Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian
2015-03-01
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.
NASA Astrophysics Data System (ADS)
Ding, Carl-Philipp; Sjöberg, Magnus; Vuilleumier, David; Reuss, David L.; He, Xu; Böhm, Benjamin
2018-03-01
This study shows fuel film measurements in a spark-ignited direct injection engine using refractive index matching (RIM). The RIM technique is applied to measure the fuel impingement of a high research octane number gasoline fuel with 30 vol% ethanol content at two intake pressures and coolant temperatures. Measurements are conducted for an alkylate fuel at one operating case, as well. It is shown that the fuel volume on the piston surface increases for lower intake pressure and lower coolant temperature and that the alkylate fuel shows very little spray impingement. The fuel films can be linked to increased soot emissions. A detailed description of the calibration technique is provided and measurement uncertainties are discussed. The dependency of the RIM signal on refractive index changes is measured. The RIM technique provides quantitative film thickness measurements up to 0.9 µm in this engine. For thicker films, semi-quantitative results of film thickness can be utilized to study the distribution of impinged fuel.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such asmore » Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoberg, Carl Magnus Goran; Vuilleumier, David
Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is usedmore » to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.« less
FY2015 Annual Report for Alternative Fuels DISI Engine Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjöberg, Carl-Magnus G.
2016-01-01
Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less
Palliative effects of H2 on SOFCs operating with carbon containing fuels
NASA Astrophysics Data System (ADS)
Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.
2017-12-01
Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.
Planning and supervision of reactor defueling using discrete event techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, H.E.; Imel, G.R.; Houshyar, A.
1995-12-31
New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on themore » progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.« less
Zhang, Ziheng; Martin, Jonathan; Wu, Jinfeng; Wang, Haijiang; Promislow, Keith; Balcom, Bruce J
2008-08-01
Water management is critical to optimize the operation of polymer electrolyte membrane fuel cells. At present, numerical models are employed to guide water management in such fuel cells. Accurate measurements of water content variation in polymer electrolyte membrane fuel cells are required to validate these models and to optimize fuel cell behavior. We report a direct water content measurement across the Nafion membrane in an operational polymer electrolyte membrane fuel cell, employing double half k-space spin echo single point imaging techniques. The MRI measurements with T2 mapping were undertaken with a parallel plate resonator to avoid the effects of RF screening. The parallel plate resonator employs the electrodes inherent to the fuel cell to create a resonant circuit at RF frequencies for MR excitation and detection, while still operating as a conventional fuel cell at DC. Three stages of fuel cell operation were investigated: activation, operation and dehydration. Each profile was acquired in 6 min, with 6 microm nominal resolution and a SNR of better than 15.
MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING
The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...
Dynamically balanced fuel nozzle and method of operation
Richards, George A.; Janus, Michael C.; Robey, Edward H.
2000-01-01
An apparatus and method of operation designed to reduce undesirably high pressure oscillations in lean premix combustion systems burning hydrocarbon fuels are provided. Natural combustion and nozzle acoustics are employed to generate multiple fuel pockets which, when burned in the combustor, counteract the oscillations caused by variations in heat release in the combustor. A hybrid of active and passive control techniques, the apparatus and method eliminate combustion oscillations over a wide operating range, without the use of moving parts or electronics.
Inorganic salt mixtures as electrolyte media in fuel cells
NASA Technical Reports Server (NTRS)
Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)
2012-01-01
Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Leshane, A. A.
1976-01-01
The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Dubin, A. P.
1976-01-01
A study has been performed to evaluate the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of the fuel-conserving alternatives has been investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000.
Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov
This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less
Site remediation techniques in India: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anomitra Banerjee; Miller Jothi
India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelandsmore » arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)« less
Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Valdez, T. I.; Narayanan, S. R.
2000-01-01
In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.
Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Hagedorn, N. H.
1974-01-01
Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.
FY2016 Ceramic Fuels Development Annual Highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclellan, Kenneth James
Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C
2013-04-18
Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
NASA Astrophysics Data System (ADS)
Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy
2017-12-01
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
Feedback control for fuel-optimal descents using singular perturbation techniques
NASA Technical Reports Server (NTRS)
Price, D. B.
1984-01-01
In response to rising fuel costs and reduced profit margins for the airline companies, the optimization of the paths flown by transport aircraft has been considered. It was found that application of optimal control theory to the considered problem can result in savings in fuel, time, and direct operating costs. The best solution to the aircraft trajectory problem is an onboard real-time feedback control law. The present paper presents a technique which shows promise of becoming a part of a complete solution. The application of singular perturbation techniques to the problem is discussed, taking into account the benefits and some problems associated with them. A different technique for handling the descent part of a trajectory is also discussed.
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.
Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492
Safety considerations in testing a fuel-rich aeropropulsion gas generator
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James; Hulligan, David D.
1991-01-01
A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.
NASA Astrophysics Data System (ADS)
Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik
2016-08-01
This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.
The use of 1H NMR microscopy to study proton-exchange membrane fuel cells.
Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E
2006-01-16
To understand proton-exchange membrane fuel cells (PEMFCs) better, researchers have used several techniques to visualize their internal operation. This Concept outlines the advantages of using 1H NMR microscopy, that is, magnetic resonance imaging, to monitor the distribution of water in a working PEMFC. We describe what a PEMFC is, how it operates, and why monitoring water distribution in a fuel cell is important. We will focus on our experience in constructing PEMFCs, and demonstrate how 1H NMR microscopy is used to observe the water distribution throughout an operating hydrogen PEMFC. Research in this area is briefly reviewed, followed by some comments regarding challenges and anticipated future developments.
Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow
NASA Technical Reports Server (NTRS)
Valdez, T. I.; Narayanan, S. R.
2002-01-01
This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
NASA Astrophysics Data System (ADS)
Smith, James D.; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
Smith, James D; Sick, Volker
2005-11-01
An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.
General aviation energy-conservation research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1977-01-01
The major thrust of NASA's nonturbine general aviation engine programs is directed toward (1) reduced specific fuel consumption, (2) improved fuel tolerance; and (3) emission reduction. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines.
Fuel management optimization using genetic algorithms and code independence
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1994-12-31
Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less
Development of advanced strain diagnostic techniques for reactor environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.
2013-02-01
The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less
Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel
NASA Astrophysics Data System (ADS)
Lewis, operating defective fuel B. J.; Thompson, W. T.; Akbari, F.; Thompson, D. M.; Thurgood, C.; Higgs, J.
2004-07-01
A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor.
Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations
NASA Astrophysics Data System (ADS)
Shan, Fanli; Hou, Lingyun; Piao, Ying
2013-04-01
HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier-Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas-solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.
Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques
NASA Astrophysics Data System (ADS)
Abdioskouei, M.; Carmichael, G. R.
2015-12-01
Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.
POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS
The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...
Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation
NASA Astrophysics Data System (ADS)
Cauty, F.
2004-10-01
The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
NASA Technical Reports Server (NTRS)
Rohy, D. A.; Meier, J. G.
1983-01-01
Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.
Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.
Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf
2017-04-01
Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.
Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell
Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei
2009-01-01
Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963
Determination of plutonium in spent nuclear fuel using high resolution X-ray
McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.
2015-05-30
Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less
Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Amit; Kumari, Monika; Kumar, Mintu
2016-05-06
Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO{sub 2} was increased. Synthesized nanoparticle were characterized by the XRDmore » and UV absorption techniques.« less
NASA Astrophysics Data System (ADS)
Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.
2016-12-01
Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.
Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Das, Debanjan
Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the obtained information. The obtained values closely range from around 11 mA cm-2 - 16 mA cm -2 with reasonable repeatability and excellent accuracy. The potential advantages of EFM compared to traditional methods were realized and our primary aim at demonstrating this technique on a SOFC system are presented which can act as a starting point for future research efforts in this area. Finally, an approach based on in-situ State of Health tests by EIS was formulated and investigated to understand the most efficient fuel conditions for suitable long term operation of a solid oxide fuel cell stack under power generation conditions. The procedure helped to reflect the individual effects of three most important fuel characteristics CO/H2 volumetric ratio, S/C ratio and fuel utilization under the presence of a simulated alternative fuel at 0.4 A cm-2. Variation tests helped to identify corresponding electrochemical/chemical processes, narrow down the most optimum operating regimes considering practical behavior of simulated reformer-SOFC system arrangements. At the end, 8 different combinations of the optimized parameters were tested long term with the stack, and the most efficient blend was determined.
Review of PWR fuel rod waterside corrosion behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzarolli, F.; Jorde, D.; Manzel, R.
Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less
NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.E. Woolstenhulme; S.C. Taylor; G.A. Moore
2012-09-01
Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can bemore » characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.« less
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Briehl, D.
1982-01-01
An experimental program to investigate hardware configurations which attempt to minimize carbon formation and soot production without sacrificing performance in small gas turbine combustors has been conducted at the United Technologies Research Center. Four fuel injectors, embodying either airblast atomization, pressure atomization, or fuel vaporization techniques, were combined with nozzle air swirlers and injector sheaths, and evaluated at test conditions which included and extended beyond standard small gas turbine combustor operation. Extensive testing was accomplished with configurations embodying either a spill return or a T-vaporizer injector. Minimal carbon deposits were observed on the spill return nozzle for tests using either Jet A or ERBS test fuel. A more extensive film of soft carbon was observed on the vaporizer after operation at standard engine conditions, with large carbonaceous growths forming on the device during off-design operation at low combustor inlet temperature. Test results indicated that smoke emission levels depended on the combustor fluid mechanics (especially the mixing rates near the injector), the atomization quality of the injector and the fuel hydrogen content.
Development of wireless vehicle remote control for fuel lid operation
NASA Astrophysics Data System (ADS)
Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.
2018-04-01
Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.
NASA Astrophysics Data System (ADS)
Abashev, V. M.; Korabelnikov, A. V.; Kuranov, A. L.; Tretyakov, P. K.
2017-10-01
At the analysis of the work process in a ramjet, a complex consideration of the ensemble of problems the solution of which determines the engine efficiency appears reasonable. The main problems are ensuring a high completeness of fuel combustion and minimal hydraulic losses, the reliability of cooling of high-heat areas with the use of the fuel cooling resource, and ensuring the strength of the engine duct elements under non-uniform heat loads due to fuel combustion in complex gas-dynamic flow structures. The fundamental techniques and approaches to the solution of above-noted problems are considered in the present report, their novelty and advantages in comparison with conventional techniques are substantiated. In particular, a technique of the arrangement of an intense (pre-detonation) combustion regime for ensuring a high completeness of fuel combustion and minimal hydraulic losses at a smooth deceleration of a supersonic flow down to the sound velocity using the pulsed-periodic gas-dynamic flow control has been proposed. A technique has been proposed for cooling the high-heat areas, which employs the cooling resource of the hydrocarbon fuel, including the process of the kerosene chemical transformation (conversion) using the nano-catalysts. An analysis has shown that the highly heated structure will operate in the elastic-plastic domain of the behavior of constructional materials, which is directly connected to the engine operation resource. There arise the problems of reducing the ramjet shells depending on deformations. The deformations also lead to a significant influence on the work process in the combustor and, naturally, on the heat transfer process and the performance of catalysts (the action of plastic and elastic deformations of restrained shells). The work presents some results illustrating the presence of identified problems. A conclusion is drawn about the necessity of formulating a complex investigation both with the realization in model experiments and execution of computational and theoretical investigations.
Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
NASA Astrophysics Data System (ADS)
Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2016-02-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
Ultrafast X-ray Imaging of Fuel Sprays
NASA Astrophysics Data System (ADS)
Wang, Jin
2007-01-01
Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.
Rodovalho, Edmo da Cunha; Lima, Hernani Mota; de Tomi, Giorgio
2016-05-01
The mining operations of loading and haulage have an energy source that is highly dependent on fossil fuels. In mining companies that select trucks for haulage, this input is the main component of mining costs. How can the impact of the operational aspects on the diesel consumption of haulage operations in surface mines be assessed? There are many studies relating the consumption of fuel trucks to several variables, but a methodology that prioritizes higher-impact variables under each specific condition is not available. Generic models may not apply to all operational settings presented in the mining industry. This study aims to create a method of analysis, identification, and prioritization of variables related to fuel consumption of haul trucks in open pit mines. For this purpose, statistical analysis techniques and mathematical modelling tools using multiple linear regressions will be applied. The model is shown to be suitable because the results generate a good description of the fuel consumption behaviour. In the practical application of the method, the reduction of diesel consumption reached 10%. The implementation requires no large-scale investments or very long deadlines and can be applied to mining haulage operations in other settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of fuel corrosion products using planar laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.
1993-01-01
Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Design and evaluation of a nondestructive fissile assay device for HTGR fuel samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeany, S. R.; Knoll, R. W.; Jenkins, J. D.
1979-02-01
Nondestructive assay of fissile material plays an important role in nuclear fuel processing facilities. Information for product quality control, plant criticality safety, and nuclear materials accountability can be obtained from assay devices. All of this is necessary for a safe, efficient, and orderly operation of a production plant. Presented here is a design description and an operational evaluation of a device developed to nondestructively assay small samples of High-Temperature Gas-Cooled Reactor (HTGR) fuel. The measurement technique employed consists in thermal-neutron irradiation of a sample followed by pneumatic transfer to a high-efficiency neutron detector where delayed neutrons are counted. In general,more » samples undergo several irradiation and count cycles during a measurement. The total number of delayed-neutron counts accumulated is translated into grams of fissile mass through comparison with the counts accumulated in an identical irradiation and count sequence of calibration standards. Successful operation of the device through many experiments over a one-year period indicates high operational reliability. Tests of assay precision show this to be better than 0.25% for measurements of 10 min. Assay biases may be encountered if calibration standards are not representative of unknown samples, but reasonable care in construction and control of standards should lead to no more than 0.2% bias in the measurements. Nondestructive fissile assay of HTGR fuel samples by thermal-neutron irradiation and delayed-neutron detection has been demonstrated to be a rapid and accurate analysis technique. However, careful attention and control must be given to calibration standards to see that they remain representative of unknown samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.
Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less
Fuel-Conservation Guidance System for Powered-Lift Aircraft
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; McLean, John D.
1981-01-01
A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.
Biodiesel: Characterization by DSC and P-DSC
NASA Astrophysics Data System (ADS)
Chiriac, Rodica; Toche, François; Brylinski, Christian
Thermal analytical methods such as differential scanning calorimetry (DSC) have been successfully applied to neat petrodiesel and engine oils in the last 25 years. This chapter shows how DSC and P-DSC (pressurized DSC) techniques can be used to compare, characterize, and predict some properties of alternative non-petroleum fuels, such as cold flow behavior and oxidative stability. These two properties are extremely important with respect to the operability, transport, and long-term storage of biodiesel fuel. It is shown that the quantity of unsaturated fatty acids in the fuel composition has an important impact on both properties. In addition, it is shown that the impact of fuel additives on the oxidative stability or the cold flow behavior of biodiesel can be studied by means of DSC and P-DSC techniques. Thermomicroscopy can also be used to study the cold flow behavior of biodiesel, giving information on the size and the morphology of crystals formed at low temperature.
Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation
NASA Astrophysics Data System (ADS)
Manogharan, Guha; Kioko, Meshack; Linkous, Clovis
2015-03-01
With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.
NASA Astrophysics Data System (ADS)
Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves
2017-03-01
This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.
2011-07-01
A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have notmore » been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)« less
Fuel-injection control of S.I. engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, S.B.; Won, M.; Hedrick, J.K.
1994-12-31
It is known that about 50% of air pollutants comes from automotive engine exhaust, and mostly in a transient state operation. However, the wide operating range, the inherent nonlinearities of the induction process and the large modeling uncertainties make the design of the fuel-injection controller very difficult. Also, the unavoidable large time-delay between control action and measurement causes the problem of chattering. In this paper, an observer-based control algorithm based on sliding mode control technique is suggested for fast response and small amplitude chattering of the air-to-fuel ratio. A direct adaptive control using Gaussian networks is applied to the compensationmore » of transient fueling dynamics. The proposed controller is simple enough for on-line computation and is implemented on an automotive engine using a PC-386. The simulation and the experimental results show that this algorithm reduces the chattering magnitude considerably and is robust to modeling errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.C. Baker; T.M. Pfeiffer; J.C. Price
2013-09-01
Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less
Thermal Stability of Distillate Hydrocarbon Fuels. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Reddy, Kishenkumar Tadisina; Cernansky, Nicholas P.
1987-01-01
Thermal stability of fuels is expected to become a severe problem in the future due to the anticipated use of broadened specification and alternative fuels. Future fuels will have higher contents of heteroatomic species which are reactive constituents and are known to influence fuel degradation. To study the degradation chemistry of selected model fuels, n-dodecane and n-dodecane plus heteroatoms were aerated by bubbling air through the fuels amd stressed on a modified Jet Fuel Thermal Oxidation Tester facility operating at heater tube temperatures between 200 to 400 C. The resulting samples were fractionated to concentrate the soluble products and then analyzed using gas chromatographic and mass spectrometric techniques to quantify and identify the stable reaction intermediate and product specifically. Heteroatom addition showed that the major soluble products were always the same, with and without heteroatoms, but their distributions varied considerably.
Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.
2004-01-01
Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have resulted from this feedback. Alternate diagnostic methods are constantly being evaluated as to their suitability as a diagnostic tool in these environments. A new method currently under examination is background oriented Schlieren (BOS) for examining the fuel/air mixing processes. While ratioing the Stokes and anti-Stokes nitrogen lines obtained from spontaneous Raman is being refined for temperature measurement. While the primary focus of the GRC diagnostic work remains optical species measurement and flow stream characterization, an increased emphasis has been placed on our involvement in flame code validation efforts. A functional combustor code should shorten and streamline future combustor design. Quantitative measurements of flow parameters such as temperature, species concentration, drop size and velocity using such methods as Raman and phase Doppler anemometry will provide data necessary in this effort.
NASA Astrophysics Data System (ADS)
Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.
2014-09-01
Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls (more than two carbon atoms) showed also more contribution in the emission profile of the HFO fuel (26%) than in DF (22%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less
An Approach to Economic Dispatch with Multiple Fuels Based on Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Sriyanyong, Pichet
2011-06-01
Particle Swarm Optimization (PSO), a stochastic optimization technique, shows superiority to other evolutionary computation techniques in terms of less computation time, easy implementation with high quality solution, stable convergence characteristic and independent from initialization. For this reason, this paper proposes the application of PSO to the Economic Dispatch (ED) problem, which occurs in the operational planning of power systems. In this study, ED problem can be categorized according to the different characteristics of its cost function that are ED problem with smooth cost function and ED problem with multiple fuels. Taking the multiple fuels into account will make the problem more realistic. The experimental results show that the proposed PSO algorithm is more efficient than previous approaches under consideration as well as highly promising in real world applications.
Preparation of PEMFC Electrodes from Milligram-Amounts of Catalyst Powder
Yarlagadda, Venkata; McKinney, Samuel E.; Keary, Cristin L.; ...
2017-06-03
Development of electrocatalysts with higher activity and stability is one of the highest priorities in enabling cost-competitive hydrogen-air fuel cells. Although the rotating disk electrode (RDE) technique is widely used to study new catalyst materials, it has been often shown to be an unreliable predictor of catalyst performance in actual fuel cell operation. Fabrication of membrane electrode assemblies (MEA) for evaluation which are more representative of actual fuel cells generally requires relatively large amounts (>1 g) of catalyst material which are often not readily available in early stages of development. In this study, we present two MEA preparation techniques usingmore » as little as 30 mg of catalyst material, providing methods to conduct more meaningful MEA-based tests using research-level catalysts amounts.« less
General aviation internal-combustion engine research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1978-01-01
An update is presented of non-turbine general aviation engine programs. The program encompasses conventional, lightweight diesel and rotary engines. It's three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reduced emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.
Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena
2004-05-01
Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.
NASA Astrophysics Data System (ADS)
Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.
2018-04-01
Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.
NASA Astrophysics Data System (ADS)
Shabliy, L. S.; Malov, D. V.; Bratchinin, D. S.
2018-01-01
In the article the description of technique for simulation of valves for pneumatic-hydraulic system of liquid-propellant rocket engine (LPRE) is given. Technique is based on approach of computational hydrodynamics (Computational Fluid Dynamics - CFD). The simulation of a differential valve used in closed circuit LPRE supply pipes of fuel components is performed to show technique abilities. A schematic and operation algorithm of this valve type is described in detail. Also assumptions made in the construction of the geometric model of the hydraulic path of the valve are described in detail. The calculation procedure for determining valve hydraulic characteristics is given. Based on these calculations certain hydraulic characteristics of the valve are given. Some ways of usage of the described simulation technique for research the static and dynamic characteristics of the elements of the pneumatic-hydraulic system of LPRE are proposed.
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Safeguard monitoring of direct electrolytic reduction
NASA Astrophysics Data System (ADS)
Jurovitzki, Abraham L.
Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2). Electrochemical analysis was demonstrated to be effective at detecting even very dilute concentrations of actinides as evidence for a diversion attempt.
Analysis of combustion spectra containing organ pipe tone by cepstral techniques
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.
1982-01-01
Signal reinforcements and cancellations due to standing waves may distort constant bandwidth combustion spectra. Cepstral techniques previously applied to the ground reflection echo problem are used to obtain smooth broadband data and information on combustion noise propagation. Internal fluctuating pressure measurements made using a J47 combustor attached to a 6.44 m long duct are analyzed. Measurements made with Jet A and hydrogen fuels are compared. The acoustic power levels inferred from the measurements are presented for a range of low heat release rate operating conditions near atmospheric pressure. For these cases, the variation with operating condition of the overall acoustic broadband power level for both hydrogen and Jet A fuels is consistent with previous results showing it was proportional to the square of the heat release rate. However, the overall acoustic broadband power level generally is greater for hydrogen than for Jet A.
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Zaller, Michelle M.; Hicks, Yolanda R.; Anderson, Robert C.
1999-01-01
The next generation of was turbine combustors for aerospace applications will be required to meet increasingly stringent constraints on fuel efficiency, noise abatement, and emissions. The power plants being designed to meet these constraints will operate at extreme conditions of temperature and pressure, thereby generating unique challenges to the previously employed diagnostic methodologies. Current efforts at NASA Glenn Research Center (GRC) utilize optically accessible, high pressure flametubes and sector combustor rigs to probe, via advanced nonintrusive laser techniques, the complex flowfields encountered in advanced combustor designs. The fuel-air mixing process is of particular concern for lowering NO(x) emissions generated in lean, premixed engine concepts. Using planar laser-induced fluorescence (PLIF) we have obtained real-time, detailed imaging of the fuel spray distribution for a number of fuel injector over a wide range of operational conditions that closely match those expected in the proposed propulsion systems. Using a novel combination of planar imaging, of fuel fluorescence and computational analysis that allows an examination of the flowfield from any perspective, we have produced spatially and temporally resolved fuel-air distribution maps. These maps provide detailed insight into the fuel injection at actual conditions never before possible, thereby greatly enhancing the evaluation of fuel injector performance and combustion phenomena.
NASA Astrophysics Data System (ADS)
Locke, Randy J.; Zaller, Michelle M.; Hicks, Yolanda R.; Anderson, Robert C.
1999-10-01
The next generation of ga turbine combustors for aerospace applications will be required to meet increasingly stringent constraints on fuel efficiency, noise abatement, and emissions. The power plants being designed to meet these constraints will operate at extreme conditions of temperature and pressure, thereby generating unique challenges to the previously employed diagnostic methodologies. Current efforts at NASA Glenn Research Center GRC utilize optically accessible, high-pressure flametubes and sector combustor rigs to probe, via advanced nonintrusive laser techniques, the complex flowfields encountered in advanced combustor designs. The fuel-air mixing process is of particular concern for lowering NOx emissions generated in lean, premixed engine concepts. Using planar laser-induced fluorescence we have obtained real- time, detailed imaging of the fuel spray distribution for a number of fuel injectors over a wide range of operational conditions that closely match those expected in the proposed propulsion systems. Using a novel combination of planar imaging of fuel fluorescence and computational analysis that allows an examination of the flowfield from any perspective, we have produced spatially and temporally resolved fuel-air distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions never before possible, thereby greatly enhancing the evaluation of fuel injector performance and combustion phenomena.
A Cost Estimation Analysis of U.S. Navy Ship Fuel-Savings Techniques and Technologies
2009-09-01
readings to the boiler operator. The PLC will provide constant automatic trimming of the excess oxygen based upon real time SGA readings. An SCD...the author): The Aegis Combat System is controlled by an advanced, automatic detect-and-track, multi-function three-dimensional passive...subsequently offloaded. An Online Wash System would reduce these maintenance costs and improve fuel efficiency of these engines by keeping the engines
Visual display aid for orbital maneuvering - Design considerations
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1993-01-01
This paper describes the development of an interactive proximity operations planning system that allows on-site planning of fuel-efficient multiburn maneuvers in a potential multispacecraft environment. Although this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include: (1) the use of an 'inverse dynamics' algorithm that removes control nonlinearities facing the operator, and (2) a trajectory planning technique that separates, through a 'geometric spreadsheet', the normally coupled complex problems of planning orbital maneuvers and allows solution by an iterative sequence of simple independent actions. The visual feedback of trajectory shapes and operational constraints, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool provides an example of operator-assisted optimization of nonlinear cost functions.
NASA Astrophysics Data System (ADS)
Daniels, Charles Howard
An experimental technique is developed for evaluating the influence of mixture preparation in the intake port on the performance of a spark ignited engine. The preparation components studied are fuel vapor, droplets, and liquid streams. The fuel in these three distinct forms are produced and varied in a specially designed mixture preparation system, which delivers an air/fuel mixture to a test cylinder of an engine. Incorporated in the preparation system are devices for measuring the flow rates of fuel in these forms. A method of estimating the vapor concentration of a gasoline in the preparation channel by the use of simple temperature measurements is also presented. The effect of these fuel forms on in-cylinder pressure performance and exhaust gas concentrations are investigated in a 1.9 L Ford engine. A matrix of engine operations are studied along with two gasolines of different volatilities. The results of this investigation show that the operation of the engine at low speeds and low manifold absolute pressures is most susceptible to the effects mixture preparation. For those engine operating conditions affected, the results show that by increasing the amount of fuel in liquid stream form, the performance of the engine is generally diminished. In addition, 'equivalent' mixtures resulting from a conventional injector and a pneumatic atomizer in the intake port are identified relative to engine performance.
NASA Astrophysics Data System (ADS)
Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.
2017-11-01
Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Steven Karl; Determan, John C.
Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS modelmore » tailored to this particular class using fissile fuel.« less
The fuel cell model of abiogenesis: a new approach to origin-of-life simulations.
Barge, Laura M; Kee, Terence P; Doloboff, Ivria J; Hampton, Joshua M P; Ismail, Mohammed; Pourkashanian, Mohamed; Zeytounian, John; Baum, Marc M; Moss, John A; Lin, Chung-Kuang; Kidd, Richard D; Kanik, Isik
2014-03-01
In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
NASA Astrophysics Data System (ADS)
Antonacci, Patrick
In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.
Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective
NASA Astrophysics Data System (ADS)
Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz
2016-08-01
Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework
Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aitkaliyeva; J. W. Madden; B. D. Miller
2014-10-01
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have beenmore » developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.« less
NASA Technical Reports Server (NTRS)
Fear, J. S.
