Sample records for full attack solar

  1. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox.

    PubMed Central

    Ballare, C. L.; Scopel, A. L.; Stapleton, A. E.; Yanovsky, M. J.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. PMID:12226382

  2. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: Transformation products and toxicity in different water matrices.

    PubMed

    Karci, Akin; Wurtzler, Elizabeth M; de la Cruz, Armah A; Wendell, David; Dionysiou, Dionysios D

    2018-05-05

    Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformation products m/z 795, 835, 515/1030 and 532 can be formed through attack of OH on the conjugated carbon double bonds of Adda. Transformation products with m/z 1010, 966 and 513 can be generated through the attack of OH on the methoxy group of Adda. The transformation products m/z 783, 508 and 1012 can be originated from the attack of OH on the cyclic structure of MC-LR. Transformation products (m/z 522, 1028, 1012, 1046 and 514) formed after hydroxylation of the aromatic ring with OH were also identified in this study. The toxicity study revealed that fulvic acid and alkalinity strongly influence the toxicity profiles of solar photo-Fenton treated MC-LR. Fulvic acid enhanced the detoxification whereas low level total alkalinity (1.8 mg L -1 CaCO 3 ) inhibited the detoxification of MC-LR by solar photo-Fenton process as assessed by protein phosphatase-1 (PP-1) inhibition assay. This work provides insights on the utility of solar photo-Fenton destruction of MC-LR in water based on transformation products and toxicity data. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Solar conspiracy: the $3,000,000,000,000 game plan of the energy barons' shadow government

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, J.

    1975-01-01

    The author, Chairman of the Board of International Solarthermics Corp. of Nederland, Colo., presents some very provocative questions and comments in this analysis of solar energy development in the U.S.--and in the process, the analysis pervades the whole muddled energy picture. Mr. Keyes' frustration and concern results essentially from the following: (1) his company invented and developed a backyard solar furnace with collector space approximately 100 ft/sup 2/ (about 10 times smaller than most other systems to date); (2) the furnace was tested, made a production-ready item, and was to be made and marketed by many independent manufacturers licensed undermore » a patents-pending arrangement and in competition with each other; and (3) instead of being greeted with ''huzzahs'' as a breakthrough product, the furnace ''seemed to act like a red-flag stimulus designed to prompt the anger of the people already working in the field of solar energy research.'' It is (3) and the attacks by ''learned'' PhD's and other scientists and engineers that apparently inspired this book--indeed, Mr. Keyes attempts to analyze the motives behind these attacks, first pointing out that respected scientists had been wrestling with the problem for years and could not build a practical system with less than 1000 ft/sup 2/ of solar collector. He states further that many attackers suspended final judgment until they had visited the research facility and examined the data and collection methods; and that each who took the time to investigate carefully became a ''convert'' and advocate of the system. Mr. Keyes' analysis of the forces at play behind his charge of ''conspiracy''--that big business, aided unwittingly by governmental agencies, is inhibiting rapid development of solar energy--indeed provides food for thought for those who should scrutinize the whole energy ballgame. (LMT)« less

  4. Heart Attack Recovery FAQs

    MedlinePlus

    ... recommendations to make a full recovery. View an animation of a heart attack . Heart Attack Recovery Questions ... Support Network Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  5. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  6. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  7. Space power system utilizing Fresnel lenses for solar power and also thermal energy storage

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    A solar power plant suitable for earth orbits passing through Van Allen radiation belts is described. The solar-to-electricity conversion efficiency is estimated to be around 9 percent, and the expected power-to-weight ratio is competitive with photovoltaic arrays. The system is designed to be self-contained, to be indifferent to radiation belt exposures, store energy for periods when the orbiting system is in earth shadow (so that power generation is contant), have no moving parts and no working fluids, and be robust against micrometeorite attack. No electrical batteries are required.

  8. Methodology for Prioritization of Investments to Support the Army Energy Strategy for Installations

    DTIC Science & Technology

    2012-07-01

    kind of energy source onto its own footprint. Whether this is a solar, wind, biomass, geothermal , or any other kind of renewable energy source, it...more common. Right now extortion and disgruntled employers are the attacked and not sophisticated enemies such as China . Our current nation power...users to: • Estimate the NPV cost of energy (COE) and levelized cost of energy (LCOE) from a range of solar, wind and geothermal electricity generation

