NASA Technical Reports Server (NTRS)
English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.
1977-01-01
The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.
Renewable Fuel Standard Program (RFS1): Final Rule Additional Resources
The final rule of fuels and fuel additives: renewable fuel standard program is published on May 1, 2007 and is effective on September 1, 2007. You will find the links to this final rule and technical amendments supporting this rule.
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Renewable Fuel Standard (RFS2): Final Rule Additional Resources
The final rule of fuels and fuel additives: renewable fuel standard program is published on March 26, 2010 and is effective on July 1, 2010. You will find the links to this final rule and technical amendments supporting this rule.
Investigation of Fuel Oil/Lube Oil Spray Fires On Board Vessels. Volume 3.
1998-11-01
U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-01-99, III Investigation of Fuel ...refinery). Developed the technical and mathematical specifications for BRAVO™2.0, a state-of-the-art Windows program for performing event tree and fault...tree analyses. Also managed the development of and prepared the technical specifications for QRA ROOTS™, a Windows program for storing, searching K-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleschev, Yu.N.; Chukharev, V.F.
1996-04-01
This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.
Fuel cell energy service Enron`s commerical program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, M.W.
1996-04-01
Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less
Status of shuttle fuel cell technology program.
NASA Technical Reports Server (NTRS)
Rice, W. E.; Bell, D., III
1972-01-01
The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.
EPA and the NHTSA collaborated with CARB on this joint Technical Assessment Report to build on the success of the first phase of the National Program to regulate fuel economy and greenhouse gas (GHG) emissions from U.S. light-duty vehicles.
ATF Neutron Irradiation Program Technical Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geringer, J. W.; Katoh, Yutai
The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less
Status of the US RERTR Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-02-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1994 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1993 in collaboration with its many international partners. The RERTR Program has moved aggressively to support President Clinton`s nonproliferation policy and his goal {open_quotes}to minimize the use of highly-enriched uranium in civil nuclear programs{close_quotes}. An Environmental Assessment which addresses the urgent-relief acceptance of 409 spent fuel elements was completed, and the first shipment of spent fuel elements is scheduledmore » for this month. An Environmental Impact Statement addressing the acceptance of spent research reactor fuel containing enriched uranium of U.S. origin is scheduled for completion by the end of June 1995. The U.S. administration has decided to resume development of high-density LEU research reactor fuels. DOE funding and guidance are expected to begin soon. A preliminary plan for the resumption of fuel development has been prepared and is ready for implementation. The scope and main technical activities of a plan to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels was agreed upon by the RERTR Program and four Russian institutes lead by RDIPE. Both Secretary O`Leary and Minister Michailov have expressed strong support for this initiative. Joint studies have made significant progress, especially in assessing the technical and economic feasibility of using reduced enrichment fuels in the SAFARI-I reactor in South Africa and in the Advanced Neutron Source reactor under design at ORNL. Significant progress was achieved on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU to the achievement of the common goal.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... consider your comment. Electronic files should avoid the use of special characters, any form of encryption... technical information and/or data that you used. If you estimate potential costs or burdens, explain how you... the quantity of fossil fuel present in transportation fuel. Under EPA's RFS program this is...
Pollution Prevention Grants Program The Pollution Prevention (P2) Grants Program supports state and tribal technical assistance, education, and research programs that help businesses and industries
Fuel Characteristic Classification System version 3.0: technical documentation
Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin
2013-01-01
The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...
Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan
2018-01-16
Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.
Cooperative global security programs modeling & simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briand, Daniel
2010-05-01
The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reducemore » weapons of mass destruction and terrorism threats through international technical cooperation.« less
The current state of the Russian reduced enrichment research reactors program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.
1997-08-01
During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% frommore » RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.« less
Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-12-01
This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.
Final Scientifc Report - Hydrogen Education State Partnership Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Warren
2012-02-03
Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less
Early Fuel Cell Market Demonstrations | Hydrogen and Fuel Cells | NREL
Handling Equipment Data Collection and Analysis: 2015 Report, DOE Hydrogen and Fuel Cells Program Annual Progress Report (December 2015) Material Handling Equipment Data Collection and Analysis: 2015 Review, DOE Technical Report (March 2015) 2014 Forklift and Backup Power Data Collection and Analysis: 2014 Report, DOE
FY2016 Propulsion Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
The US Department of Energy - investing in clean transport
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Milliken, JoAnn; Miller, James F.; Venkateswaran, S. R.
The US Department of Energy (DOE), together with six other federal agencies and America's three largest car makers, are jointly investing in the development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient technology for automotive propulsion under the Partnership for a New Generation of Vehicles (PNGV). (PEM is sometimes referred to as `proton exchange membrane'. The correctness, or otherwise, of that interpretation will depend on the mechanism of apparent proton transfer in the membrane implied). It is anticipated that the successful development of PEM fuel cells (and other long-term technologies) to meet automotive requirements will extend beyond the PNGV's 2004 timeframe for achieving 80 miles per gallon in production prototypes. Given the extraordinary promise of large energy, environmental and economic benefits to the nation from fuel cells and other long-term technologies, the PNGV partners will continue to invest in these technologies beyond 2004. The DOE's Transportation Fuel Cells Program has recently announced US$50 million of new contract awards for focused R&D to overcome critical technical barriers such as fuel-flexible fuel processing technology. The progress achieved toward automotive goals through these and past investments will also enable nearer-term application of fuel cells (e.g. in buses). This paper describes the status of the PNGV program and the key role and technical accomplishments of the DOE Transportation Fuel Cells Program. The DOE's recent investments in new fuel cell R&D activities will be discussed.
Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)
National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.
The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleschev, Yu.N.; Chulharev, V.F.
1996-04-01
Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.
Clean Cities Technical Assistance Project (Tiger Teams)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This two-page fact sheet describes Clean Cities' technical assistance (Tiger Teams) capabilities and projects, both completed and ongoing. Tiger Teams are a critical element of the Clean Cities program, providing on-the-ground consultation to help inform program strategies. The knowledge Tiger Team experts gain from these experiences often helps inform other alternative fuels activities, such as needed research, codes and standards revisions, and new training resources.
FY2014 Propulsion Materials R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
FY2015 Propulsion Materials Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
2011-12-15
just two of the major UNCLASSIFIED UNCLASSIFIED vi technical hurdles that the FRF program was unable to clear. The logistical burden associated...Differences between JP-8 and DF-2 fuel are also discussed. The vehicle fuel fires experienced in combat situations occur in two distinct phases. The first...segregated in two groups, micro and macro-emulsions. These groups differ by the size of the suspended water droplets. Most of the emulsions
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
Proton exchange membrane fuel cell technology for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swathirajan, S.
1996-04-01
Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less
Fuel conservation possibilities for terminal area compatible aircraft
NASA Technical Reports Server (NTRS)
1975-01-01
Design features and operational procedures are identified, which would reduce fuel consumption of future transport aircraft. The fuel-saving potential can be realized during the last decade of this century only if the necessary research and technology programs are implemented in the areas of composite primary structure, airfoil/wing design, and stability augmentation systems. The necessary individual R and T programs are defined. The sensitivity to fuel usage of several design parameters (wing geometry, cruise speed, propulsion) is investigated, and the results applied to a candidate 18, 140-kg (40,000-lb) payload, 5556-km (3000-nmi) transport design. Technical and economic comparisons are made with current commercial aircraft and other advanced designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steward, Darlene; Sears, Ted
The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum usemore » in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less
Back-Up/ Peak Shaving Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda L.
2008-05-28
This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-02-01
Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
of the following measures: Payment of incentives to customers that install EVSE; Time-of-use rates customers; and Technical assistance programs for government fleets and private organizations. Utilities may
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
The 1981 NASA ASEE Summer Faculty Fellowship Program, volume 1
NASA Technical Reports Server (NTRS)
Robertson, N. G.; Huang, C. J.
1981-01-01
A review of NASA research programs related to developing and improving space flight technology is presented. Technical report topics summarized include: space flight feeding; aerospace medicine; reusable spacecraft; satellite soil, vegetation, and climate studies; microwave landing systems; anthropometric studies; satellite antennas; and space shuttle fuel cells.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Parker, J. A.
1974-01-01
The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.
Designed to assist instructors in preparing secondary and adult students for employment in the field of fuel system services, this guide outlines eight units of instruction. The eight unit titles are (1) Introduction (overview of course content and requirements, and work/safety habits), (2) Minor Components, (3) Carburetor Fundamentals, (4)…
Off-highway vehicle technology roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2002-02-07
The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R&D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchangemore » information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R&D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with the resources at the DOE's national laboratories), an effective program can be planned and executed. This document outlines potential technology R&D pathways to greatly reduce emissions from the off-highway sector and yet greatly reduce fuel costs cost-effectively and safely. The status of technology, technical targets, barriers, and technical approaches toward R&D are presented. Program schedule and milestones are included.« less
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.
1986-01-01
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.
Texas Hydrogen Education Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, David; Bullock, Dan
2011-06-30
The Texas Hydrogen Education project builds on past interest in hydrogen and fuel cells to help create better informed leaders and stakeholders and thereby improve decision making and planning for inclusion of hydrogen and fuel cell technologies as energy alternatives in Texas. In past years in Texas, there was considerable interest and activities about hydrogen and fuel cells (2000-2004). During that time, the Houston Advanced Research Center (HARC) created a fuel cell consortium and a fuel cell testing lab. Prior to 2008, interest and activities had declined substantially. In 2008, in cooperation with the Texas H2 Coalition and the Statemore » Energy Conservation Office, HARC conducted a planning process to create the Texas Hydrogen Roadmap. It was apparent from analysis conducted during the course of this process that while Texas has hydrogen and fuel cell advantages, there was little program and project activity as compared with other key states. Outreach and education through the provision of informational materials and organizing meetings was seen as an effective way of reaching decision makers in Texas. Previous hydrogen projects in Texas had identified the five major urban regions for program and project development. This geographic targeting approach was adopted for this project. The project successfully conducted the five proposed workshops in four of the target metropolitan areas: San Antonio, Houston, Austin, and the Dallas-Ft. Worth area. In addition, eight outreach events were included to further inform state and local government leaders on the basics of hydrogen and fuel cell technologies. The project achieved its primary objectives of developing communication with target audiences and assembling credible and consistent outreach and education materials. The major lessons learned include: (1) DOE’s Clean Cities programs are a key conduit to target transportation audiences, (2) real-world fuel cell applications (fuel cell buses, fuel cell fork lifts, and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-10-01
The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less
78 FR 60866 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of...: This notice announces an open meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC... Committee: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807...
77 FR 18243 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC); Notice of Open Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC); Notice of Open... open meeting. SUMMARY: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory... Committee: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807...
1985-09-01
Gallon External Fuel Tank. a. This is a filament-wound fuel tank with nomex honeycomb core, inner layers of Kevlar and glass , outer layers of...MD 20910 Dr. A. Carro FAA Technical Center Mr. Jack Lippert ACT-340 AFWAL/FIEA Atlantic City Airport, NJ 08405 Air Force Wright Aeronautical Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less
1988-01-01
Synthetic Motor Oils Basic Research on Mist Flamma- AFLRL-97 A046345 Sep 77 D.W. Naegeli bility--Phase I, Experimental W.D. Weatherford, Jr. Facility...Fuels on Combustor Properties D.W. Naegeli Application of Energy Dispersive AFLRL-102 A062792 Feb 78 M.K. Greenberg X-Ray Fluorescence Spectroscopy...the Literature J.P. Cuellar, Jr. Military Fuels Refined From AFLRL-131 A101069 Mar 81 J.N. Bowden Paraho-Il Shale Oil E.C. Owens D.W. Naegeli L.L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markl, H.; Goetzmann, C.A.; Moldaschl, H.
The Kraftwerk Union AG high conversion reactor represents a quasi-standard PWR with fuel assemblies of more or less uniformly enriched fuel rods, arranged in a tight hexagonal array with a pitch-to-diameter ratio p/d approx. = 1.12. High fuel enrichment as well as a high conversion ratio of --0.9 will provide the potential for high burnup values up to 70 000 MWd/tonne and a low fissile material consumption. The overall objective of the actual RandD program is to have the technical feasibility, including that for licensibility, established by the early 1990s as a prerequisite for deciding whether to enter a demonstrationmore » plant program.« less
NASA Technical Reports Server (NTRS)
Dunbar, D. N.; Tunnah, B. G.
1978-01-01
The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case. The report has sufficient detail for the information of most readers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
...In this Notice of Proposed Rulemaking, EPA is proposing amendments to three separate sets of regulations relating to fuels. First, EPA is proposing to amend certain of the renewable fuels standard (RFS2) program regulations. We believe these proposals will facilitate the introduction of new renewable fuels as well as improve implementation of the program. This proposal includes various changes related to biogas, including changes related to the revised compressed natural gas (CNG)/liquefied natural gas (LNG) pathway and amendments to various associated registration, recordkeeping, and reporting provisions. This proposed regulation includes the addition of new pathways for renewable diesel, renewable naphtha, and renewable electricity (used in electric vehicles) produced from landfill biogas. Adding these new pathways will enhance the ability of the biofuels industry to supply advanced biofuels, including cellulosic biofuels, which greatly reduce the greenhouse gas emissions (GHG) compared to the petroleum-based fuels they replace. It also addresses ``nameplate capacity'' issues for certain production facilities that do not claim exemption from the 20% greenhouse gas (GHG) reduction threshold. In this notice, EPA addresses issues related to crop residue and corn kernel fiber and proposes an approach to determining the volume of cellulosic RINs produced from various cellulosic feedstocks. We also include a lifecycle analysis of advanced butanol and discuss the potential to allow for commingling of compliant products at the retail facility level as long as the environmental performance of the fuels would not be detrimental. Several other amendments to the RFS2 program are included. Second, EPA is also proposing various changes to the E15 misfueling mitigation regulations (E15 MMR). Among the E15 changes proposed are technical corrections and amendments to sections dealing with labeling, E15 surveys, product transfer documents, and prohibited acts. We also propose to amend the definitions in order to address a concern about the rounding of test results for ethanol content violations. Lastly, EPA is proposing changes to the survey requirements associated with the ultra-low sulfur diesel (ULSD) program.
Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical expertsmore » from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.« less
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpkins, Travis; Cutler, Dylan; Hirsch, Brian
There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies,more » the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T. Robinson; John Sirman; Prasad Apte
2005-05-01
This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less
76 FR 4645 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC). HTAC... Presentations HTAC Subcommittee Overviews HTAC Annual Report Development Stationary Fuel Cell Industry Analysis...
Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers,
Manufacturers | News | NREL Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers, Manufacturers Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers fuel cell and hydrogen components and systems and improve U.S. manufacturing competitiveness. The
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelen, Deborah; Odom, Sara
2015-04-30
Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requestedmore » were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by documenting progress in addressing energy and environmental challenges. Information from this project will be used by the hydrogen and vehicle industries to help advance the introduction of FCEVs and associated hydrogen infrastructure.« less
Energy Supply Options for Modernizing Army Heating Systems
1999-01-01
Army Regulation (AR) 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispens- ing Systems and Technical Manual (TM) 5-650...analysis. 26 USACERL TR 99/23 HEATMAP uses the AutoLISP program in AutoCAD to take the graphical input to populate a Microsoft® Access database in...of 1992, Subtitle F, Federal Agency Energy Man- agement. Technical Manual (TM) 5-650, Repairs and Utilities: Central Boiler Plants (HQDA, 13 October
ERIC Educational Resources Information Center
Chan, Hsun-yu; Wang, Xueli
2016-01-01
Objective: This study explored the relationship between different types of interpersonal interaction, characterized by their underlying motivations, and educational outcomes among students in manufacturing programs at two-year colleges. While there exist several ways to classify interaction, motivation as an inherent attribute that fuels behaviors…
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2004-05-07
The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine.more » This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.« less
76 FR 60478 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of... Gas Supply on Fuel Cell and Hydrogen Market. Industry Presentations. Status Cost and Performance of...
Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Parks, Cecil V; Mueller, Don
2010-01-01
Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transportmore » and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and operational issues and data related to assembly burnup confirmation. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details, and provide a useful resource to others in the burnup credit community.« less
77 FR 50488 - Hydrogen and Fuel Cell Technical Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee AGENCY: Department of...). SUMMARY: This notice announces an open meeting (Webinar) of the Hydrogen and Fuel Cell Technical Advisory... Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of...
Synthetic fuels: an industry struggles to be born amidst the perils of techno-econo-politics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyman, M.
1976-04-01
Despite active planning for a variety of large-scale synthetic fuels projects and some encouraging technical achievements, most proposals have become bogged down, and disheartened supporters are reluctant to proceed further until the economic, environmental, and political atmosphere clears up. The top-level study group urged a variety of federal financial incentives be provided to spur construction and operation of twelve to 15 synthetic fuel first-of-a-kind ''commercial demonstration'' projects. While hopefully contributing a daily 350,000 barrels of oil equivalent by the middle of the next decade, a prime justification for embarking on the commercialization program would be to provide specific environmental, economic,more » and technical information that is currently lacking. The task force specifically pushed for: loan guarantees of up to 75 percent of project cost for high-Btu pipeline gas from coal, loan guarantees for as much as 50 percent of project cost for shale oil, syncrude, and unregulated electric utility or industrial fuels along with price supports; construction grants of up to 50 percent of project costs for regulated utility and industrial fuels; and a maximum of 75 percent in loan guarantees for production of liquids and gases from biomass. Direct combustion of solid wastes for energy recovery was considered inappropriate for inclusion in the program. That particular industry was viewed by the task force as already on its way in response to urban needs. Industry and congressional responses to the incentives are reviewed. (MCW)« less
Embedded system based on PWM control of hydrogen generator with SEPIC converter
NASA Astrophysics Data System (ADS)
Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo
2017-09-01
The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste
Fuel quality processing study, volume 1
NASA Astrophysics Data System (ADS)
Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.
1981-04-01
A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.
Fuel quality processing study, volume 1
NASA Technical Reports Server (NTRS)
Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.
1981-01-01
A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.
NASA Astrophysics Data System (ADS)
Mead, Gary R.
As the price of petroleum rises, the use of alternative fuels such as ethanol will continue to increase. As ethanol use increases, consumers are asking automotive technicians questions about the fuel. But how much do automotive technicians know about ethanol? In order to answer this question, a study was conducted to describe automotive technician students' knowledge, attitudes, and perceptions of ethanol as a vehicle fuel. Automotive students were chosen because they will be tomorrow's generation of technicians who will be working on vehicles that have used ethanol fuels along with flex fuel vehicles. The students were selected from six two-year technical colleges located in southern Minnesota. The six schools were chosen because they are located in areas where ethanol use is prevalent. The study used a 33-question pencil-and-paper survey to measure 184 automotive students' perceptions of ethanol. The survey revealed that students' knowledge of ethanol is very superficial. They know well advertised terms and facts, but lack an in-depth knowledge of the fuel. Also, it was discovered that several myths about ethanol still exist. Because of the lack of knowledge on technical aspects of the fuel, it is recommended that instructors in automotive programs incorporate a one to two hour class covering ethanol fuels into their courses. The second part of this study was a review of several material compatibility studies conducted at Minnesota State University, Mankato on 20% ethanol blends. The studies were conducted on fuel system rubbers, plastics, and metals. Minnesota recently enacted a law that will require all gasoline sold in the state to contain 20% ethanol. These studies were reviewed to see if 20% ethanol, E20, will cause any vehicle fuel system problems that automotive technicians should know about. After reviewing the studies it was determined that the likelihood of fuel system problems from E20 would be very small and isolated. Even though the potential for problems was found to be low, E20 information should be incorporated into an auto program's fuel class to help students understand this fuel and prevent the spread of myths.
The Two-Year Colleges' Role in Building the Future Geoscience Technical Workforce
NASA Astrophysics Data System (ADS)
Wolfe, B.
2014-12-01
Careers in energy science related fields represent significant job growth in the U.S. Yet post-secondary career and technical programs have not kept pace with demand and energy science curriculum, including fundamental concepts of energy generation and environmental impact, lacks a firm position among general or career and technical education courses. Many of these emerging energy related jobs are skilled labor and entry level technical positions requiring less than a bachelor's degree. These include jobs such as solar/photovoltaic design and installation, solar water and space heating installation, energy management, efficiency and conservation auditor, environmental technician, etc. These energy related career pathways fit naturally within the geosciences discipline. Many of these jobs can be filled by individuals from HVAC, Industrial technology, welding, and electrical degree programs needing some additional specialized training and curriculum focused on fundamental concepts of energy, fossil fuel exploration and use, atmospheric pollution, energy generation, alternative energy sources, and energy conservation. Two-year colleges (2ycs) are uniquely positioned to train and fill these workforce needs as they already have existing career and technical programs and attract both recent high school graduates, as well as non-traditional students including displaced workers and returning veterans. We have established geoscience related workforce certificate programs that individuals completing the traditional industrial career and technical degrees can obtain to meet these emerging workforce needs. This presentation will discuss the role of geosciences programs at 2ycs in training these new workers, developing curriculum, and building a career/technical program that is on the forefront of this evolving industry.
78 FR 6086 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of...). SUMMARY: This notice announces an open meeting (Webinar) of the Hydrogen and Fuel Cell Technical Advisory... Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of...
1982-03-19
high first and annually recurring costs of flue gas desulfurization . If our future coal systems have the technical flexibility to use these fuels...Democracy Lane Program Element: 64708F Fairfax, Virginia 22030 JON: 20545017 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Air Force Engineering...plants that supply both heating and process energy to large military installations, the majority of which are natural gas - and/or oil-fired. The goal is
Techno-economic analysis of a biomass depot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Jacob Jordan; Lamers, Patrick; Roni, Mohammad Sadekuzzaman
2014-10-01
The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.
1987-12-01
developed for a large percentage of the participants in the Summer Faculty Research Program in 1979-1983 period through an AFOSR Minigrant Program . On 1...Analysis of a Bimodal Nuclear Rocket Core by Dav,, C. Carpenter ABSTRACT The framework for a general purpose finite element analysis code was developed ...to study the 2-D temperature distribution in a hot-channel S hexagonal fuel element in the core of a bimodal nuclear’ rocket. Prelim- inary thermal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Thomas D. Foust, Ph.D, P.E. | NREL
-June 1997 Mechanical Systems Engineer, Nuclear Energy Program, DOE, August 1990-August 1992 Test Production," Science (2007) Heat Exchanger Performance Enhancement Methodologies, DOE Technical Report Separation Systems for Bioenergy Separations," presented at 24th Symposium on Biotechnology for Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
1998-03-01
This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues relatedmore » to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical
Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled
Buttner, William; Rivkin, C.; Burgess, R.; ...
2017-02-04
Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less
The RERTR Program status and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-12-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less
77 FR 23631 - Defense Federal Acquisition Regulation Supplement; Technical Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
..., 217, 242, 245, and 252 Government procurement. Mary Overstreet, Editor, Defense Acquisition... ``Deputy Assistant Secretary of the Army (Procurement)'' in alphabetical order; 0 b. In the Army list by... purchase, travel, and fuel card programs is available in the ``Department of Defense Government Charge Card...
Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A. L.; Diamond, D.
2013-10-31
The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report is a result of a request for a specific correlation program between the EPA laboratory and Peugeot Automobiles of France. The purpose of the program was to investigate the difference in hydrocarbon emissions measured on diesel vehicles at the EPA and Peugeot. The possibility of the offset being fuel related was of primary concern to Peugeot and the program was designed to explore this. This report presents and discusses data collected thru December 1978. Testing is still being done on the vehicle.
Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1
NASA Astrophysics Data System (ADS)
1982-05-01
A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.
Abstracts: Energy Sciences programs, January--December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report presents abstracts of all publications in the Energy Sciences programs of the Department of Energy and Environment from January 1, 1978 through December 31, 1978. It is a companion report to Annual Highlights of Programs in Energy Sciences - (December 1978, BNL 50973). Together, they present scientific and/or technical highlights of the Energy Sciences programs for the past calendar year, detailed descriptions of all the programs, and the publication issuing from the work performed. The following are some of the topics included: porphyrin chemistry; chemistry of energetic compounds; combustion; coal utilization; metal hydrides; cyclic separations process research; tracemore » element analysis; materials properties and structures; radiation damage; superconducting materials; materials of construction for geothermal applications; repair of deteriorated concrete; development of glass--polymer composite sewer pipe; flash hydropyrolysis of coal; desulfurization of high-temperature combustion and fuel gases; and synthetic fuels development. (RWR)« less
A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS
This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...
77 FR 2714 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting, Webinar. SUMMARY: This notice announces an open meeting of the Hydrogen and Fuel Cell Technical Advisory Committee...
75 FR 59705 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of...
75 FR 2860 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee...
75 FR 26743 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of...
Material Recovery and Waste Form Development FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry Allen; Braase, Lori Ann
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less
ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geringer, J. W.; Katoh, Yutai; Howard, Richard H.
The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterizationmore » of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.« less
Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics
NASA Technical Reports Server (NTRS)
Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.
1976-01-01
The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal.
Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, Timothy; Hlotke, John Daniel; Yacout, Abdellatif
2017-07-05
This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generatedmore » during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.« less
78 FR 18578 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... and Fuel Cell Technical Advisory Committee (HTAC). The Federal Advisory Committee Act, Public Law 92... Cell Technical Advisory Committee (HTAC) was established under section 807 of the Energy Policy Act of...
NASA Astrophysics Data System (ADS)
Ramohalli, K.
1981-05-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1981-01-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
Proceedings of the 2000 U.S. DOE Hydrogen Program Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL
2000-11-01
The 2000 US Department of Energy (DOE) Hydrogen Program Review was sponsored by the Office of Power Delivery Systems, Office of Power Technologies, US Department of Energy. The proceedings from this meeting serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 2000. The growth of fuel cell technology will provide a basis for the establishment of the hydrogen option into both transportation and electricity supply markets.
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Walker, Charles; Ristow, James
2006-01-01
NASA's educational. programs benefit students and faculty while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields. GSRP participants have the option to utilize NASA Centers andlor university research facilities. In addition, GSRP students can serve as mentors for undergrad students to provide a truly unique learning experience. NASA's Cooperative Education Program allows undergraduate students the chance to gain "real-world" work experience in the field. It also gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a "paper resume" while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. University faculty can also benefit by participating in the NASA Faculty Fellowship Program (NFFP). This program gives the faculty an opportunity to work with NASA peers. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University (ERAU) to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identif' the parameters that will predict the response fairly accurately during the initial stages of design. These programs provide students with a unique opportunity to work on "real-world" aerospace problems, like spacecraft fuel slosh,. This in turn reinforces their problem solving abilities and their communication skills such as interviewing, resume writing, technical writing, and presentation. Faculty benefits by applying what they have learned to the classroom. Through university collaborations with NASA and industry help students to acquire skills that are vital for their success upon entering the workforce.
United States Air Force Graduate Student Research Program. Program Technical rept. Volume 2
1988-12-01
Applications William Geisler xxiii 13 Stability of Jets Under the Supercritical David Graham State 14 In-Plane Fracture in 2-D Carbon-Carbon Gary Griesheim...Dr. Susan Collins *** Engineering and Services Center 19 Investigation of Sorption Kinetics Mark Brusseau 20 Estimation of Jet Fuel Contamination in...Development 47 A Study of Sky Backgrounds and Sub-Visual Eric Schmidt Cirrus 48 Adaptive Array Architectures with Low- Tien Tran Sensitivity to
DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sindelar, R.; Deible, R.
2011-04-27
The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report bymore » the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.« less
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
Fossil energy biotechnology: A research needs assessment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less
Nuclear safety. Technical progress journal, October 1996--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less
FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.; Tillman, D.