1983-01-01
An assessment is made of the results of Phase 1 screening testing of current and advanced combustion system concepts using several broadened-properties fuels. The severity of each of several fuels-properties effects on combustor performance or liner life is discussed, as well as design techniques with the potential to offset these adverse effects. The selection of concepts to be pursued in Phase 2 refinement testing is described. This selection takes into account the relative costs and complexities of the concepts, the current outlook on pollutant emissions control, and practical operational problems.
TTI (Texas Transportation Institute) track/dynamometer study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reineman, M.; Thompson, G.
1983-01-01
Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
NASA Astrophysics Data System (ADS)
Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.
The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.
Non-isothermal two-phase transport in the polymer electrolyte membrane fuel cell microporous layer
NASA Astrophysics Data System (ADS)
Ge, Nan
This thesis investigates the water transport mechanisms in the crack-free microporous layer (MPL) of a polymer electrolyte membrane (PEM) fuel cell. Synchrotron X-ray radiography was used to visualize and quantify the in situ liquid water in the gas diffusion layers (GDLs) of an operating fuel cell. A methodology was developed to correct the artefact of imaging sample movement. Furthermore, to address inaccuracies due to the scattering effect and higher harmonics at the synchrotron beamline, a calibration technique was introduced in order to experimentally determine the liquid water X-ray attenuation coefficient. Through in situ radiography, liquid water breakthrough events were observed in the MPL, and measured water thicknesses were used as inputs into a one-dimensional (1D) heat and mass transport model. The 1D model was used to describe the coupled relationship between liquid and vapour transport through the cathode MPL and the temperature distributions in the operating fuel cell.
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Anderson, Robert C.; Locke, Randy J.; Hicks, Yolanda R.
2010-01-01
Performance of a multipoint, lean direct injection (MP-LDI) strategy for low emission aero-propulsion systems has been tested in a Jet-A fueled, lean flame tube combustion rig. Operating conditions for the series of tests included inlet air temperatures between 672 and 828 K, pressures between 1034 and 1379 kPa and total equivalence ratios between 0.41 and 0.45, resulting in equilibrium flame temperatures approaching 1800 K. Ranges of operation were selected to represent the spectrum of subsonic and supersonic flight conditions projected for the next-generation of commercial aircraft. This document reports laser-based measurements of in situ fuel velocities and fuel drop sizes for the NASA 9-point LDI hardware arranged in a 3 3 square grid configuration. Data obtained represent a region of the flame tube combustor with optical access that extends 38.1-mm downstream of the fuel injection site. All data were obtained within reacting flows, without particle seeding. Two diagnostic methods were employed to evaluate the resulting flow path. Three-component velocity fields have been captured using phase Doppler interferometry (PDI), and two-component velocity distributions using planar particle image velocimetry (PIV). Data from these techniques have also offered insight into fuel drop size and distribution, fuel injector spray angle and pattern, turbulence intensity, degree of vaporization and extent of reaction. This research serves to characterize operation of the baseline NASA 9- point LDI strategy for potential use in future gas-turbine combustor applications. An additional motive is the compilation of a comprehensive database to facilitate understanding of combustor fuel injector aerodynamics and fuel vaporization processes, which in turn may be used to validate computational fluid dynamics codes, such as the National Combustor Code (NCC), among others.
NASA Astrophysics Data System (ADS)
Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh
2016-09-01
In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.
DOT National Transportation Integrated Search
2017-08-01
Highway networks in the United States have been suffering from poor operational and structural condition states for the past decades. The consequent congestion problems often result in major delays, safety issues, and large amounts of additional fuel...
Fuel processing requirements and techniques for fuel cell propulsion power
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.; Yu, M.
Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.
NASA Astrophysics Data System (ADS)
Movahednejad, E.; Ommi, F.; Nekofar, K.
2013-04-01
The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.
A Study on a Prognosis Algorithm for PEMFC Lifetime Prediction based on Durability Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xian; Pisu, Pierluigi; Toops, Todd J
2010-01-01
Of the fuel cells being studied, the proton exchange membrane fuel cell (PEMFC) is viewed as the most promising for transportation. Yet until today, the commercialization of the PEMFC has not been widespread in spite of its large expectation. Poor long term performances or durability, and high production and maintenance costs account for the main reasons. For the final commercialization of fuel cell in transportation field, the durability issue must be addressed, while the costs should be further brought down. In the meantime, health-monitoring and prognosis techniques are of great significance in ensuring the normal operation of the fuel cellmore » and preventing or predicting its likely abrupt and catastrophic failure.« less
General aviation internal combustion engine research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1978-01-01
An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.
SHAPED FISSIONABLE METAL BODIES
Wigner, E.P.; Williamson, R.R.; Young, G.J.
1958-10-14
A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.
Preliminary design data package, appendices C1 and C2
NASA Technical Reports Server (NTRS)
1980-01-01
The HYBRID2 program which computes the fuel and energy consumption of a hybrid vehicle with a bi-modal control strategy over specified component driving cycles is described. Fuel and energy consumption are computed separately for the two modes of operation. The program also computes yearly average fuel and energy consumption using a composite driving cycle which varies as a function of daily travel. The modelling techniques are described, and subroutines and their functions are given. The composition of modern automobiles is discussed along with the energy required to manufacture an American automobile. The energy required to scrap and recycle automobiles is also discussed.
Compressed air production with waste heat utilization in industry
NASA Astrophysics Data System (ADS)
Nolting, E.
1984-06-01
The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
The Use Of Computational Human Performance Modeling As Task Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacuqes Hugo; David Gertman
2012-07-01
During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employedmore » to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.« less
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
2000-12-01
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1983-01-01
Results of an analytical investigation to determine the feasibility of temperature profiling in the space shuttle main engine (SSME) fuel preburner are presented. In this application it is desirable to measure temperature in the preburner combustor with a remote, nonintrusive optical technique. Several techniques using laser excitation were examined with a consideration of the constraints imposed by optical access in the fuel preburner and the problems associated with operation near the functioning space shuttle engine. The potential performance of practical diagnostic systems based on spontaneous Raman backscattering, laser induced fluorescence, and coherent anti-Stokes Raman spectroscopy were compared analytically. A system using collection of spontaneous Raman backscattering excited by a remotely located 5 to 10 watt laser propagated to the SSME through a small diameter optical fiber was selected as the best approach. Difficulties normally associated with Raman scattering: weak signal strength and interference due to background radiation are not expected to be problematic due to the very high density in this application, and the low flame luminosity expected in the fuel rich hydrogen oxygen flame.
Fuel pumping system and method
Shafer, Scott F [Morton, IL; Wang, Lifeng ,
2006-12-19
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel Pumping System And Method
Shafer, Scott F.; Wang, Lifeng
2005-12-13
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Aspects of remote maintenance in an FRG reprocessing plant from the manufacturer's viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitzchel, G.; Tennie, M.; Saal, G.
In April 1986 a consortium led by Kraftwerk Union AG was commissioned by the German society for nuclear fuel reprocessing (DWK) to build the first West German commercial reprocessing plant for spent fuel assemblies. The main result of the planning efforts regarding remote maintenance operations inside the main process building was the introduction of FEMO technology (FEMO is an acronym based on German for remote handling modular technique). According to this technology the two cells in which the actual reprocessing (which is based on the PUREX technique) takes place are provided with frames to accommodate the process components (tanks, pumps,more » agitators, etc.), each frame together with the components which it supports forming one module. The two cells are inaccessible and windowless. For handling operations each cell is equipped with an overhead crane and a crane-like manipulator carrier system (MTS) with power manipulator. Viewing of the operations from outside the cells is made possible by television (TV) cameras installed at the crane, the MTS, and the manipulator. This paper addresses some examples of problems that still need to be solved in connection with FEMO handling. In particular, the need for close cooperation between the equipment operator, the component designer, the process engineer, the planning engineer, and the licensing authorities will be demonstrated.« less
Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.
Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen
2016-04-27
In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.
Dispatchable hydrogen production at the forecourt for electricity grid balancing
NASA Astrophysics Data System (ADS)
Rahil, Abdulla; Gammon, Rupert; Brown, Neil
2017-02-01
The rapid growth of renewable energy (RE) generation and its integration into electricity grids has been motivated by environmental issues and the depletion of fossil fuels. For the same reasons, an alternative to hydrocarbon fuels is needed for vehicles; hence the anticipated uptake of electric and fuel cell vehicles. High penetrations of RE generators with variable and intermittent output threaten to destabilise electricity networks by reducing the ability to balance electricity supply and demand. This can be greatly mitigated by the use of energy storage and demand-side response (DSR) techniques. Hydrogen production by electrolysis is a promising option for providing DSR as well as an emission-free vehicle fuel. Tariff structures can be used to incentivise the operating of electrolysers as controllable (dispatchable) loads. This paper compares the cost of hydrogen production by electrolysis at garage forecourts under both dispatchable and continuous operation, while ensuring no interruption of fuel supply to fuel cell vehicles. An optimisation algorithm is applied to investigate a hydrogen refueling station in both dispatchable and continuous operation. Three scenarios are tested to see whether a reduced off-peak electricity price could lower the cost of electrolytic hydrogen. These scenarios are: 1) "Standard Continuous", where the electrolyser is operated continuously on a standard all-day tariff of 12p/kWh; 2) "Off-peak Only", where it runs only during off-peak periods in a 2-tier tariff system at the lower price of 5p/kWh; and 3) "2-Tier Continuous", operating continuously and paying a low tariff at off- peak times and a high tariff at other times. This study uses the Libyan coastal city of Derna as a case study. The cheapest electricity cost per kg of hydrogen produced was £2.8, which occurred in Scenario 2. The next cheapest, at £5.8 - £6.3, was in Scenario 3, and the most expensive was £6.8/kg in Scenario 1.
Development of an instantaneous local fuel-concentration measurement probe: an engine application
NASA Astrophysics Data System (ADS)
Guibert, P.; Boutar, Z.; Lemoyne, L.
2003-11-01
This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.
Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems
NASA Astrophysics Data System (ADS)
Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.
The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as fuel.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young
2015-02-01
This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.
Investigation of soot and carbon formation in small gas turbine combustors
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1982-01-01
An investigation of hardware configurations which attempt to minimize carbon and soot-production without sacrificing performance in small gas turbine combustors was conducted. Four fuel injectors, employing either airblast atomization, pressure atomization, or fuel vaporization techniques were combined with nozzle air swirlers and injector sheaths. Eight configurations were screened at sea-level takeoff and idle test conditions. Selected configurations were focused upon in an attempt to quantify the influence of combustor pressure, inlet temperature, primary zone operation, and combustor loading on soot and carbon formation. Cycle tests were also performed. It was found that smoke emission levels depended on the combustor fluid mechanics, the atomization quality of the injector and the fuel hydrogen content.
Chen, Yi; Huang, Weina; Peng, Bei
2014-01-01
Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.
Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.
AGARD Flight Test Techniques Series. Volume 8. Flight Testing under Extreme Environmental Conditions
1988-01-01
gravity control system operation. The overall objective of fuel system tests is to determine whether the system functions properly at all conditions both... gravity . 3.3.4 Hydraulic System The functional adequacy of the hydraulic system should be evaluated by monitoring operating system temperatures and...mechanical or gravity function of the crew ladder should be evaluated. The ladder should be exposed to freasing rain and icing to evaluate the non
CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-03-01
Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-06-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-03-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
NASA Astrophysics Data System (ADS)
Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.
2016-08-01
Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.
Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick
2010-01-01
Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance tomore » pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.« less
A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David I Gertman
2012-06-01
The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handlingmore » of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Listed
2011-12-01
The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russianmore » Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.« less
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.
2012-11-01
Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmand, Maryam
2013-05-19
The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Pipeline transportation of upgraded Yugoslavian lignite fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ljubicic, B.; Anderson, C.; Bukurov, Z.
1993-12-31
Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Toole, J.J.; Wessels, T.E.; Lynch, J.F.
1981-10-01
Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processingmore » industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.« less
Advanced space power PEM fuel cell systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.
1989-01-01
A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, K.R.; Pavelek, M.D. II
1987-01-01
Following the accident at Three Mile Island Unit 2 (TMI-2) substantial areas in the auxiliary and fuel-handling buildings were contaminated. Overflowing sumps backed up floor drains and contaminated a substantial portion of the 282-ft elevation floor. In addition, contamination was spread into the overheads when the nitrogen purge system, which had become internally contaminated, was relieved of overpressure. Operating experience with the Kelly Decontamination System has been exceptional. The system has been defined as a tool of the trade for labor personnel to operate as part of their duties. A detailed training program was provided by the Kelly Division ofmore » Container Products Corporation for the engineers who then trained labor personnel in the operation of the equipment. There were very few problems with personnel on the equipment for routine decontamination operations. The Kelly Decontamination System has proven to be a dose and cost-effective alternative to hands-on decontamination techniques at TMI-2 and should have wide application for large-scale decontamination operations.« less
Apparatus and method for grounding compressed fuel fueling operator
Cohen, Joseph Perry; Farese, David John; Xu, Jianguo
2002-06-11
A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.
14 CFR 25.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...
14 CFR 25.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 25.961...
14 CFR 25.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 25.961...
14 CFR 25.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 25.961...
14 CFR 25.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 25.961...
Chen, Yi; Huang, Weina; Peng, Bei
2014-01-01
Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761
NASA Astrophysics Data System (ADS)
Grattieri, Matteo; Suvira, Milomir; Hasan, Kamrul; Minteer, Shelley D.