  9. Federal solar policies yield neither heat nor light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, M.

    1978-02-06

    Thirty years of Federal energy policies and bureaucracy are criticized for their limited success in promoting nuclear energy and their present involvement in solar technology. Mr. Silverstein feels that poor judgment was shown in pursuit of large-scale solar demonstrations between 1973 and 1976 when Federal agencies ignored existing solar companies and awarded contracts to the large corporations. A fetish for crash research programs, he also feels, led to the creation of the Solar Energy Research Institute (SERI), which concentrates on wasteful high-technology projects rather than building on what has already been developed in the field. He cites ''even more destructive''more » policies adopted by the Housing and Urban Development Agency (HUD), which attacked many solar suppliers without sufficient evidence and then developed a solar-water-heater grant program that effectively distorted the market. The author feels that the solar technology market is sufficiently viable and that government participation is more appropriate in the form of tax credits and guaranteed loans.« less

  10. On the security of Y-00 under fast correlation and other attacks on the key

    NASA Astrophysics Data System (ADS)

    Yuen, Horace P.; Nair, Ranjith

    2007-04-01

    The security of the Y-00 direct encryption protocol under correlation attack is addressed. A Y-00 configuration that is more secure than AES under known-plaintext attack is presented. It is shown that under any ciphertext-only attack, full information-theoretic security on the Y-00 seed key is obtained for any encryption box ENC with proper deliberate signal randomization.

  11. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  12. Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.

    PubMed

    Mailhot, G; Sarakha, M; Lavedrine, B; Cáceres, J; Malato, S

    2002-11-01

    The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.

  13. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    NASA Technical Reports Server (NTRS)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  14. Use of the Panic Attack Questionnaire-IV to assess non-clinical panic attacks and limited symptom panic attacks in student and community samples.

    PubMed

    Norton, Peter J; Zvolensky, Michael J; Bonn-Miller, Marcel O; Cox, Brian J; Norton, G Ron

    2008-10-01

    Since its development in the mid-1980s, the Panic Attack Questionnaire (PAQ) has been one of the more, if not the most, commonly used self-report tools for assessing panic attacks. The usage of the instrument, however, has come amid potential concerns that instructions and descriptions may lead to an over-estimate of the prevalence of panic attacks. Furthermore, the instrument has not been revised since 1992, despite changes in DSM-IV criteria and more recent developments in the understanding of panic attacks. As a result, this paper describes a revision of the PAQ to improve the instruction and descriptive set, and to fully assess features of panic derived from recent conceptualizations. Students meeting DSM-IV panic attack criteria and those endorsing panic attacks, but not meeting criteria, showed few differences with the exception that those not meeting DSM-IV criteria typically reported a longer onset-to-peak intensity time than did Panickers. Results were cross-validated and extended using an independent Community Sample. A full descriptive phenomenology of panic attacks is described, and future directions for studying panic attacks using the PAQ are presented.

  15. Sub-threshold panic attacks and agoraphobic avoidance increase comorbidity of mental disorders: results from an adult general population sample.

    PubMed

    Pané-Farré, Christiane A; Fenske, Kristin; Stender, Jan P; Meyer, Christian; John, Ulrich; Rumpf, Hans-Jürgen; Hapke, Ulfert; Hamm, Alfons O

    2013-06-01

    Full-blown panic attacks are frequently associated with other mental disorders. Most comorbidity analyses did not discriminate between isolated panic attacks vs. panic attacks that occurred in the context of a panic disorder and rarely evaluated the impact of comorbid agoraphobia. Moreover, there are no larger scale epidemiological studies regarding the influence of sub-threshold panic attacks. 4075 German-speaking respondents aged 18-64 were interviewed using the fully structured Munich Composite International Diagnostic Interview. Limited symptom attacks, isolated panic attacks, and panic disorder were associated with other lifetime DSM-IV disorders with monotonically increasing odds and increasing tendency for multiple comorbidities across the three groups. The presence of agoraphobia was associated with more frequent comorbidity in all panic subgroups and also in persons who never experienced panic attacks. The present study suggests that populations with isolated or limited symptom should be carefully attended to in clinical practice, especially if agoraphobia is present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Anti-reflection coatings applied by acid leaching process

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  17. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  18. Adaptive Red Teaming on Developmental Technologies

    DTIC Science & Technology

    2015-09-01

    between participating technologies. Power sources such as generators, wind turbines , and solar panels are examples of technology that have high...Day Camera xiv RASE Reconnaissance Advanced Sensor and Exploitation RF radio frequency RFI request for information RGPs rocket...used in night vision equipment, or a more complex electronic attack exploiting a weakness in a wireless network. Technological limitations can be

  19. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    NASA Technical Reports Server (NTRS)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  20. High-fidelity numerical simulation of the flow field around a NACA-0012 aerofoil from the laminar separation bubble to a full stall

    NASA Astrophysics Data System (ADS)

    ElJack, Eltayeb

    2017-05-01

    In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.

