total of 77,349 acres (31,302 hectares) of the Fitzner-Eberhardt Arid Land Ecology Reserve (ALE), part of the Hanford Reach National Monument administered by the U.S. Fish and Wildlife Service (USFWS) Mid-Columbia National Wildlife Refuge. In 2009, the USFWS implemented a series of seeding and herbicide treatments to mitigate potential negative consequences of these fires, including mortality of native vegetation, invasion of Bromus tectorum (cheatgrass), and soil erosion. Treatments included combinations of seeding (drill and aerial), herbicides, and one of six different mixtures of species. Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) also was planted by hand in a small area in the southern end of the fire perimeter. Due to differences in plant communities prior to the fire and the multiple treatments applied, treatments were grouped into five treatment associations including mid-elevation aerial seedings, low-elevation aerial seedings, low-elevation drill seedings, high-elevation drill seeding, and no seeding treatments. Data collected at the mid-elevation aerial seedings indicate that the seeding did not appear to increase the density of seedlings compared to the non-seeded area in 2010. At the low-elevation aerial seedings, there were significantly more seedlings at seeded areas as compared to non-seeded areas. Low densities of existing perennial plants probably fostered a low-competition environment enabling seeds to germinate and emerge in 2010 during adequate moisture. Low-elevation drill seedings resulted in significant emergence of seeded grasses in 2009 and 2010 and forbs in 2010. This was likely due to adequate precipitation and that the drill seeding assured soil-to-seed contact. At the high-elevation drill seeding, which was implemented in 2009, there were a high number of seedlings in 2010. Transplanting of A. tridentata following the fires resulted in variable

  3. Ecological risk assessment to support fuels treatment project decisions

    Treesearch

    Jay O' Laughlin

    2010-01-01

    Risk is a combined statement of the probability that something of value will be damaged and some measure of the damage’s adverse effect. Wildfires burning in the uncharacteristic fuel conditions now typical throughout the Western United States can damage ecosystems and adversely affect environmental conditions. Wildfire behavior can be modified by prefire fuel...

  4. Measuring the rate of spread of chaparral prescribed fires in northern California

    Treesearch

    S. L. Stephens; D. R. Weise; D. L. Fry; R. J. Keiffer; J. Dawson; E. Koo; J. Potts; P. J. Pagni

    2008-01-01

    Prescribed fire is a common method used to produce desired ecological effects in chaparral by mimicking the natural role of fire. Since prescribed fires are usually conducted in moderate fuel and weather conditions, models that accurately predict fire behavior and effects under these scenarios are important for management. In this study, explosive audio devices and...

  5. Chaparral shrub recovery after fuel reduction: a comparison of prescribed fire and mastication techniques

    Treesearch

    J. Potts; E. Marino; S. Stephens

    2010-01-01

    Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma...

  6. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2001-05-10

    The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2 % (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75 % pass through 150 {micro}m sieve while for coal 75 % pass through 60 {micro}m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70--90 % reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH{sub 3}; (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4.

  7. Effect of fuel quality on slagging behavior in a cyclone-fired boiler

    SciTech Connect

    Katrinak, K.; Laumb, J.; Peterson, W.; Schwalbe, R.

    1998-12-31

    Relationships between the occurrence of poor slag flow episodes at a cyclone-fired boiler, coal mineral content, heating value, and other fuel quality parameters have been investigated. In addition, optimization of boiler operating conditions to match coal quality is the major emphasis of current activities. The boiler fires North Dakota lignite, a highly variable fuel, and experiences intermittent cyclone slagging problems related to coal quality. Cyclone slagging episodes were found to occur when the heating value of the fuel was less than 6600 Btu/lb and the T250 was greater than 2250 F. Higher-Btu coals burn hotter and appear to be able to handle higher T250 values without slagging. Other fuel quality parameters related to cyclone slag flow behavior include high silicon and aluminum concentrations and high concentrations of the silicon- and aluminum-rich clay minerals illite and montmorillonite. These minerals are thought to contribute to cyclone slagging episodes by reducing the ability of the slag to incorporate calcium, thus leading to increased slag viscosity. To improve slag flow behavior, operating conditions have been modified to maintain high temperatures in the cyclones. Changes include increasing coal drying temperature and balancing the air/fuel ratio. T250 can be readily calculated from coal ash composition. Clays and other minerals can be identified in individual coal particles using automated scanning electron microscopy with energy-dispersive X-ray spectrometry. Use of these analytical techniques can enable potential cyclone slagging problems to be predicted in advance.