2017-07-01
The treatment of hypersaline wastewater (approximately 5% of the wastewater worldwide) cannot be performed by classical biological techniques. Herein the halotolerant extremophile bacteria obtained from the Great Salt Lake (Utah) were explored in single chamber microbial fuel cells with Pt-free cathodes for more than 18 days. The bacteria samples collected in two different locations of the lake (Stansbury Bay and Antelope Island) showed different electrochemical performances. The maximum achieved power output of 36 mW m-2 was from the microbial fuel cell based on the sample originated from Stansbury Bay, at a current density of 820 mA m-2. The performances throughout the long-term operation are discussed and a bioelectrochemical mechanism is proposed.
Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine
NASA Astrophysics Data System (ADS)
Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.
1993-01-01
The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.
Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.
14 CFR 27.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...
14 CFR 27.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 27.961...
14 CFR 29.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 29.961...
14 CFR 27.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 27.961...
14 CFR 27.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 27.961...
14 CFR 29.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 29.961...
14 CFR 27.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 27.961...
14 CFR 29.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 29.961...
14 CFR 29.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...
14 CFR 29.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 29.961...
Long-term commitment of Japanese gas utilities to PAFCs and SOFCs
NASA Astrophysics Data System (ADS)
Matsumoto, Kiyokazu; Kasahara, Komei
Tokyo Gas and Osaka Gas have been committed to addressing the energy- and environment-related issues of Japan through promotion of natural gas, an energy friendly to the environment. Being aware of the diversifying market needs (e.g. efficient energy utilization, rising demand for electricity, etc.), active efforts have been made in marketing gas-fired air-conditioning and co-generation systems. In this process, a high priority has also been placed on fuel cells, particularly for realizing their market introduction. Since their participation in the TARGET Program in USA in 1972, the two companies have been involved with the field testing and operation of phosphoric acid fuel cells (PAFCs), whose total capacity has amounted to 12.4 MW. The two companies have played a vital role in promoting and accelerating fuel cell development through the following means: (1) giving incentives to manufacturers through purchase of units and testing, (2) giving feedback on required specifications and technical problems in operation, and (3) verifying and realizing long-term operation utilizing their maintenance techniques. It has been expected that the primary goal of the cumulative operation time of 40 000 h shall be achieved in the near future. Work has also been in progress to develop SOFC. In the joint R&D of a 25-kW solid oxide fuel cell (SOFC) with Westinghouse, the record operation time of 13 000 h has been achieved. Though still twice as much as the average price of competing equipment, the commercialization of PAFCs is close at hand. By utilizing government spending and subsidies for field testing, work will be continued to verify reliability and durability of PAFCs installed at users' sites. These activities have been expected to contribute to realizing economically viable systems and enhance market introduction. The superlative advantages of fuel cells, particularly their environment-friendly qualities, should be best taken advantage of at an appropriate time. In order to achieve smooth introduction of fuel cells into the market, immediate action is seriously needed to re-examine the roles of users, manufacturers, and governments, thereby consolidating the efforts of the parties concerned in the most effective manner.
Exhaust emissions of low level blend alcohol fuels from two-stroke and four-stroke marine engines
NASA Astrophysics Data System (ADS)
Sevik, James M., Jr.
The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.
A comparison of five sampling techniques to estimate surface fuel loading in montane forests
Pamela G. Sikkink; Robert E. Keane
2008-01-01
Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...
2007-03-01
simulation are analyzed using regression, statistical and marginal benefit techniques to show how the MOEs are affected by varying levels of the...being supported by the seabase increases. A large marginal benefit is realized in reducing a unit’s frequency and time spent in a balk state by...units. SOF units operate within the range of sea-based helicopter assets; therefore the risk of a ‘ bingo ’ (i.e., near empty) fuel state is nearly
NASA Technical Reports Server (NTRS)
Lim, Kair Chuan
1986-01-01
Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
NASA Astrophysics Data System (ADS)
Wantuck, P. J.; Butt, D. P.; Sappey, A. D.
Understanding the corrosion behavior of nuclear fuel materials, such as refractory carbides, in a high temperature hydrogen environment is critical for several proposed nuclear thermal propulsion (NTP) concepts. Monitoring the fuel corrosion products is important not only for understanding corrosion characteristics, but to assess the performance of an actual, operating nuclear propulsion system as well. In this paper, we describe an experimental study initiated to develop, test, and subsequently utilize non-intrusive, laser-based diagnostics to characterize the gaseous product species which are expected to evolve during the exposure of representative fuel samples to hydrogen. Laser ablation is used to produce high temperature, vapor plumes from solid solution, uranium-free, zirconium carbide (ZrC) forms for probing by other laser diagnostic methods, predominantly laser-induced fluorescence (LIF). We discuss the laser ablation technique, results of plume emission measurements, as well as the use of planar LIF to image both the ZrC plumes and actual NTP fuel corrosion constituents.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Purchasing unconventional fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyal, J.
1995-09-01
The reasons to seek unconventional fuels are to either insure a fuel supply or to reduce existing fuel costs. The keys to successfully utilizing unconventional fuel are: (1) build as much flexibility as possible in the variety, quality, quantity and deliverability of the unconventional fuel sources that you can utilize; (2) provide maximum pricing flexibility; (3) fully commit to work with unconventional fuel suppliers; and to (4) consider unconventional fuel operations as a market opportunity. Unconventional fuels operations are well suited to marginal existing operations and can also supplement new startups with uncertain fuel supplies. Unconventional fuel operations can alsomore » help existing facilities generate above market profits for those willing to accommodate the wide market swings inherent in this fledgling industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ihme, Matthias; Driscoll, James
2015-08-31
The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controllingmore » unstable flame regimes in HHC-combustion.« less
NASA Astrophysics Data System (ADS)
Tariq, Sana; Marium, Aniqa; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Abbas, Ghazanfar; Waseem Boota, M.; Khalid Imran, S.; Arshad, Sarfraz; Ikram, Muhammad
2018-03-01
Solid Oxide Fuel Cells is received a significant attention in recent years due to higher efficiency and fuel flexibility. The one of the main challenge for SOFC is to lower the operating temperature of SOFCs. Therefore, different strategies are used in order to enhance the ionic conduction of electrolyte, which can lower the overall SOFC operating temperature. The present work is focused on this strategy to enhance the electrolytic conductivity. Therefore, the ceria based composite electrolytes Ce0.80Sm0.20B0.80Y0.20O3-δ (YBSDC) are synthesized using three different approaches i.e. co-precipitation (YBSDC-1), sol-gel (YBSDC-2) and ball milling (YBSDC-3). Their crystal structures and surface morphologies are characterized through X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. The four-probe technique is employed to measure their dc conductivities in the temperature range (300-700) °C under air atmosphere. The open circuit voltage (OCV) and current are recorded with natural gas as fuel {flow rate kept at 100 ml min-1 at 1 atm pressure} over the temperature range (300-600) °C. The electrolyte (YBSDC-1) prepared by co-precipitation technique is shown better results as compare to other two electrolytes (YBSDC-2 and YBSDC-3). The electrolyte (YBSDC-1) having maximum dc conductivity (0.096 S/cm), peak power density 224 mW cm-2 and OCV 0.94 V at 600 °C. These results show that YBSDC-1electrolyte is potential candidate for low temperature SOFCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, T. L.; Eudy, L.; Miyasato, M.
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-04-01
A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
Modifications to the NRAD Reactor, 1977 to present
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, A.A.; Pruett, D.P.; Heidel, C.C.
1986-01-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less
Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P
2017-08-24
This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eigenbrodt, Julia; Menlove, Howard Olsen
2016-03-29
The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improvemore » the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.« less
14 CFR 23.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...
14 CFR 23.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...
14 CFR 23.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...
14 CFR 23.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...
14 CFR 23.961 - Fuel system hot weather operation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...
Methods for continuous direct carbon fuel cell operation with a circulating electrolyte slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harjes, Daniel I.; Dineen, Jr., D. Andrew; Guo, Liang
The present invention relates to methods and systems related to fuel cells, and in particular, to direct carbon fuel cells. The methods and systems relate to cleaning and removal of components utilized and produced during operation of the fuel cell, regeneration of components utilized during operation of the fuel cell, and generating power using the fuel cell.
Analysis of pressure spectra measurements in a ducted combustion system. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Miles, J. H.
1980-01-01
Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.
Analysis of pressure spectra measurements in a ducted combustion system
NASA Astrophysics Data System (ADS)
Miles, J. H.
1980-11-01
Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.
NASA Astrophysics Data System (ADS)
Heitzman, Nicholas
There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.
NASA Technical Reports Server (NTRS)
Mikus, T.; Heywood, J. B.; Hicks, R. E.
1978-01-01
A modified Zeldovich kinetic scheme was used to predict nitric oxide formation in the burned gases. Nonuniformities in fuel-air ratio in the primary zone were accounted for by a distribution of fuel-air ratios. This was followed by one or more dilution zones in which a Monte Carlo calculation was employed to follow the mixing and dilution processes. Predictions of NOX emissions were compared with various available experimental data, and satisfactory agreement was achieved. In particular, the model is applied to the NASA swirl-can modular combustor. The operating characteristics of this combustor which can be inferred from the modeling predictions are described. Parametric studies are presented which examine the influence of the modeling parameters on the NOX emission level. A series of flow visualization experiments demonstrates the fuel droplet breakup and turbulent recirculation processes. A tracer experiment quantitatively follows the jets from the swirler as they move downstream and entrain surrounding gases. Techniques were developed for calculating both fuel-air ratio and degree of nonuniformity from measurements of CO2, CO, O2, and hydrocarbons. A burning experiment made use of these techniques to map out the flow field in terms of local equivalence ratio and mixture nonuniformity.
A statistical approach to nuclear fuel design and performance
NASA Astrophysics Data System (ADS)
Cunning, Travis Andrew
As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional limit of operating envelope case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the two methods is very prominent, and the highly conservative nature of the deterministic approach is demonstrated. A reliability analysis of CANDU fuel manufacturing parametric data, specifically pertaining to the quantification of fuel performance margins, has not been conducted previously. Key Words: CANDU, nuclear fuel, Cameco, fuel manufacturing, fuel modelling, fuel performance, fuel reliability, ELESTRES, ELOCA, dimensional reduction methods, global sensitivity analysis, deterministic safety analysis, probabilistic safety analysis.
In-Field Performance Testing of the Fork Detector for Quantitative Spent Fuel Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauld, Ian C.; Hu, Jianwei; De Baere, P.
Expanding spent fuel dry storage activities worldwide are increasing demands on safeguards authorities that perform inspections. The European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) require measurements to verify declarations when spent fuel is transferred to difficult-to-access locations, such as dry storage casks and the repositories planned in Finland and Sweden. EURATOM makes routine use of the Fork detector to obtain gross gamma and total neutron measurements during spent fuel inspections. Data analysis is performed by modules in the integrated Review and Analysis Program (iRAP) software, developed jointly by EURATOM and the IAEA. Under the frameworkmore » of the US Department of Energy–EURATOM cooperation agreement, a module for automated Fork detector data analysis has been developed by Oak Ridge National Laboratory (ORNL) using the ORIGEN code from the SCALE code system and implemented in iRAP. EURATOM and ORNL recently performed measurements on 30 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel (Clab), operated by the Swedish Nuclear Fuel and Waste Management Company (SKB). The measured assemblies represent a broad range of fuel characteristics. Neutron count rates for 15 measured pressurized water reactor assemblies are predicted with an average relative standard deviation of 4.6%, and gamma signals are predicted on average within 2.6% of the measurement. The 15 measured boiling water reactor assemblies exhibit slightly larger deviations of 5.2% for the gamma signals and 5.7% for the neutron count rates, compared to measurements. These findings suggest that with improved analysis of the measurement data, existing instruments can provide increased verification of operator declarations of the spent fuel and thereby also provide greater ability to confirm integrity of an assembly. These results support the application of the Fork detector as a fully quantitative spent fuel verification technique.« less
Zeis, Roswitha
2015-01-01
The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.
2015-01-01
Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy. PMID:25671153
NASA Astrophysics Data System (ADS)
Calì, M.; Santarelli, M. G. L.; Leone, P.
Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
Model documentation renewable fuels module of the National Energy Modeling System
NASA Astrophysics Data System (ADS)
1995-06-01
This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogs and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost, and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.
Fuel elements of thermionic converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.
1997-01-01
Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving themore » following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.« less
2016-07-01
ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use...Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
MEMS-based power generation techniques for implantable biosensing applications.
Lueke, Jonathan; Moussa, Walied A
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.
Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "A"
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano; Gallo, Emanuela; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher P.; McDaniel, James
2012-01-01
In this paper we describe efforts to obtain canonical data sets to assist computational modelers in their development of models for the prediction of mixing and combustion in scramjet combustors operating in the ramjet-scramjet transition regime. The CARS technique is employed to acquire temporally and spatially resolved measurements of temperature and species mole-fraction at four planes, one upstream of an H2 fuel injector and three downstream. The technique is described and results are presented for cases with and without chemical reaction. The vibrational energy mode in the heated airstream of the combustor was observed to be frozen at near facility heater conditions and significant nonuniformities in temperature were observed, attributed to nonuniformities of temperature exiting the heater. The measurements downstream of fuel injection show development of mixing and combustion, and are already proving useful to the modelers.
Freiberg, Anna T. S.; Tucker, Michael C.; Weber, Adam Z.
