Octogenarian and centenarian performance on the Fuld Object Memory Evaluation.
Rahman-Filipiak, Annalise; Woodard, John L; Miller, L Stephen; Martin, Peter; Davey, Adam; Poon, Leonard W
2015-01-01
The Fuld Object Memory Evaluation (FOME) has considerable utility for cognitive assessment in older adults, but there are few normative data, particularly for the oldest old. In this study, 80 octogenarians and 244 centenarians from the Georgia Centenarian Study completed the FOME. Total and trial-to-trial performance on the storage, retrieval, repeated retrieval, and ineffective reminder indices were assessed. Additional data stratified by age group, education, and cognitive impairment are provided in the Supplemental data. Octogenarians performed significantly better than centenarians on all FOME measures. Neither age group benefitted from additional learning trials beyond Trial 3 for storage and Trial 2 for retention and retrieval. Ineffective reminders showed no change across learning trials for octogenarians, while centenarians improved only between Trials 1 and 2. This minimal improvement past Trial 2 indicates that older adults might benefit from a truncated version of the test that does not include trials three through five, with the added benefit of reducing testing burden in this population.
Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances
NASA Astrophysics Data System (ADS)
He, Lianyi; Hu, Hui; Liu, Xia-Ji
2018-01-01
We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of
Incidence of the WAIS-R Fuld profile in HIV-1 infection.
van Gorp, W G; Tulin, S J; Evans, G; Satz, P
1990-10-01
The incidence of a WAIS-R subtest "marker" sensitive to cholinergic dysfunction was assessed in a sample 116 homosexual males infected with HIV (Acquired Immunodeficiency Syndrome [AIDS] N = 40; AIDS Related Complex [ARC], N = 76). The incidence of positive profiles was low in the overall sample (11/116, 9%), and significantly lower than incidence rates reported for known cholinergic deficient groups (Alzheimer's disease; scopolamine). However, significantly more AIDS patients (8/40, 20%) than ARC patients (3/76, 4%) demonstrated positive profiles. These results suggest that, as a group, persons with ARC or AIDS do not show an increased incidence of the Fuld profile associated with cholinergic disruption, and offer continued support for diagnostic specificity of the Fuld formula for Alzheimer's disease.
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521
2011-07-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei
2014-04-04
Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.
Effects of a long-term aerobic exercise intervention on institutionalized patients with dementia.
Cancela, José M; Ayán, Carlos; Varela, Silvia; Seijo, Manuel
2016-04-01
Long-term interventions aimed at analyzing the impact of physical exercise on important health markers in institutionalized individuals with dementia are relatively scarce. This longitudinal study intends to identify the effects of a physical exercise program on cognitive decline, memory, depression, functional dependence and neuropsychiatric disturbances in institutionalized individuals with dementia. Randomized controlled trial. Homecare residents with dementia were assigned to an exercise (EG) or to a control group (CG). Participants in the EG cycled for at least 15min daily during 15 months, while those in the CG performed alternative sedentary recreational activities. The Mini-Mental State Examination (MEC), the Timed "Up & Go" Test, the Neuropsychiatric Inventory, the Katz Index, the Cornell Scale for Depression in Dementia and the Fuld Object Memory Evaluation were administered before and after the intervention. Sixty-three individuals in the CG and 51 individuals in the EG completed the intervention. A statistically significant decline in cognitive function was observed in individuals included in the CG (p=0.015), while a slight improvement was observed in those included in the EG. Significant improvement was observed in the neuropsychiatric symptoms (p=0.020), memory function (p=0.028) and functional mobility (p=0.043) among those who exercised. Exercise seemed to have a greater effect in those suffering from severe cognitive impairment. This study provides evidence that aerobic physical exercise has a significant impact on improving cognitive functioning, behavior, and functional mobility in institutionalized individuals with dementia. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Controlling hospital library theft
Cuddy, Theresa M.; Marchok, Catherine
2003-01-01
At Capital Health System/Fuld Campus (formerly Helene Fuld Medical Center), the Health Sciences Library lost many books and videocassettes. These materials were listed in the catalog but were missing when staff went to the shelves. The hospital had experienced a downsizing of staff, a reorganization, and a merger. When the library staff did an inventory, $10,000 worth of materials were found to be missing. We corrected the situation through a series of steps that we believe will help other libraries control their theft. Through regularly scheduling inventories, monitoring items, advertising, and using specific security measures, we have successfully controlled the library theft. The January 2002 inventory resulted in meeting our goal of zero missing books and videocassettes. We work to maintain that goal. PMID:12883573
NASA Astrophysics Data System (ADS)
Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin
2018-04-01
The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of the pairs. These results address the absence of convincing experimental observations of FFLO phases in both condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true ground state has a pair momentum distribution highly peaked on an entire constant energy surface.
Controlling hospital library theft.
Cuddy, Theresa M; Marchok, Catherine
2003-04-01
At Capital Health System/Fuld Campus (formerly Helene Fuld Medical Center), the Health Sciences Library lost many books and videocassettes. These materials were listed in the catalog but were missing when staff went to the shelves. The hospital had experienced a downsizing of staff, a reorganization, and a merger. When the library staff did an inventory, $10,000 worth of materials were found to be missing. We corrected the situation through a series of steps that we believe will help other libraries control their theft. Through regularly scheduling inventories, monitoring items, advertising, and using specific security measures, we have successfully controlled the library theft. The January 2002 inventory resulted in meeting our goal of zero missing books and videocassettes. We work to maintain that goal.
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2018-04-01
We theoretically study the orbital destructive effect against superconductivity in a parallel magnetic field in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) phase at zero temperature in a quasi-two-dimensional (Q2D) conductor. We demonstrate that at zero temperature a special parameter, λ =l⊥(H ) /d , is responsible for strength of the orbital effect, where l⊥(H ) is a typical "size" of the quasiclassical electron orbit in a magnetic field and d is the interplane distance. We discuss applications of our results to the existing experiments on the FFLO phase in the organic Q2D conductors κ -(ET) 2Cu (NCS) 2 and κ -(ET) 2Cu [N (CN) 2] Cl .
Lebed, A G
2011-08-19
We solve a long-standing problem about a theoretical description of the upper critical magnetic field, parallel to conducting layers and perpendicular to conducting chains, in a (TMTSF)(2)ClO(4) superconductor. In particular, we explain why the experimental upper critical field, H(c2)(b')≃6 T, is higher than both the quasiclassical upper critical field and the Clogston paramagnetic limit. We show that this property is due to the coexistence of the hidden reentrant and Larkin-Ovchinnikov-Fulde-Ferrell phases in a magnetic field in the form of three plane waves with nonzero momenta of the Cooper pairs. Our results are in good qualitative and quantitative agreement with the recent experimental measurements of H(c2)(b') and support a singlet d-wave-like scenario of superconductivity in (TMTSF)(2)ClO(4). © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen
2018-03-01
In this Rapid Communication, we show that low-energy macroscopic properties of the one-dimensional (1D) attractive Hubbard model exhibit two fluids of bound pairs and of unpaired fermions. Using the thermodynamic Bethe ansatz equations of the model, we first determine the low-temperature phase diagram and analytically calculate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing correlation function for the partially polarized phase. We then show that for such an FFLO-like state in the low-density regime the effective chemical potentials of bound pairs and unpaired fermions behave like two free fluids. Consequently, the susceptibility, compressibility, and specific heat obey simple additivity rules, indicating the "free" particle nature of interacting fermions on a 1D lattice. In contrast to the continuum Fermi gases, the correlation critical exponents and thermodynamics of the attractive Hubbard model essentially depend on two lattice interacting parameters. Finally, we study scaling functions, the Wilson ratio and susceptibility, which provide universal macroscopic properties and dimensionless constants of interacting fermions at low energy.
NASA Astrophysics Data System (ADS)
Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi
2018-04-01
It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.
Prevalence of cognitive and functional impairment in a community sample in Ribeirão Preto, Brazil.
Lopes, Marcos A; Hototian, Sergio R; Bustamante, Sonia E Z; Azevedo, Dionísio; Tatsch, Mariana; Bazzarella, Mário C; Litvoc, Júlio; Bottino, Cássio M C
2007-08-01
This study aimed at estimating the prevalence of cognitive and functional impairment (CFI) in a community sample in Ribeirão Preto, Brazil, evaluating its distribution in relation to various socio-demographic and clinical factors. The population was a representative sample aged 60 and older, from three different socio-economic classes. Cluster sampling was applied. Instruments used to select CFI (a syndromic category that does not exclude dementia): 'Mini Mental State Examination' (MMSE), 'Fuld Object Memory Evaluation' (FOME), 'Informant Questionnaire on Cognitive Decline in the Elderly' (IQCODE), 'Bayer Activities of Daily Living Scale' (B-ADL) and clinical interviews. The data obtained were submitted to bivariate and logistic regression analysis. A sample of 1.145 elderly persons was evaluated, with a mean age of 70.9 years (60-100; DP: 7.7); 63.4% were female, and 52.8% had up to 4 years of schooling. CFI prevalence was 18.9% (n = 217). Following logistic regression analysis, higher age, low education, stroke, epilepsy and depression were associated with CFI. Female sex, widowhood, low social class and head trauma were associated with CFI only on bivariate analysis. CFI prevalence results were similar to those found by studies in Brazil, Puerto Rico and Malaysia. Cognitive and functional impairment is a rather heterogeneous condition which may be associated with various clinical conditions found in the elderly population. Due to its high prevalence and association with higher mortality and disability rates, this clinical syndrome should receive more attention on public health intervention planning.
Burke, Shanna L; Rodriguez, Miriam J; Barker, Warren; Greig-Custo, Maria T; Rosselli, Monica; Loewenstein, David A; Duara, Ranjan
2018-02-01
The aim of this study was to determine the presence and severity of potential cultural and language bias in widely used cognitive and other assessment instruments, using structural MRI measures of neurodegeneration as biomarkers of disease stage and severity. Hispanic (n=75) and White non-Hispanic (WNH) (n=90) subjects were classified as cognitively normal (CN), amnestic mild cognitive impairment (aMCI) and mild dementia. Performance on the culture-fair and educationally fair Fuld Object Memory Evaluation (FOME) and Clinical Dementia Rating Scale (CDR) between Hispanics and WNHs was equivalent, in each diagnostic group. Volumetric and visually rated measures of the hippocampus entorhinal cortex, and inferior lateral ventricles (ILV) were measured on structural MRI scans for all subjects. A series of analyses of covariance, controlling for age, depression, and education, were conducted to compare the level of neurodegeneration on these MRI measures between Hispanics and WNHs in each diagnostic group. Among both Hispanics and WNH groups there was a progressive decrease in volume of the hippocampus and entorhinal cortex, and an increase in volume of the ILV (indicating increasing atrophy in the regions surrounding the ILV) from CN to aMCI to mild dementia. For equivalent levels of performance on the FOME and CDR, WNHs had greater levels of neurodegeneration than did Hispanic subjects. Atrophy in medial temporal regions was found to be greater among WNH than Hispanic diagnostic groups, despite the lack of statistical differences in cognitive performance between these two ethnic groups. Presumably, unmeasured factors result in better cognitive performance among WNH than Hispanics for a given level of neurodegeneration. (JINS, 2018, 24, 176-187).
Tang, Jennifer Y-M; Wong, Gloria H-Y; Ng, Carmen K-M; Kwok, Dorothy T-S; Lee, Maggie N-Y; Dai, David L-K; Lum, Terry Y-S
2016-03-01
To examine the neuropsychological and clinical profile of help-seekers in an early-detection community dementia program and to explore any relationship between profiles and time to seek help. Cross-sectional. Early-detection community dementia program. Help-seekers (N = 1,005) with subjective cognitive complaints or complaints from an informant. Neurocognitive testing, including the Cantonese Mini-Mental State Examination (MMSE), Clock Drawing Test, Digit Span, and Fuld Object Memory Evaluation and other clinical and functioning assessments, including the Clinical Dementia Rating (CDR), activities of daily living (ADLs), instrumental ADLs (IADLs), and depressive symptoms. Time since the person or an informant reported that they first noticed symptoms. Eighty-six percent of help-seekers had at least very mild dementia (CDR score ≥0.5). Cognitive performance was moderately impaired (mean MMSE score 18.4 ± 6.1). They required some assistance with IADLs, had very mild ADL impairments, and had few depressive symptoms. Median time to seek assessment was 12 months (interquartile range 7-30 months) according to the person or the informant (an adult child in 75% of the sample). Using the median-split method, time to seek assessment was classified as early (0-12 months) and late (>12 months). Worse cognitive and IADL performance but not ADL performance or depressive symptoms were observed in late than in early help-seekers. Longer time intervals between symptom recognition and early assessment showed a trend of further impairments on all measures except ADLs. A time interval of more than 12 months between symptom recognition and early assessment appears to be associated with worse cognitive function upon presentation. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Dilution and non-Fermi-liquid effects in the CePtIn Kondo lattice.
Ragel, F C; Plessis, P de V du; Strydom, A M
2009-01-28
Measurements of electrical resistivity (ρ(T)), magnetoresistivity (MR), magnetic susceptibility (χ(T)) and heat capacity (C(P)(T)) are presented for the (Ce(1-x)La(x))PtIn alloy system of which the CePtIn parent is a known dense Kondo compound that does not order magnetically down to 50 mK. χ(T) for alloys 0≤x≤0.8 exhibits Curie-Weiss behaviour. ρ(T) results indicate a transition from a dense Kondo behaviour for 0≤x≤0.2 to a single-ion Kondo region (0.3≤x≤0.8). The Kondo energy scale as given by T(K) values calculated from MR studies and by the temperature T(max)(ρ(mag)) where the magnetic contribution to ρ(T) exhibits a maximum value, is compared with theoretical models. It is shown that the experimental results not only depend on a volume effect as given by the compressible Kondo lattice model of Lavagna but in addition confirm the more complex behaviour recently presented by Burdin and Fulde for a Kondo alloy system in which the magnetic (Ce) and non-magnetic (La) atoms are distributed randomly. Non-Fermi-liquid behaviour is predicted by Burdin and Fulde at certain critical concentrations of the alloy system and experimental evidence for this is presented through χ(T), ρ(T) and C(P)(T) measurements.
Critical Magnetic Field in CeCoIn5 Superconductor
NASA Astrophysics Data System (ADS)
Koo, Je Huan; Gill, Doh-Hyun; Cho, Guangsup
We investigate the superconducting transition temperature, Tc in the presence of the magnetic field, H in CeCoIn5. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more as suggested by us (Phys. Rev. B61, 4289). We know the magnetic dependence of our transition temperature is in good correspondence with experimental data. It is elucidated that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting states are closely related to the temperature gradient contributed by the external magnetic field.
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.
Zhou, Tao; Gao, Yi; Wang, Z D
2014-06-11
We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.
Aging memories: differential decay of episodic memory components.
Talamini, Lucia M; Gorree, Eva
2012-05-17
Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.
Cao, Ye; Liu, Xia -Ji; He, Lianyi; ...
2015-02-09
We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction n s,yy is generally largermore » than n s,xx in most parameter space. At zero temperature, there is always a discontinuity jump in n s,xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1T F, where T F is the Fermi degenerate temperature. Furthermore, their observation is within the reach of current experimental techniques in cold-atom laboratories.« less
NASA Astrophysics Data System (ADS)
Uji, S.; Iida, Y.; Sugiura, S.; Isono, T.; Sugii, K.; Kikugawa, N.; Terashima, T.; Yasuzuka, S.; Akutsu, H.; Nakazawa, Y.; Graf, D.; Day, P.
2018-04-01
Resistance and magnetic torque measurements are reported in a layered organic superconductor, β "-(BEDT-TTF ) 4[(H3O ) Ga (C2O4)3] C6H5NO2 with Tc=4.8 K, where BEDT-TTF stands for bis(ethylenedithio)tetrathiafulvalene. Because of the large anion between the BEDT-TTF conducting layers, the superconductivity of this salt is highly anisotropic. In magnetic fields parallel to the conducting layers for T =0.4 K, the magnetic torque shows a large diamagnetic signal associated with hysteresis up to ˜21 T, suggesting the upper critical field Hc 2≳21 T at 0.4 K. The large reduction of the diamagnetic signal is observed above 16 T, which shows a Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) phase transition. For T =0.5 K, the interlayer resistance has nonzero value in a wide field region up to Hc 2, arising from the Josephson vortex dynamics. Successive dips in the second derivative curves of the resistance are observed between 16 T and Hc 2, which are ascribed to the commensurability effect between the Josephson vortex lattice and the order parameter oscillation of the FFLO phase. The commensurability effect is observed only in nearly parallel fields, showing that the FFLO phase is stable in a very limited field angle region. The temperature-field phase diagram is determined.
Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system
NASA Astrophysics Data System (ADS)
Guo, Yao-Wu; Chen, Yan
2018-04-01
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.
Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard
2015-01-01
Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object's importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers' confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from each other.
Differential binding of colors to objects in memory: red and yellow stick better than blue and green
Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard
2015-01-01
Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from each other. PMID:25784892
Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.
Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei
2014-09-26
We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Van Bergen, Saskia; Jelicic, Marko; Merckelbach, Harald
2009-01-01
The relationship between subjective memory beliefs and suggestibility, compliance, false memories, and objective memory performance was studied in a community sample of young and middle-aged people (N = 142). We hypothesized that people with subjective memory problems would exhibit higher suggestibility and compliance levels and would be more susceptible to false recollections than those who are optimistic about their memory. In addition, we expected a discrepancy between subjective memory judgments and objective memory performance. We found that subjective memory judgments correlated significantly with compliance, with more negative memory judgments accompanying higher levels of compliance. Contrary to our expectation, subjective memory problems did not correlate with suggestibility or false recollections. Furthermore, participants were accurate in estimating their objective memory performance.
Tran, Dominic M D; Westbrook, R Frederick
2018-05-31
Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.
2015-01-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772
Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F
2015-10-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.
Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A
2000-01-01
In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Winters, Boyer D; Tucci, Mark C; Jacklin, Derek L; Reid, James M; Newsome, James
2011-11-30
Research has implicated the perirhinal cortex (PRh) in several aspects of object recognition memory. The specific role of the hippocampus (HPC) remains controversial, but its involvement in object recognition may pertain to processing contextual information in relation to objects rather than object representation per se. Here we investigated the roles of the PRh and HPC in object memory reconsolidation using the spontaneous object recognition task for rats. Intra-PRh infusions of the protein synthesis inhibitor anisomycin immediately following memory reactivation prevented object memory reconsolidation. Similar deficits were observed when a novel object or a salient contextual change was introduced during the reactivation phase. Intra-HPC infusions of anisomycin, however, blocked object memory reconsolidation only when a contextual change was introduced during reactivation. Moreover, disrupting functional interaction between the HPC and PRh by infusing anisomycin unilaterally into each structure in opposite hemispheres also impaired reconsolidation when reactivation was done in an altered context. These results show for the first time that the PRh is critical for reconsolidation of object memory traces and provide insight into the dynamic process of object memory storage; the selective requirement for hippocampal involvement following reactivation in an altered context suggests a substantial circuit level object trace reorganization whereby an initially PRh-dependent object memory becomes reliant on both the HPC and PRh and their interaction. Such trace reorganization may play a central role in reconsolidation-mediated memory updating and could represent an important aspect of lingering consolidation processes proposed to underlie long-term memory modulation and stabilization.
Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
Importing perceived features into false memories.
Lyle, Keith B; Johnson, Marcia K
2006-02-01
False memories sometimes contain specific details, such as location or colour, about events that never occurred. Based on the source-monitoring framework, we investigated one process by which false memories acquire details: the reactivation and misattribution of feature information from memories of similar perceived events. In Experiments 1A and 1B, when imagined objects were falsely remembered as seen, participants often reported that the objects had appeared in locations where visually or conceptually similar objects, respectively, had actually appeared. Experiment 2 indicated that colour and shape features of seen objects were misattributed to false memories of imagined objects. Experiment 3 showed that perceived details were misattributed to false memories of objects that had not been explicitly imagined. False memories that imported perceived features, compared to those that presumably did not, were subjectively more like memories for perceived events. Thus, perception may be even more pernicious than imagination in contributing to false memories.
De Goede, Maartje; Postma, Albert
2008-04-01
Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object location memory and its component object identity memory were assessed in the present study. In order to disentangle these two components, an object location memory task (in which objects had to be relocated in daily environments), and a separate object identity recognition task were carried out. This study also focused on the conditions under which object locations were encoded and retrieved. Only half of the participants were aware of the fact that object locations had to be retrieved later on. Moreover, by applying the 'process dissociation procedure' to the object location memory assessments and the 'remember-know' paradigm to the object identity measure, the amount of explicit (conscious) and implicit (unconscious) retrieval was estimated for each component. In general, females performed better than males on the object location memory task. However, when controlled for object identity memory, females no longer outperformed males, whereas they did not obtain a higher general object identity memory score, nor did they have more explicit or implicit recollection of the object identities. These complicated effects might stem from a difference between males and females, in the way locations or associations between objects and locations are retrieved. In general, participants had more explicit (conscious) recollection than implicit (unconscious) recollection. No effect of encoding context was found, nor any interaction effect of gender, encoding and retrieval context.
Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S
2002-01-01
Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
ERIC Educational Resources Information Center
Brady, Timothy F.; Alvarez, George A.
2015-01-01
A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R
2018-02-19
The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.
Effects of motor congruence on visual working memory.
Quak, Michel; Pecher, Diane; Zeelenberg, Rene
2014-10-01
Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.
Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients
ERIC Educational Resources Information Center
van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert
2009-01-01
Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…
Object-location memory in adults with autism spectrum disorder.
Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M
2015-10-01
This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Object representations in visual memory: evidence from visual illusions.
Ben-Shalom, Asaf; Ganel, Tzvi
2012-07-26
Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.
Takahashi, Daisuke A
2016-06-01
An integrable model possessing inhomogeneous ground states is proposed as an effective model of nonuniform quantum condensates such as supersolids and Fulde-Ferrell-Larkin-Ovchinnikov superfluids. The model is a higher-order analog of the nonlinear Schrödinger equation. We derive an n-soliton solution via the inverse scattering theory with elliptic-functional background and reveal various kinds of soliton dynamics such as dark soliton billiards, dislocations, gray solitons, and envelope solitons. We also provide the exact bosonic and fermionic quasiparticle eigenstates and show their tunneling phenomena. The solutions are expressed by a determinant of theta functions.
Han, Yuliang; Wang, Kai; Jia, Jianjun; Wu, Weiping
2017-01-01
Object-location memory is particularly fragile and specifically impaired in Alzheimer's disease (AD) patients. Electroencephalogram (EEG) was utilized to objectively measure memory impairment for memory formation correlates of EEG oscillatory activities. We aimed to construct an object-location memory paradigm and explore EEG signs of it. Two groups of 20 probable mild AD patients and 19 healthy older adults were included in a cross-sectional analysis. All subjects took an object-location memory task. EEG recordings performed during object-location memory tasks were compared between the two groups in the two EEG parameters (spectral parameters and phase synchronization). The memory performance of AD patients was worse than that of healthy elderly adults The power of object-location memory of the AD group was significantly higher than the NC group (healthy elderly adults) in the alpha band in the encoding session, and alpha and theta bands in the retrieval session. The channels-pairs the phase lag index value of object-location memory in the AD group was clearly higher than the NC group in the delta, theta, and alpha bands in encoding sessions and delta and theta bands in retrieval sessions. The results provide support for the hypothesis that the AD patients may use compensation mechanisms to remember the items and episode.
Storage of features, conjunctions and objects in visual working memory.
Vogel, E K; Woodman, G F; Luck, S J
2001-02-01
Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.
Primacy of memory linkage in choice among valued objects.
Jones, Gregory V; Martin, Maryanne
2006-12-01
Three psychological levels at which an object may be processed have been characterized by Norman (2004) in terms of the object's appearance, its usability, and its capacity to elicit memories. A series of experiments was carried out to investigate participants' choices among valued objects recalled in accordance with these three criteria. It was found consistently that objects selected for their capacity to elicit memories--here termed mnemoactive objects--were valued significantly more than the other objects. Even the financial or social importance of an object was outweighed by the importance of its memory link; possible implications for the economic analysis of subjective well-being are briefly discussed. The same pattern of mnemoactive dominance was found across age and gender. Appropriate choice of objects may allow an individual to exert a degree of indirect voluntary control over the activation of involuntary autobiographical memories, providing a new perspective on Proust's approach to memory.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory
ERIC Educational Resources Information Center
Hollingworth, Andrew; Rasmussen, Ian P.
2010-01-01
The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…
Detailed sensory memory, sloppy working memory.
Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F
2010-01-01
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
Decreased acetylcholine release delays the consolidation of object recognition memory.
De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S
2013-02-01
Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.
Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui
2014-01-01
The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Age doesn’t matter: Memory complaints are related to negative affect throughout adulthood
Rowell, Shaina F.; Green, Jennifer S.; Teachman, Bethany A.; Salthouse, Timothy A.
2016-01-01
Objectives Memory complaints are present in adults of all ages but are only weakly related to objective memory deficits, raising the question of what their presence may indicate. In older adults, memory complaints are moderately related to negative affect, but there is little research examining this relationship in young and middle-aged adults. This study examined whether memory complaints and negative affect were similarly related across the adult lifespan and in adults with varying levels of objective memory performance. Method The sample included 3,798 healthy adults aged 18 to 99, and was divided into five groups: young, middle-aged, young-old, old-old, and oldest-old adults. Participants completed questionnaire measures of memory complaints and negative affect (neuroticism and depressive and anxiety symptoms), in addition to lab measures of objective memory. Results Using structural equation models, we found that the relationship between memory complaints and negative affect was moderate in all the age groups, and there was no evidence for moderation by objective memory. Conclusion For adults of all ages, perceived memory decline may be distressing and/or negative affect may lead to negative self-evaluations of memory. PMID:26305735
Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.
Hamilton, Trevor J; Tresguerres, Martin; Kline, David I
2017-07-01
Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).
Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy
2011-10-01
Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Recognition-induced forgetting of faces in visual long-term memory.
Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M
2017-10-01
Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.
The case of the missing visual details: Occlusion and long-term visual memory.
Williams, Carrick C; Burkle, Kyle A
2017-10-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention
Schomaker, Judith; Wittmann, Bianca C.
2017-01-01
Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774
A class Hierarchical, object-oriented approach to virtual memory management
NASA Technical Reports Server (NTRS)
Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.
1989-01-01
The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.
Kirk, Marie; Berntsen, Dorthe
2018-02-01
Older adults diagnosed with Alzheimer's disease (AD) have difficulties accessing autobiographical memories. However, this deficit tends to spare memories dated to earlier parts of their lives, and may partially reflect retrieval deficits rather than complete memory loss. Introducing a novel paradigm, the present study examines whether autobiographical memory recall can be improved in AD by manipulating the sensory richness, concreteness and cultural dating of the memory cues. Specifically, we examine whether concrete everyday objects historically dated to the participants' youth (e.g., a skipping rope), relative to verbal cues (i.e., the verbal signifiers for the objects) facilitate access to autobiographical memories. The study includes 49 AD patients, and 50 healthy, older matched control participants, all tested on word versus object-cued recall. Both groups recalled significantly more memories, when cued by objects relative to words, but the advantage was significantly larger in the AD group. In both groups, memory descriptions were longer and significantly more episodic in nature in response to object-cued recall. Together these findings suggest that the multimodal nature of the object cues (i.e. vision, olfaction, audition, somatic sensation) along with specific cue characteristics, such as time reference, texture, shape, may constrain the retrieval search, potentially minimizing executive function demands, and hence strategic processing requirements, thus easing access to autobiographical memories in AD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi
2014-07-09
In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.
Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.
2016-01-01
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767
Brady, Timothy F; Störmer, Viola S; Alvarez, George A
2016-07-05
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.
Miranda, Magdalena; Kent, Brianne A.; Weisstaub, Noelia V.
2017-01-01
Abstract Successful memory involves not only remembering over time but also keeping memories distinct. The ability to separate similar experiences into distinct memories is a main feature of episodic memory. Discrimination of overlapping representations has been investigated in the dentate gyrus of the hippocampus (DG), but little is known about this process in other regions such as the perirhinal cortex (Prh). We found in male rats that perirhinal brain-derived neurotrophic factor (BDNF) is required for separable storage of overlapping, but not distinct, object representations, which is identical to its role in the DG for spatial representations. Also, activity-regulated cytoskeletal-associated protein (Arc) is required for disambiguation of object memories, as measured by infusion of antisense oligonucleotides. This is the first time Arc has been implicated in the discrimination of objects with overlapping features. Although molecular mechanisms for object memory have been shown previously in Prh, these have been dependent on delay, suggesting a role specifically in memory duration. BDNF and Arc involvement were independent of delay—the same demand for memory persistence was present in all conditions—but only when discrimination of similar objects was required were these mechanisms recruited and necessary. Finally, we show that BDNF and Arc participate in the same pathway during consolidation of overlapping object memories. We provide novel evidence regarding the proteins involved in disambiguation of object memories outside the DG and suggest that, despite the anatomical differences, similar mechanisms underlie this process in the DG and Prh that are engaged depending on the similarity of the stimuli. PMID:29085903
Lins, Brittney R; Ballendine, Stephanie A; Howland, John G
2014-02-07
Temporal order memory refers to the ability to distinguish past experiences in the order that they occurred. Temporal order memory for objects is often tested in rodents using spontaneous object recognition paradigms. The circuitry mediating memory in these tests is distributed and involves ionotropic glutamate receptors in the perirhinal cortex and medial prefrontal cortex. It is unknown what role, if any, metabotropic glutamate receptors have in temporal order memory for objects. The present experiment examined the role of metabotropic glutamate receptors in temporal memory retrieval using the group II metabotropic glutamate receptor selective agonist LY379268. Rats were trained on a temporal memory test with three phases: two sample phases (60 min between them) in which rats explored two novel objects and a test phase (60 min after the second sample phase) which included a copy of each object previously encountered. Under these conditions, we confirmed that rats showed a significant exploratory preference for the object presented during the first sample phase. In a second experiment, we found that LY379268 (0.3, 1.0, or 3.0mg/kg; i.p.; 30 min before the test phase) had no effect on temporal memory retrieval but dose-dependently reduced time spent exploring the objects. Our results show that enhancing mGluR2 activity under conditions when TM is intact does not influence memory retrieval. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Auditory memory can be object based.