  8. 30 CFR 75.1911 - Fire suppression systems for diesel-powered equipment and fuel transportation units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automatic, fire detection for the engine including the starter, transmission, hydraulic pumps and tanks, fuel tanks, exposed brake units, air compressors and battery areas on diesel-powered equipment...

  9. 30 CFR 75.1911 - Fire suppression systems for diesel-powered equipment and fuel transportation units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... automatic, fire detection for the engine including the starter, transmission, hydraulic pumps and tanks, fuel tanks, exposed brake units, air compressors and battery areas on diesel-powered equipment...

  10. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    NASA Astrophysics Data System (ADS)

    Menage, D.; Chetehouna, K.; Mell, W.

    2012-11-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  11. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  12. Experimental Study of the Combustion Dynamics of Renewable & Fossil Fuel Co-Fire in Swirling Flame

    NASA Astrophysics Data System (ADS)

    Zaķe, M.; Barmina, I.; Kriško, V.; Gedrovičs, M.; Descņickis, A.

    2009-01-01

    The complex experimental research into the combustion dynamics of rene-wable (wood biomass) and fossil (propane) fuel co-fire in a swirling flame flow has been carried out with the aim to achieve clean and effective heat production with reduced carbon emissions. The effect of propane co-fire on the formation of the swirling flame velocity, temperature and composition fields as well as on the combustion efficiency and heat output has been analysed. The results of experimental study show that the propane supply into the wood biomass gasifier provides faster wood fuel gasification with active release of volatiles at the primary stage of swirling flame flow formation, while the swirl-induced recirculation with enhanced mixing of the flame components results in a more complete burnout of wood volatiles downstream of the combustor with reduced mass fraction of polluting impurities in the emissions.

  13. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  14. Testing a basic assumption of shrubland fire management: Does the hazard of burning increase with the age of fuels?

    USGS Publications Warehouse

    Moritz, Max A.; Keeley, Jon E.; Johnson, Edward A.; Schaffner, Andrew A.

    2004-01-01

    This year's catastrophic wildfires in southern California highlight the need for effective planning and management for fire-prone landscapes. Fire frequency analysis of several hundred wildfires over a broad expanse of California shrublands reveals that there is generally not, as is commonly assumed, a strong relationship between fuel age and fire probabilities. Instead, the hazard of burning in most locations increases only moderately with time since the last fire, and a marked age effect of fuels is observed only in limited areas. Results indicate a serious need for a re-evaluation of current fire management and policy, which is based largely on eliminating older stands of shrubland vegetation. In many shrubland ecosystems exposed to extreme fire weather, large and intense wildfires may need to be factored in as inevitable events.

  15. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  16. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    PubMed Central

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  17. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    PubMed

    Schoennagel, Tania; Veblen, Thomas T; Negron, José F; Smith, Jeremy M

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  18. Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires

    Treesearch

    Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku

    2008-01-01

    Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...

  19. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems

    Treesearch

    Stephen R. Mitchell; Mark E. Harmon; Kari E.B. O' Connell

    2009-01-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore carbon [C]) that has accumulated through a century of fire suppression and exclusion which has led to extreme...