2017-04-12
The reduction of platinum-loading on the cathode side of polymer-electrolyte fuel cells leads to a poorly understood increase in mass-transport resistance (MTR) at high current densities. This local resistance was measured using a facile hydrogen-pump technique with dilute active gases for membrane-electrode assemblies with catalyst layers of varying platinum-loading (0.03-0.40 mgPt/cm²). Furthermore, polarization curves in H 2/air were measured and corrected for the overpotential caused by the increased MTR for low loadings on the air side due to the reduced concentration of reactant gas at the catalyst surface. The difference in performance after correction for all resistances including the MTRmore » is minor, suggesting its origin to be diffusive in nature, and proving the meaningfulness of the facile hydrogen-pump technique for the characterization of the cathode catalyst layer under defined operation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oßwald, Patrick; Köhler, Markus
A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimentalmore » data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.« less
Spent nuclear fuel assembly inspection using neutron computed tomography
NASA Astrophysics Data System (ADS)
Pope, Chad Lee
The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
Original Experimental Approach for Assessing Transport Fuel Stability.
Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie
2016-10-21
The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.
Power-limited low-thrust trajectory optimization with operation point detection
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
Some unconventional approaches to the exploration of Mars
NASA Astrophysics Data System (ADS)
French, J. R.
1991-02-01
The topics of space transport to Mars, and surface transport and surface operations on Mars are discussed in detail and new options for accomplishing these activities are presented. The question of maximizing the return on the investment in a Mars mission is addressed. One way to accomplish this is through reduction of propellant requirements by increasing the performance of the rocket engine, while another option is to make use of nuclear fuel. A technique discussed in detail would provide a means to manufacture fuel from Martian resources for both the return trip and for Mars surface exploration. Options for Mars surface transport include battery and nuclear powered rovers, solar powered automobiles, and either battery, nuclear or Mars-generated-propellant-powered aircraft specially designed to explore the Martian surface. The advantages and disadvantages of each of these options are considered, and the usefulness of a manned aircraft for both exploration and surface operational functions is discussed.
Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility
2007-10-01
electrolyte membrane fuel cell ( PEMFC ). At the higher operating temperature, fuel reforming of natural gas can occur internally, eliminating the need...oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig
Eris, Sinan; Daşdelen, Zeynep; Sen, Fatih
2018-03-01
Direct methanol fuel cells (DMFCs) are one of the most important fuel cells operating at low temperature using methanol as fuel and they need very efficient catalysts to activate the methanol. Generally, the most efficient fuel cell catalysts are platinum-based nanoparticles that can be used by different supporting materials such as different as prepared and functionalized carbon derivatives. For this purpose, herein, the carbon black has been mainly functionalized with an acidification process in order to increase the electrical conductivity and heterogeneous electron transfer rate of supporting materials. After functionalization of carbon black (f-CB), platinum salt (PtCl 4 ) was stabilized with propylamine (PA) in the presence of ethylene glycol (EG) and f-CB by microwave synthesis method. XPS, XRD, TEM and Raman Spectroscopy techniques were used to determine the morphology of the prepared catalyst. The results showed that the prepared nanocatalyst has face-centered cubic (fcc) structure and uniformly distribution on supporting material. Besides, chronoamperometry (CA) and cyclic voltammetry (CV) techniques were used to determine the electrochemical activity of functionalized carbon black supported Pt NPs (Pt/f-CB) towards methanol. From the results obtained from the CV and CA, it was found that the activity of the Pt/f-CB NPs (50 mA/cm 2 ) was almost 4-5 times higher than that of the Pt/CB NPs and commercial available Pt/C catalyst (ETEK). Copyright © 2017 Elsevier Inc. All rights reserved.
Factors influencing specific fuel use in Nebraska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelton, D.P.; Von Bargen, K.
1981-01-01
Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased withmore » increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.« less
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A
In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences aremore » investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.« less
Creating NDA working standards through high-fidelity spent fuel modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E
2012-01-01
The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is beingmore » performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent calculations performed using SCALE and MCNP. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.« less
NASA Astrophysics Data System (ADS)
Behm, R. J.; Jusys, Z.
In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.
Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen
2017-07-10
Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
2009-01-01
This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-16
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less
Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less
Turbine combustor with fuel nozzles having inner and outer fuel circuits
Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo
2013-12-24
A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.
Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels
NASA Technical Reports Server (NTRS)
Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J
1956-01-01
Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.
Facility design, construction, and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; ...
2016-08-22
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
NASA Astrophysics Data System (ADS)
Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung
2016-09-01
Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.
Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques
NASA Astrophysics Data System (ADS)
Elliott, Louie C.
This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Johnson, David K.; Serin, Nadir; Risha, Grant A.; Merkle, Charles L.; Venkateswaran, Sankaran
1996-01-01
This final report summarizes the major findings on the subject of 'Fundamental Phenomena on Fuel Decomposition and Boundary-Layer Combustion Processes with Applications to Hybrid Rocket Motors', performed from 1 April 1994 to 30 June 1996. Both experimental results from Task 1 and theoretical/numerical results from Task 2 are reported here in two parts. Part 1 covers the experimental work performed and describes the test facility setup, data reduction techniques employed, and results of the test firings, including effects of operating conditions and fuel additives on solid fuel regression rate and thermal profiles of the condensed phase. Part 2 concerns the theoretical/numerical work. It covers physical modeling of the combustion processes including gas/surface coupling, and radiation effect on regression rate. The numerical solution of the flowfield structure and condensed phase regression behavior are presented. Experimental data from the test firings were used for numerical model validation.
NASA Astrophysics Data System (ADS)
Choi, YongMan; Lin, M. C.; Liu, Meilin
The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.
XAS Investigations of PEM Fuel Cells
NASA Astrophysics Data System (ADS)
Roth, Christina; Ramaker, David E.
Polymer-electrolyte membrane (PEM) fuel cells are still far from an area-wide market launch due in part to long-term stability, reliability and cost issues. A more detailed knowledge of the underlying reaction mechanisms is expected to further their application, as it would allow for the design of tailor-made catalysts. However, this will only be possible by complementing traditional in situ studies on single-crystals in electrochemical cells with more sophisticated metal/electrolyte interfacial studies by novel spectroscopic methodologies, which can provide complementary insights into the behaviour of commercial catalysts under real fuel cell operating conditions. This review will focus on the advances of Xray absorption spectroscopy (XAS) in applied fuel cell research utilizing several examples. XAS enables both the nanoparticle morphology and the adsorbate coverage and binding site to be investigated with just one technique. The latter is possible when complementing the conventional extended X-ray absorption fine structure (EXAFS) analysis with the more novel Δμ XANES approach.
Evaluation of Improved Pushback Forecasts Derived from Airline Ground Operations Data
NASA Technical Reports Server (NTRS)
Carr, Francis; Theis, Georg; Feron, Eric; Clarke, John-Paul
2003-01-01
Accurate and timely predictions of airline pushbacks can potentially lead to improved performance of automated decision-support tools for airport surface traffic, thus reducing the variability and average duration of costly airline delays. One factor which affects the realization of these benefits is the level of uncertainty inherent in the turn processes. To characterize this inherent uncertainty, three techniques are developed for predicting time-to-go until pushback as a function of available ground-time; elapsed ground-time; and the status (not-started/in-progress/completed) of individual turn processes (cleaning, fueling, etc.). These techniques are tested against a large and detailed dataset covering approximately l0(exp 4) real-world turn operations obtained through collaboration with Deutsche Lufthansa AG. Even after the dataset is filtered to obtain a sample of turn operations with minimal uncertainty, the standard deviation of forecast error for all three techniques is lower-bounded away from zero, indicating that turn operations have a significant stochastic component. This lower-bound result shows that decision-support tools must be designed to incorporate robust mechanisms for coping with pushback demand stochasticity, rather than treating the pushback demand process as a known deterministic input.
Natural laminar flow airfoil analysis and trade studies
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.
Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal
NASA Astrophysics Data System (ADS)
Kollar, Lenka
Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.
Modeling the Environmental Impact of Air Traffic Operations
NASA Technical Reports Server (NTRS)
Chen, Neil
2011-01-01
There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.
NASA Technical Reports Server (NTRS)
Veyo, S.E.
1997-01-01
This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.
Recent GE BWR fuel experience and design evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, J.E.; Potts, G.A.; Proebstle, R.A.
1992-01-01
Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less
Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem
NASA Astrophysics Data System (ADS)
Tangpatiphan, Kritsana; Yokoyama, Akihiko
This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.
Conversion of methanol-fueled 16-valve, 4-cylinder engine to operation on gaseous 2H2/CO fuel
NASA Astrophysics Data System (ADS)
Schaefer, Ronald M.; Hamady, Fakhart J.; Martin, James C.
1992-09-01
The report describes progress to date on a project to convert a Nissan CA18DE engine previously modified for operation on M100 neat methanol to operation on dissociated methanol (2H2/CO) gaseous fuel. This engine was operated on both M100 and simulated dissociated methanol (67 percent hydrocarbon and 33 percent carbon monoxide) fuels. This report describes recent modifications made to the engine and fuel delivery system and summarizes the results from recent testing.
Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket
NASA Astrophysics Data System (ADS)
Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko
2005-07-01
A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.
Performance analysis of a SOFC under direct internal reforming conditions
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed.
Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.
1999-01-01
The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.
Composite nuclear fuel fabrication methodology for gas fast reactors
NASA Astrophysics Data System (ADS)
Vasudevamurthy, Gokul
An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were characterized to understand the required fabrication techniques and at the same time meet the necessary GFR fuel characteristics.
Evaluation of Fuel Cell Operation and Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mark; Gemmen, Randall; Richards, George
The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less
NASA Astrophysics Data System (ADS)
Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.
2015-09-01
Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka
2010-10-01
In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.
Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, George W.
1986-07-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less
Effects of the Fuel Price Increase on the Operating Cost of Freight Transport Vehicles
NASA Astrophysics Data System (ADS)
Gohari, Adel; Matori, Nasir; Yusof, Khamaruzaman Wan; Toloue, Iraj; Myint, Kin Cho
2018-03-01
One of the most important criteria in freight modal choices is the transport operating cost in which fuel price changes has a significant effect on it. This paper presents the impact of fuel price increases on the operating cost of the different transport modes for the containerized freight transportation. In this study, an operating cost equation was applied to compare the operating cost of different freight transport vehicles as well as evaluation of the operating cost changes across a range of fuel prices between the current price and one-hundred percent increase. The equation consists of influential parameters such as fuel cost, driver wage and maintenance cost of a vehicle. It has been concluded that the effect of the fuel price increase on the operating cost of different freight transportation modes is not in the same rate. According to equation and effective parameters considered, comparing the results showed that truck has the highest cost, train has the largest increase in price. Finally, the ship is the most influenced vehicle in terms of operating cost percentage increase when the rate of fuel price increase, followed by train and truck.
Cryogenic pellet production developments for long-pulse plasma operation
NASA Astrophysics Data System (ADS)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.
2014-01-01
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.
Cryogenic pellet production developments for long-pulse plasma operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at amore » rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.« less
Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...
2014-10-21
For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme
2012-09-01
Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at aroundmore » 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.« less
The NASA Energy Conservation Program
NASA Technical Reports Server (NTRS)
Gaffney, G. P.
1977-01-01
Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.
NASA Technical Reports Server (NTRS)
Crowe, B. J.
1973-01-01
A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James
1994-01-01
The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.
Robert E. Keane; Laura J. Dickinson
2007-01-01
Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicles designed to operate on a single fuel, identify the appropriate fuel. For example, identify the... information, include the expression “The best vehicle rates 99 MPGe.” (6) Comparative five-year fuel costs... appropriate for vehicles designed to operate on different fuels. (vii) Below the combined fuel economy value...
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicles designed to operate on a single fuel, identify the appropriate fuel. For example, identify the... information, include the expression “The best vehicle rates 99 MPGe.” (6) Comparative five-year fuel costs... appropriate for vehicles designed to operate on different fuels. (vii) Below the combined fuel economy value...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vehicles designed to operate on a single fuel, identify the appropriate fuel. For example, identify the... information, include the expression “The best vehicle rates 99 MPGe.” (6) Comparative five-year fuel costs... appropriate for vehicles designed to operate on different fuels. (vii) Below the combined fuel economy value...
Method for operating a combustor in a fuel cell system
Clingerman, Bruce J.; Mowery, Kenneth D.
2002-01-01
In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.
An experimental study of fuel injection strategies in CAI gasoline engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunicz, J.; Kordos, P.
2011-01-15
Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuelmore » mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)« less
Physics Features of TRU-Fueled VHTRs
Lewis, Tom G.; Tsvetkov, Pavel V.
2009-01-01
The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
MEMS-Based Power Generation Techniques for Implantable Biosensing Applications
Lueke, Jonathan; Moussa, Walied A.
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362
Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio
2013-09-01
The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.
NASA Technical Reports Server (NTRS)
Greene, M. W.
1976-01-01
The results of analytical and experimental work performed in the design, fabrication, and test of a prototype nonintrusive gaging system for use in monitoring the consumption of earth-storable fuels and oxidants in either a one-g or a zero-g environment are explained. The design specifications were those applicable to the reaction control system and to the orbital maneuvering system (OMS) fuel and oxidant on the space shuttle while in orbit. The major requirement was for the measurement of flow pulses with sufficient accuracy to provide a continuous knowledge of the fuel and oxidant remaining in the OMS system to within 1% or better. An ultrasonic frequency chirp technique was used having a high inherent rejection for signals traversing stray paths, and for random noise generated by the flowing liquid. A detailed analysis of the frequency chirp approach for two modes of operation (period and phase changes), including an error analysis are reported.
Development of molten carbonate fuel cells for power generation
NASA Astrophysics Data System (ADS)
1980-04-01
The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.
Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A
2016-10-01
Chemical looping combustion (CLC) is an inherent CO 2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO 2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO 2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO 2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe 2 O 3 , CuO, and mixed carrier-Fe 2 O 3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.
Bayesian techniques for surface fuel loading estimation
Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell
2016-01-01
A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...
Antimisting kerosene atomization and flammability
NASA Technical Reports Server (NTRS)
Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.
1982-01-01
Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.
Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1979-01-01
A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.951 General. (a) Each fuel system must... permitted to be in operation. (b) Each fuel system must be arranged so that— (1) No engine or fuel pump can... system. (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its...
Defining the Operational Conditions for High Temperature Polymer Fuel Cells in Naval Environments
2008-12-31
benefits of both Proton Exchange Membrane Fuel Cells ( PEMFCs ) and phosphoric acid fuel cell technologies: a solid polymer electrolyte, the PBI...membrane, but with higher temperature (160°C) operation. PBI membrane technology is far less developed than that for PEMFCs , but it is rapidly emerging as...how air contaminants affect the properties of proton exchange membrane fuel cells ( PEMFCs ). PEMFCs operate at 80 °C, and are the present choice of fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
NASA Astrophysics Data System (ADS)
Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo
2017-09-01
The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.
Plasma-enhanced mixing and flameholding in supersonic flow
Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.
2015-01-01
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434
Organic fuel cells and fuel cell conducting sheets
Masel, Richard I.; Ha, Su; Adams, Brian
2007-10-16
A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.
Rejuvenation of automotive fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Seung; Langlois, David A.
A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
Evaluation of fuel equipment operability of diesel locomotive engine with use of infrared receivers
NASA Astrophysics Data System (ADS)
Ovcharenko, S. M.; Balagin, O. V.; Balagin, D. V.
2018-03-01
This paper provides results of modelling the heat liberation in high-pressure pipeline of fuel equipment of diesel locomotive engines. Functional relationships between the technical state of fuel equipment and temperature of the outer surface of the high-pressure fuel pipeline are presented using the example of diesel locomotive engine 1-PD4D. The paper shows results of operational tests of the developed method for control of fuel equipment operability of diesel locomotive.
10 CFR 490.306 - Vehicle operation requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...
10 CFR 490.306 - Vehicle operation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...
10 CFR 490.306 - Vehicle operation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...
10 CFR 490.306 - Vehicle operation requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...
10 CFR 490.306 - Vehicle operation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...
Flow Range of Centrifugal Compressor Being Extended
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2001-01-01
General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.
Moisture content calculations for 1000-hour timelag fuels
Michael A. Fosberg; Richard C. Rothermel; Patricia L. Andrews
1981-01-01
Techniques to calculate 1000-hour timelag fuel moistures were developed from theory of water movement in wood. The 1000-hour timelag fuel moisture is computed from mean daily temperatures and humidities and precipitation duration. Comparison of calculated and observed fuel moistures showed good agreement. Techniques to determine the seasonal starting value of the 1000-...
Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf
2015-08-01
Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.
Carbide fuels for nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.
1991-09-01
A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.
Fuel cycle cost reduction through Westinghouse fuel design and core management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, F.J.; Scherpereel, L.R.
1985-11-01
This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
NASA Astrophysics Data System (ADS)
Rozhaeva, K.
2018-01-01
The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.
Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua
2016-08-15
During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Open end protection for solid oxide fuel cells
Zafred, Paolo R.; Dederer, Jeffrey T.; Tomlins, Gregory W.; Toms, James M.; Folser, George R.; Schmidt, Douglas S.; Singh, Prabhakar; Hager, Charles A.
2001-01-01
A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik
1996-01-01
For a space mission to be successful it is vitally important to have a good control strategy. For example, with the Space Shuttle it is necessary to guarantee the success and smoothness of docking, the smoothness and fuel efficiency of trajectory control, etc. For an automated planetary mission it is important to control the spacecraft's trajectory, and after that, to control the planetary rover so that it would be operable for the longest possible period of time. In many complicated control situations, traditional methods of control theory are difficult or even impossible to apply. In general, in uncertain situations, where no routine methods are directly applicable, we must rely on the creativity and skill of the human operators. In order to simulate these experts, an intelligent control methodology must be developed. The research objectives of this project were: to analyze existing control techniques; to find out which of these techniques is the best with respect to the basic optimality criteria (stability, smoothness, robustness); and, if for some problems, none of the existing techniques is satisfactory, to design new, better intelligent control techniques.
Fuel cell having dual electrode anode or cathode
Findl, Eugene
1985-01-01
A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.
Fuel cell having dual electrode anode or cathode
Findl, E.
1984-04-10
A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.
In-Situ Characterization of Underwater Radioactive Sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, A.P.; Clapham, M.J.; Swinson, B.
2008-07-01
A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less
Solution based zinc tin oxide TFTs: the dual role of the organic solvent
NASA Astrophysics Data System (ADS)
Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira
2017-02-01
Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV = -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.
Atomization and combustion performance of antimisting kerosene and jet fuel
NASA Technical Reports Server (NTRS)
Fleeter, R.; Parikh, P.; Sarohia, V.
1983-01-01
Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.
Fuel cell system for transportation applications
Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.
1993-01-01
A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.
Fuel cell system for transportation applications
Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.
1993-09-28
A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang
We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less
Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang; ...
2018-04-18
We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less
40 CFR 190.10 - Standards for normal operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
Single pilot IFR operating problems determined from accidental data analysis
NASA Technical Reports Server (NTRS)
Forsyth, D. L.; Shaughnessy, J. D.
1978-01-01
The accident reports examined were restricted to instrument rated pilots flying in IFR weather. A brief examination was made of accidents which occurred during all phases of flight and which were due to all causes. A detailed examination was made of those accidents which involved a single pilot which occurred during the landing phases of flight, and were due to pilot error. Problem areas found include: (1) landing phase operations especially final approach, (2) pilot weather briefings, (3) night approaches in low IFR weather, (4) below minimum approaches, (5) aircraft icing, (6) imprecise navigation, (7) descending below minimum IFR altitudes, (8) fuel mismanagement, (9) pilot overconfidence, and (10) high pilot workload especially in twins. Some suggested areas of research included: (1) low cost deicing systems, (2) standardized navigation displays, (3) low cost low-altitude warning systems, (4) improved fuel management systems, (5) improved ATC communications, (6) more effective pilot training and experience acquisition methods, and (7) better weather data dissemination techniques.
Systems and operations - Living with complexity and growth
NASA Astrophysics Data System (ADS)
Hook, W. R.
1983-03-01
Since the space station concept currently being developed by NASA calls for system updates and additions over a period of at least ten years following launch, attention must be given to the interfaces between station elements. Efforts have begun to develop generic fault detection, isolation, and correction techniques that could simplify on-orbit operations, maintenance and repair. An integrated hydrogen-oxygen system has been identified as the feature promising the greatest reduction in resupply costs. Scavenging excess fuel from the Space Shuttle's internal and external tanks, and using leftover Shuttle payload for fluid tankage, could supply hydrogen and oxygen for consumption in the form of propellants, fuel cell electricity, and life support gases. Advancements in cryogenic fluid management and storage technology are the keys to the design of this integrated system. Attention is given to the Interactive Design and Evaluation of Advanced Spacecraft computer-aided design and analysis system, which allows system engineers to study the integration problems presented by 40 technical modules.
Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells.
Bussian, David A; O'Dea, James R; Metiu, Horia; Buratto, Steven K
2007-02-01
The electrochemically active area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic force microscopy (CP-AFM). A platinum-coated AFM tip is used as a nanoscale cathode in an operating PEMFC. We present results that show highly inhomogeneous distributions of conductive surface domains at several length scales. At length scales on the order of the aqueous domains of the membrane, approximately 50 nm, we observe single channel electrochemistry. I-V curves for single conducting channels are obtained, which yield insight into the nature of conductive regions across the PEM. In addition, we demonstrate a new characterization technique, phase current correlation microscopy, which gives a direct measure of the electrochemical activity for each aqueous domain. This shows that a large number ( approximately 60%) of the aqueous domains present at the surface of an operating Nafion membrane are inactive. We attribute this to a combination of limited aqueous domain connectivity and catalyst accessibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or dual fuel vehicles when operated on the alcohol or gaseous fuel they are designed to use... certified to bin 10 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use... bin 8 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... or dual fuel vehicles when operated on the alcohol or gaseous fuel they are designed to use... certified to bin 10 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use... bin 8 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use...
Code of Federal Regulations, 2013 CFR
2013-07-01
... or dual fuel vehicles when operated on the alcohol or gaseous fuel they are designed to use... certified to bin 10 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use... bin 8 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... or dual fuel vehicles when operated on the alcohol or gaseous fuel they are designed to use... certified to bin 10 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use... bin 8 in Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use...
A diesel fuel processor for fuel-cell-based auxiliary power unit applications
NASA Astrophysics Data System (ADS)
Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef
2017-07-01
Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.
Vehicle conversion to hybrid gasoline/alternative fuel operation
NASA Technical Reports Server (NTRS)
Donakowski, T. D.
1982-01-01
The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; D. Vaden; S.X. Li
During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontallymore » displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.« less
40 CFR 75.48 - Petition for an alternative monitoring system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... method of ensuring an accurate assessment of operating hourly conditions on a real-time basis. (9) A...) Hourly test data for the alternative monitoring system at each required operating level and fuel type... continuous emissions monitoring system at each required operating level and fuel type. The fuel type...
40 CFR 75.48 - Petition for an alternative monitoring system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... method of ensuring an accurate assessment of operating hourly conditions on a real-time basis. (9) A...) Hourly test data for the alternative monitoring system at each required operating level and fuel type... continuous emissions monitoring system at each required operating level and fuel type. The fuel type...
40 CFR 75.48 - Petition for an alternative monitoring system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... method of ensuring an accurate assessment of operating hourly conditions on a real-time basis. (9) A...) Hourly test data for the alternative monitoring system at each required operating level and fuel type... continuous emissions monitoring system at each required operating level and fuel type. The fuel type...
40 CFR 75.48 - Petition for an alternative monitoring system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... method of ensuring an accurate assessment of operating hourly conditions on a real-time basis. (9) A...) Hourly test data for the alternative monitoring system at each required operating level and fuel type... continuous emissions monitoring system at each required operating level and fuel type. The fuel type...
NASA Technical Reports Server (NTRS)
1985-01-01
The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.
40 CFR 75.48 - Petition for an alternative monitoring system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... method of ensuring an accurate assessment of operating hourly conditions on a real-time basis. (9) A...) Hourly test data for the alternative monitoring system at each required operating level and fuel type... continuous emissions monitoring system at each required operating level and fuel type. The fuel type...
NASA Astrophysics Data System (ADS)
Karthickeyan, V.; Balamurugan, P.
2017-10-01
The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.
Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, James; Fulsom, Bryan; Pitts, Karl
2015-07-01
Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to producemore » an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)« less
Distributed ignition method and apparatus for a combustion engine
Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong
2006-03-07
A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
Optimization of fixed-range trajectories for supersonic transport aircraft
NASA Astrophysics Data System (ADS)
Windhorst, Robert Dennis
1999-11-01
This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed flight, and varying fuel efficiency cases are analyzed. Finally, the payload-range curve of the HSCT design is determined.
Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam
2015-03-01
Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less
An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks
NASA Technical Reports Server (NTRS)
Murphey, Amy Y.
1990-01-01
This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.
Internal combustion engine with compressed air collection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.W.
1988-08-23
This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less
High energy neutron transmission analysis of dry cask storage
NASA Astrophysics Data System (ADS)
Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James
2017-12-01
Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar
2014-12-01
This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.
Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel
techniques to save fuel and money. The amount of fuel your vehicle consumes depends heavily on how you drive and money. Vehicles use the most energy when accelerating. Using cruise control on the highway can trips can save you time and money by avoiding unnecessary stopping and starting of your vehicle, which
Code of Federal Regulations, 2011 CFR
2011-07-01
... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...
Code of Federal Regulations, 2010 CFR
2010-07-01
... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... am an owner or operator of a stationary CI internal combustion engine subject to this subpart? 60... Compression Ignition Internal Combustion Engines Fuel Requirements for Owners and Operators § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion...
Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Goldsby, John C.; Choi, Sung R.
2004-01-01
Tests have shown that modification of chemical compositions can increase the strengths and fracture toughnesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria-stabilized zirconia, which is highly conductive for oxygen ions at high temperatures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications. The modifications of chemical composition that lead to increased strength and fracture toughness consist in addition of alumina to the basic yttria-stabilized zirconia formulations. Techniques for processing of yttria-stabilized zirconia/alumina composites containing as much as 30 mole percent of alumina have been developed. The composite panels fabricated by these techniques have been found to be dense and free of cracks. The only material phases detected in these composites has been cubic zirconia and a alumina: this finding signifies that no undesired chemical reactions between the constituents occurred during processing at elevated temperatures. The flexural strengths and fracture toughnesses of the various zirconia-alumina composites were measured in air at room temperature as well as at a temperature of 1,000 C (a typical SOFC operating temperature). The measurements showed that both flexural strength and fracture toughness increased with increasing alumina content at both temperatures. In addition, the modulus of elasticity and the thermal conductivity were found to increase and the density to decrease with increasing alumina content. The oxygen-ion conductivity at 1,000 C was found to be unchanged by the addition of alumina.
14 CFR 23.1585 - Operating procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... each operating condition in which the fuel system independence prescribed in § 23.953 is necessary for safety must be furnished, together with instructions for placing the fuel system in a configuration used... furnished. (i) Information on the total quantity of usable fuel for each fuel tank, and the effect on the...
40 CFR 86.1777-99 - Calculations; exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... operate on a fuel other than conventional gasoline, including fuel-flexible and dual-fuel vehicles when operated on a fuel other than conventional gasoline, shall be multiplied by the reactivity adjustment...
40 CFR 86.1777-99 - Calculations; exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... operate on a fuel other than conventional gasoline, including fuel-flexible and dual-fuel vehicles when operated on a fuel other than conventional gasoline, shall be multiplied by the reactivity adjustment...