Dyson, Benjamin J; Ishfaq, Feraz
2008-04-01
Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.
ERIC Educational Resources Information Center
Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.
2008-01-01
The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Morici, Juan Facundo; Miranda, Magdalena; Gallo, Francisco Tomás; Zanoni, Belén; Bekinschtein, Pedro; Weisstaub, Noelia V
2018-05-02
Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation. © 2018, Morici et al.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
Morici, Juan Facundo; Miranda, Magdalena; Gallo, Francisco Tomás; Zanoni, Belén; Bekinschtein, Pedro
2018-01-01
Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation. PMID:29717980
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
Recognition-induced forgetting is not due to category-based set size.
Maxcey, Ashleigh M
2016-01-01
What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.
Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui
2013-07-01
Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Valentijn, Susanne A M; van Hooren, Susan A H; Bosma, Hans; Touw, Dory M; Jolles, Jelle; van Boxtel, Martin P J; Ponds, Rudolf W H M
2005-04-01
The objective of the study was to examine the effectiveness of two types of memory training (collective and individual), compared to control (waiting list), on memory performance. Participants were 139 community-dwelling older individuals recruited through media advertisements asking for people with subjective memory complaints to participate in a study. Data were collected at baseline, and at 1 week and 4 months after the intervention. Training efficacy was assessed using measures of subjective and objective memory performance. After the intervention, participants in the collective training group reported more stability in memory functioning and had fewer feelings of anxiety and stress about memory functioning. In addition, positive effects were found on objective memory functioning. Compared with the other two groups, the collective training group participants had an improved recall of a previously learned word list. Compared to controls, participants in the individual training group reported fewer feelings of anxiety and stress in relation to memory functioning.
NASA Astrophysics Data System (ADS)
Fang, Jun; Duan, Wenye; Liu, Junfeng; Zhang, Chao; Ma, Zhongshui
2018-04-01
We study superconductivity states mediated by the BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairings in superconducting Weyl semimetals. It is found that a mixture of BCS and FFLO pairings results in a distinctive double-gap structure for superconducting states. With a heterojunction of a Weyl semimetal and a superconducting Weyl semimetal, we demonstrate the nonholonomic Andreev reflection and show that the intra- and internode Andreev reflections increase at the edges of the effective gap. The influence of interface potentials on the Andreev reflections is investigated. The conductance spectra arising from the mixed superconducting pairings is also analyzed.
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
Lineweaver, Tara T; Naugle, Richard I; Cafaro, Alyce M; Bingaman, William; Lüders, Hans O
2004-12-01
One risk associated with epilepsy surgery is memory loss, but perhaps more important is how patients perceive changes in their memories. This longitudinal study evaluated changes in memory self-reports and investigated how self-reports relate to changes on objective memory measures in temporal or extratemporal epilepsy patients who underwent surgery. Objective memory (Wechsler Memory Scale-Revised) and subjective memory self-reports (Memory Assessment Clinics Self-Rating Scale) were individually assessed for 136 patients approximately 6 months before and 6 months after surgery. A measure of depressive affect (Beck Depression Inventory-2nd Edition) was used to control variance attributable to emotional distress. Despite a lack of significant correlational relationships between objective and subjective memory for the entire sample, significant correlations between objective memory scores and self-reports did emerge for a subset of patients who evidenced memory decline. Differences also were found in the subjective memory ratings of temporal lobe versus extratemporal patients. Temporal lobe patients rated their memories more negatively than did extratemporal patients and were more likely to report significant improvements in their memory after surgery. In general, patients were not accurate when rating their memories compared to other adults. However, patients with significant declines in their memories were sensitive to actual changes in their memories over time relative to their own personal baselines.
ERIC Educational Resources Information Center
Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.
2011-01-01
Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…
Gender Differences in Object Location Memory in a Real Three-Dimensional Environment
ERIC Educational Resources Information Center
Iachini, Tina; Sergi, Ida; Ruggiero, Gennaro; Gnisci, Augusto
2005-01-01
In this preliminary study we investigate gender differences in object location memory. Our purpose is to extend the results about object location memory obtained in laboratory settings to a real 3-D environment and to further distinguish the specific components involved in this kind of memory by considering the strategies adopted to perform the…
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A
2016-04-01
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Objective but not subjective sleep predicts memory in community-dwelling older adults.
Cavuoto, Marina G; Ong, Ben; Pike, Kerryn E; Nicholas, Christian L; Bei, Bei; Kinsella, Glynda J
2016-08-01
Research on the relationship between habitual sleep patterns and memory performance in older adults is limited. No previous study has used objective and subjective memory measures in a large, older-aged sample to examine the association between sleep and various domains of memory. The aim of this study was to examine the association between objective and subjective measures of sleep with memory performance in older adults, controlling for the effects of potential confounds. One-hundred and seventy-three community-dwelling older adults aged 65-89 years in Victoria, Australia completed the study. Objective sleep quality and length were ascertained using the Actiwatch 2 Mini-Mitter, while subjective sleep was measured using the Pittsburgh Sleep Quality Index. Memory was indexed by tests of retrospective memory (Hopkins Verbal Learning Test - Revised), working memory (n-back, 2-back accuracy) and prospective memory (a habitual button pressing task). Compared with normative data, overall performance on retrospective memory function was within the average range. Hierarchical regression was used to determine whether objective or subjective measures of sleep predicted memory performances after controlling for demographics, health and mood. After controlling for confounds, actigraphic sleep indices (greater wake after sleep onset, longer sleep-onset latency and longer total sleep time) predicted poorer retrospective (∆R(2) = 0.05, P = 0.016) and working memory (∆R(2) = 0.05, P = 0.047). In contrast, subjective sleep indices did not significantly predict memory performances. In community-based older adults, objectively-measured, habitual sleep indices predict poorer memory performances. It will be important to follow the sample longitudinally to determine trajectories of change over time. © 2016 European Sleep Research Society.
How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?
Sapkota, Raju P.; van der Linde, Ian; Pardhan, Shahina
2015-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits. PMID:25653615
How does aging affect the types of error made in a visual short-term memory 'object-recall' task?
Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina
2014-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.
Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi.
Hegab, Ibrahim M; Tan, Yuchen; Wang, Chan; Yao, Baohui; Wang, Haifang; Ji, Weihong; Su, Junhu
2018-01-01
Recognition memory is important for the survival and fitness of subterranean rodents due to the barren underground conditions that require avoiding the burden of higher energy costs or possible conflict with conspecifics. Our study aims to examine the object and object/place recognition memories in plateau zokors (Eospalax baileyi) and test whether their underground life exerts sex-specific differences in memory functions using Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms. Animals were tested in the NOR with short (10min) and long-term (24h) inter-trial intervals (ITI) and in the OiP for a 30-min ITI between the familiarization and testing sessions. Plateau zokors showed a strong preference for novel objects manifested by a longer exploration time for the novel object after 10min ITI but failed to remember the familiar object when tested after 24h, suggesting a lack of long-term memory. In the OiP test, zokors effectively formed an association between the objects and the place where they were formerly encountered, resulting in a higher duration of exploration to the switched objects. However, both sexes showed equivalent results in exploration time during the NOR and OiP tests, which eliminates the possibility of discovering sex-specific variations in memory performance. Taken together, our study illustrates robust novelty preference and an effective short-term recognition memory without marked sex-specific differences, which might elucidate the dynamics of recognition memory formation and retrieval in plateau zokors. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739
Memory-based multiagent coevolution modeling for robust moving object tracking.
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.
Sex Differences in Object Location Memory: The Female Advantage of Immediate Detection of Changes
ERIC Educational Resources Information Center
Honda, Akio; Nihei, Yoshiaki
2009-01-01
Object location memory has been considered the only spatial ability in which females display an advantage over males. We examined sex differences in long-term object location memory. After participants studied an array of objects, they were asked to recall the locations of these objects three minutes later or one week later. Results showed a…
A motor similarity effect in object memory.
Downing-Doucet, Frédéric; Guérard, Katherine
2014-08-01
In line with theories of embodied cognition (e.g., Versace et al. European Journal of Cognitive Psychology, 21, 522-560, 2009), several studies have suggested that the motor system used to interact with objects in our environment is involved in object recognition (e.g., Helbig, Graf, & Kiefer Experimental Brain Research, 174, 221-228, 2006). However, the role of the motor system in immediate memory for objects is more controversial. The objective of the present study was to investigate the role of the motor system in object memory by manipulating the similarity between the actions associated to series of objects to be retained in memory. In Experiment 1, we showed that lists of objects associated to dissimilar actions were better recalled than lists associated to similar actions. We then showed that this effect was abolished when participants were required to perform a concurrent motor suppression task (Experiment 2) and when the objects to be memorized were unmanipulable (Experiment 3). The motor similarity effect provides evidence for the role of motor affordances in object memory.
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
Kensinger, Elizabeth A; Addis, Donna Rose; Atapattu, Ranga K
2011-03-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object's presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Real-world spatial regularities affect visual working memory for objects.
Kaiser, Daniel; Stein, Timo; Peelen, Marius V
2015-12-01
Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.
Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A
2016-05-01
The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.
Associative Symmetry versus Independent Associations in the Memory for Object-Location Associations
ERIC Educational Resources Information Center
Sommer, Tobias; Rose, Michael; Buchel, Christian
2007-01-01
The formation of associations between objects and locations is a vital aspect of episodic memory. More specifically, remembering the location where one experienced an object and, vice versa, the object one encountered at a specific location are both important elements for the memory of an event. Whether episodic associations are holistic…
How Does Using Object Names Influence Visual Recognition Memory?
ERIC Educational Resources Information Center
Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel
2013-01-01
Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…
Grubert, Anna; Eimer, Martin
2015-11-11
During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F
2010-07-01
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.
Glucose improves object-location binding in visual-spatial working memory.
Stollery, Brian; Christian, Leonie
2016-02-01
There is evidence that glucose temporarily enhances cognition and that processes dependent on the hippocampus may be particularly sensitive. As the hippocampus plays a key role in binding processes, we examined the influence of glucose on memory for object-location bindings. This study aims to study how glucose modifies performance on an object-location memory task, a task that draws heavily on hippocampal function. Thirty-one participants received 30 g glucose or placebo in a single 1-h session. After seeing between 3 and 10 objects (words or shapes) at different locations in a 9 × 9 matrix, participants attempted to immediately reproduce the display on a blank 9 × 9 matrix. Blood glucose was measured before drink ingestion, mid-way through the session, and at the end of the session. Glucose significantly improves object-location binding (d = 1.08) and location memory (d = 0.83), but not object memory (d = 0.51). Increasing working memory load impairs object memory and object-location binding, and word-location binding is more successful than shape-location binding, but the glucose improvement is robust across all difficulty manipulations. Within the glucose group, higher levels of circulating glucose are correlated with better binding memory and remembering the locations of successfully recalled objects. The glucose improvements identified are consistent with a facilitative impact on hippocampal function. The findings are discussed in the context of the relationship between cognitive processes, hippocampal function, and the implications for glucose's mode of action.
Simon, Christa; Schmitter-Edgecombe, Maureen
2016-08-01
The use of compensatory strategies plays an important role in the ability of older adults to adapt to late-life memory changes. Even with the benefits associated with compensatory strategy use, little research has explored specific mechanisms associated with memory performance and compensatory strategies. Rather than an individual's objective memory performance directly predicting their use of compensatory strategies, it is possible that some other variables are indirectly influencing that relationship. The purpose of this study was to: (a) examine the moderating effects of cognitive reserve (CR) and (b) evaluate the potential mediating effects of memory self-efficacy on the relationship between objective memory performance and compensatory strategy use. Two structural equation models (SEM) were used to evaluate CR (latent moderator model) and memory self-efficacy (mediator model) in a sample of 155 community-dwelling older adults over the age of 55. The latent variable moderator model indicated that CR was not substantiated as a moderator variable in this sample (p = .861). However, memory self-efficacy significantly mediated the association between objective memory performance and compensatory strategy use (β = .22, 95% confidence interval, CI [.002, .437]). More specifically, better objective memory was associated with lower compensatory strategy use because of its relation to higher memory self-efficacy. These findings provide initial support for an explanatory framework of the relation between objective memory and compensatory strategy use in a healthy older adult population by identifying the importance of an individual's memory perceptions.
A new selective developmental deficit: Impaired object recognition with normal face recognition.
Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley
2011-05-01
Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual recognition. Copyright © 2010 Elsevier Srl. All rights reserved.
A Bayesian Model of the Memory Colour Effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.
A Bayesian Model of the Memory Colour Effect
Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects. PMID:29760874
Associative Memories for Supercomputers
1992-12-01
the Si/PLZT technology. Finally, the associative memory system design is presented. 14. SUBJECT TERMS IS NUMBER OF PAGES 60 Memory, Associative Memory...Hybrid lens design ...................................................................... 3 3. ASSOCIATIVE MEMORY STUDY...of California, san Diego 1. OBJECTIVES Our objective during the funding period, July 14 1989 to January 13 1991, was to design and study the
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Examining Object Location and Object Recognition Memory in Mice
Vogel-Ciernia, Annie; Wood, Marcelo A.
2014-01-01
Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location and object identity can be used to evaluate a wide variety of mouse models and treatments. PMID:25297693
Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P
2004-01-01
The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.
Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza
2017-10-01
Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.
Greater loss of object than spatial mnemonic discrimination in aged adults.
Reagh, Zachariah M; Ho, Huy D; Leal, Stephanie L; Noche, Jessica A; Chun, Amanda; Murray, Elizabeth A; Yassa, Michael A
2016-04-01
Previous studies across species have established that the aging process adversely affects certain memory-related brain regions earlier than others. Behavioral tasks targeted at the function of vulnerable regions can provide noninvasive methods for assessing the integrity of particular components of memory throughout the lifespan. The present study modified a previous task designed to separately but concurrently test detailed memory for object identity and spatial location. Memory for objects or items is thought to rely on perirhinal and lateral entorhinal cortices, among the first targets of Alzheimer's related neurodegeneration. In line with prior work, we split an aged adult sample into "impaired" and "unimpaired" groups on the basis of a standardized word-learning task. The "impaired" group showed widespread difficulty with memory discrimination, whereas the "unimpaired" group showed difficulty with object, but not spatial memory discrimination. These findings support the hypothesized greater age-related impacts on memory for objects or items in older adults, perhaps even with healthy aging. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Memory texture as a mechanism of improvement in preference by adding noise
NASA Astrophysics Data System (ADS)
Zhao, Yinzhu; Aoki, Naokazu; Kobayashi, Hiroyuki
2014-02-01
According to color research, people have memory colors for familiar objects, which correlate with high color preference. As a similar concept to this, we propose memory texture as a mechanism of texture preference by adding image noise (1/f noise or white noise) to photographs of seven familiar objects. Our results showed that (1) memory texture differed from real-life texture; (2) no consistency was found between memory texture and real-life texture; (3) correlation existed between memory texture and preferred texture; and (4) the type of image noise which is more appropriate to texture reproduction differed by object.
Spatiotemporal proximity effects in visual short-term memory examined by target-nontarget analysis.
Sapkota, Raju P; Pardhan, Shahina; van der Linde, Ian
2016-08-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the spatial and temporal separation of real-world memory targets and erroneously selected nontarget items examined during location-recognition and object-recall tasks. In Experiment 1 (the location-recognition task), our test display comprised either the picture or name of 1 previously examined memory stimulus (rendered above as the stimulus-display area), together with numbered square boxes at each of the memory-stimulus locations used in that trial. Participants were asked to report the number inside the square box corresponding to the location at which the cued object was originally presented. In Experiment 2 (the object-recall task), the test display comprised a single empty square box presented at 1 memory-stimulus location. Participants were asked to report the name of the object presented at that location. In both experiments, nontarget objects that were spatially and temporally proximal to the memory target were confused more often than nontarget objects that were spatially and temporally distant (i.e., a spatiotemporal proximity effect); this effect generalized across memory tasks, and the object feature (picture or name) that cued the test-display memory target. Our findings are discussed in terms of spatial and temporal confusion "fields" in VSTM, wherein objects occupy diffuse loci in a spatiotemporal coordinate system, wherein neighboring locations are more susceptible to confusion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Zimmermann, Kathrin; Eschen, Anne
2017-04-01
Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.
Ferber, Susanne; Emrich, Stephen M
2007-03-01
Segregation and feature binding are essential to the perception and awareness of objects in a visual scene. When a fragmented line-drawing of an object moves relative to a background of randomly oriented lines, the previously hidden object is segregated from the background and consequently enters awareness. Interestingly, in such shape-from-motion displays, the percept of the object persists briefly when the motion stops, suggesting that the segregated and bound representation of the object is maintained in awareness. Here, we tested whether this persistence effect is mediated by capacity-limited working-memory processes, or by the amount of object-related information available. The experiments demonstrate that persistence is affected mainly by the proportion of object information available and is independent of working-memory limits. We suggest that this persistence effect can be seen as evidence for an intermediate, form-based memory store mediating between sensory and working memory.
Scene and Position Specificity in Visual Memory for Objects
ERIC Educational Resources Information Center
Hollingworth, Andrew
2006-01-01
This study investigated whether and how visual representations of individual objects are bound in memory to scene context. Participants viewed a series of naturalistic scenes, and memory for the visual form of a target object in each scene was examined in a 2-alternative forced-choice test, with the distractor object either a different object…
An object memory bias induced by communicative reference.
Marno, Hanna; Davelaar, Eddy J; Csibra, Gergely
2016-01-01
In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associations that constituted either an extrinsic object property (the colour of the box that contained the object, Experiment 1) or an intrinsic one (the colour of the object, Experiment 2). Compared to a non-communicative context, communicative presentation of the objects impaired participants' performance when they recalled extrinsic object properties, while their incidental memory of the intrinsic shape-colour associations was not affected. Communicative signals had no effect on performance when the task required the memorisation of intrinsic object properties. The negative effect of communicative reference on the memory of extrinsic properties was also confirmed in Experiment 3, where this property was object location. Such a memory bias suggests that referent objects in communication tend to be seen as representatives of their kind rather than as individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Sleep enhances a spatially mediated generalization of learned values
Tolat, Anisha; Spiers, Hugo J.
2015-01-01
Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered objects, resulting in an impaired memory for the value of high-valued objects. Our results are consistent with (a) spatial context helping to bind items together in long-term memory and serve as a basis for generalizing across memories and (b) sleep mediating memory effects on salient/reward-related items. PMID:26373834
Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D
2015-03-25
Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Soto, David; Humphreys, Glyn W
2009-01-01
Recent research has shown that the contents of working memory (WM) can guide the early deployment of attention in visual search. Here, we assessed whether this guidance occurred for all attributes of items held in WM, or whether effects are based on just the attributes relevant for the memory task. We asked observers to hold in memory just the shape of a coloured object and to subsequently search for a target line amongst distractor lines, each embedded within a different object. On some trials, one of the objects in the search display could match the shape, the colour or both dimensions of the cue, but this object never contained the relevant target line. Relative to a neutral baseline, where there was no match between the memory and the search displays, search performance was impaired when a distractor object matched both the colour and the shape of the memory cue. The implications for the understanding of the interaction between WM and selection are discussed.
Self-initiated object-location memory in young and older adults.
Berger-Mandelbaum, Anat; Magen, Hagit
2017-11-20
The present study explored self-initiated object-location memory in ecological contexts, as aspect of memory that is largely absent from the research literature. Young and older adults memorized objects-location associations they selected themselves or object-location associations provided to them, and elaborated on the strategy they used when selecting the locations themselves. Retrieval took place 30 min and 1 month after encoding. The results showed an age-related decline in self-initiated and provided object-location memory. Older adults benefited from self-initiation more than young adults when tested after 30 min, while the benefit was equal when tested after 1 month. Furthermore, elaboration enhanced memory only in older adults, and only after 30 min. Both age groups used deep encoding strategies on the majority of the trials, but their percentage was lower in older adults. Overall, the study demonstrated the processes involved in self-initiated object-location memory, which is an essential part of everyday functioning.
Memory development in the second year: for events or locations?
Russell, James; Thompson, Doreen
2003-04-01
We employed an object-placement/object-removal design, inspired by recent work on 'episodic-like' memory in scrub jays (Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272-274), to examine the possibility that children in the second year of life have event-based memories. In one task, a successful search could have been due to the recall of an object-removal event. In the second task, a successful search could only have been caused by recall of where objects were located. Success was general in the oldest group of children (21-25 months), while performance was broadly similar on the two tasks. The parsimonious interpretation of this outcome is that the first task was performed by location memory, not by event memory. We place these data in the context of object permanence development.
Effects of grasp compatibility on long-term memory for objects.
Canits, Ivonne; Pecher, Diane; Zeelenberg, René
2018-01-01
Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Uzer, Tugba
2016-02-01
Previous research has shown that memories cued by concrete concepts, such as objects, are retrieved faster than those cued by more abstract concepts, such as emotions. This effect has been explained by the fact that more memories are directly retrieved from object versus emotion cues. In the present study, we tested whether RT differences between memories cued by emotion versus object terms occur not only because object cues elicit direct retrieval of more memories (Uzer, Lee, & Brown, 2012), but also because of differences in memory generation in response to emotions versus objects. One hundred university students retrieved memories in response to basic-level (e.g. orange), superordinate-level (e.g. plant), and emotion (e.g. surprised) cues. Retrieval speed was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that memories were retrieved faster in response to basic-level versus superordinate-level and emotion cues because a) basic-level cues elicited more directly retrieved memories, and b) generating memories was more difficult when cues were abstract versus concrete. These results suggest that generative retrieval is a cue generation process in which additional cues that provide contextual information including the target event are produced. Memories are retrieved more slowly in response to emotion cues in part because emotion labels are less effective cues of appropriate contextual information. This particular finding is inconsistent with the idea that emotion is a primary organizational unit for autobiographical memories. In contrast, the difficulty of emotional memory generation implies that emotions represent low-level event information in the organization of autobiographical memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Visual long-term memory has the same limit on fidelity as visual working memory.
Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A
2013-06-01
Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.
Subliminal encoding and flexible retrieval of objects in scenes.
Wuethrich, Sergej; Hannula, Deborah E; Mast, Fred W; Henke, Katharina
2018-04-27
Our episodic memory stores what happened when and where in life. Episodic memory requires the rapid formation and flexible retrieval of where things are located in space. Consciousness of the encoding scene is considered crucial for episodic memory formation. Here, we question the necessity of consciousness and hypothesize that humans can form unconscious episodic memories. Participants were presented with subliminal scenes, i.e., scenes invisible to the conscious mind. The scenes displayed objects at certain locations for participants to form unconscious object-in-space memories. Later, the same scenes were presented supraliminally, i.e., visibly, for retrieval testing. Scenes were presented absent the objects and rotated by 90°-270° in perspective to assess the representational flexibility of unconsciously formed memories. During the test phase, participants performed a forced-choice task that required them to place an object in one of two highlighted scene locations and their eye movements were recorded. Evaluation of the eye tracking data revealed that participants remembered object locations unconsciously, irrespective of changes in viewing perspective. This effect of gaze was related to correct placements of objects in scenes, and an intuitive decision style was necessary for unconscious memories to influence intentional behavior to a significant degree. We conclude that conscious perception is not mandatory for spatial episodic memory formation. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Rusli, Yazmin Ahmad; Montgomery, James W
2017-10-17
The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.
Forms Of Memory For Representation Of Visual Objects
1991-02-14
description system that functions independently of the episodic memory system that is damaged in amnesia and supports explicit remembering. Miscellaneous...well as semantic and functional information about an object, are preserved in the episodic system. 4. Priming and recognition of depth-cued, 3D objects A...requirement should serve to enhance an object’s distinctiveness in episodic memory . We also predicted robust priming for symmetric objects; this is because
Lineweaver, Tara T; Bondi, Mark W; Galasko, Douglas; Salmon, David P
2014-02-01
The knowledge that one carries the apolipoprotein E (APOE) ε4 allele risk factor for Alzheimer's disease was recently found to have little short-term psychological risk. The authors investigated the impact of knowledge of carrying the risk allele on subjective ratings of memory and objective memory test performance of older adults. Using a nested case-control design, the authors administered objective verbal and visual memory tests and self-rating scales of memory function to 144 cognitively normal older adults (ages 52-89) with known APOE genotype who knew (ε4+, N=25; ε4-, N=49) or did not know (ε4+, N=25; ε4-, N=45) their genotype and genetic risk for Alzheimer's disease prior to neuropsychological evaluation. Significant genotype-by-disclosure interaction effects were observed on several memory rating scales and tests of immediate and delayed verbal recall. Older adults who knew their ε4+ genotype judged their memory more harshly and performed worse on an objective verbal memory test than did ε4+ adults who did not know. In contrast, older adults who knew their ε4- genotype judged their memory more positively than did ε4- adults who did not know, but these groups did not differ in objective memory test performance. Informing older adults that they have an APOE genotype associated with an increased risk of Alzheimer's disease can have adverse consequences on their perception of their memory abilities and their performance on objective memory tests. The patient's knowledge of his or her genotype and risk of Alzheimer's disease should be considered when evaluating cognition in the elderly.
Barker, Gareth R I; Warburton, Elizabeth Clea
2018-03-28
Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.
Lawson, Rebecca
2004-10-01
In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.
Language and memory for object location.
Gudde, Harmen B; Coventry, Kenny R; Engelhardt, Paul E
2016-08-01
In three experiments, we investigated the influence of two types of language on memory for object location: demonstratives (this, that) and possessives (my, your). Participants first read instructions containing demonstratives/possessives to place objects at different locations, and then had to recall those object locations (following object removal). Experiments 1 and 2 tested contrasting predictions of two possible accounts of language on object location memory: the Expectation Model (Coventry, Griffiths, & Hamilton, 2014) and the congruence account (Bonfiglioli, Finocchiaro, Gesierich, Rositani, & Vescovi, 2009). In Experiment 3, the role of attention allocation as a possible mechanism was investigated. Results across all three experiments show striking effects of language on object location memory, with the pattern of data supporting the Expectation Model. In this model, the expected location cued by language and the actual location are concatenated leading to (mis)memory for object location, consistent with models of predictive coding (Bar, 2009; Friston, 2003). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
SUBJECTIVE MEMORY IN OLDER AFRICAN AMERICANS
Sims, Regina C.; Whitfield, Keith E.; Ayotte, Brian J.; Gamaldo, Alyssa A.; Edwards, Christopher L.; Allaire, Jason C.
2013-01-01
The current analysis examined (a) if measures of psychological well-being predict subjective memory, and (b) if subjective memory is consistent with actual memory. Five hundred seventy-nine older African Americans from the Baltimore Study of Black Aging completed measures assessing subjective memory, depressive symptomatology, perceived stress, locus of control, and verbal and working memory. Higher levels of perceived stress and greater externalized locus of control predicted poorer subjective memory, but subjective memory did not predict objective verbal or working memory. Results suggest that subjective memory is influenced by aspects of psychological well-being but is unrelated to objective memory in older African Americans. PMID:21424958
Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.
Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A
2013-07-01
We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.
Spatial resolution in visual memory.
Ben-Shalom, Asaf; Ganel, Tzvi
2015-04-01
Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.
Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.
Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas
2015-12-09
Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory paradigm and using model-based electroencephalography analyses in humans, we thus bridge this gap and reveal behavioral and neural signatures of increased, attention-mediated working memory precision. We further show that the extent of alpha power modulation predicts the degree to which individuals' memory performance benefits from selective attention. Copyright © 2015 the authors 0270-6474/15/3516094-11$15.00/0.
Memory color effect induced by familiarity of brand logos.
Kimura, Atsushi; Wada, Yuji; Masuda, Tomohiro; Goto, Sho-Ichi; Tsuzuki, Daisuke; Hibino, Haruo; Cai, Dongsheng; Dan, Ippeita
2013-01-01
When people are asked to adjust the color of familiar objects such as fruits until they appear achromatic, the subjective gray points of the objects are shifted away from the physical gray points in a direction opposite to the memory color (memory color effect). It is still unclear whether the discrepancy between memorized and actual colors of objects is dependent on the familiarity of the objects. Here, we conducted two experiments in order to examine the relationship between the degree of a subject's familiarity with objects and the degree of the memory color effect by using logographs of food and beverage companies. In Experiment 1, we measured the memory color effects of logos which varied in terms of their familiarity (high, middle, or low). Results demonstrate that the memory color effect occurs only in the high-familiarity condition, but not in the middle- and low-familiarity conditions. Furthermore, there is a positive correlation between the memory color effect and the actual number of domestic stores of the brand. In Experiment 2, we assessed the semantic association between logos and food/beverage names by using a semantic priming task to elucidate whether the memory color effect of logos relates to consumer brand cognition, and found that the semantic associations between logos and food/beverage names in the high-familiarity brands were stronger than those in the low-familiarity brands only when the logos were colored correctly, but not when they were appropriately or inappropriately colored, or achromatic. The current results provide behavioral evidence of the relationship between the familiarity of objects and the memory color effect and suggest that the memory color effect increases with the familiarity of objects, albeit not constantly.