1997-12-01
The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Amongmore » these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
Material Recover and Waste Form Development--2016 Accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry A.; Vienna, John; Paviet, Patricia
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less
Separations and Waste Forms Research and Development FY 2013 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecker, Siegfried S.
Actions of the Government of the Democratic People's Republic of Korea have precipitated two nuclear crises in the past 10 years. The 1994 crisis was resolved through the 'Agreed Framework.' North Korea agreed to 'freeze' and eventually dismantle its nuclear program (with U.S. help to store spent fuel safely and under IAEA inspection). In return, the United States agreed (with the KEDO international consortium) to build two light-water reactors and supply North Korea with heavy-fuel oil until the reactors come on line. In addition, both sides agreed to move towards full normalization of relations, work for peace and security onmore » a nuclear-free Korean Peninsula, and work on strengthening the international nonproliferation regime. The second nuclear crisis erupted when North Korean Government officials allegedly admitted to having a clandestine uranium enrichment program when confronted with this accusation by U.S. officials in October 2002. The United States (through KEDO) suspended heavy-fuel oil shipments and North Korea responded by expelling the IAEA inspectors, withdrawing from the Nuclear Nonproliferation Treaty, and restarting its nuclear program in January 2003. The North Korean Government has invited Professor John Lewis of Stanford University, a China and North Korea scholar, for Track I1 discussions of nuclear and other key issues since 1987. In August 2003, Professor Lewis visited North Korea just before the first six-party talks, which were designed by the United States to solve the current nuclear crisis. Professor Lewis was invited back for the January 2004 visit. He asked Jack Pritchard, former U.S. special envoy for DRPK negotiations, and me to accompany him. Two Asian affairs staff specialists from the U.S. Senate Foreign Relations Committee also joined us. I will report on the visit to the Yongbyon Nuclear Scientific Research Center on January 8,2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. We were not shown any facilities or had the opportunity to talk to technical or military experts who were able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. On the matter of uranium enrichment programs, Vice Minister Kim Gye Gwan categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' Upon return to the United States, I shared my observations and analysis with U.S. Government officials in Washington, DC, including congressional testimony to the Senate Foreign Relations Committee and briefings to two House of Representative Committees.« less
Power-grade butanol recovery and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noon, R.
1982-02-12
As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstratemore » and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.« less
77 FR 65542 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... Updates Congressional Fuel Cell Caucuses NREL Reports on Hydrogen in Natural Gas Pipelines and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, T.D.; Morris, R.C.; Markham, O.D.
1995-06-01
This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
...EPA and NHTSA, on behalf of the Department of Transportation, are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's final fuel consumption standards and EPA's final carbon dioxide (CO2) emissions standards are tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-duty Pickup Trucks and Vans; and Vocational Vehicles. The rules include separate standards for the engines that power combination tractors and vocational vehicles. Certain rules are exclusive to the EPA program. These include EPA's final hydrofluorocarbon standards to control leakage from air conditioning systems in combination tractors, and pickup trucks and vans. These also include EPA's final nitrous oxide (N2O) and methane (CH4) emissions standards that apply to all heavy- duty engines, pickup trucks and vans. EPA's final greenhouse gas emission standards under the Clean Air Act will begin with model year 2014. NHTSA's final fuel consumption standards under the Energy Independence and Security Act of 2007 will be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers are not regulated in this phase of the Heavy-Duty National Program. The agencies estimate that the combined standards will reduce CO2 emissions by approximately 270 million metric tons and save 530 million barrels of oil over the life of vehicles sold during the 2014 through 2018 model years, providing over $7 billion in net societal benefits, and $49 billion in net societal benefits when private fuel savings are considered. EPA is also finalizing provisions allowing light-duty vehicle manufacturers to use CO2 credits to meet the light-duty vehicle N2O and CH4 standards, technical amendments to the fuel economy provisions for light-duty vehicles, and a technical amendment to the criteria pollutant emissions requirements for certain switch locomotives.
FY2017 Technology Integration Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The 2017 Technology Integration Annual Progress Report covers 27 multi-year projects funded by the Vehicle Technologies Office. The report includes information on 20 competitively awarded projects, ranging from training on alternative fuels and vehicles for first responders, to safety training and design for maintenance facilities housing gaseous fuel vehicles, to electric vehicle community partner programs. It also includes seven projects conducted by several of VTO’s national laboratory partners, Argonne National Laboratory, Oak Ridge National Laboratory and the National Renewable Energy Laboratory. These projects range from a Technical Assistance project for business, industry, government and individuals, to the EcoCar 3 Studentmore » Competition, and the Fuel Economy Information Project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-31
This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunctionmore » with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.
2008-07-15
IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less
Overview of NASA's Pulsed Plasma Thruster Development Program
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Arrington, Lynn A.
2004-01-01
NASA's Pulsed Plasma Thruster Program consists of flight demonstration experiments, base research, and development efforts being conducted through a combination of in-house work, contracts, and collaborative programs. The program receives sponsorship from Energetics Project, the New Millennium Program, and the Small Business Innovative Research Program. The Energetics Project sponsors basic and fundamental research to increase thruster life, improve thruster performance, and reduce system mass. The New Millennium Program sponsors the in-orbit operation of the Pulsed Plasma Thruster experiment on the Earth Observing 1 spacecraft. The Small Business Innovative Research Program sponsors the development of innovative diamond-film capacitors, piezoelectric ignitors, and advanced fuels. Programmatic background, recent technical accomplishments, and future activities for each programmatic element are provided.
CF6 jet engine performance improvement program. Task 1: Feasibility analysis
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
Technical and economic engine improvement concepts selected for subsequent development include: (1) fan improvement; (2) short core exhaust; (3) HP turbine aerodynamic improvement; (4) HP turbine roundness control; (5) HP turbine active clearance control; and (6) cabin air recirculation. The fuel savings for the selected engine modification concepts for the CF6 fleet are estimated.
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines
NASA Technical Reports Server (NTRS)
Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)
2001-01-01
This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.
DOE perspective on fuel cells in transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, R.
1996-04-01
Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less
NASA Technical Reports Server (NTRS)
Schonfeld, D.; Charng, T.
1981-01-01
The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.
Safeguards Considerations for Thorium Fuel Cycles
Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...
2016-04-21
We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarin, S.J.; Loo, J.F.; Chladek, E.
1992-01-01
Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Lakey, L.T.; Silviera, D.J.
The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less
Metals and Ceramics Division progress report for period ending December 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Weir, J.R. Jr.
1993-04-01
This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
Status of wind-energy conversion
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Savino, J. M.
1973-01-01
The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Barela, Amanda Crystal; Walkow, Walter M.
An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cyclemore » Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
2017 DOE Vehicle Technologies Office Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputsmore » to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less
2016 DOE Vehicle Technologies Office Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia tomore » give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less
Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, R.D.; Warren, R.W.
This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-10-01
This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.
ERIC Educational Resources Information Center
Wang, Xueli; Chan, Hsun-yu; Phelps, L. Allen; Washbon, Janet I.
2015-01-01
Objective: Despite the fairly substantial body of literature devoted to understanding whether dual enrollment programs are related to academic success in college, less is known regarding how dual enrollment transmits its potentially positive influence, especially among two-year college students. In this study, we fill this gap by delving into the…
Research, development and demonstration of lead-acid batteries for electric vehicle propulsion
NASA Astrophysics Data System (ADS)
Bowman, D. E.
1983-08-01
Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation.
NASA Astrophysics Data System (ADS)
Adamkiewicz, Andrzej; Zeńczak, Wojciech
2017-03-01
Heavy oils (HFO fuels) used on ships play a part in degradation of technical condition of heat exchange surfaces of utilization boilers especially on the exhaust gas side. Presence of sulphur in these fuels is the main factor favouring degradation. The upper limit for sulphur content in the fuel used outside the SECA areas equal to 3.5% is currently in force, at least until the year 2020 or 2025. The recommended by classification societies overhauls of utilization boilers are, therefore characterized by a specially chosen strategy thanks to which it is possible to maintain their appropriate technical condition. The requirement to use fuels with low sulphur content (LSFO), which are significantly more expensive than MDO fuels, in the areas of controlled sulphur emissions also led to a further introduction of alternative fuels, such as methanol and above all liquefied natural gas (LNG), onto ships. That is especially valid for the ship owners whose vessels e.g. ferries sail mainly within SCECA This article analyses the consequences of the introduced fuel change on utilization boiler maintenance. A change in the technical condition maintenance strategy for utilization boilers has been suggested.
Masters Study in Advanced Energy and Fuels Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Kanchan
2014-12-08
There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands.The application of this Professional Science Masters’ (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team-oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management.« less
Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.
Wzorek, Małgorzata; Tańczuk, Mariusz
2015-08-01
The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant. © The Author(s) 2015.
UFD Storage and Transportation - Transportation Working Group Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Ross, Steven B.
2011-08-01
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less
NASA Astrophysics Data System (ADS)
Klaiber, Thomas
The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.
Catalysis and biocatalysis program
NASA Technical Reports Server (NTRS)
1991-01-01
The annual report presents the fiscal year (FY) 1990 research activities and accomplishments for the Catalysis and Biocatalysis Program of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The mission of the AICD is to create a balanced program of high risk, long term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. The Catalysis and Biocatalysis Program's technical activities were organized into five work elements: the Molecular Modeling and Catalysis by Design element; the Applied Microbiology and Genetics element; the Bioprocess Engineering element; the Separations and Novel Chemical Processes element; and the Process Design and Analysis element.
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Chatman, Yadira; Ristow, James; Gangadharan, Sathya; Sudermann, James; Walker, Charles
2007-01-01
NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identiFy the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schobert, H.H.; Eser, S.; Song, C.
Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less
Energy Storage for Aerospace Applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.
2001-01-01
The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-04-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Ongoing Progress in Spacecraft Controls
NASA Technical Reports Server (NTRS)
Ghosh, Dave (Editor)
1992-01-01
This publication is a collection of papers presented at the Mars Mission Research Center workshop on Ongoing Progress in Spacecraft Controls. The technical program addressed additional Mars mission control problems that currently exist in robotic missions in addition to human missions. Topics include control systems design in the presence of large time delays, fuel-optimal propulsive control, and adaptive control to handle a variety of unknown conditions.
Droplet Sizing Research Program.
1986-03-10
of size and velocity distributions is needed. For example, fuel spray studies, aer- osol studies, flue gas desulfurization , spray drying, paint...techniques are presented chronologic- ally since there is a logical development as a function of time. Most of the significant technical accomplishments...U3U 0 0 ILI N signals with an apparently different size by using the following logic : droplets that produce a certain visibility are associated with a
The U.S. RERTR program status and progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1998-01-21
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less
Industrial Fuel Gas Demonstration Plant Program. Bid packages for materials (Deliverable No. 28)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-01-01
Fixed-price supply type bid packages for materials and/or service essentially are comprised of two parts, namely: (1) a technical requisition of the material, equipment, or service to be supplied; and (2) commercial and legal requirements, normally referred to as terms and conditions. Requisitions, providing technical requirements, for all equipment items identified for the Industrial Fuel Gas Demonstration Plant may be found in the 12 volumes of the Demonstration Plant Mechanical Design. The requisitions have been included within separate sections of the design report, sorted by appropriate plant unit. Combined with any General Notes Requisition and the necessary FWEC Job Standards,more » these various item requisitions provide all technical information for the prospective vendor to furnish his bid. The terms and conditions (boiler plate) to be included in the bid package identify all the contractual requirements which will be imposed upon the bidder. These requirements cover the conditions he must meet to bid on the particular item as well as the clauses to be included within the eventual purchase order/subcontract. A typical package of such terms and conditions is included.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frybort, Jan
A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % {sup 235}U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % {sup 235}U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replacedmore » B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)« less
Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System
NASA Technical Reports Server (NTRS)
Veyo, S.E.
1997-01-01
This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military specification JP-8 and DF-2 removing the sulfur and reforming these liquid fuels to a methane rich gaseous fuel. Results of this program are documented in a companion report titled 'Final Report-Solid Oxide Fuel Cell/ Logistic Fuels Processor 27 kWe Power System'.
Renewing Liquid Fueled Molten Salt Reactor Research and Development
NASA Astrophysics Data System (ADS)
Towell, Rusty; NEXT Lab Team
2016-09-01
Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.
AACE: an innovative partnership to enhance aircraft safety
NASA Astrophysics Data System (ADS)
Shurtleff, William W.
1999-01-01
The Federal Aviation Administration established the Airworthiness Assurance Center of Excellence (AACE) in September 1997, through a cooperative agreement grant with Iowa State University (ISU) and The Ohio State University (OSU). A technical support contract with the Center is now in place as well. Initially the Center has five areas of concentration supporting advances in airworthiness assurance. These are 1. Maintenance, inspection, and repair, 2. Propulsion and fuel systems safety, 3. Crashworthiness, 4. Advanced materials, and 5. Landing gear systems performance and safety. AACE has nine core members who provide guidance to the Program Management Office at ISU/OSU through a Board of Directors. The core members are: Arizona State University, Iowa State University, Northwestern University, The Ohio State University, University of Dayton, University of Maryland, University of California - Los Angeles, Wichita State University, and Sandia National Laboratories. The organization also includes numerous academic affiliates, industry partners, government laboratories and other organizations. The Center now has over thirty technical projects supporting technical advances in airworthiness assurance. All these projects have industry guidance and support. This paper discusses the current technical program of the center and the highlights of the five-year plan for technical work. Also included is a description of the factors that make the Center an innovative partnership to promote aircraft safety.
Environmental Science and Research Foundation annual technical report: Calendar year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.C.; Blew, R.D.
1997-07-01
This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.« less
NASA Astrophysics Data System (ADS)
Kozier, K. S.; Rosinger, H. E.
The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.
Status of ERA Vehicle System Integration Technology Demonstrators
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell
2015-01-01
The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.