Risk Reduction and Training using Simulation Based Tools - 12180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Irin P.
2012-07-01
Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less
Bertoluzzi, Luca; Bisquert, Juan
2017-01-05
The optimization of solar energy conversion devices relies on their accurate and nondestructive characterization. The small voltage perturbation techniques of impedance spectroscopy (IS) have proven to be very powerful to identify the main charge storage modes and charge transfer processes that control device operation. Here we establish the general connection between IS and light modulated techniques such as intensity modulated photocurrent (IMPS) and photovoltage spectroscopies (IMVS) for a general system that converts light to energy. We subsequently show how these techniques are related to the steady-state photocurrent and photovoltage and the external quantum efficiency. Finally, we express the IMPS and IMVS transfer functions in terms of the capacitive and resistive features of a general equivalent circuit of IS for the case of a photoanode used for solar fuel production. We critically discuss how much knowledge can be extracted from the combined use of those three techniques.
Studies on biogas-fuelled compression ignition engine under dual fuel mode.
Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit
2018-04-01
Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.
Diesel fuel to dc power: Navy & Marine Corps Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.
1996-12-31
During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less
those for comparable conventional vehicles, as long as the AFVs operate using an alternative fuel or both alternative and conventional fuel, when operating on a highway that is not part of the interstate
Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.
Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D
2010-02-01
Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an increase in nitrogen dioxide concentrations at high-load modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Ahsan; Love, Norman
High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less
One-Dimensional Spontaneous Raman Measurements Made in a Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
DeGroot, Wilhelmus A.; Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.
2001-01-01
The NASA Glenn Research Center and the aerospace industry are designing and testing low-emission combustor concepts to build the next generation of cleaner, more fuel efficient aircraft powerplants. These combustors will operate at much higher inlet temperatures and at pressures that are up to 3 to 5 times greater than combustors in the current fleet. From a test and analysis viewpoint, there is an increasing need for measurements from these combustors that are nonintrusive, simultaneous, multipoint, and more quantitative. Glenn researchers have developed several unique test facilities (refs. 1 and 2) that allow, for the first time, optical interrogation of combustor flow fields, including subcomponent performance, at pressures ranging from 1 to 60 bar (1 to 60 atm). Experiments conducted at Glenn are the first application of a visible laser-pumped, one-dimensional, spontaneous Raman-scattering technique to analyze the flow in a high-pressure, advanced-concept fuel injector at pressures thus far reaching 12 bar (12 atm). This technique offers a complementary method to the existing two- and three-dimensional imaging methods used, such as planar laser-induced fluorescence. Raman measurements benefit from the fact that the signal from each species is a linear function of its density, and the relative densities of all major species can be acquired simultaneously with good precision. The Raman method has the added potential to calibrate multidimensional measurements by providing an independent measurement of species number-densities at known points within the planar laser-induced fluorescence images. The visible Raman method is similar to an ultraviolet-Raman technique first tried in the same test facility (ref. 3). However, the visible method did not suffer from the ultraviolet technique's fuel-born polycyclic aromatic hydrocarbon fluorescence interferences.
14 CFR 135.209 - VFR: Fuel supply.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Fuel supply. 135.209 Section 135.209... AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT VFR/IFR Operating Limitations and Weather Requirements § 135.209 VFR: Fuel supply. (a) No person may begin a flight operation in...
Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi
2018-05-02
The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.
Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R; Ade, Brian J
This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less
Plasma-enhanced mixing and flameholding in supersonic flow.
Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B
2015-08-13
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
System for controlling the operating temperature of a fuel cell
Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.
2006-06-06
A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Barnett, Scott A.; Lai, Tammy; Liu, Jiang
2010-05-04
The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.
2002-01-01
Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
High Temperature Polymers for use in Fuel Cells
NASA Technical Reports Server (NTRS)
Peplowski, Katherine M.
2004-01-01
NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.
Method for operating a spark-ignition, direct-injection internal combustion engine
Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.
2015-06-02
A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.
Fuel cell power supply with oxidant and fuel gas switching
McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip
1987-01-01
This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.
Fuel cell power supply with oxidant and fuel gas switching
McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.
1987-04-14
This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. Thismore » test was discontinued because of extremely poor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kw single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40 percent by weight micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 hrs at full load and 1400 rpm on all fuels except themore » 40% by weight slurry. This test was discontinued because of extremely poor performance.« less
NASA Technical Reports Server (NTRS)
Kraus, E. F.; Vanabkoude, J. C.
1976-01-01
The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
49 CFR 393.69 - Liquefied petroleum gas systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Protection Association, Battery March Park, Quincy, MA 02269, as follows: (1) A fuel system installed before... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the...
77 FR 45921 - Alaskan Fuel Hauling as a Restricted Category Special Purpose Flight Operation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... operations, each aircraft used to transport fuel will be required to receive FAA certification for the... regulations. The special purpose of Alaskan fuel hauling was considered for aircraft type-certificated under... required for this special purpose. The fuel hauling system must be shown to meet the applicable...
Combustion system for hybrid solar fossil fuel receiver
Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.
2004-05-25
A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.
Evaluation of fuel preparation systems for lean premixing-prevaporizing combustors
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1985-01-01
A series of experiments was carried out in order to produce design data for a premixing prevaporizing fuel-air mixture preparation system for aircraft gas turbine engine combustors. The fuel-air mixture uniformity of four different system design concepts was evaluated over a range of conditions representing the cruise operation of a modern commercial turbofan engine. Operating conditions including pressure, temperature, fuel-to-air ratio, and velocity, exhibited no clear effect on mixture uniformity of systems using pressure-atomizing fuel nozzles and large-scale mixing devices. However, the performance of systems using atomizing fuel nozzles and large-scale mixing devices was found to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixing uniformity was found to improve with system length, pressure drop, and the number of fuel injection points per unit area. A premixing system capable of providing mixing uniformity to within 15 percent over a typical range of cruise operating conditions is demonstrated.
2010-06-01
cell ( PEMFC ), and the phosphoric acid fuel cell (PAFC). 2.3.1 Solid Oxide Fuel Cells (SOFC) The first type of fuel cell considered is the SOFC. This...durability issues for use within a given application. 2.3.2 Polymer Electrolyte Membrane Fuel Cells ( PEMFC ) The PEMFC operates by passing hydrogen that has...cells. Some advantages of PEMFC operating at such low temperatures is that the fuel cell doesn’t require as meticulous of a support system infrastructure
US Hybrid Bucket Truck APM Phase I Final Scientific Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodarzi, Abas
Presently, there are approximately 166,000 medium- and heavy-duty (MD/HD) bucket trucks operating in the United States, the majority of which are diesel powered. These vehicles spend a significant amount of time idling at the work site to power the truck’s hydraulic boom, lights, auxiliary equipment, and cabin heating and cooling. Nationally, bucket trucks use 0.5 billion gallons of diesel fuel annually, representing 1.5 percent of the U.S.’s total diesel fuel consumption [ ]. Increasing fuel costs and environmental concerns are driving efforts to develop cleaner, quieter, more productive, and more energy efficient bucket trucks. The emissions of the bucket truckmore » have a direct effect on public health. Bucket trucks operation mode imposes heavy loads on the powertrain and results in very poor fuel efficiency and high emissions. Electric powertrains perform well in such conditions, and in recent years, a number of initiatives have been launched to explore the potential of fuel cell electric systems for bucket truck propulsion. The proposed fuel cell powered ePTO offers the best ROI and compatibility with the existing vehicles and operation and also minimized the infrastructure need. To address these problems, US Hybrid Corporation has teamed with Hawaii Center for Advanced Transportation Technologies (HCATT) and Hawaii Natural Energy Institute (HNEI) and Hawaiian Electric Company (HECO) to perform a Phase I analysis on the development and deployment of a fuel cell powered bucket truck (FCBT) for operation by HECO within the City and County of Honolulu. Based on preliminary modeling of a typical bucket truck operation, it is anticipated that the fuel cell powertrain will provide a 200% fuel economy improvement with zero emissions job-site operation and lower operating noise. The zero-emission ePTO bucket truck will also support the Greenhouse Gas (GHG) emission goals set forth by the federal government as well as the State of Hawaii. The operators within the bucket industry will also benefit from the proposed fuel cell bucket truck with zero emission job-site operation and lower operating noise. The maximum benefits of a hybrid powertrain are realized when the system is designed for the specific duty cycle of the vehicle. In the case of the bucket truck, the duty cycle consists of approximately six hours (75% of time) field operation and two hours (25% of time) in cruising mode drive to and back from job sites. The vast majority of fuel is consumed in the field operation mode, in which the vehicle is much less efficient due to the high energy expenditure while inefficiently operating the hydraulic bucket handling equipment. The amount of fuel consumed to generate hydraulic power represents approximately 50% of the total fuel consumed in field operation mode. Our cost analysis indicated that the cost premium for commercial volume production has a payback time of four years based on a hydrogen cost of $6/kg, while providing lower noise, less maintenance cost with electrically driven variable speed pump and portable packaging.« less
Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.
1958-09-01
This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... certain motor operated valve actuators for the fuel tanks are installed, and related investigative and... additional inspections to determine if certain motor operated valve actuators for the fuel tanks are... requires an inspection to determine if certain motor operated valve (MOV) actuators for the fuel tanks are...
40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... using . . . You must meet these operating limits except during periods of startup and shutdown . . . 1... the injection rate operating limit by 0.5). 5. Any other add-on air pollution control type. This... equal to 10 percent opacity (daily block average). 6. Fuel analysis Maintain the fuel type or fuel...
Applications of photoacoustic techniques to the study of jet fuel residue
NASA Technical Reports Server (NTRS)
Claspy, P. C.
1983-01-01
It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, L.; Chandler, K.
2010-06-01
This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.
Safety consequences of local initiating events in an LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.
1975-12-01
The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
Electrolytes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.
Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory
Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...
2015-09-10
Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less
Lowering the temperature of solid oxide fuel cells.
Wachsman, Eric D; Lee, Kang Taek
2011-11-18
Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.
More Fight-Less Fuel: Reducing Fuel Burn through Ground Process Improvement
2013-06-01
These joint government and commercial air operations management suites are fast, accurate, and offer many of 33 same tools as SPADE. However, the U.S...passing hour of the day. Simulating the operations at an airfield is similar to a host of related operations management problems including restaurant...flight line may yield significant fuel and cost reductions. Focusing on the efficient use of ground resources through air operations management in a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1993-09-01
The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
Evaluation of Techniques for Reducing In-Use Automotive Fuel Consumption
DOT National Transportation Integrated Search
1981-04-01
This report presents an assessment of proposed techniques for reducing fuel consumption in the in-use light duty road vehicle fleet. Three general classes of techniques are treated: (1) modification of vehicles, (2) modification of traffic flow, and ...
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less
Approach trajectory planning system for maximum concealment
NASA Technical Reports Server (NTRS)
Warner, David N., Jr.
1986-01-01
A computer-simulation study was undertaken to investigate a maximum concealment guidance technique (pop-up maneuver), which military aircraft may use to capture a glide path from masked, low-altitude flight typical of terrain following/terrain avoidance flight enroute. The guidance system applied to this problem is the Fuel Conservative Guidance System. Previous studies using this system have concentrated on the saving of fuel in basically conventional land and ship-based operations. Because this system is based on energy-management concepts, it also has direct application to the pop-up approach which exploits aircraft performance. Although the algorithm was initially designed to reduce fuel consumption, the commanded deceleration is at its upper limit during the pop-up and, therefore, is a good approximation of a minimum-time solution. Using the model of a powered-lift aircraft, the results of the study demonstrated that guidance commands generated by the system are well within the capability of an automatic flight-control system. Results for several initial approach conditions are presented.
Method for in situ carbon deposition measurement for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Kuhn, J.; Kesler, O.
2014-01-01
Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.
Hydrazine monopropellant reciprocating engine development
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1979-01-01
A hydrazine fueled piston engine for providing 11.2 kW was developed to satisfy the need for an efficient power supply in the range from 3.7 to 74.6 kW where existing nonair-breathing power supplies such as fuel cells or turbines are inappropriate. The engine was developed for an aircraft to fly to 21.3 km and above and cruise for extended periods. A remotely piloted aircraft and the associated flight control techniques for this application were designed. The engine is geared down internally (2:1) to accommodate a 1.8 m diameter propeller. An alternator is included to provide electrical power. The pusher-type engine is mounted onto the aft closure of the fuel tank, which also provides mounting for all other propulsion equipment. About 20 hrs of run time demonstrated good efficiency and adequate life. One flight test to 6.1 km was made using the engine with a small fixed-pitch four-bladed propeller. The test was successful in demonstrating operational characteristics and future potential.
NASA Astrophysics Data System (ADS)
Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.
Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.
2014-01-01
Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
Compression-ignition engine tests of several fuels
NASA Technical Reports Server (NTRS)
Spanogle, J A
1932-01-01
The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.
Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Levitskaia, Tatiana G.
2013-09-29
There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less
NASA Astrophysics Data System (ADS)
Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph
2015-11-01
Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-01-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-10-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.
Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi
2018-04-01
Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.
Characterization of ceria electrolyte in solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Milliken, Christopher Edward
The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).
Vehicle operating costs, fuel consumption, and pavement type condition factors
DOT National Transportation Integrated Search
1982-06-01
This report presents updated vehicle operating cost tables which may be used by a highway agency for estimation of vehicle operating costs as a function of operational and roadway variables. These results, partially based on fuel consumption tests on...
Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus Preliminary Evaluation Results
DOT National Transportation Integrated Search
2008-10-16
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The report discusses the planned fuel cell bus demonstration and equipment us...
Dec, John E [Livermore, CA; Sjoberg, Carl-Magnus G [Livermore, CA
2006-10-31
A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.