Memory Color Effect Induced by Familiarity of Brand Logos
Kimura, Atsushi; Wada, Yuji; Masuda, Tomohiro; Goto, Sho-ichi; Tsuzuki, Daisuke; Hibino, Haruo; Cai, Dongsheng; Dan, Ippeita
2013-01-01
Background When people are asked to adjust the color of familiar objects such as fruits until they appear achromatic, the subjective gray points of the objects are shifted away from the physical gray points in a direction opposite to the memory color (memory color effect). It is still unclear whether the discrepancy between memorized and actual colors of objects is dependent on the familiarity of the objects. Here, we conducted two experiments in order to examine the relationship between the degree of a subject’s familiarity with objects and the degree of the memory color effect by using logographs of food and beverage companies. Methods and Findings In Experiment 1, we measured the memory color effects of logos which varied in terms of their familiarity (high, middle, or low). Results demonstrate that the memory color effect occurs only in the high-familiarity condition, but not in the middle- and low-familiarity conditions. Furthermore, there is a positive correlation between the memory color effect and the actual number of domestic stores of the brand. In Experiment 2, we assessed the semantic association between logos and food/beverage names by using a semantic priming task to elucidate whether the memory color effect of logos relates to consumer brand cognition, and found that the semantic associations between logos and food/beverage names in the high-familiarity brands were stronger than those in the low-familiarity brands only when the logos were colored correctly, but not when they were appropriately or inappropriately colored, or achromatic. Conclusion The current results provide behavioral evidence of the relationship between the familiarity of objects and the memory color effect and suggest that the memory color effect increases with the familiarity of objects, albeit not constantly. PMID:23874638
Neural events that underlie remembering something that never happened.
Gonsalves, B; Paller, K A
2000-12-01
We induced people to experience a false-memory illusion by first asking them to visualize common objects when cued with the corresponding word; on some trials, a photograph of the object was presented 1800 ms after the cue word. We then tested their memory for the photographs. Posterior brain potentials in response to words at encoding were more positive if the corresponding object was later falsely remembered as a photograph. Similar brain potentials during the memory test were more positive for true than for false memories. These results implicate visual imagery in the generation of false memories and provide neural correlates of processing differences between true and false memories.
The Memory Fitness Program: Cognitive Effects of a Healthy Aging Intervention
Miller, Karen J.; Siddarth, Prabha; Gaines, Jean M.; Parrish, John M.; Ercoli, Linda M.; Marx, Katherine; Ronch, Judah; Pilgram, Barbara; Burke, Kasey; Barczak, Nancy; Babcock, Bridget; Small, Gary W.
2014-01-01
Context Age-related memory decline affects a large proportion of older adults. Cognitive training, physical exercise, and other lifestyle habits may help to minimize self-perception of memory loss and a decline in objective memory performance. Objective The purpose of this study was to determine whether a 6-week educational program on memory training, physical activity, stress reduction, and healthy diet led to improved memory performance in older adults. Design A convenience sample of 115 participants (mean age: 80.9 [SD: 6.0 years]) was recruited from two continuing care retirement communities. The intervention consisted of 60-minute classes held twice weekly with 15–20 participants per class. Testing of both objective and subjective cognitive performance occurred at baseline, preintervention, and postintervention. Objective cognitive measures evaluated changes in five domains: immediate verbal memory, delayed verbal memory, retention of verbal information, memory recognition, and verbal fluency. A standardized metamemory instrument assessed four domains of memory self-awareness: frequency and severity of forgetting, retrospective functioning, and mnemonics use. Results The intervention program resulted in significant improvements on objective measures of memory, including recognition of word pairs (t[114] = 3.62, p < 0.001) and retention of verbal information from list learning (t[114] = 2.98, p < 0.01). No improvement was found for verbal fluency. Regarding subjective memory measures, the retrospective functioning score increased significantly following the intervention (t[114] = 4.54, p < 0.0001), indicating perception of a better memory. Conclusions These findings indicate that a 6-week healthy lifestyle program can improve both encoding and recalling of new verbal information, as well as self-perception of memory ability in older adults residing in continuing care retirement communities. PMID:21765343
The specificity of memory enhancement during interaction with a virtual environment.
Brooks, B M; Attree, E A; Rose, F D; Clifford, B R; Leadbetter, A G
1999-01-01
Two experiments investigated differences between active and passive participation in a computer-generated virtual environment in terms of spatial memory, object memory, and object location memory. It was found that active participants, who controlled their movements in the virtual environment using a joystick, recalled the spatial layout of the virtual environment better than passive participants, who merely watched the active participants' progress. Conversely, there were no significant differences between the active and passive participants' recall or recognition of the virtual objects, nor in their recall of the correct locations of objects in the virtual environment. These findings are discussed in terms of subject-performed task research and the specificity of memory enhancement in virtual environments.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude
2016-06-01
Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterizing age-related decline of recognition memory and brain activation profile in mice.
Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale
2018-06-01
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Theta synchronization networks emerge during human object-place memory encoding.
Sato, Naoyuki; Yamaguchi, Yoko
2007-03-26
Recent rodent hippocampus studies have suggested that theta rhythm-dependent neural dynamics ('theta phase precession') is essential for an on-line memory formation. A computational study indicated that the phase precession enables a human object-place association memory with voluntary eye movements, although it is still an open question whether the human brain uses the dynamics. Here we elucidated subsequent memory-correlated activities in human scalp electroencephalography in an object-place association memory designed according the former computational study. Our results successfully demonstrated that subsequent memory recall is characterized by an increase in theta power and coherence, and further, that multiple theta synchronization networks emerge. These findings suggest the human theta dynamics in common with rodents in episodic memory formation.
Kensinger, Elizabeth A.; Addis, Donna Rose; Atapattu, Ranga K.
2011-01-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object’s presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. PMID:21262244
Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan
2006-10-01
In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.
Chan, Raymond C K; Wang, Ya; Ma, Zheng; Hong, Xiao-hong; Yuan, Yanbo; Yu, Xin; Li, Zhanjiang; Shum, David; Gong, Qi-yong
2008-08-01
While a number of studies have shown that individuals with schizophrenia are impaired on various types of prospective memory, few studies have examined the relationship between subjective and objective measures of this construct in this clinical group. The purpose of the current study was to explore the relationship between computer-based prospective memory tasks and the corresponding subjective complaints in patients with schizophrenia, individuals with schizotypal personality features, and healthy volunteers. The findings showed that patients with schizophrenia demonstrated significantly poorer performance in all domains of memory function except visual memory than individuals with schizotypal personality disorder and healthy controls. More importantly, there was a significant interaction effect of prospective memory type and group. Although patients with schizophrenia were found to show significantly poorer performance on computer-based measures of prospective memory than controls, their level of subjective complaint was not found to be significantly higher. While subjective complaints of prospective memory were found to associate significantly with self-reported executive dysfunctions, significant relationships were not found between these complaints and performance on a computer-based task of prospective memory and other objective measures of memory. Taken together, these findings suggest that subjective and objective measures of prospective memory are two distinct domains that might need to be assessed and addressed separately.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A
2011-03-01
Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.
Lew, Timothy F; Vul, Edward
2015-01-01
People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor
2013-08-01
Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.
Visual short-term memory binding deficit in familial Alzheimer's disease.
Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M; Henley, Susie M D; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C; Husain, Masud
2016-05-01
Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers - who performed similarly to healthy controls on standard neuropsychological tests - had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore provide a sensitive cognitive biomarker for MTL dysfunction in a range of diseases including AD. Copyright © 2016. Published by Elsevier Ltd.
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus
2010-01-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966
Gallagher, P; Gray, J M; Kessels, R P C
2015-02-01
Previous studies of neurocognitive performance in bipolar disorder (BD) have demonstrated impairments in visuo-spatial memory. The aim of the present study was to use an object-location memory (OLM) paradigm to assess specific, dissociable processes in visuo-spatial memory and examine their relationship with broader neurocognitive performance. Fifty participants (25 patients with BD in a current depressive episode and 25 matched healthy controls) completed the OLM paradigm which assessed three different aspects of visuo-spatial memory: positional memory, object-location binding, and a combined process. Secondary neurocognitive measures of visuo-spatial memory, verbal memory, attention and executive function were also administered. BD patients were significantly impaired on all three OLM processes, with the largest effect in exact positional memory (d = 1.18, p < 0.0001). General deficits were also found across the secondary neurocognitive measures. Using hierarchical regression, verbal learning was found to explain significant variance on the OLM measures where object-identity was present (the object-location binding and combined processes) and accounted for the group difference. The group difference in precise positional memory remained intact. This study demonstrates that patients with bipolar depression manifest deficits in visuo-spatial memory, with substantial impairment in fine-grain, positional memory. The differential profile of processes underpinning the visuo-spatial memory impairment suggests a form of 'cognitive scaffolding', whereby performance on some measures can be supported by verbal memory. These results have important implications for our understanding of the functional cognitive architecture of mood disorder.
The Importance of Object Memories for Older Adults
ERIC Educational Resources Information Center
Phenice, Lillian A.; Griffore, Robert J.
2013-01-01
The memories of treasured objects are essential in giving life meaning. In the process of development in later adulthood, most changes involve significant loss including loss of physical and mental ability, loss of family and friends, and loss of possessions. Objects and their associated memories are especially important in maintaining an internal…
The effect of memory and context changes on color matches to real objects.
Allred, Sarah R; Olkkonen, Maria
2015-07-01
Real-world color identification tasks often require matching the color of objects between contexts and after a temporal delay, thus placing demands on both perceptual and memory processes. Although the mechanisms of matching colors between different contexts have been widely studied under the rubric of color constancy, little research has investigated the role of long-term memory in such tasks or how memory interacts with color constancy. To investigate this relationship, observers made color matches to real study objects that spanned color space, and we independently manipulated the illumination impinging on the objects, the surfaces in which objects were embedded, and the delay between seeing the study object and selecting its color match. Adding a 10-min delay increased both the bias and variability of color matches compared to a baseline condition. These memory errors were well accounted for by modeling memory as a noisy but unbiased version of perception constrained by the matching methods. Surprisingly, we did not observe significant increases in errors when illumination and surround changes were added to the 10-minute delay, although the context changes alone did elicit significant errors.
Does scene context always facilitate retrieval of visual object representations?
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2011-04-01
An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).
Reconciling change blindness with long-term memory for objects.
Wood, Katherine; Simons, Daniel J
2017-02-01
How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.
Task-relevant perceptual features can define categories in visual memory too.
Antonelli, Karla B; Williams, Carrick C
2017-11-01
Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.
Eye Movements and Visual Memory for Scenes
2005-01-01
Scene memory research has demonstrated that the memory representation of a semantically inconsistent object in a scene is more detailed and/or complete... memory during scene viewing, then changes to semantically inconsistent objects (which should be represented more com- pletely) should be detected more... semantic description. Due to the surprise nature of the visual memory test, any learning that occurred during the search portion of the experiment was
The fate of object memory traces under change detection and change blindness.
Busch, Niko A
2013-07-03
Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
Lopez, Oscar L.; Mackell, Joan A.; Sun, Yijun; Kassalow, Laurent M.; Xu, Yikang; McRae, Thomas; Li, Honglan
2009-01-01
Background Hispanics represent 10% of the U.S. population and are the fastest growing group. Studies show a higher prevalence and incidence of Alzheimer’s disease (AD) in Hispanics than in the non-Hispanic white population, with an earlier age of onset. Among the currently estimated 200,000 Hispanics with AD, a significant number remain undiagnosed and untreated, and Hispanic participation in AD clinical trials has been historically low. This study evaluated the efficacy and safety of donepezil hydrochloride (donepezil) in Hispanics with mild-to-moderate AD. Methods In this multicenter, open-label, 12-week study conducted in the United States, subjects were Hispanic men or women aged ≥50 years with a diagnosis of mild-to-moderate AD (DSMV-IV and NINCDS/ADRDA criteria), with Mini-Mental State Examination (MMSE) scores of 10–26 (inclusive) at screening. Subjects were treated with donepezil 5 mg/day for 6 weeks followed by 10 mg/day for 6 weeks. Clinical evaluation was performed at baseline, week 6 and week 12. Cognitive improvement was measured using the MMSE, Fuld Object Memory Evaluation (FOME) and Symbol Digit Modality Test (SDMT). Behavioral symptoms and associated caregiver distress were assessed with the Neuropsychiatric Inventory (NPI). Results One-hundred-six patients with mild-to-moderate AD (mean age 68.6 years) were enrolled (intent to treat, n=97); most chose to have assessments conducted in Spanish. With 12 weeks of treatment, subjects showed statistically significant improvement from baseline on MMSE (P<0.0001), FOME retrieval (P=0.0042), FOME repeated retrieval (P=0.0020) and SDMT correct scores (P<0.0001). The NPI subdomain “apathy/indifference” showed statistically significant improvement (P=0.0010). The NPI Caregiver Distress scale (NPI-D) total score was statistically significantly improved (P=0.0500), suggesting a positive impact on relieving caregivers’ burden associated with patient behavior. Most patients tolerated the treatment well, with only 2 discontinuing because of adverse events. The most common (>5%) adverse events were insomnia (9.5%), dizziness (7.6%), diarrhea (5.7%) and nausea (5.7%). Conclusion The cognitive improvement and safety results from this study were consistent with those reported for donepezil in the general population. Increased awareness of AD in the Hispanic population will help more Hispanics with AD to benefit from early diagnosis and effective treatment. PMID:19024233
Exploring the use of memory colors for image enhancement
NASA Astrophysics Data System (ADS)
Xue, Su; Tan, Minghui; McNamara, Ann; Dorsey, Julie; Rushmeier, Holly
2014-02-01
Memory colors refer to those colors recalled in association with familiar objects. While some previous work introduces this concept to assist digital image enhancement, their basis, i.e., on-screen memory colors, are not appropriately investigated. In addition, the resulting adjustment methods developed are not evaluated from a perceptual view of point. In this paper, we first perform a context-free perceptual experiment to establish the overall distributions of screen memory colors for three pervasive objects. Then, we use a context-based experiment to locate the most representative memory colors; at the same time, we investigate the interactions of memory colors between different objects. Finally, we show a simple yet effective application using representative memory colors to enhance digital images. A user study is performed to evaluate the performance of our technique.
Evidence for Two Attentional Components in Visual Working Memory
ERIC Educational Resources Information Center
Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.
2014-01-01
How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found…
Memory for a single object has differently variable precisions for relevant and irrelevant features.
Swan, Garrett; Collins, John; Wyble, Brad
2016-01-01
Working memory is a limited resource. To further characterize its limitations, it is vital to understand exactly what is encoded about a visual object beyond the "relevant" features probed in a particular task. We measured the memory quality of a task-irrelevant feature of an attended object by coupling a delayed estimation task with a surprise test. Participants were presented with a single colored arrow and were asked to retrieve just its color for the first half of the experiment before unexpectedly being asked to report its direction. Mixture modeling of the data revealed that participants had highly variable precision on the surprise test, indicating a coarse-grained memory for the irrelevant feature. Following the surprise test, all participants could precisely recall the arrow's direction; however, this improvement in direction memory came at a cost in precision for color memory even though only a single object was being remembered. We attribute these findings to varying levels of attention to different features during memory encoding.
How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes.
Martin, Chris B; Sullivan, Jacqueline A; Wright, Jessey; Köhler, Stefan
2018-02-01
A role of perirhinal cortex (PrC) in recognition memory for objects has been well established. Contributions of parahippocampal cortex (PhC) to this function, while documented, remain less well understood. Here, we used fMRI to examine whether the organization of item-based recognition memory signals across these two structures is shaped by object category, independent of any difference in representing episodic context. Guided by research suggesting that PhC plays a critical role in processing landmarks, we focused on three categories of objects that differ from each other in their landmark suitability as confirmed with behavioral ratings (buildings > trees > aircraft). Participants made item-based recognition-memory decisions for novel and previously studied objects from these categories, which were matched in accuracy. Multi-voxel pattern classification revealed category-specific item-recognition memory signals along the long axis of PrC and PhC, with no sharp functional boundaries between these structures. Memory signals for buildings were observed in the mid to posterior extent of PhC, signals for trees in anterior to posterior segments of PhC, and signals for aircraft in mid to posterior aspects of PrC and the anterior extent of PhC. Notably, item-based memory signals for the category with highest landmark suitability ratings were observed only in those posterior segments of PhC that also allowed for classification of landmark suitability of objects when memory status was held constant. These findings provide new evidence in support of the notion that item-based memory signals for objects are not limited to PrC, and that the organization of these signals along the longitudinal axis that crosses PrC and PhC can be captured with reference to landmark suitability. Copyright © 2017 Elsevier Inc. All rights reserved.
True Memory, False Memory, and Subjective Recollection Deficits after Focal Parietal Lobe Lesions
Drowos, David B.; Berryhill, Marian; André, Jessica M.; Olson, Ingrid R.
2010-01-01
Objective There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Our objective was to assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Method Two patients with bilateral PPC damage and matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. Results The patients exhibited significantly lower levels of false memory to words. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. It is unlikely that a failure of gist processing accounts for these results, as patients accurately remembered thematic elements of short vignettes, but failed to remember details. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection. PMID:20604621
Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J
2017-06-01
Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Divya Rani; Han, Hank Ke; Tiller, John; Loo, Colleen K; Martin, Donel M
2016-12-01
Directly inquiring about patient experiences of memory problems after ECT may alert clinicians to the existence of treatment side effects and provide an impression of their intrusiveness. In this study, we examined use of a novel and brief patient-reported measure to assess perceptions of memory side effects and their functional consequences before and after an acute ECT treatment course. These outcomes were compared with objective cognitive and subjective quality of life measures. Data for 75 patients who were prescribed an acute course of ECT were analyzed. Subjective and objective measures were assessed before ECT (pretreatment) and at posttreatment. Patient perceptions were assessed using the Subjective Assessment of Memory Impairment, which consists of two items: The Memory Problems item, and The Impact of Cognitive Adverse Events item. Objective cognitive outcomes were assessed using the Montreal Cognitive Assessment. Quality of life was assessed using the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form. Patient perceptions of their memory problems did not change across the ECT course, and their functional impact were considered less intrusive after ECT. Greater functional impact of memory impairment was related to poorer quality of life at posttreatment, but not at pretreatment. Subjectively rated cognitive functioning was not associated with objective cognitive outcomes. The Subjective Assessment of Memory Impairment is a brief tool for measuring patient-rated memory function. Overall, patients did not report any change in subjective memory problems after ECT. Although perceptions of functional memory impairment and quality of life were related after ECT, there was no association with objectively assessed cognitive outcomes.
Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro
2013-11-01
Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
ERIC Educational Resources Information Center
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2010-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…
Cholinergic manipulations bidirectionally regulate object memory destabilization
Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew
2015-01-01
Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage. PMID:25776038
Rapid induction of false memory for pictures.
Weinstein, Yana; Shanks, David R
2010-07-01
Recognition of pictures is typically extremely accurate, and it is thus unclear whether the reconstructive nature of memory can yield substantial false recognition of highly individuated stimuli. A procedure for the rapid induction of false memories for distinctive colour photographs is proposed. Participants studied a set of object pictures followed by a list of words naming those objects, but embedded in the list were names of unseen objects. When subsequently shown full colour pictures of these unseen objects, participants consistently claimed that they had seen them, while discriminating with high accuracy between studied pictures and new pictures whose names did not appear in the misleading word list. These false memories can be reported with high confidence as well as the feeling of recollection. This new procedure allows the investigation of factors that influence false memory reports with ecologically valid stimuli and of the similarities and differences between true and false memories.
Feature bindings endure without attention: evidence from an explicit recall task.
Gajewski, Daniel A; Brockmole, James R
2006-08-01
Are integrated objects the unit of capacity of visual working memory, or is continued attention needed to maintain bindings between independently stored features? In a delayed recall task, participants reported the color and shape of a probed item from a memory array. During the delay, attention was manipulated with an exogenous cue. Recall was elevated at validly cued positions, indicating that the cue affected item memory. On invalid trials, participants most frequently recalled either both features (perfect object memory) or neither of the two features (no object memory); the frequency with which only one feature was recalled was significantly lower than predicted by feature independence as determined in a single-feature recall task. These data do not support the view that features are remembered independently when attention is withdrawn. Instead, integrated objects are stored in visual working memory without need for continued attention.
Chiang, Hsueh-Sheng; Eroh, Justin; Spence, Jeffrey S; Motes, Michael A; Maguire, Mandy J; Krawczyk, Daniel C; Brier, Matthew R; Hart, John; Kraut, Michael A
2016-08-01
How the brain combines the neural representations of features that comprise an object in order to activate a coherent object memory is poorly understood, especially when the features are presented in different modalities (visual vs. auditory) and domains (verbal vs. nonverbal). We examined this question using three versions of a modified Semantic Object Retrieval Test, where object memory was probed by a feature presented as a written word, a spoken word, or a picture, followed by a second feature always presented as a visual word. Participants indicated whether each feature pair elicited retrieval of the memory of a particular object. Sixteen subjects completed one of the three versions (N=48 in total) while their EEG were recorded simultaneously. We analyzed EEG data in four separate frequency bands (delta: 1-4Hz, theta: 4-7Hz; alpha: 8-12Hz; beta: 13-19Hz) using a multivariate data-driven approach. We found that alpha power time-locked to response was modulated by both cross-modality (visual vs. auditory) and cross-domain (verbal vs. nonverbal) probing of semantic object memory. In addition, retrieval trials showed greater changes in all frequency bands compared to non-retrieval trials across all stimulus types in both response-locked and stimulus-locked analyses, suggesting dissociable neural subcomponents involved in binding object features to retrieve a memory. We conclude that these findings support both modality/domain-dependent and modality/domain-independent mechanisms during semantic object memory retrieval. Copyright © 2016 Elsevier B.V. All rights reserved.
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.
2012-01-01
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990
Visual short-term memory capacity for simple and complex objects.
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-03-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus
2010-11-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.
Encoding of goal-relevant stimuli is strengthened by emotional arousal in memory.
Lee, Tae-Ho; Greening, Steven G; Mather, Mara
2015-01-01
Emotional information receives preferential processing, which facilitates adaptive strategies for survival. However, the presence of emotional stimuli and the arousal they induce also influence how surrounding non-emotional information is processed in memory (Mather and Sutherland, 2011). For example, seeing a highly emotional scene often leads to forgetting of what was seen right beforehand, but sometimes instead enhances memory for the preceding information. In two studies, we examined how emotional arousal affects short-term memory retention for goal-relevant information that was just seen. In Study 1, participants were asked to remember neutral objects in spatially-cued locations (i.e., goal-relevant objects determined by specific location), while ignoring objects in uncued locations. After each set of objects were shown, arousal was manipulated by playing a previously fear-conditioned tone (i.e., CS+) or a neutral tone that had not been paired with shock (CS-). In Study 1, memory for the goal-relevant neutral objects from arousing trials was enhanced compared to those from the non-arousing trials. This result suggests that emotional arousal helps to increase the impact of top-down priority (i.e., goal-relevancy) on memory encoding. Study 2 supports this conclusion by demonstrating that when the goal was to remember all objects regardless of the spatial cue, emotional arousal induced memory enhancement in a more global manner for all objects. In sum, the two studies show that the ability of arousal to enhance memory for previously encoded items depends on the goal relevance initially assigned to those items.
Forgetting What Was Where: The Fragility of Object-Location Binding
Pertzov, Yoni; Dong, Mia Yuan; Peich, Muy-Cheng; Husain, Masud
2012-01-01
Although we frequently take advantage of memory for objects locations in everyday life, understanding how an object’s identity is bound correctly to its location remains unclear. Here we examine how information about object identity, location and crucially object-location associations are differentially susceptible to forgetting, over variable retention intervals and memory load. In our task, participants relocated objects to their remembered locations using a touchscreen. When participants mislocalized objects, their reports were clustered around the locations of other objects in the array, rather than occurring randomly. These ‘swap’ errors could not be attributed to simple failure to remember either the identity or location of the objects, but rather appeared to arise from failure to bind object identity and location in memory. Moreover, such binding failures significantly contributed to decline in localization performance over retention time. We conclude that when objects are forgotten they do not disappear completely from memory, but rather it is the links between identity and location that are prone to be broken over time. PMID:23118956
Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G
2010-01-01
Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.
Silver, Henry; Bilker, Warren B
2015-03-30
Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Melnyk, Bernadette Mazurek; Gallagher-Ford, Lynn; Zellefrow, Cindy; Tucker, Sharon; Van Dromme, Laurel; Thomas, Bindu Koshy
2018-02-01
Even though multiple positive outcomes are the result of evidence-based care, including improvements in healthcare quality, safety, and costs, it is not consistently delivered by clinicians in healthcare systems throughout the world. In an attempt to accelerate the implementation of evidence-based practice (EBP) across the United States, an invitational Interprofessional National EBP Forum to determine major priorities for the advancement of EBP was held during the launch of the newly established Helene Fuld Health Trust National Institute for Evidence-Based Practice in Nursing and Healthcare at The Ohio State University College of Nursing. Interprofessional leaders from national organizations and federal agencies across the United States were invited to participate in the Forum. A pre-Forum survey was disseminated to participants to assess their perceptions of the state of EBP and actions necessary to speed the translation of research into real-world clinical settings. Findings from a pre-Forum survey (n = 47) indicated ongoing low implementation of EBP in U.S. healthcare settings. These findings were shared with leaders from 45 organizations and agencies who attended the Forum. Breakout groups on practice, education, implementation science, and policy discussed the findings and responded to a set of standardized questions. High-priority action tactics were identified, including the need for: (a) enhanced reimbursement for EBP, (b) more interprofessional education and skills building in EBP, and (c) leaders to prioritize EBP and fuel it with resources. The delivery of and reimbursement for evidence-based care must become a high national priority. Academic faculty across all healthcare disciplines need to teach EBP, healthcare systems must invest in EBP resources, and payers must attach reimbursement to care that is evidence-based. An action collaborative of the participating organizations has been formed to accelerate EBP across the United States to achieve the quadruple aim in health care. © 2018 Sigma Theta Tau International.
Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard
2016-10-01
Research has shown that long-term memory representations of objects are formed as a natural product of perception even without any intentional memorization. It is not known, however, how rich these representations are in terms of the number of bound object features. In particular, because feature binding rests on resource-limited processes, there may be a context-dependent trade-off between the quantity of stored features and their memory strength. The authors examined whether affective state may bring about such a trade-off. Participants incidentally encoded pictures of real-world objects while experiencing positive or negative affect, and the authors later measured memory for 2 features. Results showed that participants traded between richness and strength of memory representations as a function of affect, with positive affect tuning memory formation toward richness and negative affect tuning memory formation toward strength. These findings demonstrate that memory binding is a flexible process that is modulated by affective state. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Visual Short-Term Memory Capacity for Simple and Complex Objects
ERIC Educational Resources Information Center
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-01-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…
Li, Yong; Randerath, Jennifer; Bauer, Hans; Marquardt, Christian; Goldenberg, Georg; Hermsdörfer, Joachim
2009-01-03
When we manipulate familiar objects in our daily life, our grip force anticipates the physical demands right from the moment of contact with the object, indicating the existence of a memory for relevant object properties. This study explores the formation and consolidation of the memory processes that associate either familiar (size) or arbitrary object features (color) with object weight. In the general task, participants repetitively lifted two differently weighted objects (580 and 280 g) in a pseudo-random order. Forty young healthy adults participated in this study and were randomly distributed into four groups: Color Cue Single task (CCS, blue and red, 9.8(3)cm(3)), Color Cue Dual task (CCD), No Cue (NC) and Size Cue (SC, 9.8(3) and 6(3)cm(3)) group. All groups performed a repetitive precision grasp-lift task and were retested with the same protocol after a 5-min pause. The CCD group was also required to simultaneously perform a memory task during each lift of differently weighted objects coded by color. The results show that groups lifting objects with arbitrary or familiar features successfully formed the association between object weight and manipulated object features and incorporated this into grip force programming, as observed in the different scaling of grip force and grip force rate for different object weights. An arbitrary feature, i.e., color, can be sufficiently associated with object weight, however with less strength than the familiar feature of size. The simultaneous memory task impaired anticipatory force scaling during repetitive object lifting but did not jeopardize the learning process and the consolidation of the associative memory.
Visual working memory is more tolerant than visual long-term memory.
Schurgin, Mark W; Flombaum, Jonathan I
2018-05-07
Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea
2012-12-21
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.
What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions
ERIC Educational Resources Information Center
Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika
2017-01-01
From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…
ERIC Educational Resources Information Center
Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma
2011-01-01
Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…
Odors as effective retrieval cues for stressful episodes.
Wiemers, Uta S; Sauvage, Magdalena M; Wolf, Oliver T
2014-07-01
Olfactory information seems to play a special role in memory due to the fast and direct processing of olfactory information in limbic areas like the amygdala and the hippocampus. This has led to the assumption that odors can serve as effective retrieval cues for autobiographic memories, especially emotional memories. The current study sought to investigate whether an olfactory cue can serve as an effective retrieval cue for memories of a stressful episode. A total of 95 participants were exposed to a psychosocial stressor or a well matching but not stressful control condition. During both conditions were visual objects present, either bound to the situation (central objects) or not (peripheral objects). Additionally, an ambient odor was present during both conditions. The next day, participants engaged in an unexpected object recognition task either under the influence of the same odor as was present during encoding (congruent odor) or another odor (non-congruent odor). Results show that stressed participants show a better memory for all objects and especially for central visual objects if recognition took place under influence of the congruent odor. An olfactory cue thus indeed seems to be an effective retrieval cue for stressful memories. Copyright © 2013 Elsevier Inc. All rights reserved.