  20. Strategic Placement of Treatments (SPOTS): Maximizing the Effectiveness of Fuel and Vegetation Treatments on Problem Fire Behavior and Effects

    Treesearch

    Diane M. Gercke; Susan A. Stewart

    2006-01-01

    In 2005, eight U.S. Forest Service and Bureau of Land Management interdisciplinary teams participated in a test of strategic placement of treatments (SPOTS) techniques to maximize the effectiveness of fuel treatments in reducing problem fire behavior, adverse fire effects, and suppression costs. This interagency approach to standardizing the assessment of risks and...

  1. Social science to improve fuels management: a synthesis of research on the impacts of wildland fires on communities

    Treesearch

    Stephen F. McCool; James Burchfield; Daniel R. Williams; Matt Carroll; Patricia Cohn; Yoshitaka Kumagai; Tam Ubben

    2007-01-01

    A series of syntheses were commissioned by the U.S. Forest Service to aid in fuels mitigation project planning. Focusing on research on the social impacts of wildland fire, this synthesis explores decisions and actions taken by communities before, during, and after a wildland fire to minimize its impacts. It then synthesizes the research studying (1) the consequences...

  2. An investigation of crown fuel bulk density effects on the dynamics of crown fire initiation in shrublands

    Treesearch

    Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise

    2008-01-01

    Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...

  3. Desert fires fueled by native annual forbs: effects of fire on communities of plants and birds in the lower Sonoran Desert of Arizona

    USGS Publications Warehouse

    Esque, Todd C.; Webb, Robert H.; Wallace, Cynthia S.A.; Van Riper, Charles; McCreedy, Chris; Smythe, Lindsay

    2013-01-01

    In 2005, fire ignited by humans swept from Yuma Proving Grounds into Kofa National Wildlife Refuge, Arizona, burning ca. 9,255 ha of Wilderness Area. Fuels were predominantly the native forb Plantago ovata. Large fires at low elevations were rare in the 19th and 20th centuries, and fires fueled by native vegetation are undocumented in the southwestern deserts. We estimated the area damaged by fire using Moderate Resolution Imaging Spectroradiometer and Normalized Difference Vegetation Index, which are more accurate and reduce subjectivity of aerial surveys of perimeters of fires. Assemblages of upland and xeroriparian plants lost 91 and 81% of live cover, respectively, in fires. The trees Olneya tesota and Cercidium had high amounts of top-kill. King Valley was an important xeroriparian corridor for birds. Species richness of birds decreased significantly following the fire. Numbers of breeding birds were lower in burned areas of King Valley 3 years post-fire, compared to numbers in nearby but unburned Alamo Wash. Although birds function within a large geographic scale, the extent of this burn still influenced the relative abundance of local species of breeding birds. This suggests that breeding birds respond to conditions of localized burns and slow recovery of vegetation contributes to continued lower numbers of birds in the burned sites in King Valley.

  4. Desert fires fueled by native annual forbs: Effects of fire on communities of plants and birds in the Lower Sonoran Desert of Arizona

    USGS Publications Warehouse

    Esque, Todd C.; Webb, Robert H.; Wallace, Cynthia S.A.; Van Riper, Charles; McCreedy, Chris; Smythe, Lindsay A.

    2013-01-01

    In 2005, fire ignited by humans swept from Yuma Proving Grounds into Kofa National Wildlife Refuge, Arizona, burning ca. 9,255 ha of Wilderness Area. Fuels were predominantly the native forb Plantago ovata. Large fires at low elevations were rare in the 19th and 20th centuries, and fires fueled by native vegetation are undocumented in the southwestern deserts. We estimated the area damaged by fire using Moderate Resolution Imaging Spectroradiometer and Normalized Difference Vegetation Index, which are more accurate and reduce subjectivity of aerial surveys of perimeters of fires. Assemblages of upland and xeroriparian plants lost 91 and 81% of live cover, respectively, in fires. The trees Olneya tesota and Cercidium had high amounts of top-kill. King Valley was an important xeroriparian corridor for birds. Species richness of birds decreased significantly following the fire. Numbers of breeding birds were lower in burned areas of King Valley 3 years post-fire, compared to numbers in nearby but unburned Alamo Wash. Although birds function within a large geographic scale, the extent of this burn still influenced the relative abundance of local species of breeding birds. This suggests that breeding birds respond to conditions of localized burns and slow recovery of vegetation contributes to continued lower numbers of birds in the burned sites in King Valley.