Development and evaluation of the photoload sampling technique
Robert E. Keane; Laura J. Dickinson
2007-01-01
Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...
NASA Astrophysics Data System (ADS)
Gao, J.; Nishida, K.
2010-10-01
This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otobe, Y.; Chikamatsu, M.
1988-03-08
A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less
Accuracy of trace element determinations in alternate fuels
NASA Technical Reports Server (NTRS)
Greenbauer-Seng, L. A.
1980-01-01
NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...
NASA Astrophysics Data System (ADS)
Braun, Robert Joseph
The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.
Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A
2017-10-20
The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.
NASA Astrophysics Data System (ADS)
Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.
The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.
NASA Astrophysics Data System (ADS)
Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao
2012-11-01
Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.
NASA Astrophysics Data System (ADS)
Saldivar Olague, Jose
A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.
Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.
Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin
2016-10-02
Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.
REVIEW ARTICLE: Emission measurement techniques for advanced powertrains
NASA Astrophysics Data System (ADS)
Adachi, Masayuki
2000-10-01
Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.
Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications
NASA Astrophysics Data System (ADS)
Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira
2011-10-01
Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 °C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.
Fuel conditioning facility electrorefiner start-up results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Vaden, D.
1996-05-01
At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.
Seed and blanket fuel arrangement for dual-phase nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Fawcett, R.M.
1992-09-22
This patent describes a fuel management method for a dual-phase nuclear reactor, it comprises: installing a fuel bundle at a first core location accessed by coolant through a relatively small aperture, each of the bundles having a predetermined group of fuel elements; operating the reactor a first time; shutting down the reactor; reinstalling the fuel bundle at a second core location accessed by coolant through a relatively large aperture; and operating the reactor a second time.
NASA Technical Reports Server (NTRS)
Thoms, K. R.
1975-01-01
Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operated on the alcohol or gaseous fuel they are designed to use, manufacturers must select a bin of... S04-1, when operated on the alcohol or gaseous fuel they are designed to use, manufacturers may choose... Table S04-1, when operated on the alcohol or gaseous fuel they are designed to use, manufacturers may...
Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung
In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.
Heffel, James W [Lake Matthews, CA; Scott, Paul B [Northridge, CA; Park, Chan Seung [Yorba Linda, CA
2011-11-01
An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.
Heffel, James W.; Scott, Paul B.
2003-09-02
An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.
Carbon fuel cells with carbon corrosion suppression
Cooper, John F [Oakland, CA
2012-04-10
An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1996-05-01
As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K
NASA Astrophysics Data System (ADS)
Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2018-01-01
Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:
Vehicle safety telemetry for automated highways
NASA Technical Reports Server (NTRS)
Hansen, G. R.
1977-01-01
The emphasis in current, automatic vehicle testing and diagnosis is primarily centered on the proper operation of the engine. Lateral and longitudinal guidance technologies, including speed control and headway sensing for collision avoidance, are reviewed. The principal guidance technique remains the buried wire. Speed control and headway sensing, even though they show the same basic elements in braking and fuel systems, are proceeding independently. The applications of on-board electronic and microprocessor techniques were investigated; each application (emission control, spark advance, or anti-slip braking) is being treated as an independent problem is proposed. A unified bus system of distributed processors for accomplishing the various functions and testing required for vehicles equipped to use automated highways.
Analysis of dynamic requirements for fuel cell systems for vehicle applications
NASA Astrophysics Data System (ADS)
Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen
Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative to conventional combustion engines, as long as there is a sufficient amount of power output from the fuel cell available for low operating temperatures. An optimized air supply system meets the requirements for transient operation in vehicles; however, specially designed machines are necessary-in particular smaller, integrated units. The electrical storage device helps to minimize fuel cell system response times for transient operation. An even more important point is that the fuel cell can be downsized. Utilizing this potential can reduce cost, space and weight. Fuel processing is preferable for auxiliary power units, since they have to operate in vehicles that use either gasoline or diesel fuel. High losses during the start-up phase can be avoided by using a battery to buffer the highly fluctuating power demands. Only advanced control methods are acceptable for controlling the operation of a fuel cell system with several components. Fuel cell systems can be developed and precisely optimized through the use of simulation tools, within an accelerated development process.
Current and future technology in radial and axial gas turbines
NASA Technical Reports Server (NTRS)
Rohlik, H. E.
1983-01-01
Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.
Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations
NASA Technical Reports Server (NTRS)
1976-01-01
Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.
Infrared measurements of a scramjet exhaust. [to determine combustion efficiency
NASA Technical Reports Server (NTRS)
Reed, R. A.; Slack, M. W.
1980-01-01
Diagnostic 2 - 5 mm infrared spectra of a hydrogen burning scramjet exhaust were measured with an interferometer spectrometer. Exhaust gas temperatures and water vapor partial pressures were determined from the observed intensity and spectral profile of the H2O 2.7 mm infrared emission band. Overall engine combustion efficiencies were derived by combining these measurements with the known engine operating conditions. Efficiencies fall (70 - 50 percent) as fuel equivalence ratios rise (0.4 - 1.0). Data analysis techniques and sensitivity studies are also presented.
Impact of new diesel fuels used in port operations on subsurface quality
DOT National Transportation Integrated Search
2008-04-01
Diesel is widely used as fuel for operations in the port of Los Angeles - Long : Beach as well as for transport of goods to and from the port. Conventional diesel fuel : contributes disproportional to air pollution (particulate matter, NOx, CO, and :...
Vapor feed direct methanol fuel cells with passive thermal-fluids management system
NASA Astrophysics Data System (ADS)
Guo, Zhen; Faghri, Amir
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.
Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS
NASA Astrophysics Data System (ADS)
Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.
Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.
Carbon composites with metal nanoparticles for Alcohol fuel cells
NASA Astrophysics Data System (ADS)
Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish
2015-03-01
Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Wei, Max; Lipman, Timothy
2014-06-23
A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kWmore » level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.« less
NASA Astrophysics Data System (ADS)
Shepherd, Mark A.
Short-term and long-term health risks associated with fossil fuel power production can be grouped into three broad categories: risks to the surrounding community, the natural environment and to plant workers. The results of three studies examining the primary short-term or long-term impacts of fossil fuel power plants are presented within this dissertation. The first study estimates the plausible community health effects associated with peak SO2 emissions from three coal-fired power plants in the Baltimore, Maryland area. Concentrations from mobile and stationary air monitoring were compared to human clinical studies that demonstrated respiratory morbidity. Results indicate that exposure concentrations are below levels associated with respiratory symptoms. A single measurement at one monitoring site, however, may indicate risk of asymptomatic lung function decrement for SO2-sensitive asthmatics. The second study estimates the relationship between operational, environmental and temporal factors at a Texas coastal power plant and fish and shellfish impingement. Impingement is a long-term risk to fish populations near power plants. When large quantities of water are withdrawn from water bodies for cooling, fish and shellfish may be harmed if impinged against screens intended to remove debris. In this study, impingement of fish and shellfish was best explained by dissolved oxygen concentration, sampling month and sampling time. When examined separately, temperature and sampling month were most important in explaining fish impingement, while for shellfish, sampling month and sampling time were most important. Operational factors were not significant predictors of impingement. The third study examines whether the number of worker similar exposure groups classified using observation methods was the same as groups classified using personal exposure monitoring. Using observational techniques and personal monitoring, power plant workers were grouped according to exposure similarity for respirable silica, respirable particulates, total dust, chromium and arsenic. For respirable particulates, the number of groups estimated using observational techniques is similar to the number estimated using personal monitoring. For respirable silica, total dust, and arsenic, observational techniques indicated more groups than indicated using personal monitoring. No significant exposure differences to chromium were found. Except for respirable silica, the number of similarly exposed groups among power plants is comparable.
In-situ measurement of residence time distributions in a turbulent oxy-fuel gas-flame combustor
NASA Astrophysics Data System (ADS)
Bürkle, Sebastian; Becker, Lukas G.; Agizza, Maria Angela; Dreizler, Andreas; Ebert, Volker; Wagner, Steven
2017-07-01
For improving the design of combustors, the knowledge of residence-time distributions (RTD) is important as they influence exhaust gas compositions. Measuring RTDs in combustors is challenging, due to high temperatures, chemical reactions, the presence of particles or corrosive species as well as high turbulence levels. This paper presents a technique for the in situ measurement of RTDs in combustors. Based on tunable diode laser absorption spectroscopy (TDLAS), the temporal evolution of the concentration of tracers is tracked simultaneously at the combustion chamber inlet and outlet. Using either air or mixtures of oxygen and carbon dioxide (oxy-fuel atmosphere) as oxidants, the method is applied to reacting and non-reacting operating conditions in a 20-kWth methane combustor. For reacting conditions, hydrogen chloride is used as a tracer, whereas for non-reacting conditions methane was chosen. Depending on the tracer, for a repetition rate of approximately 2 kHz detection limits of 16-40 ppmV are achieved. For deriving RTDs, low-pass filtering is compared to reactor network modeling. Different RTDs observed for varying operating conditions are discussed.
Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.
Rivera Gavidia, Luis M; Sebastián, David; Pastor, Elena; Aricò, Antonino S; Baglio, Vincenzo
2017-05-25
Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm -2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.
Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes
Rivera Gavidia, Luis M.; Sebastián, David; Pastor, Elena; Aricò, Antonino S.; Baglio, Vincenzo
2017-01-01
Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation. PMID:28772937
NASA Astrophysics Data System (ADS)
Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.
Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.
Design and performance considerations of evaporative-pad, waste-heat greenhouses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
1978-01-01
Rising fuel costs and limited fuel availability have forced greenhouse operators to seek alternative means of heating their greenhouses in an effort to reduce production costs and conserve energy. One such alternative uses power plant reject heat, which is contained in the condenser cooling water, and a bank of evaporative pads to provide winter heating. The design technique used to size the evaporative pad system to meet both summer cooling and winter heating demands is described. Additionally, a computational scheme that simulates the system performance is presented. This analytical model is used to determine the greenhouse operating conditions that maintainmore » the vegetation in its thermal comfort zone. The evaporative pad model uses the Merkel total heat approximation and an experimentally derived transfer coefficient. Energy balance considerations on the vegetation provide a means of viewing optimal vegetation growth in terms of greenhouse environmental factors. In general, the results indicate that the vegetation can be maintained within its thermal comfort zone if sufficient warm water is available to the pads and the air stream flow is properly adjusted.« less
HIFIRE Flight 2 Overview and Status Update 2011
NASA Technical Reports Server (NTRS)
Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore
2011-01-01
A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.
Maximized exoEarth candidate yields for starshades
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Shaklan, Stuart; Lisman, Doug; Cady, Eric; Savransky, Dmitry; Roberge, Aki; Mandell, Avi M.
2016-10-01
The design and scale of a future mission to directly image and characterize potentially Earth-like planets will be impacted, to some degree, by the expected yield of such planets. Recent efforts to increase the estimated yields, by creating observation plans optimized for the detection and characterization of Earth-twins, have focused solely on coronagraphic instruments; starshade-based missions could benefit from a similar analysis. Here we explore how to prioritize observations for a starshade given the limiting resources of both fuel and time, present analytic expressions to estimate fuel use, and provide efficient numerical techniques for maximizing the yield of starshades. We implemented these techniques to create an approximate design reference mission code for starshades and used this code to investigate how exoEarth candidate yield responds to changes in mission, instrument, and astrophysical parameters for missions with a single starshade. We find that a starshade mission operates most efficiently somewhere between the fuel- and exposuretime-limited regimes and, as a result, is less sensitive to photometric noise sources as well as parameters controlling the photon collection rate in comparison to a coronagraph. We produced optimistic yield curves for starshades, assuming our optimized observation plans are schedulable and future starshades are not thrust-limited. Given these yield curves, detecting and characterizing several dozen exoEarth candidates requires either multiple starshades or an η≳0.3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyan Annamalai; John Sweeten; Saqib Mukhtar
2002-01-15
Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure hasmore » economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...
Code of Federal Regulations, 2013 CFR
2013-07-01
... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...
Code of Federal Regulations, 2014 CFR
2014-07-01
... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
1989-11-01
the high risk of fuel cells damaging as a consequence of the unfolding and refolding operations. - Difficulties to perform acceptance inspection tests...corners sometimes present in the structures. (See FIG. 6, 7, 8). - Additional installation costs and risk of damaging due to fuel cells anchoring...performed manually by very complex tying operations. (See. FIG. 9). - Risk of damaging of the thicker reinforced zones of the flexible fuel cells where
Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release
NASA Astrophysics Data System (ADS)
Park, Sammy Ace
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
NASA Technical Reports Server (NTRS)
Wear, J. D.; Jones, R. E.
1973-01-01
The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-02-17
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.
NASA Astrophysics Data System (ADS)
E. Romero, Carlos; De Saro, Robert
Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.
Spent fuel treatment at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Benedict, R.W.; Levinskas, D.
1994-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994.
Catalysis in high-temperature fuel cells.
Föger, K; Ahmed, K
2005-02-17
Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.
Configuring a fuel cell based residential combined heat and power system
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.
2013-11-01
The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
A discrete element method-based approach to predict the breakage of coal
Gupta, Varun; Sun, Xin; Xu, Wei; ...
2017-08-05
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
Magaril, Elena
2016-04-01
The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.
Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors
NASA Technical Reports Server (NTRS)
Snyder, Timothy S. (Inventor)
2015-01-01
A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.
Viswanathan, Karthickeyan
2018-05-01
In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.
Ultrasonic Transducer Irradiation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep
2015-02-01
Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two magnetostrictive transducers have demonstrated reliable operation under irradiation. The irradiation is ongoing.« less
A light hydrocarbon fuel processor producing high-purity hydrogen
NASA Astrophysics Data System (ADS)
Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan
This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.