Research Staff | Hydrogen and Fuel Cells | NREL
laboratory's research areas contribute to this work. Research Areas and Technical Leads NREL's hydrogen and fuel cell research and development is organized into eight research areas. Technical leaders work
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
The RERTR Program : a status report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1998-10-19
This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners since its inception in 1978. A brief summary of the results that the program had attained by the end of 1997 is followed by a detailed review of the major events, findings, and activities that took place in 1998. The past year was characterized by exceptionally important accomplishments and events for the RERTR program. Four additional shipments of spent fuel from foreign research reactors were accepted by the U.S. Altogether, 2,231 spent fuel assemblies from foreignmore » research reactors have been received by the U.S. under the acceptance policy. Fuel development activities began to yield solid results. Irradiations of the first two batches of microplates were completed. Preliminary postirradiation examinations of these microplates indicate excellent irradiation behavior of some of the fuel materials that were tested. These materials hold the promise of achieving the pro am goal of developing LEU research reactor fuels with uranium density in the 8-9 g /cm{sup 3} range. Progress was made in the Russian RERTR program, which aims to develop and demonstrate the technical means needed to convert Russian-supplied research reactors to LEU fuels. Feasibility studies for converting to LEU fuel four Russian-designed research reactors (IR-8 in Russia, Budapest research reactor in Hungary, MARIA in Poland, and WWR-SM in Uzbekistan) were completed. A new program activity began to study the feasibility of converting three Russian plutonium production reactors to the use of low-enriched U0{sub 2}-Al dispersion fuel, so that they can continue to produce heat and electricity without producing significant amounts of plutonium. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, the transient performance of the core under hypothetical accident conditions. A major milestone was accomplished in the development of a process to produce molybdenum-99 from fission targets utilizing LEU instead of HEU. Targets containing LEU metal foils were irradiated in the RAS-GAS reactor at BATAN, Indonesia, and molybdenum-99 was successfully extracted through the ensuing process. These are exciting times for the program and for all those involved in it, and last year's successes augur well for the future. However, as in the past, the success of the RERTR program will depend on the international friendship and cooperation that have always been its trademark.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
The foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain and provide environmental education and support services related to INEL natural resource issues. Also, the foundation, with its university affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including waste management, environmental restoration, spent nuclear fuels, and land management issues. Major accomplishments during CY1995 can be divided into five categories: environmental surveillance program, environmental education, environmental services and support, ecological risk assessment, and research benefitting the DOE-ID mission.
Construction and Analysis of Electronic circuits
NASA Technical Reports Server (NTRS)
Thomas, Ashley N.
2004-01-01
The Aviation Environmental Technical Branch produces many various types of aeronautical research that benefits the NASA mission for space exploration and in turn, produces new technology for our nation. One of the present goals of the Aviation Environmental Technical Branch is to create better engines for airplanes by testing supersonic jet propulsion and safe fuel combustion. During the summer of 2004, I was hired by Vincent Sattenvhite Chief executive of the Aviation Environmental Technical Branch to Assist Yves Lamothe with a fuel igniter circuit. Yves Lamothe is an electrical engineer who is currently working on safe fuel combustion testing. This testing is planned to determine the minimum ignition energy for fuel and air vapors of current and alternative fuels under simulated flight conditions. An air temperature bath will provide simulated flight profile temperatures and the heat fluxes to the test chamber. I was assigned with Yves to help complete the igniter circuit which consists of a 36k voltage supply an oscilloscope, and a high voltage transistor switch. During my tenure in the L.E.C.I.R.P. program I studied the basics of electricity and circuitry along with two other projects that I completed. In the beginning of my internship, I devote all of my time to research the aspects of circuitry so that I would be prepared for the projects that I was assigned to do. I read about lessons on; the basic physical concepts of electronics, Electrical units, Basic dc circuits, direct current circuit analysis, resistance and cell batteries, various types of magnetism , Alternating current basics, inductance, and power supplies. I received work sheets and math equations from my Mentor so that I could be able to apply these concepts into my work. After I complete my studies, I went on to construct a LED chaser circuit which displays a series of light patterns using a 555 timer. I incorporated a switch and motion detector into the circuit to create basic alarm system. This project challenged my ability to interpret a schematic and expand it. While I was still completing the LED chaser circuit I Also was given A Basic Stamp Toddler Robot to build and program. The Toddler robot can walk in 36 various styles using advanced robotics. I used many different programs to create movement and direction of the robot. Also the Toddler can use infrared vision to sense objects. This enables the robot to maneuver indefinitely without running into objects. During my tenure at the NASA Glen Research Center I definite utilized the NASA mission to educate. I learned valuable information to help in my up coming year as a freshman in college.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less
Fossil Energy: Drivers and Challenges.
NASA Astrophysics Data System (ADS)
Friedmann, Julio
2007-04-01
Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any substantial offset in the next 30 years when they are most needed internationally.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
ERIC Educational Resources Information Center
Ready, Kirk Lewis
Automotive fuel economy was the topic of a study during which technical and background information was gathered, curriculum materials were sought, and curricula were developed. Technical information came from written materials and actual mileage tests of selected factors. Background came from written materials, field trips, and building and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okrent, D.
1997-06-23
This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less
NASA/DOE automotive Stirling engine project: Overview 1986
NASA Technical Reports Server (NTRS)
Beremand, D. G.; Shaltens, R. K.
1986-01-01
The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.
US Army Research Laboratory power sources R and D programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher, H.A.; Gilman, S.; Hamlen, R.P.
1993-05-01
The development and application of new electronic technologies over the recent past has resulted in a major evolution of new electronic battlefield equipment. The need for lighter-weight and more cost effective power sources with higher power/energy density capability is critical to the successful development and deployment of these new, high performance battlefield devices. The current status and thrust of the Army Research Laboratory's (ARL's) battery and fuel cell R and D programs that support these new and emerging applications will be reviewed. Major technical barriers will be identified along with the corresponding proposed approaches to solving these anticipated problems.
DOE/NASA automotive Stirling engine project - Overview 86
NASA Technical Reports Server (NTRS)
Beremand, D. G.; Shaltens, R. K.
1986-01-01
The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.
Rover nuclear rocket engine program: Overview of rover engine tests
NASA Technical Reports Server (NTRS)
Finseth, J. L.
1991-01-01
The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonserm, P.
1985-01-01
On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy cropsmore » need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.« less
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentativemore » schedule has been drawn to illustrate the feasibility of the program. (auth)« less
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Suder, Kenneth
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Suder, Kenneth L.
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less
NASA Environmentally Responsible Aviation's Highly-Loaded Front Block Compressor Demonstration
NASA Technical Reports Server (NTRS)
Celestina, Mark
2017-01-01
The ERA project was created in 2009 as part of NASAs Aeronautics Research Mission Directorates (ARMD) Integrated Systems Aviation Program (IASP). The purpose of the ERA project was to explore and document the feasibility, benefit, and technical risk of vehicles concepts and enabling technologies to reduce aviations impact on the environment. The metrics for this technology is given in Figure 1 with the N+2 metrics highlighted in green. It is anticipated that the United States air transportation system will continue to expand significantly over the next few decades thus adversely impacting the environment unless new technology is incorporated to simultaneously reduce nitrous oxides (NOx), noise and fuel consumption. In order to achieve the overall goals and meet the technology insertion challenges, these goals were divided into technical challenges that were to be achieved during the execution of the ERA project. Technical challenges were accomplished through test campaigns conducted by Integrated Technology Demonstration (ITDs). ERAs technical performance period ended in 2015.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... fuel or additive, and certain technical, marketing, and health-effects information. The development of... Request; Comment Request; Registration of Fuels and Fuel Additives--Requirements for Manufacturers; EPA... Fuels and Fuel Additives--Requirements for Manufacturers'' (EPA ICR No. 0309.14, OMB Control No. 2060...
Some methods for achieving more efficient performance of fuel assemblies
NASA Astrophysics Data System (ADS)
Boltenko, E. A.
2014-07-01
More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.
Review of Fuel Cell Technologies for Military Land Vehicles
2014-09-01
fuel cell technologies for APUs are Proton Exchange Membrane Fuel Cells ( PEMFC ), direct methanol fuel cells and Solid Oxide Fuel Cells (SOFC). The...6 4.2 Proton Exchange Membrane Fuel Cells ( PEMFC ...OEM Original Equipment Manufacturer PEM Proton Exchange Membrane PEMFC Proton Exchange Membrane Fuel Cell SOFC Solid Oxide Fuel Cell TRL Technical
76 FR 28759 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... Advisory Committee (HTAC) was established under section 807 of the Energy Policy Act of 2005 (EPACT... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of...
Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Blaise Paul
Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients.more » Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William; Rivkin, Carl; Burgess, Robert
The United Nations Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular fuel cell electric vehicles (FCEV). GTR Number 13 has been formally implemented and will serve as the basis for the national regulatory standards for FCEV safety in North America (Canada, United States), Japan, Korea, and the European Union. The GTR defines safety requirement for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels inmore » vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, in order to be binding, methods to verify compliance to the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance to the hydrogen release requirement as specified in the GTR.« less
An accelerated fusion power development plan
NASA Astrophysics Data System (ADS)
Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.
1991-06-01
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaser, Richard
1980-11-01
This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcoholmore » fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)« less
The place of algae in agriculture: policies for algal biomass production.
Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim
2015-03-01
Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie Guan; Atul Verma; Nguyen Minh
2003-04-01
This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less
Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
High temperature fuel/emitter system for advanced thermionic fuel elements
NASA Astrophysics Data System (ADS)
Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny
1997-01-01
Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.
Hydrogen turbine power conversion system assessment
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.
1978-01-01
A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoemaker, Paul E.; Hardin, Ernest; Park, HeeHo Daniel
The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scopemore » of this review.« less
A consumer guide: tools to manage vegetation and fuels.
David L. Peterson; Louisa Evers; Rebecca A. Gravenmier; Ellen Eberhardt
2007-01-01
Current efforts to improve the scientific basis for fire management on public lands will benefit from more efficient transfer of technical information and tools that support planning, implementation, and effectiveness of vegetation and hazardous fuel treatments. The technical scope, complexity, and relevant spatial scale of analytical and decision support tools differ...
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remick, R.; Wheeler, D.
2010-09-01
This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
NASA Astrophysics Data System (ADS)
Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François
The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address.
Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L.; Sleiti, Ahmad
2011-09-19
The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less
NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl
2005-01-01
Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jie; Minh, Nguyen
This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, S.; Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0; Sullivan, J.
The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to themore » students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.« less
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Structural Materials and Fuels for Space Power Plants
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Busby, Jeremy; Porter, Douglas
2008-01-01
A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.
COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
2003-08-24
Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typicallymore » have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.« less
Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.
Fasteners and fastening techniques: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
Technology on fasteners and fastening devices is presented, as part of NASA's TU program to provide technical information on devices, methods, and techniques resulting from aerospace research. The material is divided into two sections which include: (1) data concerning a selected group of fasteners and concept for fasteners such as locking devices, couplings, and connect and release mechanisms; and (2) discussions on a number of fastening techniques such as those for mounting panel lamps, clamping flange bolts, stretching fasteners, and transferring fuel from a tanker to another vehicle.
NASA Technical Reports Server (NTRS)
1977-01-01
The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Karl O.; Hallen, Richard T.
2011-03-29
Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art “downstream” applicationsmore » of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.« less
U.S. Virgin Islands Petroleum Price-Spike Preparation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.
2012-06-01
This NREL technical report details a plan for the U.S. Virgin Islands (USVI) to minimize the economic damage caused by major petroleum price increases. The assumptions for this plan are that the USVI will have very little time and money to implement it and that the population will be highly motivated to follow it because of high fuel prices. The plan's success, therefore, is highly dependent on behavior change. This plan was derived largely from a review of the actions taken and behavior changes made by companies and commuters throughout the United States in response to the oil price spikemore » of 2008. Many of these solutions were coordinated by or reported through the 88 local representatives of the U.S. Department of Energy's Clean Cities program. The National Renewable Energy Laboratory provides technical and communications support for the Clean Cities program and therefore serves as a de facto repository of these solutions. This plan is the first publication that has tapped this repository.« less
Thermionic fuel element for the S-prime reactor
NASA Astrophysics Data System (ADS)
Van Hagan, Thomas H.; Drees, Elizabeth A.
1993-01-01
Technical aspects of the thermionic fuel element (TFE) design proposed for the S-PRIME space nuclear power system are discussed. Topics covered include the rational for selecting a multicell TFE approach, a technical description of the S-PRIME TFE and its estimated performance, and the technology readiness of the design, which emphasizes techology maturity and low risk.
A PSFI-based analysis on the energy efficiency potential of China’s domestic passenger vehicles
NASA Astrophysics Data System (ADS)
Chen, Chuan; Ren, Huanhuan; Zhao, Dongchang
2017-01-01
In this article, China’s domestic passenger vehicles (excluding new energy vehicles) are categorized into two groups: local brand vehicles and vehicles manufactured by joint ventures. Performance-Size-Fuel economy Index (PSFI) will be applied to analyse the speed of technical progress and the future trends of these vehicles. In addition, a forecast on energy efficiency potential of domestic passenger vehicles from 2016 to 2020 will be made based on different Emphasis on Reducing Fuel Consumption (ERFC) scenarios. According to the study, if the process of technical progress continues at its current speed, domestic ICE passenger vehicles will hardly meet Phase IV requirements by 2020 even though companies contribute as much technical progress to fuel consumption reduction as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraybill, R.L.; Smart, G.R.; Bopp, F.