Cacciamani, Laura; Likova, Lora T.
2016-01-01
This study is the first to investigate the neural underpinnings of tactile object familiarity in the blind during both perception and memory. In the sighted, the perirhinal cortex (PRC) has been implicated in the assessment of visual object familiarity—a crucial everyday task—as evidenced by reduced activation when an object becomes familiar. Here, to examine the PRC’s role in tactile object familiarity in the absence of vision, we trained blind participants on a unique memory-guided drawing technique and measured brain activity while they perceptually explored raised-line drawings, drew them from tactile memory, and scribbled (control). Functional magnetic resonance imaging (fMRI) before and after a week of training revealed a significant decrease in PRC activation from pre- to post-training (i.e., from unfamiliar to familiar) during perceptual exploration as well as memory-guided drawing, but not scribbling. This familiarity-based reduction is the first evidence that the PRC represents tactile object familiarity in the blind. Furthermore, the finding of this effect during both tactile perception and tactile memory provides the critical link in establishing the PRC as a structure whose representations are supramodal for both perception and memory. PMID:27148002
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2016-04-01
The probability of inattentional blindness, the failure to notice an unexpected object when attention is engaged on some primary task, is influenced by contextual factors like task demands, features of the unexpected object, and the observer's attention set. However, predicting who will notice an unexpected object and who will remain inattentionally blind has proven difficult, and the evidence that individual differences in cognition affect noticing remains ambiguous. We hypothesized that greater working memory capacity might modulate the effect of attention sets on noticing because working memory is associated with the ability to focus attention selectively. People with greater working memory capacity might be better able to attend selectively to target items, thereby increasing the chances of noticing unexpected objects that were similar to the attended items while decreasing the odds of noticing unexpected objects that differed from the attended items. Our study (N = 120 participants) replicated evidence that task-induced attention sets modulate noticing but found no link between noticing and working memory capacity. Our results are largely consistent with the idea that individual differences in working memory capacity do not predict noticing of unexpected objects in an inattentional blindness task. © The Author(s) 2015.
Virtual memory support for distributed computing environments using a shared data object model
NASA Astrophysics Data System (ADS)
Huang, F.; Bacon, J.; Mapp, G.
1995-12-01
Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.
Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion
2014-12-15
Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.
2015-01-01
Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743
Vannucci, Manila; Pelagatti, Claudia; Chiorri, Carlo; Mazzoni, Giuliana
2016-01-01
In the present study we examined whether higher levels of object imagery, a stable characteristic that reflects the ability and preference in generating pictorial mental images of objects, facilitate involuntary and voluntary retrieval of autobiographical memories (ABMs). Individuals with high (High-OI) and low (Low-OI) levels of object imagery were asked to perform an involuntary and a voluntary ABM task in the laboratory. Results showed that High-OI participants generated more involuntary and voluntary ABMs than Low-OI, with faster retrieval times. High-OI also reported more detailed memories compared to Low-OI and retrieved memories as visual images. Theoretical implications of these findings for research on voluntary and involuntary ABMs are discussed.
Adaptive memory: Animacy enhances free recall but impairs cued recall.
Popp, Earl Y; Serra, Michael J
2016-02-01
Recent research suggests that human memory systems evolved to remember animate things better than inanimate things. In the present experiments, we examined whether these effects occur for both free recall and cued recall. In Experiment 1, we directly compared the effect of animacy on free recall and cued recall. Participants studied lists of objects and lists of animals for free-recall tests, and studied sets of animal-animal pairs and object-object pairs for cued-recall tests. In Experiment 2, we compared participants' cued recall for English-English, Swahili-English, and English-Swahili word pairs involving either animal or object English words. In Experiment 3, we compared participants' cued recall for animal-animal, object-object, animal-object, and object-animal pairs. Although we were able to replicate past effects of animacy aiding free recall, animacy typically impaired cued recall in the present experiments. More importantly, given the interactions found in the present experiments, we conclude that some factor associated with animacy (e.g., attention capture or mental arousal) is responsible for the present patterns of results. This factor seems to moderate the relationship between animacy and memory, producing a memory advantage for animate stimuli in scenarios where the moderator leads to enhanced target retrievability but a memory disadvantage for animate stimuli in scenarios where the moderator leads to impaired association memory. (c) 2016 APA, all rights reserved).
Array heterogeneity prevents catastrophic forgetting in infants
Zosh, Jennifer M.; Feigenson, Lisa
2015-01-01
Working memory is limited in adults and infants. But unlike adults, infants whose working memory capacity is exceeded often fail in a particularly striking way: they do not represent any of the presented objects, rather than simply remembering as many objects as they can and ignoring anything further (Feigenson & Carey 2003, 2005). Here we explored the nature of this “catastrophic forgetting,” asking whether stimuli themselves modulate the way in which infants’ memory fails. We showed 13-month old infants object arrays that either were within or that exceeded working memory capacity—but, unlike previous experiments, presented objects with contrasting features. Although previous studies have repeatedly documented infants’ failure to represent four identical hidden objects, in Experiments 1 and 2 we found that infants who saw four contrasting objects hidden, and then retrieved just two of the four, successfully continued searching for the missing objects. Perceptual contrast between objects sufficed to drive this success; infants succeeded regardless of whether the different objects were contrastively labeled, and regardless of whether the objects were semantically familiar or completely novel. In Experiment 3 we explored the nature of this surprising success, asking whether array heterogeneity actually expanded infants’ working memory capacity or rather prevented catastrophic forgetting. We found that infants successfully continued searching after seeing four contrasting objects hidden and retrieving two of them, but not after retrieving three of them. This suggests that, like adults, infants were able to remember up to, but not beyond, the limits of their working memory capacity when representing heterogeneous arrays. PMID:25543889
Evans, Kris; Rotello, Caren M; Li, Xingshan; Rayner, Keith
2009-02-01
Cultural differences have been observed in scene perception and memory: Chinese participants purportedly attend to the background information more than did American participants. We investigated the influence of culture by recording eye movements during scene perception and while participants made recognition memory judgements. Real-world pictures with a focal object on a background were shown to both American and Chinese participants while their eye movements were recorded. Later, memory for the focal object in each scene was tested, and the relationship between the focal object (studied, new) and the background context (studied, new) was manipulated. Receiver-operating characteristic (ROC) curves show that both sensitivity and response bias were changed when objects were tested in new contexts. However, neither the decrease in accuracy nor the response bias shift differed with culture. The eye movement patterns were also similar across cultural groups. Both groups made longer and more fixations on the focal objects than on the contexts. The similarity of eye movement patterns and recognition memory behaviour suggests that both Americans and Chinese use the same strategies in scene perception and memory.
Attention to memory: orienting attention to sound object representations.
Backer, Kristina C; Alain, Claude
2014-01-01
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Short-term memory binding deficits in Alzheimer's disease.
Parra, Mario A; Abrahams, Sharon; Fabi, Katia; Logie, Robert; Luzzi, Simona; Della Sala, Sergio
2009-04-01
Alzheimer's disease impairs long term memories for related events (e.g. faces with names) more than for single events (e.g. list of faces or names). Whether or not this associative or 'binding' deficit is also found in short-term memory has not yet been explored. In two experiments we investigated binding deficits in verbal short-term memory in Alzheimer's disease. Experiment 1: 23 patients with Alzheimer's disease and 23 age and education matched healthy elderly were recruited. Participants studied visual arrays of objects (six for healthy elderly and four for Alzheimer's disease patients), colours (six for healthy elderly and four for Alzheimer's disease patients), unbound objects and colours (three for healthy elderly and two for Alzheimer's disease patients in each of the two categories), or objects bound with colours (three for healthy elderly and two for Alzheimer's disease patients). They were then asked to recall the items verbally. The memory of patients with Alzheimer's disease for objects bound with colours was significantly worse than for single or unbound features whereas healthy elderly's memory for bound and unbound features did not differ. Experiment 2: 21 Alzheimer's disease patients and 20 matched healthy elderly were recruited. Memory load was increased for the healthy elderly group to eight items in the conditions assessing memory for single or unbound features and to four items in the condition assessing memory for the binding of these features. For Alzheimer's disease patients the task remained the same. This manipulation permitted the performance to be equated across groups in the conditions assessing memory for single or unbound features. The impairment in Alzheimer's disease patients in recalling bound objects reported in Experiment 1 was replicated. The binding cost was greater than that observed in the healthy elderly group, who did not differ in their performance for bound and unbound features. Alzheimer's disease grossly impairs the mechanisms responsible for holding integrated objects in verbal short-term memory.
Oberauer, Klaus; Awh, Edward; Sutterer, David W.
2016-01-01
We report four experiments examining whether associations in visual working memory are subject to proactive interference from long term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of three concrete objects in an array. Each array in the WM test consisted of one old (previously learned) object with a new color (old-mismatch), one old object with its old color (old-match), and one new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from long term memory. In the old mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. PMID:27685018
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.
2014-01-01
Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206
Patients with chronic insomnia have selective impairments in memory that are modulated by cortisol.
Chen, Gui-Hai; Xia, Lan; Wang, Fang; Li, Xue-Wei; Jiao, Chuan-An
2016-10-01
Memory impairment is a frequent complaint in insomniacs; however, it is not consistently demonstrated. It is unknown whether memory impairment in insomniacs involves neuroendocrine dysfunction. The participants in this study were selected from the clinical setting and included 21 patients with chronic insomnia disorder (CID), 25 patients with insomnia and comorbid depressive disorder (CDD), and 20 control participants without insomnia. We evaluated spatial working and reference memory, object working and reference memory, and object recognition memory using the Nine Box Maze Test. We also evaluated serum neuroendocrine hormone levels. Compared to the controls, the CID patients made significantly more errors in spatial working and object recognition memory (p < .05), whereas the CDD patients performed poorly in all the assessed memory types (p < .05). In addition, the CID patients had higher levels (mean difference [95% CI]) of corticotrophin-releasing hormone, cortisol (31.98 [23.97, 39.98] μg/l), total triiodothyronine (667.58 [505.71, 829.45] μg/l), and total thyroxine (41.49 [33.23, 49.74] μg/l) (p < .05), and lower levels of thyrotropin-releasing hormone (-35.93 [-38.83, -33.02] ng/l), gonadotropin-releasing hormone (-4.50 [-5.02, -3.98] ng/l) (p < .05), and adrenocorticotropic hormone compared to the CDD patients. After controlling for confounding variables, the partial correlation analysis revealed that the levels of cortisol positively correlated with the errors in object working memory (r = .534, p = .033) and negatively correlated with the errors in object recognition memory (r = -.659, p = .006) in the CID patients. The results suggest that the CID patients had selective memory impairment, which may be mediated by increased cortisol levels. © 2016 Society for Psychophysiological Research.
Siedlecki, Karen L
2015-01-01
Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.
Assaf, Michal; Rivkin, Paul R; Kuzu, Cheedem H; Calhoun, Vince D; Kraut, Michael A; Groth, Karyn M; Yassa, Michael A; Hart, John; Pearlson, Godfrey D
2006-03-01
The neural basis of formal thought disorder (FTD) is unknown. An influential theory is that FTD results from impaired semantic memory processing. We explored the neural correlates of semantic memory retrieval in schizophrenia using an imaging task assessing semantic object recall. Sixteen healthy control subjects and sixteen schizophrenia patients whose FTD symptoms were measured with the Thought Disorder Index completed a verbal object-recall task during functional magnetic resonance imaging. Participants viewed two words describing object features that either evoked (object recall) or did not evoke a semantic concept. Schizophrenia patients tended to overrecall objects for feature pairs that did not describe the same object. Functionally, rostral anterior cingulate cortex (ACC) activation in patients positively correlated with FTD severity during both correct recalled and overrecalled trials. Compared with control subjects, during object recalling, patients overactivated bilateral ACC, temporooccipital junctions, temporal poles and parahippocampi, right inferior frontal gyrus, and dorsolateral prefrontal cortex, but underactivated inferior parietal lobules. Our results support impaired semantic memory retrieval as underlying FTD pathophysiology. Schizophrenia patients showed abnormal activations of brain areas involved in semantic memory, verbal working memory, and initiation and suppression of conflicting responses, which were associated with semantic overrecall and FTD.
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
Akirav, Irit; Maroun, Mouna
2006-12-01
Once consolidated, a long-term memory item could regain susceptibility to consolidation blockers, that is, reconsolidate, upon its reactivation. Both consolidation and reconsolidation require protein synthesis, but it is not yet known how similar these processes are in terms of molecular, cellular, and neural circuit mechanisms. Whereas most previous studies focused on aversive conditioning in the amygdala and the hippocampus, here we examine the role of the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of object recognition memory. Object recognition memory is the ability to discriminate the familiarity of previously encountered objects. We found that microinfusion of the protein synthesis inhibitor anisomycin or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) into the vmPFC, immediately after training, resulted in impairment of long-term (24 h) but not short-term (3 h) recognition memory. Similarly, microinfusion of anisomycin or APV into the vmPFC immediately after reactivation of the long-term memory impaired recognition memory 24 h, but not 3 h, post-reactivation. These results indicate that both protein synthesis and NMDA receptors are required for consolidation and reconsolidation of recognition memory in the vmPFC.
Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory.
Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Moltó, Javier; Poy, Rosario; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias
2016-04-01
There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.
de Oliveira, Glaucia Martins; Cachioni, Meire; Falcão, Deusivania; Batistoni, Samila; Lopes, Andrea; Guimarães, Vanessa; Lima-Silva, Thais Bento; Neri, Anita Liberalesso; Yassuda, Mônica Sanches
2015-01-01
Previous studies have suggested that performance prediction, an aspect of metamemory, may be associated with objective performance on memory tasks. The objective of the study was to describe memory prediction before performing an episodic memory task, in community-dwelling older adults, stratified by sex, age group and educational level. Additionally, the association between predicted and objective performance on a memory task was investigated. The study was based on data from 359 participants in the FIBRA study carried out at Ermelino Matarazzo, São Paulo. Memory prediction was assessed by posing the question: "If someone showed you a sheet with drawings of 10 pictures to observe for 30 seconds, how many pictures do you think you could remember without seeing the sheet?". Memory performance was assessed by the memorization of 10 black and white pictures from the Brief Cognitive Screening Battery (BCSB). No differences were found between men and women, nor for age group and educational level, in memory performance prediction before carrying out the memory task. There was a modest association (rho=0.11, p=0.041) between memory prediction and performance in immediate memory. On multivariate linear regression analyses, memory performance prediction was moderately significantly associated with immediate memory (p=0.061). In this study, sociodemographic variables did not influence memory prediction, which was only modestly associated with immediate memory on the Brief Cognitive Screening Battery (BCSB).
Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R
2015-09-01
Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Fragile visual short-term memory is an object-based and location-specific store.
Pinto, Yaïr; Sligte, Ilja G; Shapiro, Kimron L; Lamme, Victor A F
2013-08-01
Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.
A memory span of one? Object identification in 6.5-month-old infants.
Káldy, Zsuzsa; Leslie, Alan M
2005-09-01
Infants' abilities to identify objects based on their perceptual features develop gradually during the first year and possibly beyond. Earlier we reported [Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: Integrating 'what' and 'where' information. Developmental Science, 6, 360-373] that infants at 9 months of age are able to use shape information to identify two objects and follow their spatiotemporal trajectories behind occlusion. On the other hand, another recent study suggests that infants at 4-5 months of age cannot identify objects by features and bind them to locations [Mareschal, D., & Johnson, M. H. (2003). The "what" and "where" of object representations in infancy. Cognition, 88, 259-276]. In the current study, we investigated the developmental steps between these two benchmark ages by testing 6.5-month-old infants. Experiment 1 and 2 adapted the paradigm used in our previous studies with 9-month-olds that involves two objects hidden sequentially behind separate occluders. This technique allows us to address object identification and to examine whether only one or both object identities are being tracked. Results of experiment 1 showed that 6.5-month-old infants could identify at least one of two objects based on shape and experiment 2 found that this ability holds for only one, the last object hidden. We propose that at this age, infants' working memory capacity is limited to one occluded object if there is a second intervening hiding. If their attention is distracted by an intervening object during the memory maintenance period, the memory of the first object identity appears to be lost. Results of experiment 3 supported this hypothesis with a simpler one-screen setup. Finally, results of experiment 4 show that temporal decay of the memory trace (without an intervening hiding) by itself cannot explain the observed pattern of results. Taken together, our findings suggest that at six months of age infants can store but a single object representation with bound shape information, most likely in the ventral stream. The memory span of one may be due to immaturity of the neural structures underlying working memory such that intervening items overwrite the existing storage.
ERIC Educational Resources Information Center
De Goede, Maartje; Postma, Albert
2008-01-01
Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object…
Neural activity reveals perceptual grouping in working memory.
Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S
2017-03-01
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.
Remembering the snake in the grass: Threat enhances recognition but not source memory.
Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel
2015-12-01
Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).
Accurate metacognition for visual sensory memory representations.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F
2014-04-01
The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.
Visual working memory for global, object, and part-based information.
Patterson, Michael D; Bly, Benjamin Martin; Porcelli, Anthony J; Rypma, Bart
2007-06-01
We investigated visual working memory for novel objects and parts of novel objects. After a delay period, participants showed strikingly more accurate performance recognizing a single whole object than the parts of that object. This bias to remember whole objects, rather than parts, persisted even when the division between parts was clearly defined and the parts were disconnected from each other so that, in order to remember the single whole object, the participants needed to mentally combine the parts. In addition, the bias was confirmed when the parts were divided by color. These experiments indicated that holistic perceptual-grouping biases are automatically used to organize storage in visual working memory. In addition, our results suggested that the bias was impervious to top-down consciously directed control, because when task demands were manipulated through instruction and catch trials, the participants still recognized whole objects more quickly and more accurately than their parts. This bias persisted even when the whole objects were novel and the parts were familiar. We propose that visual working memory representations depend primarily on the global configural properties of whole objects, rather than part-based representations, even when the parts themselves can be clearly perceived as individual objects. This global configural bias beneficially reduces memory load on a capacity-limited system operating in a complex visual environment, because fewer distinct items must be remembered.
Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P
2017-02-01
The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hand gestures support word learning in patients with hippocampal amnesia.
Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C
2018-06-01
Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.
Pereira, Luciana M; Bastos, Cristiane P; de Souza, Jéssica M; Ribeiro, Fabíola M; Pereira, Grace S
2014-10-01
In rodents, 17β-estradiol (E2) enhances hippocampal function and improves performance in several memory tasks. Regarding the object recognition paradigm, E2 commonly act as a cognitive enhancer. However, the types of estrogen receptor (ER) involved, as well as the underlying molecular mechanisms are still under investigation. In the present study, we asked whether E2 enhances object recognition memory by activating ERα and/or ERβ in the hippocampus of Swiss female mice. First, we showed that immediately post-training intraperitoneal (i.p.) injection of E2 (0.2 mg/kg) allowed object recognition memory to persist 48 h in ovariectomized (OVX) Swiss female mice. This result indicates that Swiss female mice are sensitive to the promnesic effects of E2 and is in accordance with other studies, which used C57/BL6 female mice. To verify if the activation of hippocampal ERα or ERβ would be sufficient to improve object memory, we used PPT and DPN, which are selective ERα and ERβ agonists, respectively. We found that PPT, but not DPN, improved object memory in Swiss female mice. However, DPN was able to improve memory in C57/BL6 female mice, which is in accordance with other studies. Next, we tested if the E2 effect on improving object memory depends on ER activation in the hippocampus. Thus, we tested if the infusion of intra-hippocampal TPBM and PHTPP, selective antagonists of ERα and ERβ, respectively, would block the memory enhancement effect of E2. Our results showed that TPBM, but not PHTPP, blunted the promnesic effect of E2, strongly suggesting that in Swiss female mice, the ERα and not the ERβ is the receptor involved in the promnesic effect of E2. It was already demonstrated that E2, as well as PPT and DPN, increase the phospho-ERK2 level in the dorsal hippocampus of C57/BL6 mice. Here we observed that PPT increased phospho-ERK1, while DPN decreased phospho-ERK2 in the dorsal hippocampus of Swiss female mice subjected to the object recognition sample phase. Taken together, our results suggest that the type of receptor as well as the molecular mechanism used by E2 to improve object memory may differ in Swiss female mice. Copyright © 2014 Elsevier Inc. All rights reserved.
Papenmeier, Frank; Schwan, Stephan
2016-02-01
Viewing objects with stereoscopic displays provides additional depth cues through binocular disparity supporting object recognition. So far, it was unknown whether this results from the representation of specific stereoscopic information in memory or a more general representation of an object's depth structure. Therefore, we investigated whether continuous object rotation acting as depth cue during encoding results in a memory representation that can subsequently be accessed by stereoscopic information during retrieval. In Experiment 1, we found such transfer effects from continuous object rotation during encoding to stereoscopic presentations during retrieval. In Experiments 2a and 2b, we found that the continuity of object rotation is important because only continuous rotation and/or stereoscopic depth but not multiple static snapshots presented without stereoscopic information caused the extraction of an object's depth structure into memory. We conclude that an object's depth structure and not specific depth cues are represented in memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
NASA Astrophysics Data System (ADS)
Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen
2017-05-01
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
Item and source memory for emotional associates is mediated by different retrieval processes.
Ventura-Bort, Carlos; Dolcos, Florin; Wendt, Julia; Wirkner, Janine; Hamm, Alfons O; Weymar, Mathias
2017-12-12
Recent event-related potential (ERP) data showed that neutral objects encoded in emotional background pictures were better remembered than objects encoded in neutral contexts, when recognition memory was tested one week later. In the present study, we investigated whether this long-term memory advantage for items is also associated with correct memory for contextual source details. Furthermore, we were interested in the possibly dissociable contribution of familiarity and recollection processes (using a Remember/Know procedure). The results revealed that item memory performance was mainly driven by the subjective experience of familiarity, irrespective of whether the objects were previously encoded in emotional or neutral contexts. Correct source memory for the associated background picture, however, was driven by recollection and enhanced when the content was emotional. In ERPs, correctly recognized old objects evoked frontal ERP Old/New effects (300-500ms), irrespective of context category. As in our previous study (Ventura-Bort et al., 2016b), retrieval for objects from emotional contexts was associated with larger parietal Old/New differences (600-800ms), indicating stronger involvement of recollection. Thus, the results suggest a stronger contribution of recollection-based retrieval to item and contextual background source memory for neutral information associated with an emotional event. Copyright © 2017 Elsevier Ltd. All rights reserved.
VOP memory management in MPEG-4
NASA Astrophysics Data System (ADS)
Vaithianathan, Karthikeyan; Panchanathan, Sethuraman
2001-03-01
MPEG-4 is a multimedia standard that requires Video Object Planes (VOPs). Generation of VOPs for any kind of video sequence is still a challenging problem that largely remains unsolved. Nevertheless, if this problem is treated by imposing certain constraints, solutions for specific application domains can be found. MPEG-4 applications in mobile devices is one such domain where the opposite goals namely low power and high throughput are required to be met. Efficient memory management plays a major role in reducing the power consumption. Specifically, efficient memory management for VOPs is difficult because the lifetimes of these objects vary and these life times may be overlapping. Varying life times of the objects requires dynamic memory management where memory fragmentation is a key problem that needs to be addressed. In general, memory management systems address this problem by following a combination of strategy, policy and mechanism. For MPEG4 based mobile devices that lack instruction processors, a hardware based memory management solution is necessary. In MPEG4 based mobile devices that have a RISC processor, using a Real time operating system (RTOS) for this memory management task is not expected to be efficient because the strategies and policies used by the ROTS is often tuned for handling memory segments of smaller sizes compared to object sizes. Hence, a memory management scheme specifically tuned for VOPs is important. In this paper, different strategies, policies and mechanisms for memory management are considered and an efficient combination is proposed for the case of VOP memory management along with a hardware architecture, which can handle the proposed combination.
de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin
2016-07-01
We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Differential age-related effects on conjunctive and relational visual short-term memory binding.
Bastin, Christine
2017-12-28
An age-related associative deficit has been described in visual short-term binding memory tasks. However, separate studies have suggested that ageing disrupts relational binding (to associate distinct items or item and context) more than conjunctive binding (to integrate features within an object). The current study directly compared relational and conjunctive binding with a short-term memory task for object-colour associations in 30 young and 30 older adults. Participants studied a number of object-colour associations corresponding to their individual object span level in a relational task in which objects were associated to colour patches and a conjunctive task where colour was integrated into the object. Memory for individual items and for associations was tested with a recognition memory test. Evidence for an age-related associative deficit was observed in the relational binding task, but not in the conjunctive binding task. This differential impact of ageing on relational and conjunctive short-term binding is discussed by reference to two underlying age-related cognitive difficulties: diminished hippocampally dependent binding and attentional resources.
Geigerman, Shriradha; Verhaeghen, Paul; Cerella, John
2016-06-01
In three experiments, we investigated whether features and whole-objects can be represented simultaneously in visual short-term memory (VSTM). Participants were presented with a memory set of colored shapes; we probed either for the constituent features or for the whole object, and analyzed retrieval dynamics (cumulative response time distributions). In our first experiment, we used whole-object probes that recombined features from the memory display; we found that subjects' data conformed to a kitchen-line model, showing that they used whole-object representations for the matching process. In the second experiment, we encouraged independent-feature representations by using probes that used features not present in the memory display; subjects' data conformed to the race-model inequality, showing that they used independent-feature representations for the matching process. In a final experiment, we used both types of probes; subjects now used both types of representations, depending on the nature of the probe. Combined, our three experiments suggest that both feature and whole-object representations can coexist in VSTM. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploring the effects of ownership and choice on self-memory biases.
Cunningham, Sheila J; Brady-Van den Bos, Mirjam; Turk, David J
2011-07-01
Objects encoded in the context of temporary ownership by self enjoy a memorial advantage over objects owned by other people. This memory effect has been linked to self-referential encoding processes. The current inquiry explored the extent to which the effects of ownership are influenced by the degree of personal choice involved in assigning ownership. In three experiments pairs of participants chose objects to keep for ownership by self, and rejected objects that were given to the other participant to own. Recognition memory for the objects was then assessed. Experiment 1 showed that participants recognised more items encoded as "self-owned" than "other-owned", but only when they had been chosen by self. Experiment 2 replicated this pattern when participants' sense of choice was illusory. A source memory test in Experiment 3 showed that self-chosen items were most likely to be correctly attributed to ownership by self. These findings are discussed with reference to the link between owned objects and the self, and the routes through which self-referential operations can impact on cognition.
Working memory for conjunctions relies on the medial temporal lobe.
Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke
2006-04-26
A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.
Working Memory for Conjunctions Relies on the Medial Temporal Lobe
Olson, Ingrid R.; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke
2006-01-01
A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays. PMID:16641239
Lineweaver, Tara T; Brolsma, Jessica W
2014-01-01
Stronger relationships often emerge between mood and memory self-efficacy (MSE) than between MSE and memory abilities. We examined how social desirability, mood congruency and framing influence the mood-MSE relationship. Social desirability correlated with all self-report measures, and covarying social desirability diminished the mood-MSE relationship while enhancing the relationship between MSE and objective memory. Participants rated their memory more harshly on positively than neutrally or negatively worded MSE items. Current mood state did not affect MSE overall or when items were worded positively or neutrally. However, on negatively worded items, participants in a negative mood exhibited lower MSE than participants in a positive mood. Thus, both MSE and the mood-MSE relationship depended upon question wording. These results indicate that controlling social desirability and item framing on MSE questionnaires may reduce their confounding influence on memory self-perceptions and the influence of mood on self-reported abilities, allowing subjective memory to more accurately reflect objective memory in healthy and clinical populations.
Silvis, J D; Van der Stigchel, S
2014-04-01
Investigating eye movements has been a promising approach to uncover the role of visual working memory in early attentional processes. Prior research has already demonstrated that eye movements in search tasks are more easily drawn toward stimuli that show similarities to working memory content, as compared with neutral stimuli. Previous saccade tasks, however, have always required a selection process, thereby automatically recruiting working memory. The present study was an attempt to confirm the role of working memory in oculomotor selection in an unbiased saccade task that rendered memory mechanisms irrelevant. Participants executed a saccade in a display with two elements, without any instruction to aim for one particular element. The results show that when two objects appear simultaneously, a working memory match attracts the first saccade more profoundly than do mismatch objects, an effect that was present throughout the saccade latency distribution. These findings demonstrate that memory plays a fundamental biasing role in the earliest competitive processes in the selection of visual objects, even when working memory is not recruited during selection.
Role of early visual cortex in trans-saccadic memory of object features.
Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas
2015-08-01
Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.
Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao
2016-08-01
Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.
High speed optical object recognition processor with massive holographic memory
NASA Technical Reports Server (NTRS)
Chao, T.; Zhou, H.; Reyes, G.
2002-01-01
Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.
ERIC Educational Resources Information Center
Savalli, Giorgia; Bashir, Zafar I.; Warburton, E. Clea
2015-01-01
Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D[subscript 1]/D[subscript 5] receptor neurotransmission within these brain regions for OiP memory. Bilateral…
Delogu, Franco; Lilla, Christopher C
2017-11-01
Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.
Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.
Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei
2016-03-09
Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.
The Dark Side of Context: Context Reinstatement Can Distort Memory.
Doss, Manoj K; Picart, Jamila K; Gallo, David A
2018-04-01
It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.
Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio
2017-07-28
The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Out of place, out of mind: Schema-driven false memory effects for object-location bindings.
Lew, Adina R; Howe, Mark L
2017-03-01
Events consist of diverse elements, each processed in specialized neocortical networks, with temporal lobe memory systems binding these elements to form coherent event memories. We provide a novel theoretical analysis of an unexplored consequence of the independence of memory systems for elements and their bindings, 1 that raises the paradoxical prediction that schema-driven false memories can act solely on the binding of event elements despite the superior retrieval of individual elements. This is because if 2, or more, schema-relevant elements are bound together in unexpected conjunctions, the unexpected conjunction will increase attention during encoding to both the elements and their bindings, but only the bindings will receive competition with evoked schema-expected bindings. We test our model by examining memory for object-location bindings in recognition (Study 1) and recall (Studies 2 and 3) tasks. After studying schema-relevant objects in unexpected locations (e.g., pan on a stool in a kitchen scene), participants who then viewed these objects in expected locations (e.g., pan on stove) at test were more likely to falsely remember this object-location pairing as correct, compared with participants that viewed a different unexpected object-location pairing (e.g., pan on floor). In recall, participants were more likely to correctly remember individual schema-relevant objects originally viewed in unexpected, as opposed to expected locations, but were then more likely to misplace these items in the original room scene to expected places, relative to control schema-irrelevant objects. Our theoretical analysis and novel paradigm provide a tool for investigating memory distortions acting on binding processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K
2014-01-01
Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory impairments as well as mood dysfunction in a rat model.
Contextual consistency facilitates long-term memory of perceptual detail in barely seen images.
Gronau, Nurit; Shachar, Meytal
2015-08-01
It is long known that contextual information affects memory for an object's identity (e.g., its basic level category), yet it is unclear whether schematic knowledge additionally enhances memory for the precise visual appearance of an item. Here we investigated memory for visual detail of merely glimpsed objects. Participants viewed pairs of contextually related and unrelated stimuli, presented for an extremely brief duration (24 ms, masked). They then performed a forced-choice memory-recognition test for the precise perceptual appearance of 1 of 2 objects within each pair (i.e., the "memory-target" item). In 3 experiments, we show that memory-target stimuli originally appearing within contextually related pairs are remembered better than targets appearing within unrelated pairs. These effects are obtained whether the target is presented at test with its counterpart pair object (i.e., when reiterating the original context at encoding) or whether the target is presented alone, implying that the contextual consistency effects are mediated predominantly by processes occurring during stimulus encoding, rather than during stimulus retrieval. Furthermore, visual detail encoding is improved whether object relations involve implied action or not, suggesting that, contrary to some prior suggestions, action is not a necessary component for object-to-object associative "grouping" processes. Our findings suggest that during a brief glimpse, but not under long viewing conditions, contextual associations may play a critical role in reducing stimulus competition for attention selection and in facilitating rapid encoding of sensory details. Theoretical implications with respect to classic frame theories are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Sun, Sol Z; Fidalgo, Celia; Barense, Morgan D; Lee, Andy C H; Cant, Jonathan S; Ferber, Susanne
2017-11-01
Interference disrupts information processing across many timescales, from immediate perception to memory over short and long durations. The widely held similarity assumption states that as similarity between interfering information and memory contents increases, so too does the degree of impairment. However, information is lost from memory in different ways. For instance, studied content might be erased in an all-or-nothing manner. Alternatively, information may be retained but the precision might be degraded or blurred. Here, we asked whether the similarity of interfering information to memory contents might differentially impact these 2 aspects of forgetting. Observers studied colored images of real-world objects, each followed by a stream of interfering objects. Across 4 experiments, we manipulated the similarity between the studied object and the interfering objects in circular color space. After interference, memory for object color was tested continuously on a color wheel, which in combination with mixture modeling, allowed for estimation of how erasing and blurring differentially contribute to forgetting. In contrast to the similarity assumption, we show that highly dissimilar interfering items caused the greatest increase in random guess responses, suggesting a greater frequency of memory erasure (Experiments 1-3). Moreover, we found that observers were generally able to resist interference from highly similar items, perhaps through surround suppression (Experiments 1 and 4). Finally, we report that interference from items of intermediate similarity tended to blur or decrease memory precision (Experiments 3 and 4). These results reveal that the nature of visual similarity can differentially alter how information is lost from memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Prefrontal Engagement during Source Memory Retrieval Depends on the Prior Encoding Task
Kuo, Trudy Y.; Van Petten, Cyma
2008-01-01
The prefrontal cortex is strongly engaged by some, but not all, episodic memory tests. Prior work has shown that source recognition tests—those that require memory for conjunctions of studied attributes—yield deficient performance in patients with prefrontal damage and greater prefrontal activity in healthy subjects, as compared to simple recognition tests. Here, we tested the hypothesis that there is no intrinsic relationship between the prefrontal cortex and source memory, but that the prefrontal cortex is engaged by the demand to retrieve weakly encoded relationships. Subjects attempted to remember object/color conjunctions after an encoding task that focused on object identity alone, and an integrative encoding task that encouraged attention to object/color relationships. After the integrative encoding task, the late prefrontal brain electrical activity that typically occurs in source memory tests was eliminated. Earlier brain electrical activity related to successful recognition of the objects was unaffected by the nature of prior encoding. PMID:16839287
Evans, Kris; Rotello, Caren M.; Li, Xingshan; Rayner, Keith
2009-01-01
Cultural differences have been observed in scene perception and memory: Chinese participants purportedly attend to the background information more than did American participants. We investigated the influence of culture by recording eye movements during scene perception and while participants made recognition memory judgements. Real-world pictures with a focal object on a background were shown to both American and Chinese participants while their eye movements were recorded. Later, memory for the focal object in each scene was tested, and the relationship between the focal object (studied, new) and the background context (studied, new) was manipulated. Receiver-operating characteristic (ROC) curves show that both sensitivity and response bias were changed when objects were tested in new contexts. However, neither the decrease in accuracy nor the response bias shift differed with culture. The eye movement patterns were also similar across cultural groups. Both groups made longer and more fixations on the focal objects than on the contexts. The similarity of eye movement patterns and recognition memory behaviour suggests that both Americans and Chinese use the same strategies in scene perception and memory. PMID:18785074
Exogenous temporal cues enhance recognition memory in an object-based manner.
Ohyama, Junji; Watanabe, Katsumi
2010-11-01
Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.
Plastic modifications induced by object recognition memory processing
Clarke, Julia Rosauro; Cammarota, Martín; Gruart, Agnès; Izquierdo, Iván; Delgado-García, José María
2010-01-01
Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals–pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization. PMID:20133798
Layout Geometry in Encoding and Retrieval of Spatial Memory
ERIC Educational Resources Information Center
Mou, Weimin; Liu, Xianyun; McNamara, Timothy P.
2009-01-01
Two experiments investigated whether the spatial reference directions that are used to specify objects' locations in memory can be solely determined by layout geometry. Participants studied a layout of objects from a single viewpoint while their eye movements were recorded. Subsequently, participants used memory to make judgments of relative…
Park, Subin; Hong, Jin Pyo; Lee, Hochang B; Samuels, Jack; Bienvenu, O Joseph; Chung, Hye Yoon; Eaton, William W; Costa, Paul T; Nestadt, Gerald
2012-03-30
Based on the Baltimore Epidemiologic Catchment Area (ECA) follow-up survey, we examined relationships between dimensions of Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) personality disorders and both subjective and objective memory functioning in a community population. Our study subjects consisted of 736 individuals from the ECA follow-up study of the original Baltimore ECA cohort, conducted between 1993 and 1996 and available for assessment in the Hopkins Epidemiology Study of Personality Disorders from 1997 to 1999. Subjects were assessed for DSM-IV personality disorders using a semi-structured instrument, the International Personality Disorder Examination, and were asked about a subjective appraisal of memory. Verbal memory function, including immediate recall, delayed recall, and recognition, were also evaluated. Multiple linear regression analyses were used to determine associations between personality dimensions of DSM-IV Axis II traits and subjective and objective memory functioning. Scores on schizoid and schizotypal personality dimensions were associated with subjective and objective memory dysfunction, both with and without adjustment for Axis I disorders. Borderline, antisocial, avoidant, and dependent personality disorder scores were associated with subjective memory impairment only, both with and without adjustment for Axis I disorders. This study suggests that subjective feelings of memory impairment and/or objective memory dysfunction are associated with specific personality disorder dimensions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.
2013-01-01
In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909
Tas, A. Caglar; Luck, Steven J.; Hollingworth, Andrew
2016-01-01
There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1–3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. PMID:26854532
Remembered but Unused: The Accessory Items in Working Memory that Do Not Guide Attention
ERIC Educational Resources Information Center
Peters, Judith C.; Goebel, Rainer; Roelfsema, Pieter R.
2009-01-01
If we search for an item, a representation of this item in our working memory guides attention to matching items in the visual scene. We can hold multiple items in working memory. Do all these items guide attention in parallel? We asked participants to detect a target object in a stream of objects while they maintained a second item in memory for…
Otsuka, Sachio; Saiki, Jun
2016-02-01
Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.
Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory
ERIC Educational Resources Information Center
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-01-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…
van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C
2014-03-01
The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.
Spatial but not object memory impairments in children with fetal alcohol syndrome.
Uecker, A; Nadel, L
1998-07-01
Behavioral dissociations on tests of cognitive abilities are powerful tools that can help define the neuropsychology of developmentally disabling conditions. Animals gestationally exposed to alcohol demonstrate spatial (place) but not object (cue) memory impairments. Whether children with fetal alcohol syndrome demonstrate a similar dissociation has received little attention. In this experiment, 30 Native American children, 15 previously identified with fetal alcohol syndrome and 15 control children, were asked to recall places and objects in a task previously shown to be sensitive to memory skills in individuals with and without mental retardation. As in animal models, children with fetal alcohol syndrome demonstrated a spatial but not an object memory impairment. A possible role for the hippocampus was discussed.
Ballesteros, Soledad; Reales, José Manuel
2004-01-01
This study is the first to report complete priming in Alzheimer's disease (AD) patients and older control subjects for objects presented haptically. To investigate possible dissociations between implicit and explicit objects representations, young adults, Alzheimer's patients, and older controls performed a speeded object naming task followed by a recognition task. Similar haptic priming was exhibited by the three groups, although young adults responded faster than the two older groups. Furthermore, there was no difference in performance between the two healthy groups. On the other hand, younger and older healthy adults did not differ on explicit recognition while, as expected, AD patients were highly impaired. The double dissociation suggests that different memory systems mediate both types of memory tasks. The preservation of intact haptic priming in AD provides strong support to the idea that object implicit memory is mediated by a memory system that is different from the medial-temporal diencephalic system underlying explicit memory, which is impaired early in AD. Recent imaging and behavioral studies suggest that the implicit memory system may depend on extrastriate areas of the occipital cortex although somatosensory cortical mechanisms may also be involved.
Human memory manipulated: dissociating factors contributing to MTL activity, an fMRI study.
Pustina, Dorian; Gizewski, Elke; Forsting, Michael; Daum, Irene; Suchan, Boris
2012-04-01
Memory processes are mainly studied with subjective rating procedures. We used a morphing procedure to objectively manipulate the similarity of target stimuli. While undergoing functional magnetic resonance imaging, nineteen subjects performed a encoding and recognition task on face and scene stimuli, varying the degree of manipulation of previously studied targets at 0%, 20%, 40% or 60%. Analyses were performed with parametric modulations for objective stimulus status (morphing level), subjective memory (confidence rating), and reaction times (RTs). Results showed that medial temporal lobe (MTL) activity can be best explained by a combination of subjective and objective factors. Memory success is associated with activity modulation in the hippocampus both for faces and for scenes. Memory failures correlated with lower hippocampal activity for scenes, but not for faces. Activity changed during retrieval on similar areas activated during encoding. There was a considerable impact of RTs on memory-related areas. Objective perceptual identity correlated with activity in the left MTL, while subjective memory experience correlated with activity in the right MTL for both types of material. Overall, the results indicate that MTL activity is heterogeneous, showing both linear and non-linear activity, depending on the factor analyzed. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.
2012-01-01
Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2 (HDAC2). Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409
Lactobacillus helveticus-fermented milk improves learning and memory in mice.
Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko
2015-07-01
To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.
Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.
Li, Jay-Shake; Chao, Yuen-Shin
2008-02-01
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.
Shi, Hai-Shui; Yin, Xi; Song, Li; Guo, Qing-Jun; Luo, Xiang-Heng
2012-02-01
Accumulating evidence has implicated neuropeptides in modulating recognition, learning and memory. However, to date, no study has investigated the effects of neuropeptide Trefoil factor 3 (TFF3) on the process of learning and memory. In the present study, we evaluated the acute effects of TFF3 administration (0.1 and 0.5mg/kg, i.p.) on the acquisition and retention of object recognition memory in mice. We found that TFF3 administration significantly enhanced both short-term and long-term memory during the retention test, conducted 90 min and 24h after training respectively. Remarkably, acute TFF3 administration transformed a learning event that would not normally result in long-term memory into an event retained for a long-term period and produced no effect on locomotor activity in mice. In conclusion, the present results provide an important role of TFF3 in improving object recognition memory and reserving it for a longer time, which suggests a potential therapeutic application for diseases with recognition and memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.
Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge
2014-01-05
It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.
Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.
2016-01-01
The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. PMID:26985039
Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M
2016-03-16
The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. Copyright © 2016 the authors 0270-6474/16/363309-13$15.00/0.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
Computer memory management system
Kirk, III, Whitson John
2002-01-01
A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.
Bedard-Gilligan, Michele; Zoellner, Lori A.
2012-01-01
Several prominent theories of posttraumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review, we summarize the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus, initial evidence points more toward a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation. PMID:22348400
Regulation of object recognition and object placement by ovarian sex steroid hormones
Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.
2014-01-01
The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that effects are highly dependent on factors such as dose and timing of administration. In addition to providing more detail on these general conclusions, this review will discuss directions for future avenues of research into the hormonal regulation of object memory. PMID:25131507
It's all coming back to me now: perception and memory in amnesia.
Baxter, Mark G
2012-07-12
Medial temporal lobe (MTL) structures may constitute a representational hierarchy, rather than a dedicated system for memory. Barense et al. (2012) show that intact memory for object features can interfere with perception of complex objects in individuals with MTL amnesia. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos
2016-01-01
In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…
No Sex Differences in Spatial Location Memory for Abstract Designs
ERIC Educational Resources Information Center
Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan
2011-01-01
Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…
Tone Series and the Nature of Working Memory Capacity Development
ERIC Educational Resources Information Center
Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson
2018-01-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…
Location-Unbound Color-Shape Binding Representations in Visual Working Memory.
Saiki, Jun
2016-02-01
The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.
van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A
2005-05-01
Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Bias effects of short- and long-term color memory for unique objects.
Bloj, Marina; Weiß, David; Gegenfurtner, Karl R
2016-04-01
Are objects remembered with a more saturated color? Some of the evidence supporting this statement comes from research using "memory colors"-the typical colors of particular objects, for example, the green of grass. The problematic aspect of these findings is that many different exemplars exist, some of which might exhibit a higher saturation than the one measured by the experimenter. Here we avoid this problem by using unique personal items and comparing long- and short-term color memory matches (in hue, value, and chroma) with those obtained with the object present. Our results, on average, confirm that objects are remembered as more saturated than they are.
A Visual Short-Term Memory Advantage for Objects of Expertise
ERIC Educational Resources Information Center
Curby, Kim M.; Glazek, Kuba; Gauthier, Isabel
2009-01-01
Visual short-term memory (VSTM) is limited, especially for complex objects. Its capacity, however, is greater for faces than for other objects; this advantage may stem from the holistic nature of face processing. If the holistic processing explains this advantage, object expertise--which also relies on holistic processing--should endow experts…
Guidance of attention to objects and locations by long-term memory of natural scenes.
Becker, Mark W; Rasmussen, Ian P
2008-11-01
Four flicker change-detection experiments demonstrate that scene-specific long-term memory guides attention to both behaviorally relevant locations and objects within a familiar scene. Participants performed an initial block of change-detection trials, detecting the addition of an object to a natural scene. After a 30-min delay, participants performed an unanticipated 2nd block of trials. When the same scene occurred in the 2nd block, the change within the scene was (a) identical to the original change, (b) a new object appearing in the original change location, (c) the same object appearing in a new location, or (d) a new object appearing in a new location. Results suggest that attention is rapidly allocated to previously relevant locations and then to previously relevant objects. This pattern of locations dominating objects remained when object identity information was made more salient. Eye tracking verified that scene memory results in more direct scan paths to previously relevant locations and objects. This contextual guidance suggests that a high-capacity long-term memory for scenes is used to insure that limited attentional capacity is allocated efficiently rather than being squandered.
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory
Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A
2013-01-01
The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525
Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco
2010-06-01
Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.
Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi
2010-01-01
Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Yuan, Lei; Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects-the shift account of relation processing-which states that relations such as 'above' or 'below' are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants' voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A
2014-04-01
Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.
Gaffan, D
1998-11-01
Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
An evaluation of the impact of memory and mood on antiepileptic drug adherence.
McAuley, James W; Passen, Nina; Prusa, Christine; Dixon, Joanne; Cotterman-Hart, Sheri; Shneker, Bassel F
2015-02-01
Antiepileptic drugs are the mainstay of treatment for patients with epilepsy. Adherence to the prescribed regimen is a major factor in achieving a reduced seizure burden, which can decrease morbidity and mortality. Patients with epilepsy oftentimes complain about difficulty with memory. Because little is known about the relationship between memory and mood and adherence, the purpose of this project was to determine the impact of the confounding factors of memory and mood on antiepileptic drug adherence in patients with epilepsy. One hundred adult patients with epilepsy were recruited from the outpatient neurology clinic for this cross-sectional study. Patients who met the inclusion criteria completed measures of subjective memory (subset of 6 memory questions from the QOLIE-89) and objective memory (Hopkins Verbal Learning Test - Revised), subjective adherence (Morisky scale) and objective adherence (medication possession ratio), and mood (Neurological Disorders Depression Inventory for Epilepsy). Refill records from each patient's community pharmacy were used to objectively assess adherence. Medication possession ratios were calculated based on the antiepileptic drug refill records over the previous 6months. Patients were considered adherent if their MPR was >80%. Women made up the majority of the sample (n=59), and, on average, patients had been living with epilepsy for nearly 20years. Approximately 40% of the sample were on antiepileptic drug monotherapy; most patients (>70%) took their antiepileptic drugs twice daily, and the mean number of total medications was 4.25±2.98. Based on the objective measure of adherence, 35% of the patients were nonadherent. Patients self-reported better adherence than what was objectively measured. Only the retention metric of the objective memory measure differentiated adherent patients from nonadherent patients. Patients in the adherent group had significantly lower depression scores (indicating better mood) compared with those in the nonadherent group (p=0.04). Objective memory measures were not robustly correlated with adherence. However, we observed that patients with higher depressed mood scores were more likely to be nonadherent. By targeting patients with epilepsy and comorbid depression, practitioners may identify patients at greatest risk of nonadherence and subsequent harm. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam
2013-01-01
The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…
From Chair to "Chair": A Representational Shift Account of Object Labeling Effects on Memory
ERIC Educational Resources Information Center
Lupyan, Gary
2008-01-01
What are the consequences of calling things by their names? Six experiments investigated how classifying familiar objects with basic-level names (chairs, tables, and lamps) affected recognition memory. Memory was found to be worse for items that were overtly classified with the category name--as reflected by lower hit rates--compared with items…
AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory
ERIC Educational Resources Information Center
Cazakoff, Brittany N.; Howland, John G.
2011-01-01
Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…
Visual Short-Term Memory for Complex Objects in 6- and 8-Month-Old Infants
ERIC Educational Resources Information Center
Kwon, Mee-Kyoung; Luck, Steven J.; Oakes, Lisa M.
2014-01-01
Infants' visual short-term memory (VSTM) for simple objects undergoes dramatic development: Six-month-old infants can store in VSTM information about only a simple object presented in isolation, whereas 8-month-old infants can store information about simple objects presented in multiple-item arrays. This study extended this work to examine…
Reference Directions and Reference Objects in Spatial Memory of a Briefly Viewed Layout
ERIC Educational Resources Information Center
Mou, Weimin; Xiao, Chengli; McNamara, Timothy P.
2008-01-01
Two experiments investigated participants' spatial memory of a briefly viewed layout. Participants saw an array of five objects on a table and, after a short delay, indicated whether the target object indicated by the experimenter had been moved. Experiment 1 showed that change detection was more accurate when non-target objects were stationary…
Moore, M. Keith; Meltzoff, Andrew N.
2005-01-01
Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the container either in the same or a different room. Performance by room-change infants dropped to baseline levels, suggesting that infant search for hidden objects is guided by numerical identity. Infants seek the individual object that disappeared, which exists in its original location, not in a different room. A new behavior, identity-verifying search, was discovered and quantified. Implications are drawn for memory, spatial understanding, object permanence, and object identity. PMID:15238047
Moore, M Keith; Meltzoff, Andrew N
2004-07-01
Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the container either in the same or a different room. Performance by room-change infants dropped to baseline levels, suggesting that infant search for hidden objects is guided by numerical identity. Infants seek the individual object that disappeared, which exists in its original location, not in a different room. A new behavior, identity-verifying search, was discovered and quantified. Implications are drawn for memory, spatial understanding, object permanence, and object identity. Copyright 2004 APA, all rights reserved
Alger, Sara E; Payne, Jessica D
2016-12-01
Relational memories are formed from shared components between directly learned memory associations, flexibly linking learned information to better inform future judgments. Sleep has been found to facilitate both direct associative and relational memories. However, the impact of incorporating emotionally salient information into learned material and the interaction of emotional salience and sleep in facilitating both types of memory is unknown. Participants encoded two sets of picture pairs, with either emotionally negative or neutral objects paired with neutral faces. The same objects were present in both sets, paired with two different faces across the sets. Baseline memory for these directly paired associates was tested immediately after encoding, followed by either a 90-min nap opportunity or wakefulness. Five hours after learning, a surprise test assessed relational memory, the indirect association between two faces paired with the same object during encoding, followed by a retest of direct associative memory. Overall, negative information was remembered better than neutral for directly learned pairs. A nap facilitated both preservation of direct associative memories and formation of relational memories, compared to remaining awake. Interestingly, however, this sleep benefit was observed specifically for neutral directly paired associates, while both neutral and negative relational associations benefitted from a nap. Finally, REM sleep played opposing roles in neutral direct and relational associative memory formation, with more REM sleep leading to forgetting of direct associations but promoting relational associations, suggesting that, while not benefitting memory consolidation for directly learned details, REM sleep may foster the memory reorganization needed for relational memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2014-06-01
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
Memory for Details with Self-Referencing
Serbun, Sarah J.; Shih, Joanne Y.; Gutchess, Angela H.
2011-01-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgments in reference to the self, a close other (one’s mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). Results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can disproportionately improve memory for specific internal source details as well. PMID:22092106
Memory for details with self-referencing.
Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H
2011-11-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Tone series and the nature of working memory capacity development.
Clark, Katherine M; Hardman, Kyle O; Schachtman, Todd R; Saults, J Scott; Glass, Bret A; Cowan, Nelson
2018-04-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the number of objects retained, from the precision of the object representations. We adapt the technique to sequences of nonmusical tones, in an investigation including children (6-13 years, N = 84) and adults (26-50 years, N = 31). For each series of 1 to 4 tones, the participant responded by using an 80-choice scale to try to reproduce the tone at a queried serial position. Despite the much longer-lasting usefulness of sensory memory for tones compared with visual objects, the observed tone capacity was similar to previous findings for visual capacity. The results also constrain theories of childhood working memory development, indicating increases with age in both the capacity and the precision of the tone representations, similar to the visual studies, rather than age differences in time-based memory decay. The findings, including patterns of correlations between capacity, precision, and some auxiliary tasks and questionnaires, establish capacity and precision as dissociable processes and place important constraints on various hypotheses of working memory development. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104
Nasehi, Mohammad; Rostam-Nezhad, Elnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza
2017-01-15
Functional interaction between cannabinoid and serotonin neuronal systems have been reported in different tasks related to memory assessment. The present study investigated the effect of serotonin 5-HT4 agents into the dorsal hippocampus (the CA1 region) on spatial and object novelty detection deficits induced by activation of cannabinoid CB1 receptors (CB1Rs) using arachidonylcyclopropylamide (ACPA) in a non-associative behavioral task designed to forecast the ability of rodents to encode spatial and non-spatial relationships between distinct stimuli. Post-training, intra-CA1 microinjection of 5-HT4 receptor agonist RS67333 or 5-HT4 receptor antagonist RS23597 both at the dose of 0.016μg/mouse impaired spatial memory, while cannabinoid CB1R antagonist AM251 (0.1μg/mouse) facilitated object novelty memory. Also, post-training, intraperitoneal administration of CB1R agonist ACPA (0.005-0.05mg/kg) impaired both memories. However, a subthreshold dose of RS67333 restored ACPA response on both memories. Moreover, a subthreshold dose of RS23597 potentiated ACPA (0.01mg/kg) and reversed ACPA (0.05mg/kg) responses on spatial memory, while it potentiated ACPA response at the dose of 0.005 or 0.05mg/kg on object novelty memory. Furthermore, effective dose of AM251 restored ACPA response at the higher dose. AM251 blocked response induced by combination of RS67333 or RS23597 and the higher dose of ACPA on both memories. Our results highlight that hippocampal 5-HT4 receptors differently affect cannabinoid signaling in spatial and object novelty memories. The inactivation of CB1 receptors blocks the effect of 5-HT4 agents into the CA1 region on memory deficits induced by activation of CB1Rs via ACPA. Copyright © 2016. Published by Elsevier B.V.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Paradoxical false memory for objects after brain damage.
McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M
2010-12-03
Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.
Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R
2015-01-01
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros
2013-11-01
Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.
Visual short-term memory always requires general attention.
Morey, Candice C; Bieler, Malte
2013-02-01
The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.
Performing an allreduce operation using shared memory
Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela
2017-06-30
Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Performing an allreduce operation using shared memory
Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E
2014-06-10
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
Oberauer, Klaus; Awh, Edward; Sutterer, David W
2017-01-01
We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3 concrete objects in an array. Each array in the WM test consisted of 1 old (previously learned) object with a new color (old-mismatch), 1 old object with its old color (old-match), and 1 new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from LTM. In the old-mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The cortical underpinnings of context-based memory distortion.
Aminoff, Elissa; Schacter, Daniel L; Bar, Moshe
2008-12-01
Everyday contextual settings create associations that later afford generating predictions about what objects to expect in our environment. The cortical network that takes advantage of such contextual information is proposed to connect the representation of associated objects such that seeing one object (bed) will activate the visual representations of other objects sharing the same context (pillow). Given this proposal, we hypothesized that the cortical activity elicited by seeing a strong contextual object would predict the occurrence of false memories whereby one erroneously "remembers" having seen a new object that is related to a previously presented object. To test this hypothesis, we used functional magnetic resonance imaging during encoding of contextually related objects, and later tested recognition memory. New objects that were contextually related to previously presented objects were more often falsely judged as "old" compared with new objects that were contextually unrelated to old objects. This phenomenon was reflected by activity in the cortical network mediating contextual processing, which provides a better understanding of how the brain represents and processes context.
Early working memory and maternal communication in toddlers born very low birth weight
Lowe, Jean; Erickson, Sarah J; MacLean, Peggy; Duvall, Susanne W
2010-01-01
Aim Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18–22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Methods Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Results Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. Conclusion The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW. PMID:19154525
Early working memory and maternal communication in toddlers born very low birth weight.
Lowe, Jean; Erickson, Sarah J; Maclean, Peggy; Duvall, Susanne W
2009-04-01
Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18-22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW.
Ageing and feature binding in visual working memory: The role of presentation time.
Rhodes, Stephen; Parra, Mario A; Logie, Robert H
2016-01-01
A large body of research has clearly demonstrated that healthy ageing is accompanied by an associative memory deficit. Older adults exhibit disproportionately poor performance on memory tasks requiring the retention of associations between items (e.g., pairs of unrelated words). In contrast to this robust deficit, older adults' ability to form and temporarily hold bound representations of an object's surface features, such as colour and shape, appears to be relatively well preserved. However, the findings of one set of experiments suggest that older adults may struggle to form temporary bound representations in visual working memory when given more time to study objects. However, these findings were based on between-participant comparisons across experimental paradigms. The present study directly assesses the role of presentation time in the ability of younger and older adults to bind shape and colour in visual working memory using a within-participant design. We report new evidence that giving older adults longer to study memory objects does not differentially affect their immediate memory for feature combinations relative to individual features. This is in line with a growing body of research suggesting that there is no age-related impairment in immediate memory for colour-shape binding.
Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory
ERIC Educational Resources Information Center
Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert
2010-01-01
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
Long-Term Repetition Priming of Briefly Identified Objects
ERIC Educational Resources Information Center
Breuer, Andreas T.; Masson, Michael E. J.; Cohen, Anna-Lisa; Lindsay, D. Stephen
2009-01-01
The authors provide evidence that long-term memory encoding can occur for briefly viewed objects in a rapid serial visual presentation list, contrary to claims that the brief presentation and quick succession of objects prevent encoding by disrupting a memory consolidation process that requires hundreds of milliseconds of uninterrupted processing.…
Tas, A Caglar; Luck, Steven J; Hollingworth, Andrew
2016-08-01
There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into VWM. Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1-3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima
2015-01-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046
Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.