  5. Cogeneration, waste-fuel firing cut company's energy costs

    SciTech Connect

    Schwieger, B.

    1982-07-01

    To produce electricity on a continuous basis and to solve the company's waste-disposal problem Knouse Foods installed an 800-kW gas turbine/generator which delivers 28,000 cfm of 825F-850F exhaust gas at full load to a watertube heat-recovery boiler. The boiler is capable of supplying up to 5600 lb/hr of 150-psig steam to the plant's process-steam header. Turbine exhaust gas flows from the boiler to a rotary dryer where it evaporates moisture from about 4000 lb/hr of raw pomace. The dryer produces a quality fuel with a heating value of approximately 7000-7500 Btu/lb and with 8% to 10% moisture. Six cyclone collectors arranged in parallel remove fines from the dryer effluent stream before it is discharged to the environment.

  6. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  7. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.

    PubMed

    Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B

    2016-12-01

    Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m(3) (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed

  8. Relationship of surface fuels to fire radiative energy as estimated from airborne lidar and thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.

    2013-12-01

    Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3

  9. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleno Mountains, Arizona, USA

    Treesearch

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam

    2014-01-01

    In recent decades fire size and severity have been increasing in high elevation forests of the American Southwest. Ecological outcomes of these increases are difficult to gauge without an historical context for the role of fire in these systems prior to interruption by Euro-American land uses. Across the gradient of forest types in the Pinaleño Mountains, a Sky Island...

  10. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA.

    SciTech Connect

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by exploring the relationships between overstory forest vegetation attributes, recent fire history, and selected surface fuel components across an 80,000 ha contiguous landscape. Measurements of dead and live vegetation components of surface fuels were obtained from 624 permanent plots, or about 1 plot per 100 ha of forest cover. Within forest vegetation groups, we modeled the relationship between individual surface fuel components and overstory stand age, basal area, site quality and recent fire history, then stochastically predicted fuel loads across the landscape using the same linkage variables. The fraction of the plot variation, i.e., R2, explained by predictive models for individual fuel components ranged from 0.05 to 0.66 for dead fuels and 0.03 to 0.97 for live fuels in pine dominated vegetation groups. Stand age and basal area were generally more important than recent fire history for predicting fuel loads. Mapped fuel loads using these regressor variables showed a very heterogeneous landscape even at the scale of a few square kilometers. The mapped patterns corresponded to stand based forest management disturbances that are reflected in age, basal area, and fire history. Recent fire history was significant in explaining variation in litter and duff biomass. Stand basal area was positively and consistently related to dead fuel biomass in most groups and was present in many predictive equations. Patterns in live fuel biomass were related to recent fire history, but the patterns were not consistent among forest vegetation groups. Age and basal area were related to live fuels in a complex manner that

  11. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 06: Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...

  12. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population.

    PubMed

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-08-01

    Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad-leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log-DC in PEF populations was related to log-transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log-EcoD, and particularly by the Log-EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when

  13. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population

    PubMed Central

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-01-01

    Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad-leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log-DC in PEF populations was related to log-transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log-EcoD, and particularly by the Log-EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when

  14. Measurement of the spatial dependence of temperature and gas and soot concentrations within large open hydrocarbon fuel fires

    NASA Technical Reports Server (NTRS)

    Johnson, H. T.; Linley, L. J.; Mansfield, J. A.

    1982-01-01

    A series of large-scale JP-4 fuel pool fire tests was conducted to refine existing mathematical models of large fires. Seven tests were conducted to make chemical concentration and temperature measurements in 7.5 and 15 meter-diameter pool fires. Measurements were made at heights of 0.7, 1.4, 2.9, 5.7, 11.4, and 21.3 meters above the fires. Temperatures were measured at up to 50 locations each second during the fires. Chemistry samples were taken at up to 23 locations within the fires and analyzed for combustion chemistry and soot concentration. Temperature and combustion chemistry profiles obtained during two 7.5 meter-diameter and two 15 meter-diameter fires are included.