1985-09-04
A Problem Confirmation Study was performed at seven sites on Otis Air National Guard Base: the Current and Former Training Areas, the Base Landfill, the Nondestructive Inspection Laboratory, the Fuel Test Dump Site, the Railyard Fuel Pumping Station, and the Petrol Fuel Storage Area. The field investigation was conducted in two stages, in November 1983 through January 1984, and in October through December 1984. Resampling was performed at selected locations in April and July 1985. A total of 11 monitor wells were installed and sampled and test-pit investigations were conducted at six sites. In addition, the contents of a sumpmore » tank, and two header pipes for fuel-transmission lines were sampled. Analytes included TOC, TOX, cyanide, phenols, Safe Drinking Water metals, pesticides and herbicides, and in the second round, priority-pollutant volatile organic compounds and a GC fingerprint scan for fuel products. On the basis of the field-work findings, it is concluded that, to date, water-quality impacts on ground water from past activities have been minimal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel andmore » high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.« less
SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION
NASA Technical Reports Server (NTRS)
Panda, Binayak; Hickman, Robert R.; Shah, Sandeep
2005-01-01
Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.
Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.
2008-01-01
Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohan, S.M.; Barkhordar, P.M.
1979-01-01
The thermochemical conversion of biomass feedstocks generally denotes technologies that use elevated temperatures to convert the fixed carbon content of biomass materials to produce other, more useful energy forms. Examples are combustion to produce heat, steam, electricity, or combinations of these; pyrolysis to produce gas (low- or intermediate-Btu), pyrolytic liquids and chemicals, and char; gasification to produce low or intermediate Btu gas (and, from IBG, additional products such as SNG, ammonia, methanol, or Fischer-Tropsch liquids); and liquefaction to produce heavy fuel oil or, with upgrading, lighter-boiling liquid products such as distillates, light fuel oils, or gasoline. This section discusses themore » selection of the feedstock used in the analysis of thermochemical conversion technologies. The following sections present detailed technical and economic evaluations of biomass conversion to electricity and steam by combustion, SNG by gasification and methanation, methanol by gasification and synthesis, oil by catalytic liquefaction, oil and char by pyrolysis, and ammonia by gasification and synthesis. The conversion options were reviewed with DOE for approval at the start of the project.« less
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark
Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG''more » stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire, this stove can save 50% fuel for the IDPs. The stove costs less than $10 (US) to produce in Darfur, and saves fuelwood worth $160 annually at local market prices. For programmatic and administrative reasons, the LBNL mission do not recommend a mud-and-dung stove, for which control of quality and dimensional accuracy is expensive and cumbersome to administer, particularly in a rapid large rollout effort. A light metal stove, on the other hand, can be rapidly produced in large numbers locally in Darfur, with good quality control exercised on the material and dimensions of the stoves right at the workshop where it is produced. LBNL mission also recommends immediate trials of 50 Tara stoves in a pilot technical rollout, 500 Tara stoves in a pilot social rollout, in parallel with a technical effort to modify the Tara design to make it better suited for Darfur camp conditions. The mission also recommends a program for manufacturing, disseminating the metal stoves, and educating the IDPs in fuel-efficient cooking practices. Monitoring of the stove quality, dissemination effort and training should be an integral part of the program, with systematic summaries planned with 10,000, 50,000 and 100,000 stoves have been disseminated. In the above pilot rollouts as well as in the final implementation, it is important to continue to pay attention to training of the cooks in tending the cooking fire in the stoves, and offer continued social reinforcement to this training (e.g., through periodic competitions to cook normal meals with the least fuelwood use.)« less
Richland five-year O2 R and D Program. Integrated site operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1966-07-11
The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less
Proceedings: pellet fuels conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-12-31
The conference brought together professionals from the process- engineered-fuels (PEF), utility, paper, plastics, and boiler industries. Although the last two decades have produced technical breakthroughs, efforts to advance PEF must now focus on increasing commercial breakthroughs. Successful commercialization will depend on increasing supplier, consumer, and regulator confidence and support by demonstrating the performance and value of PEF products. Speakers provided updates on how PEF technology is evolving with respect to technical, economic, and regulatory challenges. Actions critical toward full commercialization of PEF were then considered. Discussion groups addressed materials sourcing, fuel processing and transportation, combustion, and ash handling.
Bioenergy Feedstock Development Program Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.
2001-02-09
The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trtilek, Radek; Podlaha, Josef
After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the secondmore » shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyler, James R.
2015-12-21
The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less
NASA Astrophysics Data System (ADS)
2013-01-01
U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.
Messiah College Biodiesel Fuel Generation Project Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zummo, Michael M; Munson, J; Derr, A
Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibilitymore » of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobban, Lance
The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publicationsmore » acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum carbon capture and hydrogen efficiency. Our research approach combined catalyst synthesis, measurements of catalyst activity and selectivity in different reactor systems and conditions, and detailed catalyst characterization to develop fundamental understanding of reaction pathways and the capability to predict product distributions. Nearly all of the candidate catalysts were prepared in-house via standard techniques such as impregnation, co-impregnation, or chemical vapor deposition. Supports were usually purchased, but in some cases coprecipitation was used to simultaneously create the support and active component, which can be advantageous for strong active component-support interactions and for achieving high active component dispersion. In-house synthesis also allowed for studies of the effects on catalyst activity and selectivity of such factors as support porosity, calcination temperature, and reduction/activation conditions. Depending on the physical characteristics of the molecule, catalyst activity measurements were carried out in tubular flow reactors (for vapor phase reactions) or stirred tank reactors (for liquid phase reactions) over a wide range of pressures and temperatures. Reactant and product concentrations were measured using gas chromatography (both on-line and off-line, with TCD, FID, and/or mass spectrometric detection). For promising catalysts, detailed physicochemical characterization was carried out using FTIR, Raman, XPS, and XRD spectroscopies (all available in our laboratories) and TEM spectroscopy (available at OU). Additional methods included temperature programmed techniques (TPD, TPO) and surface area measurements by nitrogen adsorption techniques.« less
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-03-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Near-term feasibility of alternative jet fuels
DOT National Transportation Integrated Search
2009-01-01
This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William; Rivkin, C.; Burgess, R.
Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less
Restorative maintenance retesting of 1977 model year passenger cars in Denver. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G.T.
1978-11-01
The report describes the results of an exhaust emission testing program in which 24 relatively new vehicles sampled in a Restorative Maintenance Program in Denver were retested approximately one year later. Many vehicles had experienced maladjustments and disablements even though the owner reported that he felt his vehicle had been maintained according to the manufacturer's recommendations. Reductions in average emission levels followed the correction of the maladjustment and disablement actions to a point close to those after the prior tune-up. Modest fuel economy improvements were noted this year, probably due to the fact that the vehicles had overcome the 'greenmore » engine' effect.« less
Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Harris, Aaron P.
2013-01-01
A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle,more » powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.« less
Technical and economic feasibility of alternative fuel use in process heaters and small boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-02-01
The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined andmore » the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.« less
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... additive and certain technical, marketing, and health-effects information. The development of health... Submitted to OMB for Review and Approval; Comment Request; Registration of Fuels and Fuel Additives...), Registration of Fuels and Fuel Additives--Requirements for Manufacturers (Renewal) (EPA ICR No. 0309.14, OMB...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.
Technical solutions to nonproliferation challenges
NASA Astrophysics Data System (ADS)
Satkowiak, Lawrence
2014-05-01
The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.
Technical solutions to nonproliferation challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satkowiak, Lawrence
2014-05-09
The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversionmore » of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.« less
Low Emissions Aftertreatment and Diesel Emissions Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-05-27
Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Binmore » 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.« less
NASA Astrophysics Data System (ADS)
Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.
2018-03-01
A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).
Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee
2016-10-28
A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly tomore » confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).« less
The North Korean nuclear dilemma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecker, Siegfried S.
2004-01-01
The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford Universitymore » Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However, based on the capabilities we saw, we must assume that North Korea has the capability to produce a crude nuclear device. On the matter of uranium enrichment programs, our host categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' The denials were not convincing at the time and since then have proven to be quite hollow by the revelations of A.Q. Khan's nuclear black market activities. There is no easy solution to the nuclear crisis in North Korea. A military strike to eliminate the nuclear facilities was never very attractive and now has been overcome by events. The principal threat is posed by a stockpile of nuclear weapons and weapons-grade plutonium. We have no way of finding where either may be hidden. A diplomatic solution remains the only path forward, but it has proven elusive. All sides have proclaimed a nuclear weapons-free Korean Peninsula as the end goal. The U.S. Government has chosen to negotiate with North Korea by means of the six-party talks. It has very clearly outlined its position of insisting on complete, verifiable, irreversible dismantlement of all North Korean nuclear programs. North Korea has offered several versions of 're-freezing' its plutonium program while still denying a uranium enrichment program. It has insisted on simultaneous and reciprocal steps to a final solution. Regardless of which diplomatic path is chosen, the scientific challenges of eliminating the North Korean nuclear weapons programs (and its associated infrastructure) in a safe, secure, and verifiable manner are immense. The North Korean program is considerably more complex and developed than the fledgling Iraqi program of 1991 and Libyan program of 2004. It is more along the lines, but more complex than that of South Africa in the early 1990s. Actions taken or not taken by the North Koreans at their nuclear facilities during the course of the ongoing diplomatic discussions are key to whether or not the nuclear program can be eliminated safely and securely, and they will greatly influence the price tag for such operations. Moreover, they will determine whether or not one can verify complete elimination. Hence, cooperation of the North Koreans now and during the dismantlement and elimination stages is crucial. Technical discussions among specialists, perhaps within the framework of the working groups of the six-party talks, could be very productive in setting the stage for an effective, verifiable elimination of North Korea's nuclear weapons program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaglione, John M; Montgomery, Rose; Bevard, Bruce Balkcom
This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... [Docket No. EERE-2010-BT-STD-0031] RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for... of fossil fuel-generated energy consumption in new Federal buildings and Federal buildings undergoing... full fossil fuel-generated energy consumption reduction level is technically impracticable in light of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valvoda, Z.; Holub, J.; Kucerka, M.
1996-12-31
In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period.« less
Spent nuclear fuel canister storage building conceptual design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, C.E.
This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Turbulent Radiation Effects in HSCT Combustor Rich Zone
NASA Technical Reports Server (NTRS)
Hall, Robert J.; Vranos, Alexander; Yu, Weiduo
1998-01-01
A joint UTRC-University of Connecticut theoretical program was based on describing coupled soot formation and radiation in turbulent flows using stretched flamelet theory. This effort was involved with using the model jet fuel kinetics mechanism to predict soot growth in flamelets at elevated pressure, to incorporate an efficient model for turbulent thermal radiation into a discrete transfer radiation code, and to couple die soot growth, flowfield, and radiation algorithm. The soot calculations used a recently developed opposed jet code which couples the dynamical equations of size-class dependent particle growth with complex chemistry. Several of the tasks represent technical firsts; among these are the prediction of soot from a detailed jet fuel kinetics mechanism, the inclusion of pressure effects in the soot particle growth equations, and the inclusion of the efficient turbulent radiation algorithm in a combustor code.
Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayham, Sanuel; Straub, Doug; Weber, Justin
2017-02-01
As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metaloxide) is continuously cycled to oxidize the fuel.more » This CLC concept is the focus of this research and will be described in more detail in the following sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, J.N.; Holderness, J.H.; James, D.W.
1992-12-01
Waste stream scaling factors based on sampling programs are vulnerable to one or more of the following factors: sample representativeness, analytic accuracy, and measurement sensitivity. As an alternative to sample analyses or as a verification of the sampling results, this project proposes the use of the RADSOURCE code, which accounts for the release of fuel-source radionuclides. Once the release rates of these nuclides from fuel are known, the code develops scaling factors for waste streams based on easily measured Cobalt-60 (Co-60) and Cesium-137 (Cs-137). The project team developed mathematical models to account for the appearance rate of 10CFR61 radionuclides inmore » reactor coolant. They based these models on the chemistry and nuclear physics of the radionuclides involved. Next, they incorporated the models into a computer code that calculates plant waste stream scaling factors based on reactor coolant gamma- isotopic data. Finally, the team performed special sampling at 17 reactors to validate the models in the RADSOURCE code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less
Computational model for simulation small testing launcher, technical solution
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Cristian, Barbu; Chelaru, Adrian
2014-12-01
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project "Suborbital Launcher for Testing" (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle programs towards the current technological necessities in the space field, especially the European one.
Computational model for simulation small testing launcher, technical solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Cristian, Barbu, E-mail: barbucr@mta.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper ismore » focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle programs towards the current technological necessities in the space field, especially the European one.« less
NASA Astrophysics Data System (ADS)
Cho, Young-Ho
2012-09-01
This special section of Journal of Micromechanics and Microengineering features papers selected from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011), held at Sejong Hotel in Seoul, Korea during 15-18 November 2011. Since the first PowerMEMS workshop held in Sendai, Japan in 2000, the workshop has developed as the premier forum for reporting research results in micro and nanotechnology for power generation, energy conversion, harvesting and processing applications, including in-depth technical issues on nanostructures and materials for small-scale high-density energy and thermal management. Potential PowerMEMS applications cover not only portable power devices for consumer electronics and remote sensors, but also micro engines, impulsive thrusters and fuel cells for systems ranging from the nanometer to the millimeter scale. The 2011 technical program consists of 1 plenary talk, 4 invited talks and 118 contributed presentations. The 48 oral and 70 poster presentations, selected by 27 Technical Program Committee Members from 131 submitted abstracts, have stimulated lively discussion maximizing the interaction between participants. Among them, this special section includes 9 papers covering micro-scale power generators, energy converters, harvesters, thrusters and thermal coolers. Finally, we are grateful to the members of the International Steering Committee, the Technical Program Committee, and the Local Organizing Committee for their efforts and contributions to PowerMEMS 2011. We also thank the two companies Samsung Electro-Mechanics and LG Elite for technical tour arrangements. Special thanks go to Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, as well as to the staff of IOP Publishing for making this special section possible.
Future NTP Development Synergy Leveraged from Current J-2X Engine Development
NASA Astrophysics Data System (ADS)
Ballard, Richard O.
2008-01-01
This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.
Future NTP Development Synergy Leveraged from Current J-2X Engine Development
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2008-01-01
This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.
Combined Heat and Power Market Potential for Opportunity Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David; Lemar, Paul
This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.