Lloyd-Jones, Toby J.; Roberts, Mark V.; Leek, E. Charles; Fouquet, Nathalie C.; Truchanowicz, Ewa G.
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured – yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects. PMID:23155393
The objects of visuospatial short-term memory: Perceptual organization and change detection.
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.
The objects of visuospatial short-term memory: Perceptual organization and change detection
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369
ERIC Educational Resources Information Center
Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal
2006-01-01
Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…
ERIC Educational Resources Information Center
Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.
2016-01-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…
Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location
ERIC Educational Resources Information Center
Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.
2006-01-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…
ERIC Educational Resources Information Center
Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.
2013-01-01
The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…
3D Printing of Shape Memory Polymers for Flexible Electronic Devices.
Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo
2016-06-01
The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A
2013-09-01
Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.
Villain, Hélène; Benkahoul, Aïcha; Drougard, Anne; Lafragette, Marie; Muzotte, Elodie; Pech, Stéphane; Bui, Eric; Brunet, Alain; Birmes, Philippe; Roullet, Pascal
2016-01-01
Memory reconsolidation impairment using the β-noradrenergic receptor blocker propranolol is a promising novel treatment avenue for patients suffering from pathogenic memories, such as post-traumatic stress disorder (PTSD). However, in order to better inform targeted treatment development, the effects of this compound on memory need to be better characterized via translational research. We examined the effects of systemic propranolol administration in mice undergoing a wide range of behavioral tests to determine more specifically which aspects of the memory consolidation and reconsolidation are impaired by propranolol. We found that propranolol (10 mg/kg) affected memory consolidation in non-aversive tasks (object recognition and object location) but not in moderately (Morris water maze (MWM) to highly (passive avoidance, conditioned taste aversion) aversive tasks. Further, propranolol impaired memory reconsolidation in the most and in the least aversive tasks, but not in the moderately aversive task, suggesting its amnesic effect was not related to task aversion. Moreover, in aquatic object recognition and location tasks in which animals were forced to behave (contrary to the classic versions of the tasks); propranolol did not impair memory reconsolidation. Taken together our results suggest that the memory impairment observed after propranolol administration may result from a modification of the emotional valence of the memory rather than a disruption of the contextual component of the memory trace. This is relevant to the use of propranolol to block memory reconsolidation in individuals with PTSD, as such a treatment would not erase the traumatic memory but only reduce the emotional valence associated with this event. PMID:27014009
Aging, Estrogens, and Episodic Memory in Women
Henderson, Victor W.
2009-01-01
Objective To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. Background Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer's disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. Method Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. Results The natural menopause transition is not associated with objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after about age 60 years does not benefit episodic memory. Clinical trial findings in middle-age women before age 60 are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer's disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. Conclusions Episodic memory is not substantially impacted by the natural menopause transition or improved by use of estrogen-containing hormone therapy after age 60. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures. PMID:19996872
The Case of the Missing Visual Details: Occlusion and Long-Term Visual Memory
ERIC Educational Resources Information Center
Williams, Carrick C.; Burkle, Kyle A.
2017-01-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing…
The Role of Local and Distal Landmarks in the Development of Object Location Memory
ERIC Educational Resources Information Center
Bullens, Jessie; Klugkist, Irene; Postma, Albert
2011-01-01
To locate objects in the environment, animals and humans use visual and nonvisual information. We were interested in children's ability to relocate an object on the basis of self-motion and local and distal color cues for orientation. Five- to 9-year-old children were tested on an object location memory task in which, between presentation and…
When does repeated search in scenes involve memory? Looking AT versus looking FOR objects in scenes
Võ, Melissa L.-H.; Wolfe, Jeremy M.
2014-01-01
One might assume that familiarity with a scene or previous encounters with objects embedded in a scene would benefit subsequent search for those items. However, in a series of experiments we show that this is not the case: When participants were asked to subsequently search for multiple objects in the same scene, search performance remained essentially unchanged over the course of searches despite increasing scene familiarity. Similarly, looking at target objects during previews, which included letter search, 30 seconds of free viewing, or even 30 seconds of memorizing a scene, also did not benefit search for the same objects later on. However, when the same object was searched for again memory for the previous search was capable of producing very substantial speeding of search despite many different intervening searches. This was especially the case when the previous search engagement had been active rather than supported by a cue. While these search benefits speak to the strength of memory-guided search when the same search target is repeated, the lack of memory guidance during initial object searches – despite previous encounters with the target objects - demonstrates the dominance of guidance by generic scene knowledge in real-world search. PMID:21688939
Neural correlates of the object-recall process in semantic memory.
Assaf, Michal; Calhoun, Vince D; Kuzu, Cheedem H; Kraut, Michael A; Rivkin, Paul R; Hart, John; Pearlson, Godfrey D
2006-10-30
The recall of an object from features is a specific operation in semantic memory in which the thalamus and pre-supplementary motor area (pre-SMA) are integrally involved. Other higher-order semantic cortices are also likely to be involved. We used the object-recall-from-features paradigm, with more sensitive scanning techniques and larger sample size, to replicate and extend our previous results. Eighteen right-handed healthy participants performed an object-recall task and an association semantic task, while undergoing functional magnetic resonance imaging. During object-recall, subjects determined whether words pairs describing object features combined to recall an object; during the association task they decided if two words were related. Of brain areas specifically involved in object recall, in addition to the thalamus and pre-SMA, other regions included the left dorsolateral prefrontal cortex, inferior parietal lobule, and middle temporal gyrus, and bilateral rostral anterior cingulate and inferior frontal gyri. These regions are involved in semantic processing, verbal working memory and response-conflict detection and monitoring. The thalamus likely helps to coordinate activity of these different brain areas. Understanding the circuit that normally mediates this process is relevant for schizophrenia, where many regions in this circuit are functionally abnormal and semantic memory is impaired.
When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes.
Võ, Melissa L-H; Wolfe, Jeremy M
2012-02-01
One might assume that familiarity with a scene or previous encounters with objects embedded in a scene would benefit subsequent search for those items. However, in a series of experiments we show that this is not the case: When participants were asked to subsequently search for multiple objects in the same scene, search performance remained essentially unchanged over the course of searches despite increasing scene familiarity. Similarly, looking at target objects during previews, which included letter search, 30 seconds of free viewing, or even 30 seconds of memorizing a scene, also did not benefit search for the same objects later on. However, when the same object was searched for again memory for the previous search was capable of producing very substantial speeding of search despite many different intervening searches. This was especially the case when the previous search engagement had been active rather than supported by a cue. While these search benefits speak to the strength of memory-guided search when the same search target is repeated, the lack of memory guidance during initial object searches-despite previous encounters with the target objects-demonstrates the dominance of guidance by generic scene knowledge in real-world search.
Meilinger, Tobias; Strickrodt, Marianne; Bülthoff, Heinrich H
2016-10-01
Two classes of space define our everyday experience within our surrounding environment: vista spaces, such as rooms or streets which can be perceived from one vantage point, and environmental spaces, for example, buildings and towns which are grasped from multiple views acquired during locomotion. However, theories of spatial representations often treat both spaces as equal. The present experiments show that this assumption cannot be upheld. Participants learned exactly the same layout of objects either within a single room or spread across multiple corridors. By utilizing a pointing and a placement task we tested the acquired configurational memory. In Experiment 1 retrieving memory of the object layout acquired in environmental space was affected by the distance of the traveled path and the order in which the objects were learned. In contrast, memory retrieval of objects learned in vista space was not bound to distance and relied on different ordering schemes (e.g., along the layout structure). Furthermore, spatial memory of both spaces differed with respect to the employed reference frame orientation. Environmental space memory was organized along the learning experience rather than layout intrinsic structure. In Experiment 2 participants memorized the object layout presented within the vista space room of Experiment 1 while the learning procedure emulated environmental space learning (movement, successive object presentation). Neither factor rendered similar results as found in environmental space learning. This shows that memory differences between vista and environmental space originated mainly from the spatial compartmentalization which was unique to environmental space learning. Our results suggest that transferring conclusions from findings obtained in vista space to environmental spaces and vice versa should be made with caution. Copyright © 2016 Elsevier B.V. All rights reserved.
Event memory and moving in a well-known environment.
Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A; Copeland, David E
2013-11-01
Research in narrative comprehension has repeatedly shown that when people read about characters moving in well-known environments, the accessibility of object information follows a spatial gradient. That is, the accessibility of objects is best when they are in the same room as the protagonist, and it becomes worse the farther away they are see, e.g., Morrow, Greenspan, & Bower, (Journal of Memory and Language, 26, 165-187, 1987). In the present study, we assessed this finding using an interactive environment in which we had people memorize a map and navigate a virtual simulation of the area. During navigation, people were probed with pairs of object names and indicated whether both objects were in the same room. In contrast to the narrative studies described above, several experiments showed no evidence of a clear spatial gradient. Instead, memory for objects in currently occupied locations (e.g., the location room) was more accessible, especially after a small delay, but no clear decline was evident in the accessibility of information in memory with increased distance. Also, memory for objects along the pathway of movement (i.e., rooms that a person only passed through) showed a transitory suppression effect that was present immediately after movement, but attenuated over time. These results were interpreted in light of the event horizon model of event cognition.
Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments.
Leiderman, Eduardo A; Strejilevich, Sergio A
2004-06-01
Object and spatial visual working memory are impaired in schizophrenic patients. It is not clear if the impairments reside in each memory subsystem alone or also in the central executive component that coordinates these processes. In order to elucidate which memory component is impaired, we developed a paradigm with single spatial and object working memory tasks and dual ones with two different delays (5 and 30 s). Fifteen schizophrenic patients and 14 control subjects performed these tests. Schizophrenic patients had a poorer performance compared to normal controls in all tasks and in all time delays. Both schizophrenics and controls performed significantly worse in the object task than in the spatial task. The performance was even worse in the dual task compared to the singles ones in schizophrenic patients but not in controls. These data suggest that visuospatial performance deficits in schizophrenia are due to both visuospatial memory subsystems impairments and central executive ones. The pattern of deficits observed points to a codification or evocation deficit and not to a maintenance one.
Conversion of short-term to long-term memory in the novel object recognition paradigm
Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.
2013-01-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143
Conversion of short-term to long-term memory in the novel object recognition paradigm.
Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G
2013-10-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Root, James C; Ryan, Elizabeth; Barnett, Gregory; Andreotti, Charissa; Bolutayo, Kemi; Ahles, Tim
2015-05-01
While forgetfulness is widely reported by breast cancer survivors, studies documenting objective memory performance yield mixed, largely inconsistent, results. Failure to find consistent, objective memory issues may be due to the possibility that cancer survivors misattribute their experience of forgetfulness to primary memory issues rather than to difficulties in attention at the time of learning. To clarify potential attention issues, factor scores for Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory were analyzed for the California Verbal Learning Test-Second Edition (CVLT-II) in 64 clinically referred breast cancer survivors with self-reported cognitive complaints; item analysis was conducted to clarify specific contributors to observed effects, and contrasts between learning and recall trials were compared with normative data. Performance on broader cognitive domains is also reported. The Attention Span factor, but not Learning Efficiency, Delayed Memory, or Inaccurate Memory factors, was significantly affected in this clinical sample. Contrasts between trials were consistent with normative data and did not indicate greater loss of information over time than in the normative sample. Results of this analysis suggest that attentional dysfunction may contribute to subjective and objective memory complaints in breast cancer survivors. These results are discussed in the context of broader cognitive effects following treatment for clinicians who may see cancer survivors for assessment. Copyright © 2014 John Wiley & Sons, Ltd.
van Weelden, Lisanne; Schilperoord, Joost; Swerts, Marc; Pecher, Diane
2015-01-01
Visual information contributes fundamentally to the process of object categorization. The present study investigated whether the degree of activation of visual information in this process is dependent on the contextual relevance of this information. We used the Proactive Interference (PI-release) paradigm. In four experiments, we manipulated the information by which objects could be categorized and subsequently be retrieved from memory. The pattern of PI-release showed that if objects could be stored and retrieved both by (non-perceptual) semantic and (perceptual) shape information, then shape information was overruled by semantic information. If, however, semantic information could not be (satisfactorily) used to store and retrieve objects, then objects were stored in memory in terms of their shape. The latter effect was found to be strongest for objects from identical semantic categories.
A role for the CAMKK pathway in visual object recognition memory.
Tinsley, Chris J; Narduzzo, Katherine E; Brown, Malcolm W; Warburton, E Clea
2012-03-01
The role of the CAMKK pathway in object recognition memory was investigated. Rats' performance in a preferential object recognition test was examined after local infusion into the perirhinal cortex of the CAMKK inhibitor STO-609. STO-609 infused either before or immediately after acquisition impaired memory tested after a 24 h but not a 20-min delay. Memory was not impaired when STO-609 was infused 20 min after acquisition. The expression of a downstream reaction product of CAMKK was measured by immunohistochemical staining for phospho-CAMKI(Thr177) at 10, 40, 70, and 100 min following the viewing of novel and familiar images of objects. Processing familiar images resulted in more pCAMKI stained neurons in the perirhinal cortex than processing novel images at the 10- and 40-min delays. Prior infusion of STO-609 caused a reduction in pCAMKI stained neurons in response to viewing either novel or familiar images, consistent with its role as an inhibitor of CAMKK. The results establish that the CAMKK pathway within the perirhinal cortex is important for the consolidation of object recognition memory. The activation of pCAMKI after acquisition is earlier than previously reported for pCAMKII. Copyright © 2011 Wiley Periodicals, Inc.
Structural correlates of subjective and objective memory performance in multiple sclerosis.
Pardini, Matteo; Bergamino, Maurizio; Bommarito, Giulia; Bonzano, Laura; Luigi Mancardi, Gian; Roccatagliata, Luca
2014-04-01
Subjective and objective memory deficits represent a frequent and ill-understood aspect of multiple sclerosis (MS), and a significant cause of disability and quality of life reduction. The aim of the study is to verify the role of hippocampal and temporal associative fibers' damage in MS-related memory complaints. To reach this aim, 25 patients with low disability relapsing-remitting MS and 19 healthy controls were included in the study. All subjects underwent 3D T1 structural imaging and Diffusion Tensor Imaging. Additionally, MS patients underwent neuropsychological evaluation of objective (Selective Reminding Test and Spatial Recall Test) and of subjective (Perceived Deficit Questionnaire, Retrospective and Prospective Memory Subscales) memory deficits. Normalized hippocampal volume (NHV) and mean Fractional Anisotropy (FA) for the uncinate fasciculus (UF) and for the ventral division of the cingulum bundle (VCB) were calculated for all subjects. We showed that, compared to controls, MS subjects presented with reduced right NHV and with reduced mean FA bilaterally in the UF and the VCB. In the MS group, verbal memory scores correlated with left NHV, spatial memory scores correlated with right NHV, while perceived retrospective and prospective memory deficits correlated with left VCB and left UF mean FA respectively. Our data confirm an early involvement of memory-related brain structures in MS patients. Our data suggest that verbal and nonverbal memory as well as perceived retrospective and prospective memory deficits are related to alterations of discrete anatomical structures in the low-disability phase of MS. Copyright © 2013 Wiley Periodicals, Inc.
Cunningham, Tony J.; Chambers, Alexis M.; Payne, Jessica D.
2014-01-01
Successful prospective memory is necessarily driven by an expectation that encoded information will be relevant in the future, leading to its preferential placement in memory storage. Like expectation, emotional salience is another type of cue that benefits human memory formation. Although separate lines of research suggest that both emotional information and information explicitly expected to be important in the future benefit memory consolidation, it is unknown how expectation affects the processing of emotional information and whether sleep, which is known to maximize memory consolidation, plays a critical role. The purpose of this study was to investigate how expectation would impact the consolidation of emotionally salient content, and whether this impact would differ across delays of sleep and wake. Participants encoded scenes containing an emotionally charged negative or neutral foreground object placed on a plausible neutral background. After encoding, half of the participants were informed they would later be tested on the scenes (expected condition), while the other half received no information about the test (unexpected condition). At recognition, following a 12-h delay of sleep or wakefulness, the scene components (objects and backgrounds) were presented separately and one at a time, and participants were asked to determine if each component was old or new. Results revealed a greater disparity for memory of negative objects over their paired neutral backgrounds for both the sleep and wake groups when the memory test was expected compared to when it was unexpected, while neutral memory remained unchanged. Analyzing each group separately, the wake group showed a threefold increase in the magnitude of this object/background trade-off for emotional scenes when the memory test was expected compared to when it was unexpected, while those who slept performed similarly across conditions. These results suggest that emotional salience and expectation cues interact to benefit emotional memory consolidation during a delay of wakefulness. The sleeping brain, however, may automatically tag emotionally salient information as important, such that explicit instruction of an upcoming memory test does not further improve memory performance. PMID:25136328
Kessels, Roy P C; Meulenbroek, Olga; Fernández, Guillén; Olde Rikkert, Marcel G M
2010-09-01
Mild Cognitive Impairment (MCI) is characterized by episodic memory deficits, while aspects of working memory may also be implicated, but studies into this latter domain are scarce and results are inconclusive. Using a computerized search paradigm, this study compares 25 young adults, 25 typically aging older adults and 15 amnestic MCI patients as to their working-memory capacities for object-location information and potential differential effects of memory load and additional context cues. An age-related deficit in visuospatial working-memory maintenance was found that became more pronounced with increasing task demands. The MCI group additionally showed reduced maintenance of bound information, i.e., object-location associations, again especially at elevated memory load. No effects of contextual cueing were found. The current findings indicate that working memory should be considered when screening patients for suspected MCI and monitoring its progression.
Variability in memory performance in aged healthy individuals: an fMRI study.
Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W
2003-01-01
Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.
Fabry-Perot confocal resonator optical associative memory
NASA Astrophysics Data System (ADS)
Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.
1993-03-01
A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M
2010-01-01
Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.
Attention to Attributes and Objects in Working Memory
Cowan, Nelson; Blume, Christopher L.; Saults, J. Scott
2013-01-01
It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence of appropriate mathematical models to estimate the number of items in working memory in different stimulus conditions. We re-examined working memory limits in two experiments with a wide array of conditions involving color and shape attributes, relying on a set of new models to fit various stimulus situations. In Experiment 2, a new procedure allowed identical retrieval conditions across different conditions of attention at encoding. The results show that multiple attributes compete for attention, but that retaining the binding between attributes is accomplished only by retaining the attributes themselves. We propose a theoretical account in which a fixed object capacity limit contains within it the possibility of the incomplete retention of object attributes, depending on the direction of attention. PMID:22905929
Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D
2016-09-15
Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
Attention to Attributes and Objects in Working Memory
ERIC Educational Resources Information Center
Cowan, Nelson; Blume, Christopher L.; Saults, J. Scott
2013-01-01
It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence…
USDA-ARS?s Scientific Manuscript database
Objective Previously, four months of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aged rats. Experiment 1 determined whether one and two-month BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the d...
Intersensory Redundancy and Seven-Month-Old Infants' Memory for Arbitrary Syllable-Object Relations.
ERIC Educational Resources Information Center
Gogate, Lakshmi J.; Bahrick, Lorraine E.
Seven-month-old infants require redundant information such as temporal synchrony to learn arbitrary syllable-object relations. Infants learned the relations between spoken syllables, /a/ and /i/, and two moving objects only when temporal synchrony was present during habituation. Two experiments examined infants' memory for these relations. In…
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
Attentive Tracking Disrupts Feature Binding in Visual Working Memory
Fougnie, Daryl; Marois, René
2009-01-01
One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460
ERIC Educational Resources Information Center
Rusli, Yazmin Ahmad; Montgomery, James W.
2017-01-01
Purpose: The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Method:…
ERIC Educational Resources Information Center
Lejbak, Lisa; Vrbancic, Mirna; Crossley, Margaret
2009-01-01
This study extends Duff and Hampson's [Duff, S., & Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. "Brain and Cognition, 47," 470-493] finding of a sex-related difference in favor of females for an object location memory task. Twenty female and 20 male undergraduate students performed both manual and…
ERIC Educational Resources Information Center
Vergauwe, Evie; Cowan, Nelson
2015-01-01
We compared two contrasting hypotheses of how multifeatured objects are stored in visual working memory (vWM); as integrated objects or as independent features. A new procedure was devised to examine vWM representations of several concurrently held objects and their features and our main measure was reaction time (RT), allowing an examination of…
ERIC Educational Resources Information Center
Moore, M. Keith; Meltzoff, Andrew N.
2004-01-01
Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the…
Voss, Joel L; Galvan, Ashley; Gonsalves, Brian D
2011-12-01
Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during retrieval. For example, learning in non-laboratory settings generally involves active exploration of memoranda, thus requiring the generation of action plans for behavior and the use of strategies deployed to improve subsequent memory performance. Is information pertaining to action planning and strategic processing retained and reactivated during retrieval? To address this question, we compared ERP correlates of memory retrieval for objects that had been studied in an active manner involving action planning and strategic processing to those for objects that had been studied passively. Memory performance was superior for actively studied objects, and unique ERP retrieval correlates for these objects were identified when subjects remembered the specific spatial locations at which objects were studied. Early-onset frontal shifts in ERP correlates of retrieval were noted for these objects, which parallel the recruitment of frontal cortex during learning object locations previously identified using fMRI with the same paradigm. Notably, ERPs during recall for items studied with a specific viewing strategy localized to the same supplementary motor cortex region previously identified with fMRI when this strategy was implemented during study, suggesting rapid reactivation of regions directly involved in strategic action planning. Collectively, these results implicate neural populations involved in learning in important retrieval functions, even for those populations involved in strategic control and action planning. Notably, these episodic features are not generally reported during recollective experiences, suggesting that reactivation is a more general property of memory retrieval that extends beyond those fragments of perceptual information that might be needed to re-live the past. Copyright © 2011 Elsevier Ltd. All rights reserved.
Model-Driven Study of Visual Memory
2004-12-01
dimensional stimuli (synthetic human faces ) afford important insights into episodic recognition memory. The results were well accommodated by a summed...the unusual properties of the z-transformed ROCS. 15. SUBJECT TERMS Memory, visual memory, computational model, human memory, faces , identity 16...3 Accomplishments/New Findings 3 Work on Objective One: Recognition Memory for Synthetic Faces . 3 Experim ent 1
ERIC Educational Resources Information Center
Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.
2013-01-01
Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation.…
Malkova, Ludise; Mishkin, Mortimer
2003-03-01
In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.
Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.
Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto
2011-01-01
The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.
Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit
Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto
2011-01-01
The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory. PMID:22163318
Dennett, Hugh W; McKone, Elinor; Tavashmi, Raka; Hall, Ashleigh; Pidcock, Madeleine; Edwards, Mark; Duchaine, Bradley
2012-06-01
Many research questions require a within-class object recognition task matched for general cognitive requirements with a face recognition task. If the object task also has high internal reliability, it can improve accuracy and power in group analyses (e.g., mean inversion effects for faces vs. objects), individual-difference studies (e.g., correlations between certain perceptual abilities and face/object recognition), and case studies in neuropsychology (e.g., whether a prosopagnosic shows a face-specific or object-general deficit). Here, we present such a task. Our Cambridge Car Memory Test (CCMT) was matched in format to the established Cambridge Face Memory Test, requiring recognition of exemplars across view and lighting change. We tested 153 young adults (93 female). Results showed high reliability (Cronbach's alpha = .84) and a range of scores suitable both for normal-range individual-difference studies and, potentially, for diagnosis of impairment. The mean for males was much higher than the mean for females. We demonstrate independence between face memory and car memory (dissociation based on sex, plus a modest correlation between the two), including where participants have high relative expertise with cars. We also show that expertise with real car makes and models of the era used in the test significantly predicts CCMT performance. Surprisingly, however, regression analyses imply that there is an effect of sex per se on the CCMT that is not attributable to a stereotypical male advantage in car expertise.
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
The pupil as an indicator of unconscious memory: Introducing the pupil priming effect.
Gomes, Carlos Alexandre; Montaldi, Daniela; Mayes, Andrew
2015-06-01
We explored whether object behavioral priming and pupil changes occur in the absence of recognition memory. Experiment 1 found behavioral priming for unrecognized objects (Ms) regardless of whether they had been encoded perceptually or conceptually. Using the same perceptual encoding task, Experiment 2 showed greater pupil dilation for Ms than for correct rejections of unstudied objects (CRs) when reaction times were matched. In Experiment 3, there was relatively less pupil dilation for Ms than for similarly matched CRs when objects had been encoded conceptually. Mean/peak pupil dilation for CRs, but not Ms, increased in Experiment 3, in which novelty expectation was also reduced, and the pupillary time course for both Ms and CRs was distinct in the two experiments. These findings indicate that both behavioral and pupil memory occur for studied, but unrecognized stimuli, and suggest that encoding and novelty expectation modulate pupillary memory responses. © 2015 Society for Psychophysiological Research.
Shimizu, Kimiko; Phan, Trongha; Mansuy, Isabelle; Storm, Daniel R.
2007-01-01
Summary Because activation of Erk1/2 MAP kinase (MAPK) is critical for hippocampus-dependent memory, there is considerable interest in mechanisms for regulation of MAPK during memory formation. Here we report that MAPK and CREB-mediated transcription are negatively regulated by SCOP (SCN Circadian Oscillatory Protein) and that SCOP is proteolyzed by calpain when hippocampal neurons are stimulated by BDNF, KCl depolarization, or NMDA. Moreover, training for novel object memory decreases SCOP in the hippocampus. To determine if hippocampus-dependent memory is influenced by SCOP in vivo, we generated a transgenic mouse strain for the inducible overexpression of SCOP in the forebrain. Overexpression of SCOP completely blocked memory for novel objects. We conclude that degradation of SCOP by calpain contributes to activation of MAPK during memory formation. PMID:17382888
Noradrenergic Mechanisms of Arousal’s Bidirectional Effects on Episodic Memory
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2016-01-01
Arousal’s selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal’s bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball−1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball−1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball−1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. PMID:27815214
Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno
2015-01-01
Stress-induced activation of the hypothalamo–pituitary–adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604
Noradrenergic mechanisms of arousal's bidirectional effects on episodic memory.
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2017-01-01
Arousal's selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal's bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball-1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball-1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball-1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. Copyright © 2016 Elsevier Inc. All rights reserved.
Bohbot, Véronique D.; Allen, John J. B.; Dagher, Alain; Dumoulin, Serge O.; Evans, Alan C.; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus. PMID:26283949
Lee, Inah; Park, Seong-Beom
2013-01-01
Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.
Visual memory performance for color depends on spatiotemporal context.
Olivers, Christian N L; Schreij, Daniel
2014-10-01
Performance on visual short-term memory for features has been known to depend on stimulus complexity, spatial layout, and feature context. However, with few exceptions, memory capacity has been measured for abruptly appearing, single-instance displays. In everyday life, objects often have a spatiotemporal history as they or the observer move around. In three experiments, we investigated the effect of spatiotemporal history on explicit memory for color. Observers saw a memory display emerge from behind a wall, after which it disappeared again. The test display then emerged from either the same side as the memory display or the opposite side. In the first two experiments, memory improved for intermediate set sizes when the test display emerged in the same way as the memory display. A third experiment then showed that the benefit was tied to the original motion trajectory and not to the display object per se. The results indicate that memory for color is embedded in a richer episodic context that includes the spatiotemporal history of the display.
Bozon, Bruno; Davis, Sabrina; Laroche, Serge
2003-11-13
Recent research has revived interest in the possibility that previously consolidated memories need to reconsolidate when recalled to return to accessible long-term memory. Evidence suggests that both consolidation and reconsolidation of certain types of memory require protein synthesis, but whether similar molecular mechanisms are involved remains unclear. Here, we explore whether zif268, an activity-dependent inducible immediate early gene (IEG) required for consolidation of new memories, is also recruited for reconsolidation of recognition memory following reactivation. We show that when a consolidated memory for objects is recalled, zif268 mutant mice are impaired in further long-term but not short-term recognition memory. The impairment is specific to reactivation with the previously memorized objects in the relevant context, occurs in delayed recall, and does not recover over several days. These findings indicate that IEG-mediated transcriptional regulation in neurons is one common molecular mechanism for the storage of newly formed and reactivated recognition memories.
Event Boundaries in Perception Affect Memory Encoding and Updating
Swallow, Khena M.; Zacks, Jeffrey M.; Abrams, Richard A.
2010-01-01
Memory for naturalistic events over short delays is important for visual scene processing, reading comprehension, and social interaction. The research presented here examined relations between how an ongoing activity is perceptually segmented into events and how those events are remembered a few seconds later. In several studies participants watched movie clips that presented objects in the context of goal-directed activities. Five seconds after an object was presented, the clip paused for a recognition test. Performance on the recognition test depended on the occurrence of perceptual event boundaries. Objects that were present when an event boundary occurred were better recognized than other objects, suggesting that event boundaries structure the contents of memory. This effect was strongest when an object’s type was tested, but was also observed for objects’ perceptual features. Memory also depended on whether an event boundary occurred between presentation and test; this variable produced complex interactive effects that suggested that the contents of memory are updated at event boundaries. These data indicate that perceptual event boundaries have immediate consequences for what, when, and how easily information can be remembered. PMID:19397382
Retro-cue benefits in working memory without sustained focal attention.