  15. Short-term impact of post-fire salvage logging on regeneration, hazardous fuel accumulation, and understorey development in ponderosa pine forest of the Black Hills, SD, USA

    Treesearch

    Tara L Keyser; Fredrick W Smith; Wayne D. Shepperd

    2009-01-01

    We examined the impacts of post-fire salvage logging on regeneration, fuel accumulation, and understorey vegetation and assessed whether the effects of salvage logging differed between stands burned under moderate and high fire severity following the 2000 Jasper Fire in the Black Hills. In unsalvaged sites, fire-related tree mortality...

  16. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fires in a Sierra Nevada mixed conifer forest

    Treesearch

    Eric E. Knapp; Jon E. Keeley; Elizabeth A. Ballenger; Teresa J. Brennan

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions....

  17. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels.

    PubMed

    Permchart, W; Kouprianov, V I

    2004-03-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions.

  18. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  19. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  20. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  1. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  2. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  3. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests

    Treesearch

    Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo

    2011-01-01

    We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...

  4. Relative importance of fuel management, ignition management and weather for area burned: Evidence from five landscape-fire-succession models

    Treesearch

    Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons

    2009-01-01

    The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...

  5. Short-term effects of prescribed fire in grand fir-white pine-western hemlock slash fuels

    Treesearch

    Elizabeth D. Reinhardt; Russell T. Graham; Theresa B. Jain; Dennis G. Simmerman

    1994-01-01

    Experimental burns were conducted on 36 plots in mixed conifer logging slash in northern Idaho, under varying fuel loadings and moisture conditions. This paper reports the immediate effects of these burns on the forest floor, the woody fuel complex, and the plant community, and includes recommendations to managers for using prescribed fire in this forest type. Much of...

  6. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA

    Treesearch

    Bernard R. Parresol; John I. Blake; Andrew J. Thompson

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...

  7. Understory Herbicide as a Treatment For Reducing Hazardous Fuels and Extreme Fire Behavior in Slash Pine Plantations

    Treesearch

    Patrick H. Brose; Dale Wade

    2002-01-01

    The 1998 wildfires in Florida sparked a serious debate about the accumulation of hazardous forest fuels and the merits of prescribed fire and alternatives for mitigating that problem. One such alternative is application of understory herbicides and anecdotal evidence suggests they may either exacerbate or lessen the fuel accumulation problem. In 1998, a study was...

  8. National fire-danger rating system fine-fuel moisture content tables—an Alaskan adaptation.

    Treesearch

    Richard J. Barney

    1969-01-01

    Fine-fuel moisture content tables, using dry bulb and dewpoint temperatures as entry data, have been developed for use with the National Fire-Danger Rating System in Alaska. Comparisons have been made which illustrate differences resulting from danger-rating calculations based on these new fine-fuel moisture content tables for the cured, transition, and green...

  9. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... access, and of sufficient length to reach any part of the boiler room and spaces containing oil-fuel... 46 Shipping 7 2010-10-01 2010-10-01 false Fire-fighting equipment on nautical school ships...

  10. Fire!

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1996-01-01

    The number of school fires is up nationwide. This article describes unsafe school conditions, problems with new fire codes, and the factors that contribute to school fires. Installation of sprinkler systems is recommended. A fire-safety checklist is included. (LMI)

  11. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire?

    PubMed Central

    Abouelkheir, Gabriella R; Upchurch, Bradley D

    2017-01-01

    Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes – a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune

  12. Photo series for quantifying fuels and assessing fire risk in giant sequoia groves. Forest Service general technical report

    SciTech Connect

    Weise, D.R.; Gelobter, A.; Haase, S.M.; Sackett, S.S.