Fuel cells for automotive powertrains-A techno-economic assessment
NASA Astrophysics Data System (ADS)
Mock, Peter; Schmid, Stephan A.
With the objective of identifying the hurdles currently preventing a widespread application of fuel cell technology in passenger cars an assessment of technical and economic parameters is carried out. Patent and publication analysis is used to assess current status of fuel cell technology regarding its position on technology life cycle. S-curve methodology leads to the conclusion that further scientific activity is to be expected but for today's low-temperature PEM fuel cell technology might level by 2015. Technical analysis identifies power density and platinum loading as parameters for which further improvements are necessary in order to satisfy future customer needs. A detailed cost evaluation suggests that in future for high production volumes (approx. 1 million vehicles cumulative) significantly lower costs for fuel cell stacks (12-40 kW -1) and systems (35-83 kW -1) will be viable. Reducing costs to such a level will have to be the main focus for upcoming research activities in order to make fuel cell driven road vehicles a competitive alternative.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress reports are presented for the following two fuel research programs: (1) development of analytical methodology for analysis of heavy crudes; and (2) thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. For the first research program, gasoline range (82--43[degree]) components in liquid products from catalytic cracking whole Wilmington >650[degree]F resid, Wilmington >650[degree]F neutrals, and blends of neutrals plus 650--1000[degree]F acids and bases were determined by gas chromatography/mass spectroscopy. For the second research program, density measurements were completed for thianthrene between 450 K and near 570 K, and for phenoxathiin between 348 K and 548 K. Heat capacity measurementsmore » were begun for the dinitrogen compound 1,10-phenanthroline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peurrung, L.M.
1999-06-30
Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanmore » Up, and Health Effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Hai; Dong, Junhang; Lin, Jerry
2012-03-01
This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, M. B.; Burgess, R.; Rivkin, C.
2012-09-01
Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.
77 FR 6791 - Biomass Research and Development Technical Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY: Energy... announces an open meeting of the Biomass Research and Development Technical Advisory Committee. The Federal... leading to the production of biobased fuels and biobased products. Tentative Agenda Update on USDA Biomass...
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
Development of PEM fuel cell technology at international fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.J.
1996-04-01
The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.
NASA Astrophysics Data System (ADS)
Cottes, Jeffrey Jacob
Between 1998 and 2008, the promise of biofuels to increase rural development, enhance energy security, and reduce greenhouse gas emissions stimulated their diffusion across international markets. This rapid expansion of ethanol and biodiesel encouraged many jurisdictions to implement biofuels expansion policies and programs. Global biofuels, characterised by mass production and international trade of ethanol and biodiesel, occurred despite their long history as marginal technologies on the fringe of the petroleum-based transportation energy regime. The first purpose of this dissertation is to examine the global expansion of ethanol and biodiesel to understand how these recurrent socio-technological failures co-evolved with petroleum transportation fuels. Drawing from the field of socio-technical transitions, this dissertation also assesses the global expansion of ethanol and biodiesel to determine whether or not these first generation biofuels are sustainable. Numerous studies have assessed the technical effects of ethanol and biodiesel, but effects-based technical assessments of transport biofuels are unable to explain the interaction of wider system elements. The configuration of multi-level factors (i.e., niche development, the technological regime, and the socio-technical landscape) informs the present and emerging social functions of biofuels, which become relevant when determining how biofuels might become a sustainable energy option. The biofuels regimes that evolved in Brazil, the United States, and the European Union provide case studies show how ethanol and biodiesel expanded from fringe fuels to global commodities. The production infrastructures within these dominant biofuels regimes contribute to a persistence of unsustainable first generation biofuels that can inhibit the technical development and sustainability of biofuels. However, new and emerging ethanol and biodiesel markets are relatively small in comparison to the dominant regimes, and can readily adapt to technical and regulatory change. This dissertation argues that dominant biofuels regimes have not produced a sustainable energy option. It explores the Canadian case to evaluate the opportunities for niche development, and suggests that small markets can develop niche innovations by regulating the insertion of sustainability criteria in order to de-align the dominant trajectory of global biofuels production regimes and encourage their re-alignment in a more sustainable configuration.
ERIC Educational Resources Information Center
Army Ordnance Center and School, Aberdeen Proving Ground, MD.
This volume of student materials for a secondary/postsecondary level course in principles of fuel and fuel systems is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to provide the…
Advanced Fuels Campaign FY 2014 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; May, W. Edgar
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriger, A.
1978-01-31
This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. Amore » technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.« less
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissionsmore » regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.« less
Status and progress of the RERTR program in the year 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.; Technology Development
2003-01-01
Following the cancellation of the 2001 International RERTR Meeting, which had been planned to occur in Bali, Indonesia, this paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the years 2001 and 2002, and discusses the main activities planned for the year 2003. The past two years have been characterized by very important achievements of the RERTR program, but these technical achievements have been overshadowed by the terrible events of September 11, 2001. Those events have caused the U.S. Government to reevaluate the importance andmore » urgency of the RERTR program goals. A recommendation made at the highest levels of the government calls for an immediate acceleration of the program activities, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors.« less
State-local policy management project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The report describes case studies to explore new approaches for increasing state and local coordination in planning and managing programs in areas with significant scientific and technical components such as energy and environment. Specifically, the case studies reveal efforts of various states in the areas of energy conservation, weatherization, emergency preparedness, and air quality. Successes and failures of Maryland's decentralized approach to energy conservation are documented; success of the thermal and lighting efficiency standards program in Texas is discussed; state aid for local energy conservation programs in Clinton County, Michigan, is reviewed; and the success of the weatherization program inmore » Oregon is examined. Pilot programs in weatherization in Pennsylvania are shown to have led a statewide effort. Two Minnesota projects in emergency preparedness are documented and factors for success are listed. In addition, long-range planning for fuel shortages in New York is examined and the benefits of regional planning in Fairfax County, Virgina, are noted. Efforts are examined to improve air quality in Ohio, California, and New Jersey.« less
DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakim, Nabil Balnaves, Mike
2003-05-27
DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuelmore » economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.« less
Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability
NASA Astrophysics Data System (ADS)
Sinor, J. E.
1994-05-01
This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, K.; Singer, M.
The largest source of funding for alternative fuel vehicle and infrastructure projects in the U.S. Department of Energy's Clean Cities program's history came from the American Recovery and Reinvestment Act (Recovery Act). In 2009, the 25 cost-share projects totaled nearly $300 million in federal government investment. This effort included the involvement of 50 Clean Cities coalitions and their nearly 700 stakeholder partners who provided an additional $500 million in matching funds to support projects in their local communities. In total, those 25 projects established 1,380 alternative fueling stations and put more than 9,000 alternative fuel and advanced technology vehicles onmore » the road. Together, these projects displaced 154 million gasoline gallon equivalents (GGE) of petroleum and averted 254,000 tons of greenhouse gas (GHG) emissions, while supporting U.S. energy independence and contributing to regional economic development. During post-project interviews, project leaders consistently cited a number of key components - ranging from technical and logistical factors, to administrative capabilities - for accomplishing an effective and impactful project. This report summarizes the high-level project design and administrative considerations for conducting a successful transportation project.« less
A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, NE; Myers, JA; Tuerk, AL
Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuelmore » cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2011-09-01
Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for the foreseeable future. This report proposes supplementing the ongoing research and development work related to potential degradation of used fuel, baskets, poisons, and storage canisters during an extended period of storage with a parallel path. This parallel path can assure criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). Using updated risk assessment insights for additional technical justification and relying upon a component inside of themore » transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal conditions of transportation. A demonstrating testing program supporting a detailed analytical effort as well as updated risk assessment insights can provide the basis for moderator exclusion during hypothetical accident conditions. This report also discusses how this engineered concept can support the goal of standardized transportation.« less
Naval facility energy conversion plants as resource recovery system components
NASA Astrophysics Data System (ADS)
Capps, A. G.
1980-01-01
This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.
International nuclear waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahms, C W; Patridge, M D; Widrig, J E
1995-11-01
The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less
Chemical Technology Division annual technical report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-01
Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less
Development of fuel oil management system software: Phase 1, Tank management module. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, H.B.; Baker, J.P.; Allen, D.
1992-01-01
The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less
Development of fuel oil management system software: Phase 1, Tank management module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, H.B.; Baker, J.P.; Allen, D.
1992-01-01
The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less
Assessment of Alternative Aircraft Fuels
NASA Technical Reports Server (NTRS)
1984-01-01
The purpose of this symposium is to provide representatives from industry, government, and academia concerned with the availability and quality of future aviation turbine fuels with recent technical results and a status review of DOD and NASA sponsored fuels research projects. The symposium has included presentations on the potential crude sources, refining methods, and characteristics of future fuels; the effects of changing fuel characteristics on the performance and durability of jet aircraft components and systems; and the prospects for evolving suitable technology to produce and use future fuels.
Advanced Fuels Campaign FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann; Carmack, William Jonathan
2015-10-29
The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.
Near Zero Emissions at 50 Percent Thermal Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-12-31
Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less
Environment Canada's approach to the control of emissions from in-use vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polak, J.
1980-01-01
A study (begun in 1979 by a Technical Advisory Committee of federal and provincial environment and transport representatives and others) of in-use vehicles in Canada shows that automobile manufacturers were producing vehicles having emissions that were 30% better on the average than the regulated standard; cars in consumers' hands are very poorly tuned, particularly with respect to idle mixture, to the extent that the per cent idle carbon monoxide, carbon monoxide pollution, and fuel consumption in 1979 cars were improved 70, 36 and 4%, respectively, after tuning; emission performance makes a step function degradation during the first year of usemore » due to carburetor maladjustment; in the absence of maladjustment, emissions degrade only slightly with age or use; and emission-oriented maintenance reduces fuel consumption. Principles for an effective emissions inspection program and recommendations for future study are discussed.« less
Tribal Energy Program for California Indian Tribes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, S.
A strategic plan is needed to catalyze clean energy in the more than 100 California Indian tribal communities with varying needs and energy resources. We propose to conduct a scoping study to identify tribal lands with clean energy potential, as well as communities with lack of grid-tied energy and communications access. The research focus would evaluate the energy mixture and alternatives available to these tribal communities, and evaluate greenhouse gas emissions associated with accessing fossil fuel used for heat and power. Understanding the baseline of energy consumption and emissions of communities is needed to evaluate improvements and advances from technology.more » Based on this study, we will develop a strategic plan that assesses solutions to address high energy fuel costs due to lack of electricity access and inform actions to improve economic opportunities for tribes. This could include technical support for tribes to access clean energy technologies and supporting collaboration for on-site demonstrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Stochastic techno-economic analysis of alcohol-to-jet fuel production.
Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E
2017-01-01
Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven prices, potential investors can apply whatever risk preferences they like to determine an appropriate bid or breakeven price that matches their risk profile.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.
Dish Stirling solar receiver program
NASA Technical Reports Server (NTRS)
Haglund, R. A.
1980-01-01
A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.
Human Exploration and Development in the Solar System
NASA Astrophysics Data System (ADS)
Mendell, Wendell
2017-05-01
Emergence of ballistic missile technology after the Second World War enabled human flight into Earth's orbit, fueling the imagination of those fascinated with science, technology, exploration, and adventure. The performance of astronauts in the early flights assuaged concerns about the functioning of "the human system" in the absence of normal gravity. However, researchers in space medicine have observed degradation of crews after longer exposure to the space environment and have developed countermeasures for most of them, although significant challenges remain. With the dawn of the 21st century, well-financed and technically competent commercial entities began to provide more affordable alternatives to historically expensive and risk-averse government-funded programs. Space's growing accessibility has encouraged entrepreneurs to pursue plans for potentially autarkic communities beyond Earth, exploiting natural resources on other worlds. Should such dreams prove to be technically and economically feasible, a new era will open for humanity with concomitant societal issues of a revolutionary nature.
NASA Technical Reports Server (NTRS)
Fry, Ronald S.; Becker, Dorothy L.
2000-01-01
Volume I, the first of three volumes, is a compilation of 24 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee (MSS) meeting held jointly with the 19th Propulsion Systems Hazards Subcommittee. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered include: a Keynote Address on Future Combat Systems, a review of the new JANNAF Modeling and Simulation Subcommittee, and technical papers on Hyper-X propulsion development and verification; GTX airbreathing launch vehicles; Hypersonic technology development, including program overviews, fuels for advanced propulsion, ramjet and scramjet research, hypersonic test medium effects; and RBCC engine design and performance, and PDE and UCAV advanced and combined cycle engine technologies.
Analysis of the impact of safeguards criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, M.F.; Reardon, P.T.
As part of the US Program of Technical Assistance to IAEA Safeguards, the Pacific Northwest Laboratory (PNL) was asked to assist in developing and demonstrating a model for assessing the impact of setting criteria for the application of IAEA safeguards. This report presents the results of PNL's work on the task. The report is in three parts. The first explains the technical approach and methodology. The second contains an example application of the methodology. The third presents the conclusions of the study. PNL used the model and computer programs developed as part of Task C.5 (Estimation of Inspection Efforts) ofmore » the Program of Technical Assistance. The example application of the methodology involves low-enriched uranium conversion and fuel fabrication facilities. The effects of variations in seven parameters are considered: false alarm probability, goal probability of detection, detection goal quantity, the plant operator's measurement capability, the inspector's variables measurement capability, the inspector's attributes measurement capability, and annual plant throughput. Among the key results and conclusions of the analysis are the following: the variables with the greatest impact on the probability of detection are the inspector's measurement capability, the goal quantity, and the throughput; the variables with the greatest impact on inspection costs are the throughput, the goal quantity, and the goal probability of detection; there are important interactions between variables. That is, the effects of a given variable often depends on the level or value of some other variable. With the methodology used in this study, these interactions can be quantitatively analyzed; reasonably good approximate prediction equations can be developed using the methodology described here.« less
Direct Final Rule for Technical Amendments for Marine Spark-Ignition Engines and Vessels
Rule published September 16, 2010 to make technical amendments to the design standard for portable marine fuel tanks. This rule incorporates safe recommended practices, developed through industry consensus.