Rerko, Laura; Souza, Alessandra S; Oberauer, Klaus
2014-07-01
In working memory (WM) tasks, performance can be boosted by directing attention to one memory object: When a retro-cue in the retention interval indicates which object will be tested, responding is faster and more accurate (the retro-cue benefit). We tested whether the retro-cue benefit in WM depends on sustained attention to the cued object by inserting an attention-demanding interruption task between the retro-cue and the memory test. In the first experiment, the interruption task required participants to shift their visual attention away from the cued representation and to a visual classification task on colors. In the second and third experiments, the interruption task required participants to shift their focal attention within WM: Attention was directed away from the cued representation by probing another representation from the memory array prior to probing the cued object. The retro-cue benefit was not attenuated by shifts of perceptual attention or by shifts of attention within WM. We concluded that sustained attention is not needed to maintain the cued representation in a state of heightened accessibility.
Marneweck, Michelle; Barany, Deborah A; Santello, Marco; Grafton, Scott T
2018-05-16
Anticipatory load forces for dexterous object manipulation in humans are modulated based on visual object property cues, sensorimotor memories of previous experiences with the object, and, when digit positioning varies from trial to trial, the integrating of this sensed variability with force modulation. Studies of the neural representations encoding these anticipatory mechanisms have not considered these mechanisms separately from each other or from feedback mechanisms emerging after lift onset. Here, representational similarity analyses of fMRI data were used to identify neural representations of sensorimotor memories and the sensing and integration of digit position. Cortical activity and movement kinematics were measured as 20 human subjects (11 women) minimized tilt of a symmetrically shaped object with a concealed asymmetric center of mass (CoM, left and right sided). This task required generating compensatory torques in opposite directions, which, without helpful visual CoM cues, relied primarily on sensorimotor memories of the same object and CoM. Digit position was constrained or unconstrained, the latter of which required modulating forces beyond what can be recalled from sensorimotor memories to compensate for digit position variability. Ventral premotor (PMv), somatosensory, and cerebellar lobule regions (CrusII, VIIIa) were sensitive to anticipatory behaviors that reflect sensorimotor memory content, as shown by larger voxel pattern differences for unmatched than matched CoM conditions. Cerebellar lobule I-IV, Broca area 44, and PMv showed greater voxel pattern differences for unconstrained than constrained grasping, which suggests their sensitivity to monitor the online coincidence of planned and actual digit positions and correct for a mismatch by force modulation. SIGNIFICANCE STATEMENT To pick up a water glass without slipping, tipping, or spilling requires anticipatory planning of fingertip load forces before the lift commences. This anticipation relies on object visual properties (e.g., mass/mass distribution), sensorimotor memories built from previous experiences (especially when object properties cannot be inferred visually), and online sensing of where the digits are positioned. There is limited understanding of how the brain represents each of these anticipatory mechanisms. We used fMRI measures of regional brain patterns and digit position kinematics before lift onset of an object with nonsalient visual cues specifically to isolate sensorimotor memories and integration of sensed digit position with force modulation. In doing so, we localized neural representations encoding these anticipatory mechanisms for dexterous object manipulation. Copyright © 2018 the authors 0270-6474/18/384724-14$15.00/0.
Hayes, Scott M; Nadel, Lynn; Ryan, Lee
2007-01-01
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory. (c) 2007 Wiley-Liss, Inc.
Discourse accessibility constraints in children’s processing of object relative clauses
Haendler, Yair; Kliegl, Reinhold; Adani, Flavia
2015-01-01
Children’s poor performance on object relative clauses has been explained in terms of intervention locality. This approach predicts that object relatives with a full DP head and an embedded pronominal subject are easier than object relatives in which both the head noun and the embedded subject are full DPs. This prediction is shared by other accounts formulated to explain processing mechanisms. We conducted a visual-world study designed to test the off-line comprehension and on-line processing of object relatives in German-speaking 5-year-olds. Children were tested on three types of object relatives, all having a full DP head noun and differing with respect to the type of nominal phrase that appeared in the embedded subject position: another full DP, a 1st- or a 3rd-person pronoun. Grammatical skills and memory capacity were also assessed in order to see whether and how they affect children’s performance. Most accurately processed were object relatives with 1st-person pronoun, independently of children’s language and memory skills. Performance on object relatives with two full DPs was overall more accurate than on object relatives with 3rd-person pronoun. In the former condition, children with stronger grammatical skills accurately processed the structure and their memory abilities determined how fast they were; in the latter condition, children only processed accurately the structure if they were strong both in their grammatical skills and in their memory capacity. The results are discussed in the light of accounts that predict different pronoun effects like the ones we find, which depend on the referential properties of the pronouns. We then discuss which role language and memory abilities might have in processing object relatives with various embedded nominal phrases. PMID:26157410
Effects of Acute Cortisol Administration on Perceptual Priming of Trauma-Related Material
Streb, Markus; Pfaltz, Monique; Michael, Tanja
2014-01-01
Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support the idea that administration of cortisol might be an effective treatment strategy in reducing intrusive reexperiencing. PMID:25192334
Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp
2012-01-01
Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.
Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects.
Leonard, Timothy K; Hoffman, Kari L
2017-01-23
The hippocampus plays an important role in memory for events that are distinct in space and time. One of the strongest, most synchronous neural signals produced by the hippocampus is the sharp-wave ripple (SWR), observed in a variety of mammalian species during offline behaviors, such as slow-wave sleep [1-3] and quiescent waking and pauses in exploration [4-8], leading to long-standing and widespread theories of its contribution to plasticity and memory during these inactive or immobile states [9-14]. Indeed, during sleep and waking inactivity, hippocampal SWRs in rodents appear to support spatial long-term and working memory [4, 15-23], but so far, they have not been linked to memory in primates. More recently, SWRs have been observed during active, visual scene exploration in macaques [24], opening up the possibility that these active-state ripples in the primate hippocampus are linked to memory for objects embedded in scenes. By measuring hippocampal SWRs in macaques during search for scene-contextualized objects, we found that SWR rate increased with repeated presentations. Furthermore, gaze during SWRs was more likely to be near the target object on repeated than on novel presentations, even after accounting for overall differences in gaze location with scene repetition. This proximity bias with repetition occurred near the time of target object detection for remembered targets. The increase in ripple likelihood near remembered visual objects suggests a link between ripples and memory in primates; specifically, SWRs may reflect part of a mechanism supporting the guidance of search based on past experience. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early handling effect on female rat spatial and non-spatial learning and memory.
Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla
2014-03-01
This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.
Buttafuoco, Arianna; Pedale, Tiziana; Buchanan, Tony W; Santangelo, Valerio
2018-02-01
Emotional events are thought to have privileged access to attention and memory, consuming resources needed to encode competing emotionally neutral stimuli. However, it is not clear whether this detrimental effect is automatic or depends on the successful maintenance of the specific emotional object within working memory. Here, participants viewed everyday scenes including an emotional object among other neutral objects followed by a free-recollection task. Results showed that emotional objects-irrespective of their perceptual saliency-were recollected more often than neutral objects. The probability of being recollected increased as a function of the arousal of the emotional objects, specifically for negative objects. Successful recollection of emotional objects (positive or negative) from a scene reduced the overall number of recollected neutral objects from the same scene. This indicates that only emotional stimuli that are efficient in grabbing (and then consuming) available attentional resources play a crucial role during the encoding of competing information, with a subsequent bias in the recollection of neutral representations.
Liu, Jianlin; Abdin, Edimansyah; Vaingankar, Janhavi A; Shafie, Saleha B; Jeyagurunathan, Anitha; Shahwan, Shazana; Magadi, Harish; Ng, Li Ling; Chong, Siow Ann; Subramaniam, Mythily
2017-11-01
Previous research has studied the relationships among unawareness of memory impairment, depression, and dementia in older adults with severe dementia, but it has not considered the associations and clinical implications at earlier stages of memory impairment. This study therefore sought to examine the relationship among unawareness of memory impairment, depression, and dementia in older adults with memory impairment in Singapore. The participants were 751 older adults with memory impairment in Singapore. They were assessed for objective and subjective memory loss, depression, and dementia severity. Participants' subjective memory loss was determined based on a self-appraisal question on memory, and their objective memory loss was calculated based on their performance on three cognitive tasks. Unawareness was assessed based on the contrast between subjective and objective memory loss. Descriptive statistics revealed a high prevalence of unawareness (80.4%). Logistic regression analysis revealed that gender and marital status were significantly associated with unawareness. Men (odds ratio (OR) = 2.5) and those who were divorced or separated (OR = 23.0) were more likely to be unaware than women and those who were married, respectively. After chronic conditions and demographic characteristics were controlled for, multivariate logistic regression analyses revealed that older adults with depression were less likely (OR = 0.2) to be unaware than those without depression. Unawareness was also related with dementia severity; older adults with questionable (OR = 0.3) and mild dementia (OR = 0.4) were less likely to be unaware than someone without dementia. Unawareness of memory impairment was common among older adults with memory impairment. However, unawareness may be the result of denial as a strategy for coping with memory loss of which the older adult is aware. Psychological care should be integrated into the overall treatment management of dementia to mitigate the possible risk of depression while increasing individual awareness of memory loss. © 2017 Japanese Psychogeriatric Society.
Retrospective attention in short-term memory has a lasting effect on long-term memory across age.
Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey
2018-04-13
Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.
Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima
2016-04-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions.
Khani, Abbas; Rainer, Gregor
2012-07-01
Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates. Copyright © 2012 Elsevier B.V. All rights reserved.
Independent effects of colour on object identification and memory.
Lloyd-Jones, Toby J; Nakabayashi, Kazuyo
2009-02-01
We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.
Seek and you shall remember: Scene semantics interact with visual search to build better memories
Draschkow, Dejan; Wolfe, Jeremy M.; Võ, Melissa L.-H.
2014-01-01
Memorizing critical objects and their locations is an essential part of everyday life. In the present study, incidental encoding of objects in naturalistic scenes during search was compared to explicit memorization of those scenes. To investigate if prior knowledge of scene structure influences these two types of encoding differently, we used meaningless arrays of objects as well as objects in real-world, semantically meaningful images. Surprisingly, when participants were asked to recall scenes, their memory performance was markedly better for searched objects than for objects they had explicitly tried to memorize, even though participants in the search condition were not explicitly asked to memorize objects. This finding held true even when objects were observed for an equal amount of time in both conditions. Critically, the recall benefit for searched over memorized objects in scenes was eliminated when objects were presented on uniform, non-scene backgrounds rather than in a full scene context. Thus, scene semantics not only help us search for objects in naturalistic scenes, but appear to produce a representation that supports our memory for those objects beyond intentional memorization. PMID:25015385
Behavioral model of visual perception and recognition
NASA Astrophysics Data System (ADS)
Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.
1993-09-01
In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.
Temporal dynamics of encoding, storage and reallocation of visual working memory
Bays, Paul M; Gorgoraptis, Nikos; Wee, Natalie; Marshall, Louise; Husain, Masud
2012-01-01
The process of encoding a visual scene into working memory has previously been studied using binary measures of recall. Here we examine the temporal evolution of memory resolution, based on observers’ ability to reproduce the orientations of objects presented in brief, masked displays. Recall precision was accurately described by the interaction of two independent constraints: an encoding limit that determines the maximum rate at which information can be transferred into memory, and a separate storage limit that determines the maximum fidelity with which information can be maintained. Recall variability decreased incrementally with time, consistent with a parallel encoding process in which visual information from multiple objects accumulates simultaneously in working memory. No evidence was observed for a limit on the number of items stored. Cueing one display item with a brief flash led to rapid development of a recall advantage for that item. This advantage was short-lived if the cue was simply a salient visual event, but was maintained if it indicated an object of particular relevance to the task. These cueing effects were observed even for items that had already been encoded into memory, indicating that limited memory resources can be rapidly reallocated to prioritize salient or goal-relevant information. PMID:21911739
Kelemen, Eduard; Bahrendt, Marie; Born, Jan; Inostroza, Marion
2014-01-01
We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions. © 2014 Wiley Periodicals, Inc. PMID:24596244
Temporal dynamics of encoding, storage, and reallocation of visual working memory.
Bays, Paul M; Gorgoraptis, Nikos; Wee, Natalie; Marshall, Louise; Husain, Masud
2011-09-12
The process of encoding a visual scene into working memory has previously been studied using binary measures of recall. Here, we examine the temporal evolution of memory resolution, based on observers' ability to reproduce the orientations of objects presented in brief, masked displays. Recall precision was accurately described by the interaction of two independent constraints: an encoding limit that determines the maximum rate at which information can be transferred into memory and a separate storage limit that determines the maximum fidelity with which information can be maintained. Recall variability decreased incrementally with time, consistent with a parallel encoding process in which visual information from multiple objects accumulates simultaneously in working memory. No evidence was observed for a limit on the number of items stored. Cuing one display item with a brief flash led to rapid development of a recall advantage for that item. This advantage was short-lived if the cue was simply a salient visual event but was maintained if it indicated an object of particular relevance to the task. These cuing effects were observed even for items that had already been encoded into memory, indicating that limited memory resources can be rapidly reallocated to prioritize salient or goal-relevant information.
Enhancing long-term memory with stimulation tunes visual attention in one trial.
Reinhart, Robert M G; Woodman, Geoffrey F
2015-01-13
Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.
The role of object categories in hybrid visual and memory search
Cunningham, Corbin A.; Wolfe, Jeremy M.
2014-01-01
In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054
Binding among select episodic elements is altered via active short-term retrieval.
Bridge, Donna J; Voss, Joel L
2015-08-01
Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. © 2015 Bridge and Voss; Published by Cold Spring Harbor Laboratory Press.
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions.
Drowos, David B; Berryhill, Marian; André, Jessica M; Olson, Ingrid R
2010-07-01
There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Here we assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Two patients with bilateral PPC damage and a group of matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. The patients exhibited significantly lower levels of false memory to words. One patient showed significantly elevated levels of false memory to pictures. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. PPC damage causes decreased levels of false memories and an abnormal Remember/Know profile. Their false memory rate is similar to the rate exhibited by patients with medial temporal lobe damage. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection.
Glucocorticoid effects on object recognition memory require training-associated emotional arousal.
Okuda, Shoki; Roozendaal, Benno; McGaugh, James L
2004-01-20
Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.
Memory Age Identity as a predictor of cognitive function in the elderly: A 2-year follow-up study.
Chang, Ki Jung; Hong, Chang Hyung; Lee, Yun Hwan; Chung, Young Ki; Lim, Ki Young; Noh, Jai Sung; Kim, Jin-Ju; Kim, Haena; Kim, Hyun-Chung; Son, Sang Joon
2018-01-01
There is a growing interest in finding psychosocial predictors related to cognitive function. In our previous research, we conducted a cross-sectional study on memory age identity (MAI) and found that MAI might be associated with objective cognitive performance in non-cognitively impaired elderly. A longitudinal study was conducted to better understand the importance of MAI as a psychosocial predictor related to objective cognitive function. Data obtained from 1345 Korean subjects aged 60 years and above were analyzed. During the two-year follow-up, subjective memory age was assessed on three occasions using the following question: How old do you feel based on your memory? Discrepancy between subjective memory age and chronological age was then calculated. We defined this value as 'memory age identity (MAI)'. A generalized estimating equation (GEE) was then obtained to demonstrate the relationship between MAI and Korean version-Mini Mental State Examination (K-MMSE) score over the 2 years of study. MAI was found to significantly (β=-0.03, p< 0.0001) predict objective cognitive performance in the non-cognitively impaired elderly. MAI may be a potential psychosocial predictor related to objective cognitive performance in the non-cognitively impaired elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Guidance of Attention to Objects and Locations by Long-Term Memory of Natural Scenes
ERIC Educational Resources Information Center
Becker, Mark W.; Rasmussen, Ian P.
2008-01-01
Four flicker change-detection experiments demonstrate that scene-specific long-term memory guides attention to both behaviorally relevant locations and objects within a familiar scene. Participants performed an initial block of change-detection trials, detecting the addition of an object to a natural scene. After a 30-min delay, participants…
Modeling recall memory for emotional objects in Alzheimer's disease.
Sundstrøm, Martin
2011-07-01
To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.
Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age
ERIC Educational Resources Information Center
Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta
2015-01-01
Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…
Episodic memory impairment in Addison's disease: results from a telephonic cognitive assessment.
Henry, Michelle; Thomas, Kevin G F; Ross, Ian L
2014-06-01
Patients with Addison's disease frequently self-report memory and attention difficulties, even when on standard replacement therapy. However, few published studies examine, using objective measures and assessing across multiple domains, the cognitive functioning of Addison's disease patients relative to healthy controls. The primary aim of this study was to investigate whether the previously reported subjective cognitive deficits in Addison's disease are confirmed by objective measures. Conducting comprehensive neuropsychological assessments of patients with relatively rare clinical disorders, such as Addison's disease, is challenging because access to those patients is often limited, and because their medical condition might prevent extended testing sessions. Brief telephonic cognitive assessments are a useful tool in such circumstances. Hence, we administered the Brief Test of Adult Cognition by Telephone to 27 Addison's disease patients and 27 matched healthy controls. The instrument provides objective assessment of episodic memory, working memory, executive functioning, reasoning, and speed of processing. Statistical analyses confirmed that, as expected, patients performed significantly more poorly than controls on the episodic memory subtest. There were, however, no significant between-group differences on the attention, executive functioning, reasoning, and speed of processing subtests. Furthermore, patients with a longer duration of illness performed more poorly across all domains of cognition. We conclude that, for Addison's disease patients, previously reported subjective cognitive deficits are matched by objective impairment, but only in the domain of episodic memory. Future research might investigate (a) whether these memory deficits are material-specific (i.e., whether non-verbal memory is also affected), and (b) the neurobiological mechanisms underlying these deficits.
Tinsley, C J; Narduzzo, K E; Ho, J W; Barker, G R; Brown, M W; Warburton, E C
2009-09-01
The aim was to investigate the role of calcium-calmodulin-dependent protein kinase (CAMK)II in object recognition memory. The performance of rats in a preferential object recognition test was examined after local infusion of the CAMKII inhibitors KN-62 or autocamtide-2-related inhibitory peptide (AIP) into the perirhinal cortex. KN-62 or AIP infused after acquisition impaired memory tested at 24 h, indicating an involvement of CAMKII in the consolidation of recognition memory. Memory was impaired when KN-62 was infused at 20 min after acquisition or when AIP was infused at 20, 40, 60 or 100 min after acquisition. The time-course of CAMKII activation in rats was further examined by immunohistochemical staining for phospho-CAMKII(Thre286)alpha at 10, 40, 70 and 100 min following the viewing of novel and familiar images. At 70 min, processing novel images resulted in more phospho-CAMKII(Thre286)alpha-stained neurons in the perirhinal cortex than did the processing of familiar images, consistent with the viewing of novel images increasing the activity of CAMKII at this time. This difference was eliminated by prior infusion of AIP. These findings establish that CAMKII is active within the perirhinal region between approximately 20 and 100 min following learning and then returns to baseline. Thus, increased CAMKII activity is essential for the consolidation of long-term object recognition memory but continuation of that increased activity throughout the 24 h memory delay is not necessary for maintenance of the memory.
The relation between navigation strategy and associative memory: An individual differences approach.
Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R
2016-04-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).
Havens: Explicit Reliable Memory Regions for HPC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
2016-01-01
Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less
Memory reactivation during rest supports upcoming learning of related content.
Schlichting, Margaret L; Preston, Alison R
2014-11-04
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face-object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal-neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal-neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes.
Memory reactivation during rest supports upcoming learning of related content
Schlichting, Margaret L.; Preston, Alison R.
2014-01-01
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face–object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal–neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal–neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes. PMID:25331890
Cholinergic Manipulations Bidirectionally Regulate Object Memory Destabilization
ERIC Educational Resources Information Center
Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew; Winters, Boyer D.
2015-01-01
Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established…
Optical Associative Processors For Visual Perception"
NASA Astrophysics Data System (ADS)
Casasent, David; Telfer, Brian
1988-05-01
We consider various associative processor modifications required to allow these systems to be used for visual perception, scene analysis, and object recognition. For these applications, decisions on the class of the objects present in the input image are required and thus heteroassociative memories are necessary (rather than the autoassociative memories that have been given most attention). We analyze the performance of both associative processors and note that there is considerable difference between heteroassociative and autoassociative memories. We describe associative processors suitable for realizing functions such as: distortion invariance (using linear discriminant function memory synthesis techniques), noise and image processing performance (using autoassociative memories in cascade with with a heteroassociative processor and with a finite number of autoassociative memory iterations employed), shift invariance (achieved through the use of associative processors operating on feature space data), and the analysis of multiple objects in high noise (which is achieved using associative processing of the output from symbolic correlators). We detail and provide initial demonstrations of the use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive associative processors.
Interactions between visual working memory representations.
Bae, Gi-Yeul; Luck, Steven J
2017-11-01
We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.
Seven-month-old infants chunk items in memory
Moher, Mariko; Tuerk, Arin S.; Feigenson, Lisa
2012-01-01
Although working memory has a highly constrained capacity limit of 3 to 4 items, both adults and toddlers can increase the total amount of stored information by chunking object representations in memory. To examine the developmental origins of chunking, we used a violation-of-expectation procedure to ask whether 7-month-old infants, whose working memory capacity is still maturing, also can chunk items in memory. In Experiment 1 we found that in the absence of chunking cues, infants failed to remember 3 identical hidden objects. In Experiments 2 and 3 we found that infants successfully remembered 3 hidden objects when provided with overlapping spatial and featural chunking cues. In Experiment 4 we found that infants did not chunk when provided with either spatial or featural chunking cues alone. Finally, in Experiment 5 we found that infants also failed to chunk when spatial and featural cues specified different chunks (i.e., were pitted against each other). Taken together, these results suggest that chunking is available before working memory capacity has matured, but still may undergo important development over the first year of life. PMID:22575845
Sexual orientation and spatial position effects on selective forms of object location memory.
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-04-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M
2016-02-01
Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this impairment was largely reversed at 24-h. Animals in the high-dose NTP (20mg/kg/day) group were impaired at both short- and long-term intervals. Activity levels, used as an index of location memory during the ORT, demonstrated that rats receiving DMI were again impaired at retaining memory for location. DMI dose-dependently disrupts LTP in the dentate gyrus of anesthetized rats and also disrupts memory for tests of spatial memory when administered for long periods. Copyright © 2016 Elsevier Inc. All rights reserved.
Reichel, Carmela M.; Gilstrap, Meghin G.; Ramsey, Lauren A.; See, Ronald E.
2013-01-01
Background Chronic methamphetamine (meth) abuse in humans can lead to various cognitive deficits, including memory loss. We previously showed that chronic meth self-administration impairs memory for objects relative to their location and surrounding objects. Here, we demonstrate that the cognitive enhancer, modafinil, reversed this cognitive impairment independent of glutamate N-methyl d-aspartate (GluN) receptor expression. Methods Male, Long-Evans rats underwent a noncontingent (Experiment 1) or contingent (Experiment 2) meth regimen. After one week of abstinence, rats were tested for object-in-place recognition memory. Half the rats received either vehicle or modafinil (100 mg/kg) immediately after object familiarization. Rats (Experiment 2) were sacrificed immediately after the test and brain areas that comprise the key circuitry for object in place performance were manually dissected. Subsequently, glutamate receptor expression was measured from a crude membrane fraction using western blot procedures. Results Saline-treated rats spent more time interacting with the objects in changed locations, while meth-treated rats distributed their time equally among all objects. Meth-treated rats that received modafinil showed a reversal in the deficit, whereby they spent more time exploring the objects in the new locations. GluN2B receptor subtype was decreased in the perirhinal cortex, yet remained unaffected in the prefrontal cortex and hippocampus of meth rats. This meth-induced down regulation occurred whether or not meth experienced rats received vehicle or modafinil. Conclusions These data support the use of modafinil for memory impairment in meth addiction. Further studies are needed to elucidate the neural mechanisms of modafinil reversal of cognitive impairments. PMID:24120858
Cooling Atomic Gases With Disorder
Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; ...
2015-12-10
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. Here in this paper, we propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approachmore » the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.« less
Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M
2012-09-14
We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).
Strongly interacting Sarma superfluid near orbital Feshbach resonances
NASA Astrophysics Data System (ADS)
Zou, Peng; He, Lianyi; Liu, Xia-Ji; Hu, Hui
2018-04-01
We investigate the nature of superfluid pairing in a strongly interacting Fermi gas near orbital Feshbach resonances with spin-population imbalance in three dimensions, which can be well described by a two-band or two-channel model. We show that a Sarma superfluid with gapless single-particle excitations is favored in the closed channel at large imbalance. It is thermodynamically stable against the formation of an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov superfluid and features a well-defined Goldstone-Anderson-Bogoliubov phonon mode and a massive Leggett mode as collective excitations at low momentum. At large momentum, the Leggett mode disappears and the phonon mode becomes damped at zero temperature, due to the coupling to the particle-hole excitations. We discuss possible experimental observation of a strongly interacting Sarma superfluid with ultracold alkaline-earth-metal Fermi gases.
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
Conscious experience and episodic memory: hippocampus at the crossroads.
Behrendt, Ralf-Peter
2013-01-01
If an instance of conscious experience of the seemingly objective world around us could be regarded as a newly formed event memory, much as an instance of mental imagery has the content of a retrieved event memory, and if, therefore, the stream of conscious experience could be seen as evidence for ongoing formation of event memories that are linked into episodic memory sequences, then unitary conscious experience could be defined as a symbolic representation of the pattern of hippocampal neuronal firing that encodes an event memory - a theoretical stance that may shed light into the mind-body and binding problems in consciousness research. Exceedingly detailed symbols that describe patterns of activity rapidly self-organizing, at each cycle of the θ rhythm, in the hippocampus are instances of unitary conscious experience that jointly constitute the stream of consciousness. Integrating object information (derived from the ventral visual stream and orbitofrontal cortex) with contextual emotional information (from the anterior insula) and spatial environmental information (from the dorsal visual stream), the hippocampus rapidly forms event codes that have the informational content of objects embedded in an emotional and spatiotemporally extending context. Event codes, formed in the CA3-dentate network for the purpose of their memorization, are not only contextualized but also allocentric representations, similarly to conscious experiences of events and objects situated in a seemingly objective and observer-independent framework of phenomenal space and time. Conscious perception, creating the spatially and temporally extending world that we perceive around us, is likely to be evolutionarily related to more fleeting and seemingly internal forms of conscious experience, such as autobiographical memory recall, mental imagery, including goal anticipation, and to other forms of externalized conscious experience, namely dreaming and hallucinations; and evidence pointing to an important contribution of the hippocampus to these conscious phenomena will be reviewed.
The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.
Silvis, Jeroen D; Belopolsky, Artem V; Murris, Jozua W I; Donk, Mieke
2015-01-01
Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.
The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture
Silvis, Jeroen D.; Belopolsky, Artem V.; Murris, Jozua W. I.; Donk, Mieke
2015-01-01
Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection. PMID:26566137
Memory and visual search in naturalistic 2D and 3D environments
Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.
2016-01-01
The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769
ERIC Educational Resources Information Center
Sprondel, Volker; Kipp, Kerstin H.; Mecklinger, Axel
2011-01-01
Event-related potential (ERP) correlates of item and source memory were assessed in 18 children (7-8 years), 20 adolescents (13-14 years), and 20 adults (20-29 years) performing a continuous recognition memory task with object and nonobject stimuli. Memory performance increased with age and was particularly low for source memory in children. The…
The role of memory for visual search in scenes
Võ, Melissa Le-Hoa; Wolfe, Jeremy M.
2014-01-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. While a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. PMID:25684693
The role of memory for visual search in scenes.
Le-Hoa Võ, Melissa; Wolfe, Jeremy M
2015-03-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. Although a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. © 2015 New York Academy of Sciences.
Interidentity memory transfer in dissociative identity disorder.
Kong, Lauren L; Allen, John J B; Glisky, Elizabeth L
2008-08-01
Controversy surrounding dissociative identity disorder (DID) has focused on conflicting findings regarding the validity and nature of interidentity amnesia, illustrating the need for objective methods of examining amnesia that can discriminate between explicit and implicit memory transfer. In the present study, the authors used a cross-modal manipulation designed to mitigate implicit memory effects. Explicit memory transfer between identities was examined in 7 DID participants and 34 matched control participants. After words were presented to one identity auditorily, the authors tested another identity for memory of those words in the visual modality using an exclusion paradigm. Despite self-reported interidentity amnesia, memory for experimental stimuli transferred between identities. DID patients showed no superior ability to compartmentalize information, as would be expected with interidentity amnesia. The cross-modal nature of the test makes it unlikely that memory transfer was implicit. These findings demonstrate that subjective reports of interidentity amnesia are not necessarily corroborated by objective tests of explicit memory transfer. Copyright (c) 2008 APA, all rights reserved.
Wang, Bo; Sun, Bukuan
2017-03-01
The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.
Object permanence and working memory in cats (Felis catus).
Goulet, S; Doré, F Y; Rousseau, R
1994-10-01
Cats (Felis catus) find an object when it is visibly moved behind a succession of screens. However, when the object is moved behind a container and is invisibly transferred from the container to the back of a screen, cats try to find the object at or near the container rather than at the true hiding place. Four experiments were conducted to study search behavior and working memory in visible and invisible displacement tests of object permanence. Experiment 1 compared performance in single and in double visible displacement trials. Experiment 2 analyzed search behavior in invisible displacement tests and in analogs using a transparent container. Experiments 3 and 4 tested predictions made from Experiment 1 and 2 in a new situation of object permanence. Results showed that only the position changes that cats have directly perceived are encoded and activated in working memory, because they are unable to represent or infer invisible movements.