    1997-03-01

    Fuels and stand inventory data are presented for giant sequoia by using 18 different photos located in giant sequoia/mixed conifer stands in the Sierra Nevada of California. Total fuel loading ranges from 7 to 72 tons/acre. The stands have been subjected to a variety of disturbances including timbers harvesting, wildfire, prescribed fire, and recreational use. Fire behavior predictions were made by using 10th, 50th, and 90th percentile weather conditions and the inventoried fuels information. The long-term visual impacts of the various management activities can also be partially assessed with this photo series.

  13. Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.

    SciTech Connect

    Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

    2010-10-01

    For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

  14. Telemetry system for evaluation of burn protection in full-scale fuel fire manikin exposures

    NASA Astrophysics Data System (ADS)

    Piergallini, J. R.; Stoll, A. M.

    1980-05-01

    An eighteen channel PAM/FM (Pulse Amplitude Modulated/Frequency Modulated) telemetry system was developed for measuring temperature rise on the surface of a manikin beneath protective clothing for full-scale fuel fire exposures in completely enveloping flames. Thermistors are used as temperature sensors at various locations on a manikin surface and backed by material of known thermal properties in order to correlate temperature rise with skin burn damage. The transmitted signals are recorded on analog magnetic tape and converted to a digital format for computer analysis. The clothed manikin is passed through an aviation gasoline fire for three seconds with the telemetry system recording data during this period. Temperatures are analyzed at 0, 1, 2 and 3-second intervals with voltage outputs from the thermistors being converted to resistance readings and temperature readings by equations developed from curves of thermistor characteristics. Experimental results with respect to burn prediction are in agreement with data obtained by analysis of vesicant papers calibrated radiometrically to correlate with temperature-time effects productive of burns in living tissue. To date, 12 full-scale fuel fire tests have been conducted using the telemetry system and the performance of this system has exceeded original expectations in many respects such as sensitivity, accuracy and freedom from interference by ionizing gases within the flames.

  15. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify

  16. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Treesearch

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  17. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Treesearch

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  18. A review of fire effects on vegetation and soils in the Great Basin Region: response and ecological site characteristics

    Treesearch

    Richard F. Miller; Jeanne C. Chambers; David A. Pyke; Fred B. Pierson; C. Jason. Williams

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation...

  19. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  20. Ecological dominance of the red imported fire ant, Solenopsis invicta, in its native range.

    PubMed

    Calcaterra, Luis A; Livore, Juan P; Delgado, Alicia; Briano, Juan A

    2008-05-01

    Despite the widespread impacts invasive species can have in introduced populations, little is known about competitive mechanisms and dominance hierarchies between invaders and similar taxa in their native range. This study examines interactions between the red imported fire ant, Solenopsis invicta, and other above-ground foraging ants in two habitats in northeastern Argentina. A combination of pitfall traps and baits was used to characterize the ant communities, their dominance relationships, and to evaluate the effect of phorid flies on the interactions. Twenty-eight ant species coexisted with S. invicta in a gallery forest gap, whereas only ten coexisted with S. invicta in a xerophytic forest grassland. S. invicta was the most numerically dominant species in the richest and complex habitat (gallery forest); however it performed better as discoverer and dominator in the simpler habitat. S. invicta was active during day and night. In spite of its poor capacity to discover resources, S. invicta showed the highest ecological dominance and the second-best behavioral dominance after Camponotus blandus. S. invicta won 78% of the interactions with other ants, mostly against its most frequent competitor, Pheidole cf. obscurithorax, dominating baits via mass recruitment and chemical aggression. P. cf. obscurithorax was the best food discoverer. S. invicta won 80% of the scarce interactions with Linepithema humile. Crematogaster quadriformis was one of the fastest foragers and the only ant that won an equal number of contests against S. invicta. The low presence of phorid flies affected the foraging rate of S. invicta, but not the outcome of interspecific interactions. This study revealed that the red imported fire ant ecologically dominated other terrestrial ants in its native range; however, other species were able to be numerically dominant or co-dominant in its presence.