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.610...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.610...
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.
Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel
2015-03-01
Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2013 CFR
2013-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2014 CFR
2014-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2012 CFR
2012-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
10 CFR 504.6 - Prohibitions by order (case-by-case).
Code of Federal Regulations, 2011 CFR
2011-01-01
... had, the technical capability to use an alternate fuel as a primary energy source; (2) The unit has... (3) It is financially feasible for the unit to use an alternate fuel as its primary energy source. (b... Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.6 Prohibitions by...
Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.
ERIC Educational Resources Information Center
Berndt, Don; Stengel, Ron
These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…
78 FR 48832 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Community... which fuel tanks are exposed to flammable conditions is one of these criteria. The other three criteria... with flammable fuel vapors, could result in fuel tank explosions and consequent loss of the airplane...
76 FR 20493 - Airworthiness Directives; Fokker Services B.V. Model F.27 Mark 050 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... INFORMATION: Discussion The European Aviation Safety Agency (EASA), which is the Technical Agent for the... are exposed to flammable conditions is one of these criteria. The other three criteria address the... ignition sources inside fuel tanks, which, in combination with flammable fuel vapors, could result in fuel...
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2014 CFR
2014-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2012 CFR
2012-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
7 CFR Appendix D to Subpart B of... - Technical Report for Flexible Fuel Pumps
Code of Federal Regulations, 2013 CFR
2013-01-01
... flexible fuel pump projects, as defined in § 4280.103. (a) Qualifications of project team. The flexible fuel pump project team is expected to consist of a project manager, an equipment supplier of major... may serve more than one role. Authoritative evidence that project team service providers have the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...
10 CFR 504.2 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.2 Purpose and scope. (a) Sections... to the unit's technical capability and financial feasibility to use coal or another alternate fuel as..., 91 Stat. 565 (42 U.S.C. 7101 et seq.); Powerplant and Industrial Fuel Use Act of 1978, Pub. L. 95-620...
Solar Hydrogen Fuel Cell Projects at Brooklyn Tech
ERIC Educational Resources Information Center
Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael
2010-01-01
This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…
Neutronic study on conversion of SAFARI-1 to LEU silicide fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, G.; Pond, R.; Hanan, N.
1995-02-01
This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1978-12-01
Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
... emissions impact of the clean fuels exclusion, MDNR relied on a technical analysis of emissions from units..., correspondence, referenced above, also included a technical analysis demonstrating that the averaging approach... EPA cannot read your comment due to technical difficulties and cannot contact you for clarification...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goal of the US Department of Energy (DOE) Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits that are unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985 to 1987 time period. The DOE program has stimulated industry interest and activity in developing UCC technology. Several major energy corporations and utilities have invested private funds in UCC research and development (R and D) projects. Results of themore » program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks, and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program that incorporates maximum industry involvement is planned. The program's strategy is to remove the high-risk elements of UCC by resolving technical, environmental, and economic uncertainties. This will enable industry to assume responsibility for commercialization of the technology. Thus, the elements of the program have been designed to: provide detailed design and operational data that industry can scale-up with confidence; provide accurate and complete cost estimates that can be scaled-up and will allow comparison with alternative processes; provide detailed environmental impact and control data to allow industry to implement projects that will meet applicable standards; verify the reliability of continuous operation of UCC processes; and show that UCC processes have the flexibility to meet a variety of commercial needs.« less
Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates
2016-12-01
to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, W.A.
1998-08-01
The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogenmore » fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.« less
Promising transit applications of fuel cells and alternative fuels
DOT National Transportation Integrated Search
2002-06-01
For over a decade, the Volpe Center has been providing technical support to the Federal Transit Administration (FTA) Office of Research, Demonstration and Innovation towards the development, deployment, field test and safety evaluation of advanced tr...
Energy Department Announces New Tools for Hydrogen Fueling Infrastructure
state of the art in contamination detection and identifies the technical requirements for implementing a hydrogen contaminant detection device at a station. H2USA's Hydrogen Fueling Station Working Group and
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-30
This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops;more » (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Basis for Interim Operation for Fuel Supply Shutdown Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENECKE, M.W.
2003-02-03
This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less
Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-04-30
The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readilymore » achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.« less
Evaluation of fuel equipment operability of diesel locomotive engine with use of infrared receivers
NASA Astrophysics Data System (ADS)
Ovcharenko, S. M.; Balagin, O. V.; Balagin, D. V.
2018-03-01
This paper provides results of modelling the heat liberation in high-pressure pipeline of fuel equipment of diesel locomotive engines. Functional relationships between the technical state of fuel equipment and temperature of the outer surface of the high-pressure fuel pipeline are presented using the example of diesel locomotive engine 1-PD4D. The paper shows results of operational tests of the developed method for control of fuel equipment operability of diesel locomotive.
Marine applications for fuel cell technology: A technical memorandum
NASA Astrophysics Data System (ADS)
1986-02-01
To date, almost no attention was given to the potential marine applications for fuel cell technologies. Some of the benefits that fuel cells may offer to the utility industry may also apply to marine use. At a 1 day workshop the Office of Technology Assessment found fuel cells to offer advantages in applications requiring quiet operations, applications where throttle settings are constantly changed, and for small submarines. Fuel cells are not expected to penetrate marine markets until they become firmly established in the commercial utility section.
Progress on RERTR activities in Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balart, S.; Calzetta, O.; Cristini, P.
2008-07-15
Since last RERTR meeting, several tasks involving RERTR activities continued deploying in Argentina: through an agreement between CNEA and US-DoE final steps in the RA-6 reactor core conversion from HEU to LEU are taking place; by means of a return campaign of 42 US origin SNF in the frame of the US-SNF FRR program; an effective minimization of HEU inventory is close to be accomplished; development of a LEU dispersed U-Mo fuel prototype, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project is progressing; very high density monolithic U-Mo miniplates andmore » plates using MEU and LEU fuel with Zry-4 cladding were developed to be irradiated as a part of the RERTR program irradiation experiment; atomistic modeling prediction (BFS techniques and first principles) enabled to find some trends on the interaction phases; diffusion couples tests under X-ray synchrotron analysis allowed the characterization of several phases involving U-Mo(-Zr) / Al(-Si); finally CNEA continued spreading high quality LEU technology for fission RI production by means of agreements with different producers interested on HEU-LEU conversion. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period. The solar facility utilizes 35 collectors with a total aperture area of 8,960 ft/sup 2/. The system is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn, supplies water at 180/sup 0/F to a rotoclave (underground tank) for themore » concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marc Cremer; Kirsi St. Marie; Dave Wang
2003-04-30
This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flowmore » controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.« less
Selected Technical and Economic Comparisons of Synfuel Options
DOT National Transportation Integrated Search
1981-04-01
This study is a comparative technical and economic assessment of selected synfuel technologies. It contains papers written for Office of Technology Assessment (OTA) to assist in preparation of the report "Increased Automobile Fuel Efficiency and Synt...
Two keys for appraising forest fire fuels.
George R. Fahnestock
1970-01-01
This is an attempt to characterize forest fire fuels in a new way. The immediate purpose is to provide means for recognizing and tentatively evaluating, in the field, the fire spread potential and the crowning potential of fuels on the basis of readily observed characteristics without need for prior technical knowledge of vegetation or experience with fire. The medium...
NASA Astrophysics Data System (ADS)
1982-05-01
The technical and economic feasibility of producing motor fuel alcohol from corn in a 100 million gallon per year plant to be constructed in Myrtle Grove, Louisiana is evaluated. The evaluation includes a detailed process design using proven technology, a capital cost estimate for the plant, a detailed analysis of the annual operating cost, a market study, a socioeconomic, environmental, health and safety analysis, and a complete financial analysis. Several other considerations for production of ethanol were evaluated including: cogeneration and fuel to be used in firing the boilers; single by-products vs. multiple by-products; and use of boiler flue gas for by-product drying.
25 CFR 170.161 - What is the Indian Local Technical Assistance Program?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false What is the Indian Local Technical Assistance Program... Technical Assistance Program § 170.161 What is the Indian Local Technical Assistance Program? The Indian Local Technical Assistance Program (Indian LTAP) is authorized under 23 U.S.C. 504(b), and §§ 170.161...
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney; Meyers, Jeremy; Pivovar, Bryan
Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related tomore » water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy worked as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, R.E.; Sutton, H.E.
1994-12-31
Natural gas vehicles have been operating in the United States for over 30 years. With few exceptions, these vehicles are owned and operated by local gas utilities that utilize the natural gas in the compressed form (CNG), at pressures of up to 3,600 psi. However, the limited range, system weight and the high cost of fueling facilities presents a serious handicap for these compressed fuel systems. Liquefied natural gas (LNG) automotive fuel systems, on the other hand, are a relatively new player in the emerging clean fuels market. While the technical feasibility, safety, and operational suitability of LNG fuel systemsmore » have been demonstrated during the past 20 years, in a variety of test projects including automotive, marine, aviation, and rail systems, little has been done to commercialize or promote this technology. Recent independent cost comparisons and technical evaluations have been conducted by several major transit organizations and national truck fleets with interesting results. They have concluded that LNG automotive fuel systems can meet the performance and operational criteria of their gasoline and diesel fuel systems without compromising vehicle range or imposing unacceptable weight and payload penalties on their vehicles. The purpose of this paper is to further define the economics of LNG production, transportation and distribution costs. The liquefaction of natural gas is a mature technology and was first accomplished by Faraday in 1855. The first large scale plants were installed in the United States in 1941 and this paper provides a summary of the issues and costs associated with the procurement, installation, and operation of modern day natural gas liquefaction systems. There are no technical barriers to building LNG plants where needed. In addition to these {open_quotes}peak shaving{close_quotes} liquefaction plants, operated by utilities, there are many liquefaction plants owned and operated by the industrial gas business sector.« less
Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1998-12-02
In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plantsmore » in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.« less
78 FR 45983 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Programs for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; withdrawal... withdrawing draft NUREG-2154, ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities,'' based... determine whether a submittal for a Corrective Action Program (CAP), voluntarily submitted by fuel cycle...
75 FR 13521 - Centers for Independent Living Program-Training and Technical Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... DEPARTMENT OF EDUCATION Centers for Independent Living Program--Training and Technical Assistance... for Independent Living Program--Training and Technical Assistance (CIL-TA program). The Assistant... appropriated for the CIL program to provide training and technical assistance to CILs, agencies eligible to...
``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns
NASA Astrophysics Data System (ADS)
Lyman, Edwin
2007-04-01
One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.
Environmental cost-benefit analysis of ultra low sulfur jet fuel.
DOT National Transportation Integrated Search
2011-12-01
Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...
Power System Trade Studies for the Lunar Surface Access Module
NASA Technical Reports Server (NTRS)
Kohout, Lisa, L.
2008-01-01
A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.
AGR-2 Irradiation Test Final As-Run Report, Rev 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Blaise P.
2014-08-01
This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samplesmore » for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO 2 fuel, while fast fluence values ranged from 1.94 to 3.47 x 10 25 n/m 2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53 x 10 25 n/m 2 (E >0.18 MeV) for UO 2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO 2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10 -6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2 x 10 -6. In the UO 2 capsule (Capsule 3), the R/B values during the first three cycles were below 10 -7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.« less
Counter rotating fans — An aircraft propulsion for the future?
NASA Astrophysics Data System (ADS)
Schimming, Peter
2003-05-01
In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time. A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.
Energy Efficiency Potential in the U.S. Single-Family Housing Stock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Eric J.; Christensen, Craig B.; Horowitz, Scott G.
Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing themore » technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).« less
A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Varuttamaseni, A.
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portionmore » of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
A reload and startup plan for conversion of the NIST research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. J. Diamond
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reloadmore » portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
Recent Advances and Applications in Cryogenic Propellant Densification Technology
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2000-01-01
This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.
Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel
NASA Astrophysics Data System (ADS)
Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.
2017-11-01
The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.
Reactive Distillation for Esterification of Bio-based Organic Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.
2008-09-23
The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scalemore » has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.« less
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, J.M.; Steinbugler, M.; Dennis, E.
For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure andmore » environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... standard Jet A aviation fuel in most aircraft could significantly reduce fuel transport distances and... Mobility Fuel Purchasing Programs AGENCY: Defense Logistics Agency Energy (DLA Energy), DoD. ACTION... fuel purchase programs. DLA Energy currently operates two programs for mobility fuel contracts, Direct...
Assessing the costs for hybrid versus regular transit buses : [technical brief].
DOT National Transportation Integrated Search
2012-10-01
This technical brief summarizes : information about the costs and benefits : that have been attributed to use of : hybrid transit buses as found in the : literature. Results from a demonstration : project that compared fuel economy : and emissions fo...
Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion
2014-01-01
The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
In the future, it may be necessary to use jet fuels with a broader range of properties in order to insure a more flexible and reliable supply and to minimize energy consumption and processing costs at the refinery. This paper describes research being conducted to (1) determine the potential range of properties for future jet fuels, (2) establish a data base of fuel property effects on propulsion system components, (3) evolve and evaluate advanced component technology that would permit the use of broader property fuels and (4) identify technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repetto, G.; Dominguez, C.; Durville, B.
The safety principle in case of a LOCA is to preserve the short and long term coolability of the core. The associated safety requirements are to ensure the resistance of the fuel rods upon quench and post-quench loads and to maintain a coolable geometry in the core. An R&D program has been launched by IRSN with the support of EDF, to perform both experimental and modeling activities in the frame of the LOCA transient, on technical issues such as: - flow blockage within a fuel rods bundle and its potential impact on coolability, - fuel fragment relocation in the balloonedmore » areas: its potential impact on cladding PCT (Peak Cladding Temperature) and on the maximum oxidation rate, - potential loss of cladding integrity upon quench and post-quench loads. The PERFROI project (2014-2019) focusing on the first above issue, is structured in two axes: 1. axis 1: thermal mechanical behavior of deformation and rupture of cladding taking into account the contact between fuel rods; specific research at LaMCoS laboratory focus on the hydrogen behavior in cladding alloys and its impact on the mechanical behavior of the rod; and, 2. axis 2: thermal hydraulics study of a partially blocked region of the core (ballooned area taking into account the fuel relocation with local over power), during cooling phase by water injection; More detailed activities foreseen in collaboration with LEMTA laboratory will focus on the characterization of two phase flows with heat transfer in deformed structures.« less
DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krahn, Steven; Ault, Timothy; Worrall, Andrew
The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.
Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues
2009-01-01
This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States
Future fuels and engines for railroad locomotives. Volume 2: Technical document
NASA Technical Reports Server (NTRS)
Liddle, S. G.
1981-01-01
The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.
Environmentally friendly use of non-coal ashes in Sweden.
Ribbing, C
2007-01-01
The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kay L.; Singer, Mark R.
The largest source of funding for alternative fuel vehicle and infrastructure projects in the U.S. Department of Energy's Clean Cities program's history came from the American Recovery and Reinvestment Act (Recovery Act). In 2009, the 25 cost-share projects totaled nearly $300 million in federal government investment. This effort included the involvement of 50 Clean Cities coalitions and their nearly 700 stakeholder partners who provided an additional $500 million in matching funds to support projects in their local communities. In total, those 25 projects established 1,380 alternative fueling stations and put more than 9,000 alternative fuel and advanced technology vehicles onmore » the road. Together, these projects displaced 154 million gasoline gallon equivalents (GGE) of petroleum and averted 254,000 tons of greenhouse gas (GHG) emissions, while supporting U.S. energy independence and contributing to regional economic development. During post-project interviews, project leaders consistently cited a number of key components - ranging from technical and logistical factors, to administrative capabilities - for accomplishing an effective and impactful project. This report summarizes the high-level project design and administrative considerations for conducting a successful transportation project.« less
Analytical methods in the high conversion reactor core design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeggel, W.; Oldekop, W.; Axmann, J.K.
High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less
Metals and Ceramics Division progress report for period ending December 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.
1994-07-01
This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less
The Technical Assistance Program: A Program Plan.
1985-09-01
interests, talents, and hobbies of current employees who wish to become involved in the technical assistance program . 4. Capitalize on the corporate...Center San Diego, CA 92152 Telephone (619) 225-6281 B-33 TAP ( EMPLOYEE ) QUESTIONNAIRE - The Technical Assistance Program (TAP) links technically skilled...Brochure, "Retired Technologist" C-11 C. Sample Letter to NOSC Employees C-13 Brochure D. The Technical Assistance Program C-15 C-1
10 CFR 961.11 - Text of the contract.
Code of Federal Regulations, 2012 CFR
2012-01-01
... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...
10 CFR 961.11 - Text of the contract.
Code of Federal Regulations, 2011 CFR
2011-01-01
... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2005-0161; FRL-9169-9] RIN 2060-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY...: June 24, 2010. Lisa P. Jackson, Administrator. PART 80--REGULATION OF FUELS AND FUEL ADDITIVES 0...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Terry Todd
2013-11-01
Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less
ERIC Educational Resources Information Center
Carliner, Saul
1992-01-01
Cites reasons for pursuing a curriculum in technical communication, lists objectives a program should achieve, and outlines a four-part program that includes theory, professional skills, technical proficiency, and an internship. Lists schools offering programs in technical communication. (SR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O.K.; Diercks, D.; Fabian, R.
The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.« less
Potential Energy Sources Pose Mining Problem
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)
Potential for Fuel Tank Fire and Hydrodynamic Ram from Uncontained Aircraft Engine Debris
DOT National Transportation Integrated Search
1997-01-01
This report addresses the potential consequences of the impact and penetration of fuel tanks by debris from uncontained engine failures on commercial jet aircraft. The report presents a brief review of accident data and of the pertinent technical lit...
Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linville, B.
This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)
2012-05-01
fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottler, Gary
General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.
NASA Astrophysics Data System (ADS)
Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua
2018-05-01
In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.
Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, H.S.
1979-03-01
This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less
Goals of thermionic program for space power
NASA Technical Reports Server (NTRS)
English, R. E.
1981-01-01
The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.
US-RERTR Advanced Fuel Development Plans : 1999.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M. K.
1998-10-22
Twelve fuel alloys were included in the very-high-density RERTR-1 and RERTR-2 microplate irradiation experiments. Experience gained during fabrication and results from the post-irradiation examination of these fuels has allowed us to narrow the focus of our fuel development efforts in preparation for the next set of irradiation experiments. Specific technical problems in both the areas of fuel fabrication and irradiation performance remain to be addressed. Examples of these are powder fabrication, fuel phase gamma stability versus density, and fuel-matrix interaction. In order to more efficiently address metal alloy fuel performance issues, work will continue on establishing a theoretical basis formore » alloy stability and metal alloy dispersion fuel irradiation performance. Plans to address these fuel development issues in the coming year will be presented.« less
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper summarizes the technical considerations which helped form the engineering judgement that led to the final decision.
Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhenhong; Dong, Jing; Greene, David L
2013-01-01
Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.Withmore » a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.« less
10 CFR 72.28 - Contents of application: Applicant's technical qualifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Applicant's technical qualifications. 72.28 Section 72.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...
78 FR 8500 - Biomass Research and Development Technical Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Biomass Research and... Biomass Research and Development Technical Advisory Committee. The Federal Advisory Committee Act (Pub. L... fuels and biobased products. Tentative Agenda: Agenda will include the following: Update on USDA Biomass...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... DEPARTMENT OF EDUCATION Applications for New Awards; Native American Career and Technical...: Notice. Overview Information: Native American Career and Technical Education Program (NACTEP). Notice... Purpose of Program: The Native American Career and Technical Education Program (NACTEP) provides grants to...
Issues and Potential Program on Denatured Fuel Utilization.
1978-12-01
HTGR fuel develop - ment program ; 4. coated particles of (U,Th)02 have been extensively tested as potential HTGR fuels . A detailed summary of the...current scrap and waste treatment requirements. dBase case for all HTGR (Prismatic Fuel Element) cases based on data in "Summary Program Plan...Alternate Program for HTGR Fuel Recycle," April 11, 1975, Draft. 19 a --- AC8NCi09 The principal factors that result in a nominally-higher cost for
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilli, Ludivine; Charron, Sylvie
2012-07-01
In 2009 and 2010, the Institute for Nuclear Safety and Radiation Protection (IRSN) led two pilot actions dealing with nuclear installations' safety cases. One concerned the periodical review of the French 900 MWe nuclear reactors, the other concerned the decommissioning of a workshop located on the site of Areva's La Hague fuel-reprocessing plant site in Northwestern France. The purpose of both these programs was to test ways for IRSN and a small number of stakeholders (Non-Governmental Organizations (NGOs) members, local elected officials, etc.) to engage in technical discussions. The discussions were intended to enable the stakeholders to review future applicationsmore » and provide valuable input. The test cases confirmed there is a definite challenge in successfully opening a meaningful dialogue to discuss technical issues, in particular the fact that most expertise reports were not public and the conflict that exists between the contrary demands of transparency and confidentiality of information. The test case also confirmed there are ways to further improvement of stakeholders' involvement. (authors)« less
This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.
Used Nuclear Fuel: From Liability to Benefit
NASA Astrophysics Data System (ADS)
Orbach, Raymond L.
2011-03-01
Nuclear power has proven safe and reliable, with operating efficiencies in the U.S. exceeding 90%. It provides a carbon-free source of electricity (with about a 10% penalty arising from CO2 released from construction and the fuel cycle). However, used fuel from nuclear reactors is highly toxic and presents a challenge for permanent disposal -- both from technical and policy perspectives. The half-life of the ``bad actors'' is relatively short (of the order of decades) while the very long lived isotopes are relatively benign. At present, spent fuel is stored on-site in cooling ponds. Once the used fuel pools are full, the fuel is moved to dry cask storage on-site. Though the local storage is capable of handling used fuel safely and securely for many decades, the law requires DOE to assume responsibility for the used fuel and remove it from reactor sites. The nuclear industry pays a tithe to support sequestration of used fuel (but not research). However, there is currently no national policy in place to deal with the permanent disposal of nuclear fuel. This administration is opposed to underground storage at Yucca Mountain. There is no national policy for interim storage---removal of spent fuel from reactor sites and storage at a central location. And there is no national policy for liberating the energy contained in used fuel through recycling (separating out the fissionable components for subsequent use as nuclear fuel). A ``Blue Ribbon Commission'' has been formed to consider alternatives, but will not report until 2012. This paper will examine alternatives for used fuel disposition, their drawbacks (e.g. proliferation issues arising from recycling), and their benefits. For recycle options to emerge as a viable technology, research is required to develop cost effective methods for treating used nuclear fuel, with attention to policy as well as technical issues.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... DEPARTMENT OF EDUCATION Career and Technical Education Program--Promoting Rigorous Career and Technical Education Programs of Study Catalog of Federal Domestic Assistance (CFDA) Number: 84.051C. AGENCY: Office of Vocational and Adult Education, Department of Education. ACTION: Notice of proposed priorities...
FY2016 Ceramic Fuels Development Annual Highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclellan, Kenneth James
Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.
2011-11-14
For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may bemore » constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
RITTMANN, P.D.
1999-07-14
This report contains technical information used to determine accident consequences for the Spent Nuclear Fuel Project safety documents. It does not determine accident consequences or describe specific accident scenarios, but instead provides generic information.
21st century locomotive technology: quarterly technical status report 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lembit Salasoo; Ramu Chandra
2009-08-24
Parasitic losses due to hybrid sodium battery thermal management do not significantly reduce the fuel saving benefits of the hybrid locomotive. Optimal thermal management trajectories were converted into realizable algorithms which were robust and gave excellent performance to limit thermal excusions and maintain fuel savings.
Direct Fuel Injector Temporal Measurements
2014-10-01
ignition timing, and oxides of nitrogen emissions from biodiesel -fueled engines”. Transactions of the Asabe, 50(4): 1123-1128, 2007. 20. Postrioti...SAE Technical Paper 2003-01-0768, 2003, doi:10.4271/2003- 01-0768. 21. Bittle, J., Knight, B., and Jacobs, T., “The Impact of Biodiesel on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausherman, V.K.; Khadikar, A.V.; Syson, S.R.
1981-09-01
The objective of the RSV Program was to provide research and test data applicable to the automobile safety performance requirements for the mid-1980s, and to evaluate the compatibility of these requirements with environmental policies, efficient energy utilization, and consumer economic considerations. The RSV Program has demonstrated that it is possible to make cars much safer than they are presently. It has produced automobile designs that are consistent, at affordable cost, with the national objectives for fuel economy and environmental protection. It has indicated, at least to a limited degree, that the technological findings are applicable, at varying levels, to amore » variety of car designs. And it has provided evidence that these findings can be wrapped in a package of considerable appeal to the public. This Final Report is a comprehensive compilation of the findings of the Phase III efforts of Minicars, Inc. It describes the design and testing of the RSV systems, and the performance levels achieved.« less
The manufacture of LEU fuel elements at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.
1997-08-01
Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.
Technical Assistance for Southwest Solar Technologies Inc. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie
2012-07-01
Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less
10 CFR 72.26 - Contents of application: Technical specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.26 - Contents of application: Technical specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Low NO(x) heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1979-01-01
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendis, M.; Park, W.; Sabadell, A.
This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to themore » Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Bhatt, Arpit; Zhang, Yimin
Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
Under contract from the Department of Energy, AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period (September 1978 to September 1981). The solar facility utilizes 35 collectors with a total aperture area of 8960 ft/sup 2/. The sysem is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn,more » supplies water at 180/sup 0/F to a rotoclave (underground tank) for the concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...
2017-04-26
Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less
Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin
2017-06-06
Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.
Low pressure storage of natural gas on activated carbon
NASA Astrophysics Data System (ADS)
Wegrzyn, J.; Wiesmann, H.; Lee, T.
The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL
The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...
Bacteria engineered for fuel ethanol production: current status
B.S. Dien; M.A. Cotta; T.W. Jeffries
2003-01-01
The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing...
Novel carbon-ion fuel cells. Quarterly technical report No. 10, January 1, 1996--March 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1996-08-01
This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. A high temperature fuel cell based on a carbon ion membrane/electrolyte would operate in a way like yttria-doped zirconia solid oxide fuel cells; however, the fuel cell would transport the C ion from a fuel source to O{sub 2} in the atmosphere. Such fuel cells, operating above 1000 C, would producemore » an exhaust gas that could be fed directly into existing boilers, and could thus act as ``topping cycles`` to existing power plant steam cycles.« less
1986 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1986-10-01
Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)
Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.
Jones, Emily; Wittie, Michael
2015-01-01
To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.
An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
77 FR 47047 - Biomass Research and Development Technical Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... research and development leading to the production of biobased fuels and biobased products. Tentative... Research and Development Technical Advisory Committee. To attend the meeting and/or to make oral statements... at the beginning of the meeting. Reasonable provision will be made to include the scheduled oral...
75 FR 41404 - List of Approved Spent Fuel Storage Casks: NUHOMS®
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
.... The NRC is taking this action because the applicant identified that a certain Technical Specification (TS) for Boral characterization was not written precisely. Specifically, the requirements for meeting... changes to the technical specifications. The NRC also published a direct final rule on May 6, 2010 (75 FR...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for sale...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel produced or imported from...
40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for sale...
DOE Office of Scientific and Technical Information (OSTI.GOV)
William W. Glauz
The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generatorsmore » are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of September 2004 was not available at the time this report was prepared. An addendum to this report will be prepared and transmitted to the Department of Energy once this data becomes available. This fuel cell power plant was originally intended to be installed at an American Airlines facility located at Los Angeles International Airport, however, due to difficulties in obtaining a site, the plant was ultimately installed at the LADWP's Distributed Generation Test Facility at it's Main Street Service Center.« less