The effects of eye movements on emotional memories: using an objective measure of cognitive load
van Veen, Suzanne C.; Engelhard, Iris M.; van den Hout, Marcel A.
2016-01-01
Background Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The working memory (WM) theory explains its efficacy: recall of an aversive memory and making eye movements (EM) both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. Objective We hypothesized that 1) recall of an aversive autobiographical memory loads WM compared to no recall, and 2) recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM). Method Undergraduates (N=108) were randomly assigned to one of three conditions: 1) recall relevant memory with EM, 2) recall relevant memory without EM, and 3) recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s), and after (16×24 s) the intervention. Results Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Conclusions Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory. Highlights of the article Recall of an aversive autobiographical memory is a cognitive demanding task. The vividness and emotionality of an aversive memory decrease more after recall with eye movements than after only recall or only cognitive effort (i.e., recall of an irrelevant memory with eye movements). The cognitive load of recalling the memory does not immediately reduce after recall with eye movements compared to only recall or only cognitive effort. Intervention duration is positively related to memory effects. PMID:27387845
Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis
ERIC Educational Resources Information Center
Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.
2007-01-01
This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…
The Benefit of Surface Uniformity for Encoding Boundary Features in Visual Working Memory
ERIC Educational Resources Information Center
Kim, Sung-Ho; Kim, Jung-Oh
2011-01-01
Using a change detection paradigm, the present study examined an object-based encoding benefit in visual working memory (VWM) for two boundary features (two orientations in Experiments 1-2 and two shapes in Experiments 3-4) assigned to a single object. Participants remembered more boundary features when they were conjoined into a single object of…
Cross-cultural variation of memory colors of familiar objects.
Smet, Kevin A G; Lin, Yandan; Nagy, Balázs V; Németh, Zoltan; Duque-Chica, Gloria L; Quintero, Jesús M; Chen, Hung-Shing; Luo, Ronnier M; Safi, Mahdi; Hanselaer, Peter
2014-12-29
The effect of cross-regional or cross-cultural differences on color appearance ratings and memory colors of familiar objects was investigated in seven different countries/regions - Belgium, Hungary, Brazil, Colombia, Taiwan, China and Iran. In each region the familiar objects were presented on a calibrated monitor in over 100 different colors to a test panel of observers that were asked to rate the similarity of the presented object color with respect to what they thought the object looks like in reality (memory color). For each object and region the mean observer ratings were modeled by a bivariate Gaussian function. A statistical analysis showed significant (p < 0.001) differences between the region average observers and the global average observer obtained by pooling the data from all regions. However, the effect size of geographical region or culture was found to be small. In fact, the differences between the region average observers and the global average observer were found to of the same magnitude or smaller than the typical within region inter-observer variability. Thus, although statistical differences in color appearance ratings and memory between regions were found, regional impact is not likely to be of practical importance.
How we categorize objects is related to how we remember them: The shape bias as a memory bias
Vlach, Haley A.
2016-01-01
The “shape bias” describes the phenomenon that, after a certain point in development, children and adults generalize object categories based upon shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N = 72) and adults' (N = 240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than they were the color and size of objects. Taken together, this work suggests the development of a shape bias may engender better memory for shape information. PMID:27454236
Learning Is Better with the Hands Free: The Role of Posture in the Memory of Manipulable Objects.
Dutriaux, Léo; Gyselinck, Valérie
2016-01-01
Grounded cognition proposes that memory shares processing resources with sensorimotor systems. The aim of the present study was to show that motor simulation participates in the conceptual representation of manipulable objects in long-term memory. In two experiments, lists of manipulable and nonmanipulable objects were presented. Participants were instructed to memorize the items while adopting different postures. In the control condition, they had to keep their hands at rest in front of them. In the interference condition, participants had to keep their hands crossed behind their back to make their hands less free for action. After each list, participants had to perform first a distractive task, and then an oral free recall. The results showed that the interfering posture produced a specific decrease in the recall of manipulable objects, but not of nonmanipulable ones. This decrease was similar when the items were presented as pictures (Experiment 1) or as words (Experiment 2), thus excluding a purely visual effect. These results provide strong evidence that the motor simulation plays a role in the memory trace of the object.
How we categorize objects is related to how we remember them: The shape bias as a memory bias.
Vlach, Haley A
2016-12-01
The "shape bias" describes the phenomenon that, after a certain point in development, children and adults generalize object categories based on shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N=72) and adults' (N=240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than the color and size of objects. Taken together, this work suggests that the development of a shape bias may engender better memory for shape information. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of the Dorsal Hippocampus in Object Memory Load
ERIC Educational Resources Information Center
Sannino, Sara; Russo, Fabio; Torromino, Giulia; Pendolino, Valentina; Calabresi, Paolo; De Leonibus, Elvira
2012-01-01
The dorsal hippocampus is crucial for mammalian spatial memory, but its exact role in item memory is still hotly debated. Recent evidence in humans suggested that the hippocampus might be selectively involved in item short-term memory to deal with an increasing memory load. In this study, we sought to test this hypothesis. To this aim we developed…
ERIC Educational Resources Information Center
Lansdale, Mark W.; Oliff, Lynda; Baguley, Thom S.
2005-01-01
The authors investigated whether memory for object locations in pictures could be exploited to address known difficulties of designing query languages for picture databases. M. W. Lansdale's (1998) model of location memory was adapted to 4 experiments observing memory for everyday pictures. These experiments showed that location memory is…
Reconsolidation of Episodic Memories: A Subtle Reminder Triggers Integration of New Information
ERIC Educational Resources Information Center
Hupbach, Almut; Gomez, Rebecca; Hardt, Oliver; Nadel, Lynn
2007-01-01
Recent demonstrations of "reconsolidation" suggest that memories can be modified when they are reactivated. Reconsolidation has been observed in human procedural memory and in implicit memory in infants. This study asks whether episodic memory undergoes reconsolidation. College students learned a list of objects on Day 1. On Day 2, they received a…
Bias effects in the possible/impossible object decision test with matching objects.
Soldan, Anja; Hilton, H John; Stern, Yaakov
2009-03-01
In the possible/impossible object decision test, priming has consistently been found for structurally possible, but not impossible, objects, leading Schacter, Cooper, and Delaney (1990) to suggest that priming relies on a system that represents the global 3-D structure of objects. Using a modified design with matching objects to control for the influence of episodic memory, Ratcliff and McKoon (1995) and Williams and Tarr (1997) found negative priming for impossible objects (i.e., lower performance for old than for new items). Both teams argued that priming derives from (1) episodic memory for object features and (2) bias to respond "possible" to encoded objects or their possible parts. The present study applied the matched-objects design to the original Schacter and Cooper stimuli-same possible objects and matching impossible figures-with minimal procedural variation. The data from Experiment 1 only partially supported the bias models and suggested that priming was mediated by both local and global structural descriptions. Experiment 2 showed that negative priming for impossible objects derived from the structural properties of these objects, not from the influence of episodic memory on task performance. Supplemental materials for this study may be downloaded from mc.psychonomic-journals.org/content/supplemental.
Stress Disrupts Context-Dependent Memory
ERIC Educational Resources Information Center
Schwabe, Lars; Bohringer, Andreas; Wolf, Oliver T.
2009-01-01
Memory is facilitated when the retrieval context resembles the learning context. The brain structures underlying contextual influences on memory are susceptible to stress. Whether stress interferes with context-dependent memory is still unknown. We exposed healthy adults to stress or a control procedure before they learned an object-location task…
The effect of evaluation on co-occurrence memory judgement.
Bar-Anan, Yoav; Amzaleg-David, Efrat
2014-01-01
Three experiments tested the effect of an attitude towards an object on the memory judgement of whether this object co-occurred with positive versus negative stimuli. We induced positive or negative attitudes towards novel male stimuli, and paired each man with an equal number of positive and negative animals. In a memory test, participants reported more co-occurrences of same-valence man/animal pairs than opposite-valence pairs. This valence-compatibility effect occurred even when attitudes were induced after the pairing (Experiment 1), when participants knew that each man occurred with an equal number of positive and negative animals (Experiment 2), and in reports of clear memory of pairs that did not co-occur (Experiment 3). The present findings suggest that evaluation causes illusory correlation even when the co-occurring stimuli are not traits or behaviours attributed to the attitude object. The results question the validity of co-occurrence memory judgements as measures of co-occurrence awareness in evaluative conditioning (EC) research.
Gilchrist, Amanda L; Duarte, Audrey; Verhaeghen, Paul
2016-01-01
Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were presented either with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an uninformative, neutral cue. Although older adults were less accurate overall, both age groups benefited from the presentation of an informative, feature-based cue relative to a neutral cue. Surprisingly, we also observed differences in the effectiveness of shape versus color cues and their effects upon post-cue memory load. These results suggest that older adults can use top-down attention to remove irrelevant items from visual working memory, provided that task-relevant features function as cues.
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.
2015-01-01
Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123
The neural basis of precise visual short-term memory for complex recognisable objects.
Veldsman, Michele; Mitchell, Daniel J; Cusack, Rhodri
2017-10-01
Recent evidence suggests that visual short-term memory (VSTM) capacity estimated using simple objects, such as colours and oriented bars, may not generalise well to more naturalistic stimuli. More visual detail can be stored in VSTM when complex, recognisable objects are maintained compared to simple objects. It is not yet known if it is recognisability that enhances memory precision, nor whether maintenance of recognisable objects is achieved with the same network of brain regions supporting maintenance of simple objects. We used a novel stimulus generation method to parametrically warp photographic images along a continuum, allowing separate estimation of the precision of memory representations and the number of items retained. The stimulus generation method was also designed to create unrecognisable, though perceptually matched, stimuli, to investigate the impact of recognisability on VSTM. We adapted the widely-used change detection and continuous report paradigms for use with complex, photographic images. Across three functional magnetic resonance imaging (fMRI) experiments, we demonstrated greater precision for recognisable objects in VSTM compared to unrecognisable objects. This clear behavioural advantage was not the result of recruitment of additional brain regions, or of stronger mean activity within the core network. Representational similarity analysis revealed greater variability across item repetitions in the representations of recognisable, compared to unrecognisable complex objects. We therefore propose that a richer range of neural representations support VSTM for complex recognisable objects. Copyright © 2017 Elsevier Inc. All rights reserved.
Klinghammer, Mathias; Blohm, Gunnar; Fiehler, Katja
2017-01-01
Previous research has shown that egocentric and allocentric information is used for coding target locations for memory-guided reaching movements. Especially, task-relevance determines the use of objects as allocentric cues. Here, we investigated the influence of scene configuration and object reliability as a function of task-relevance on allocentric coding for memory-guided reaching. For that purpose, we presented participants images of a naturalistic breakfast scene with five objects on a table and six objects in the background. Six of these objects served as potential reach-targets (= task-relevant objects). Participants explored the scene and after a short delay, a test scene appeared with one of the task-relevant objects missing, indicating the location of the reach target. After the test scene vanished, participants performed a memory-guided reaching movement toward the target location. Besides removing one object from the test scene, we also shifted the remaining task-relevant and/or task-irrelevant objects left- or rightwards either coherently in the same direction or incoherently in opposite directions. By varying object coherence, we manipulated the reliability of task-relevant and task-irrelevant objects in the scene. In order to examine the influence of scene configuration (distributed vs. grouped arrangement of task-relevant objects) on allocentric coding, we compared the present data with our previously published data set (Klinghammer et al., 2015). We found that reaching errors systematically deviated in the direction of object shifts, but only when the objects were task-relevant and their reliability was high. However, this effect was substantially reduced when task-relevant objects were distributed across the scene leading to a larger target-cue distance compared to a grouped configuration. No deviations of reach endpoints were observed in conditions with shifts of only task-irrelevant objects or with low object reliability irrespective of task-relevancy. Moreover, when solely task-relevant objects were shifted incoherently, the variability of reaching endpoints increased compared to coherent shifts of task-relevant objects. Our results suggest that the use of allocentric information for coding targets for memory-guided reaching depends on the scene configuration, in particular the average distance of the reach target to task-relevant objects, and the reliability of task-relevant allocentric information. PMID:28450826
Klinghammer, Mathias; Blohm, Gunnar; Fiehler, Katja
2017-01-01
Previous research has shown that egocentric and allocentric information is used for coding target locations for memory-guided reaching movements. Especially, task-relevance determines the use of objects as allocentric cues. Here, we investigated the influence of scene configuration and object reliability as a function of task-relevance on allocentric coding for memory-guided reaching. For that purpose, we presented participants images of a naturalistic breakfast scene with five objects on a table and six objects in the background. Six of these objects served as potential reach-targets (= task-relevant objects). Participants explored the scene and after a short delay, a test scene appeared with one of the task-relevant objects missing, indicating the location of the reach target. After the test scene vanished, participants performed a memory-guided reaching movement toward the target location. Besides removing one object from the test scene, we also shifted the remaining task-relevant and/or task-irrelevant objects left- or rightwards either coherently in the same direction or incoherently in opposite directions. By varying object coherence, we manipulated the reliability of task-relevant and task-irrelevant objects in the scene. In order to examine the influence of scene configuration (distributed vs. grouped arrangement of task-relevant objects) on allocentric coding, we compared the present data with our previously published data set (Klinghammer et al., 2015). We found that reaching errors systematically deviated in the direction of object shifts, but only when the objects were task-relevant and their reliability was high. However, this effect was substantially reduced when task-relevant objects were distributed across the scene leading to a larger target-cue distance compared to a grouped configuration. No deviations of reach endpoints were observed in conditions with shifts of only task-irrelevant objects or with low object reliability irrespective of task-relevancy. Moreover, when solely task-relevant objects were shifted incoherently, the variability of reaching endpoints increased compared to coherent shifts of task-relevant objects. Our results suggest that the use of allocentric information for coding targets for memory-guided reaching depends on the scene configuration, in particular the average distance of the reach target to task-relevant objects, and the reliability of task-relevant allocentric information.
Wang, Zhenshan; Phan, Trongha; Storm, Daniel R.
2011-01-01
Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3−/− mice for several forms of learning and memory. Here, we report that AC3−/− mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociated passive avoidance (TDPA). Since AC3 is exclusively expressed in primary cilia we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory including extinction of contextual fear conditioning. PMID:21490195
Wang, Zhenshan; Phan, Trongha; Storm, Daniel R
2011-04-13
Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.
Kim, Bumhwi; Ban, Sang-Woo; Lee, Minho
2013-10-01
Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Core Knowledge Architecture of Visual Working Memory
ERIC Educational Resources Information Center
Wood, Justin N.
2011-01-01
Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…
Chen, Xuqian; Yang, Wei; Ma, Lijun; Li, Jiaxin
2018-01-01
Recent findings have shown that information about changes in an object's environmental location in the context of discourse is stored in working memory during sentence comprehension. However, in these studies, changes in the object's location were always consistent with world knowledge (e.g., in “The writer picked up the pen from the floor and moved it to the desk,” the floor and the desk are both common locations for a pen). How do people accomplish comprehension when the object-location information in working memory is inconsistent with world knowledge (e.g., a pen being moved from the floor to the bathtub)? In two visual world experiments, with a “look-and-listen” task, we used eye-tracking data to investigate comprehension of sentences that described location changes under different conditions of appropriateness (i.e., the object and its location were typically vs. unusually coexistent, based on world knowledge) and antecedent context (i.e., contextual information that did vs. did not temporarily normalize unusual coexistence between object and location). Results showed that listeners' retrieval of the critical location was affected by both world knowledge and working memory, and the effect of world knowledge was reduced when the antecedent context normalized unusual coexistence of object and location. More importantly, activation of world knowledge and working memory seemed to change during the comprehension process. These results are important because they demonstrate that interference between world knowledge and information in working memory, appears to be activated dynamically during sentence comprehension. PMID:29520249
Collins, Barbara; Paquet, Lise; Dominelli, Rachelle; White, Amanda; MacKenzie, Joyce
2017-01-01
The purpose of this study was to determine if a deficit in metamemory could account for the disparity between subjective and objective measures of memory function commonly observed in patients with breast cancer (BC). Metamemory refers to the awareness and management of one's own memory function. It is considered an aspect of executive functioning, one of the most common areas of cognitive compromise associated with BC and its treatment. Fifty-four women with early stage BC who had recently completed chemotherapy were compared with 54 healthy women matched on age and education. Cognitive function was objectively assessed with a neuropsychological test battery and subjectively assessed with the Functional Assessment of Cancer Therapy Cognitive Scale. Metamemory was assessed with a Feeling of Knowing (FOK) paradigm. The patients with BC scored significantly lower than the controls on both the objective and subjective cognitive measures, as well as on free recall and recognition conditions of the FOK, suggesting some decline in primary memory functions such as working memory, encoding, and retrieval. The discrepancy between the objective and subjective measures was larger in the patients with BC than in the controls, but there was no difference between the groups on the FOK metamemory index. Discrepancy in objective and subjective measures of cognition in patients with BC cannot be accounted for in terms of a deficit in meta-cognition. Objective and subjective measures are complementary, and a comprehensive cognitive assessment in patients with BC requires both. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Chen, Xuqian; Yang, Wei; Ma, Lijun; Li, Jiaxin
2018-01-01
Recent findings have shown that information about changes in an object's environmental location in the context of discourse is stored in working memory during sentence comprehension. However, in these studies, changes in the object's location were always consistent with world knowledge (e.g., in "The writer picked up the pen from the floor and moved it to the desk," the floor and the desk are both common locations for a pen). How do people accomplish comprehension when the object-location information in working memory is inconsistent with world knowledge (e.g., a pen being moved from the floor to the bathtub)? In two visual world experiments, with a "look-and-listen" task, we used eye-tracking data to investigate comprehension of sentences that described location changes under different conditions of appropriateness (i.e., the object and its location were typically vs. unusually coexistent, based on world knowledge) and antecedent context (i.e., contextual information that did vs. did not temporarily normalize unusual coexistence between object and location). Results showed that listeners' retrieval of the critical location was affected by both world knowledge and working memory, and the effect of world knowledge was reduced when the antecedent context normalized unusual coexistence of object and location. More importantly, activation of world knowledge and working memory seemed to change during the comprehension process. These results are important because they demonstrate that interference between world knowledge and information in working memory, appears to be activated dynamically during sentence comprehension.
d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania
2014-01-01
Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index that we present here for the first time, the recognition index (RI), which quantifies the ability of an animal to recognize a same object at different time points and that, by taking into account the basal individual preferences displayed during the training, can give a more accurate measure of an animal's actual recognition memory.
Rapid effects of estrogens on short-term memory: Possible mechanisms.
Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena
2018-06-01
Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.
Kelly, Aine; Laroche, Serge; Davis, Sabrina
2003-06-15
Consolidation and reconsolidation of long-term memory have been shown to be dependent on the synthesis of new proteins, but the specific molecular mechanisms underlying these events remain to be elucidated. The mitogen-activated protein kinase (MAPK) pathway can trigger genomic responses in neurons, leading to changes in protein synthesis, and several studies have identified its pivotal role in synaptic plasticity and long-term memory formation. In this study, we analyze the involvement of this pathway in the consolidation and reconsolidation of long-term recognition memory, using an object recognition task. We show that inhibition of the MAPK pathway by intracerebroventricular injection of the MEK [MAPK/extracellular signal-regulated kinase (ERK)] inhibitor UO126 blocks consolidation of object recognition memory but does not affect short-term memory. Brain regions of the entorhinal cortex-hippocampal circuitry were analyzed for ERK activation, and it was shown that consolidation of recognition memory was associated with increased phosphorylation of ERK in the dentate gyrus and entorhinal cortex, although total expression of ERK was unchanged. We also report that inhibition of the MAPK pathway blocks reconsolidation of recognition memory, and this was shown to be dependent on reactivation of the memory trace by brief reexposure to the objects. In addition, reconsolidation of memory was associated with an increase in the phosphorylation of ERK in entorhinal cortex and CA1. In summary, our data show that the MAPK kinase pathway is required for both consolidation and reconsolidation of long-term recognition memory, and that this is associated with hyperphosphorylation of ERK in different subregions of the entorhinal cortex-hippocampal circuitry.
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.
2014-01-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F
2015-02-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
Berti, Stefan
2016-01-01
The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP) and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1) trials in which an object was repeated and (2) trials in which a switch to a new object was required in order to perform the task. Object-switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing). These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself. PMID:26779009
Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.
Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo
2016-10-06
Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Sujeong; Hilton, Sam; Alves, João Nuno; Saksida, Lisa M; Bussey, Timothy; Matthews, Russell T; Kitagawa, Hiroshi; Spillantini, Maria Grazia; Kwok, Jessica C F; Fawcett, James W
2017-11-01
Chondroitin sulfate proteoglycans (CSPGs) are the main active component of perineuronal nets (PNNs). Digestion of the glycosaminoglycan chains of CSPGs with chondroitinase ABC or transgenic attenuation of PNNs leads to prolongation of object recognition memory and activation of various forms of plasticity in the adult central nervous system. The inhibitory properties of the CSPGs depend on the pattern of sulfation of their glycosaminoglycans, with chondroitin 4-sulfate (C4S) being the most inhibitory form. In this study, we tested a number of candidates for functional blocking of C4S, leading to selection of an antibody, Cat316, which specifically recognizes C4S and blocks its inhibitory effects on axon growth. It also partly blocks binding of semaphorin 3A to PNNs and attenuates PNN formation. We asked whether injection of Cat316 into the perirhinal cortex would have the same effects on memory as chondroitinase ABC treatment. We found that masking C4S with the Cat316 antibody extended long-term object recognition memory in normal wild-type mice to 24 hours, similarly to chondroitinase or transgenic PNN attenuation. We then tested Cat316 for restoration of memory in a neurodegeneration model. Mice expressing tau with the P301S mutation showed profound loss of object recognition memory at 4 months of age. Injection of Cat316 into the perirhinal cortex normalized object recognition at 3 hours in P301S mice. These data indicate that Cat316 binding to C4S in the extracellular matrix can restore plasticity and memory in the same way as chondroitinase ABC digestion. Our results suggest that antibodies to C4S could be a useful therapeutic to restore memory function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition
Gagnepain, Pierre; Henson, Richard N.; Anderson, Michael C.
2014-01-01
Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546
The role of eye fixation in memory enhancement under stress - An eye tracking study.
Herten, Nadja; Otto, Tobias; Wolf, Oliver T
2017-04-01
In a stressful situation, attention is shifted to potentially relevant stimuli. Recent studies from our laboratory revealed that participants stressed perform superior in a recognition task involving objects of the stressful episode. In order to characterize the role of a stress induced alteration in visual exploration, the present study investigated whether participants experiencing a laboratory social stress situation differ in their fixation from participants of a control group. Further, we aimed at shedding light on the relation of fixation behaviour with obtained memory measures. We randomly assigned 32 male and 31 female participants to a control or a stress condition consisting of the Trier Social Stress Test (TSST), a public speaking paradigm causing social evaluative threat. In an established 'friendly' control condition (f-TSST) participants talk to a friendly committee. During both conditions, the committee members used ten office items (central objects) while another ten objects were present without being used (peripheral objects). Participants wore eye tracking glasses recording their fixations. On the next day, participants performed free recall and recognition tasks involving the objects present the day before. Stressed participants showed enhanced memory for central objects, accompanied by longer fixation times and larger fixation amounts on these objects. Contrasting this, fixation towards the committee faces showed the reversed pattern; here, control participants exhibited longer fixations. Fixation indices and memory measures were, however, not correlated with each other. Psychosocial stress is associated with altered fixation behaviour. Longer fixation on objects related to the stressful situation may reflect enhanced encoding, whereas diminished face fixation suggests gaze avoidance of aversive, socially threatening stimuli. Modified visual exploration should be considered in future stress research, in particular when focussing on memory for a stressful episode. Copyright © 2017 Elsevier Inc. All rights reserved.
Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T
2017-11-01
Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.
A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia
Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.
2014-01-01
We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896
Villar, María Eugenia; Martinez, María Cecilia; Lopes da Cunha, Pamela; Ballarini, Fabricio; Viola, Haydee
2017-02-01
With the aim of analyzing if object recognition long-term memory (OR-LTM) formation is susceptible to retroactive interference (RI), we submitted rats to sequential sample sessions using the same arena but changing the identity of a pair of objects placed in it. Separate groups of animals were tested in the arena in order to evaluate the LTM for these objects. Our results suggest that OR-LTM formation was retroactively interfered within a critical time window by the exploration of a new, but not familiar, object. This RI acted on the consolidation of the object explored in the first sample session because its OR-STM measured 3h after training was not affected, whereas the OR-LTM measured at 24h was impaired. This sample session also impaired the expression of OR memory when it took place before the test. Moreover, local inactivation of the dorsal Hippocampus (Hp) or the medial Prefrontal Cortex (mPFC) previous to the exploration of the second pair of objects impaired their consolidation restoring the LTM for the objects explored in the first session. This data suggests that both brain regions are involved in the processing of OR-memory and also that if those regions are engaged in another process before finishing the first consolidation process its LTM will be impaired by RI. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi; Chang, Han Soo
1988-01-01
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.
Watson, Debbie; Meineck, Chloe; Lancaster, Beth
2018-05-01
This article presents an innovative project to develop and trial a prototype product called 'trove' to start to address challenges identified regarding current practice of life story work with children who are looked after and adopted. trove is a digitally enhanced memory box that utilises raspberry pi (a small single board computer) and radio-frequency identification (RFID) technologies to enable children to record their memories and to attach these to their precious objects using an electronic tag: providing a safe 'container' for their mementoes and memories. Located in theories of narrative identity and object attachment and drawing on Brodinsky's concept of communicative openness, we describe the children's engagements in the design and report the results of a small trial of 10 troves with adopted children in England.
First Words and First Memories
ERIC Educational Resources Information Center
Morrison, Catriona M.; Conway, Martin A.
2010-01-01
In two experiments autobiographical memories from childhood were recalled to cue words naming common objects, locations, activities and emotions. Participants recalled their earliest specific memory associated with each word and dated their age at the time of the remembered event. A striking and specific finding emerged: age of earliest memory was…
Task Specificity and the Influence of Memory on Visual Search: Comment on Vo and Wolfe (2012)
ERIC Educational Resources Information Center
Hollingworth, Andrew
2012-01-01
Recent results from Vo and Wolfe (2012b) suggest that the application of memory to visual search may be task specific: Previous experience searching for an object facilitated later search for that object, but object information acquired during a different task did not appear to transfer to search. The latter inference depended on evidence that a…
ERIC Educational Resources Information Center
Pyo, Geunyeong; Ala, Tom; Kyrouac, Gregory A.; Verhulst, Steven J.
2010-01-01
Objective assessment of memory functioning is an important part of evaluation for Dementia of Alzheimer Type (DAT). The revised Picture Recognition Memory Test (r-PRMT) is a test for visual recognition memory to assess memory functioning of persons with intellectual disabilities (ID), specifically targeting moderate to severe ID. A pilot study was…
Reduced Capacity in a Dichotic Memory Test for Adult Patients with ADHD
ERIC Educational Resources Information Center
Dige, Niels; Maahr, Eija; Backenroth-Ohsako, Gunnel
2010-01-01
Objective: To evaluate whether a dichotic memory test would reveal deficits in short-term working-memory recall and long-term memory recall in a group of adult patients with ADHD. Methods: A dichotic memory test with ipsilateral backward speech distraction in an adult ADHD group (n = 69) and a control group (n = 66) is used to compare performance…
Ehlers, Anke; Mauchnik, Jana; Handley, Rachel
2012-01-01
Unwanted memories of traumatic events are a core symptom of post-traumatic stress disorder. A range of interventions including imaginal exposure and elaboration of the trauma memory in its autobiographical context are effective in reducing such unwanted memories. This study explored whether priming for stimuli that occur in the context of trauma and evaluative conditioning may play a role in the therapeutic effects of these procedures. Healthy volunteers (N = 122) watched analogue traumatic and neutral picture stories. They were then randomly allocated to 20 min of either imaginal exposure, autobiographical memory elaboration, or a control condition designed to prevent further processing of the picture stories. A blurred picture identification task showed that neutral objects that preceded traumatic pictures in the stories were subsequently more readily identified than those that had preceded neutral stories, indicating enhanced priming. There was also an evaluative conditioning effect in that participants disliked neutral objects that had preceded traumatic pictures more. Autobiographical memory elaboration reduced the enhanced priming effect. Both interventions reduced the evaluative conditioning effect. Imaginal exposure and autobiographical memory elaboration both reduced the frequency of subsequent unwanted memories of the picture stories. PMID:21227404
Fabricio, Aline Teixeira; Yassuda, Mônica Sanches
2011-01-01
Memory plays a fundamental role in the identity of people and in human life, as it enables us to interpret our surroundings and make decisions. It is known that the aging process can be accompanied by cognitive decline in some memory sub systems. However, the use of memory strategies can help encoding and retrieval of new information. The aim of this study was to identify and compare, using objective and subjective measures, which recall strategies are used spontaneously by young and older adults. Twenty-six first-year college students, and thirty-three seniors enrolled at the Third Age University of the same campus, completed a visual memory test including 18 black and white pictures, memorized a short story, and completed an open question about memory strategies, a memory check list to indicate strategies used, and a memory self-efficacy scale. The Bousfield categorization measure was also calculated from the recall protocol. Young adults demonstrated better performance than the older adults on the memory tasks, and were also more confident. Both groups reported using similar strategies. Young and older adults seem to tackle memory tasks in similar ways but young adults outperform seniors.