  1. Large-scale wind-tunnel investigation of a close-coupled canard-delta-wing fighter model through high angles of attack

    NASA Technical Reports Server (NTRS)

    Stoll, F.; Koenig, D. G.

    1983-01-01

    Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.

  2. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  3. National Security Issues 1981 Symposium. Strategic Nuclear Policies, Weapons, and the C3 Connection, October 13-14, 1981,

    DTIC Science & Technology

    1981-01-01

    of prob- being an attack assessment. From there it goes to lems due to the atmosphere and due to solar the National Command Authority who acts on the...19-4-19"-8). MITRE/Bedford Panel Member for Institute for (omputer ’Kiences and 1959 Technology Evaluation Panal for the National Bureau of

  4. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays

    PubMed Central

    2013-01-01

    Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic performance of PbS QDSCs. A uniform CdS layer was directly coated on previously grown PbS-TiO2 photoanode to protect the PbS from the chemical attack of polysulfide electrolytes. A remarkable short-circuit photocurrent density (approximately 10.4 mA/cm2) for PbS/CdS co-sensitized solar cell was recorded while the photocurrent density of only PbS-sensitized solar cells was lower than 3 mA/cm2. The power conversion efficiency of the PbS/CdS co-sensitized solar cell reached 1.3%, which was beyond the arithmetic addition of the efficiencies of single constituents (PbS and CdS). These results indicate that the synergistic combination of PbS with CdS may provide a stable and effective sensitizer for practical solar cell applications. PMID:23394609

  5. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  6. The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Dever, Therese M.; Quinn, William F.

    1990-01-01

    Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.

  7. Guidance, steering, load relief and control of an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Boelitz, Frederick W.

    1989-01-01

    A new guidance, steering, and control concept is described and evaluated for the Third Phase of an asymmetrical configuration of the Advanced Launch System (ALS). The study also includes the consideration of trajectory shaping issues and trajectory design as well as the development of angular rate, angular acceleration, angle of attack, and dynamic pressure estimators. The Third Phase guidance, steering and control system is based on controlling the acceleration-direction of the vehicle after an initial launch maneuver. Unlike traditional concepts, the alignment of the estimated and commanded acceleration-directions is unimpaired by an add-on load relief. Instead, the acceleration-direction steering-control system features a control override that limits the product of estimated dynamic pressure and estimated angle of attack. When this product is not being limited, control is based exclusively on the commanded acceleration-direction without load relief. During limiting, control is based on nulling the error between the limited angle of attack and the estimated angle of attack. This limiting feature provides full freedom to the acceleration-direction steering and control to shape the trajectory within the limit, and also gives full priority to the limiting of angle of attack when necessary. The flight software concepts were analyzed on the basis of their effects on pitch plane motion.

  8. Angle of Attack Modulation for Mars Entry Terminal State Optimization

    NASA Technical Reports Server (NTRS)

    Lafleur, Jarret M.; Cerimele, Christopher J.

    2009-01-01

    From the perspective of atmospheric entry, descent, and landing (EDL), one of the most foreboding destinations in the solar system is Mars due in part to its exceedingly thin atmosphere. To benchmark best possible scenarios for evaluation of potential Mars EDL system designs, a study is conducted to optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities and vehicle masses, focusing on the identification of potential benefits of enabling angle of attack modulation. The terminal state is envisioned as one appropriate for the initiation of terminal descent via parachute or other means. A particle swarm optimizer varies entry flight path angle, ten bank profile points, and ten angle of attack profile points to find maximum-final-altitude trajectories for a 10 30 m ellipsled at 180 different combinations of values for entry mass, entry velocity, terminal Mach number, and minimum allowable altitude. Parametric plots of maximum achievable altitude are shown, as are examples of optimized trajectories. It is shown that appreciable terminal state altitude gains (2.5-4.0 km) over pure bank angle control may be possible if angle of attack modulation is enabled for Mars entry vehicles. Gains of this magnitude could prove to be enabling for missions requiring high-altitude landing sites. Conclusions are also drawn regarding trends in the bank and angle of attack profiles that produce the optimal trajectories in this study, and directions for future work are identified.

  9. Orbital debris measurements

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  10. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  11. Stability Operations: Policy and Doctrine Awaiting Implementation

    DTIC Science & Technology

    2013-03-01

    periods move through offense and defense (or reverse ) sequentially while stability is presented throughout the rotation. This causes stability to...The author’s personal experience in Afghanistan and having studied the complex nature of stability operations suggests the reverse is true. June...climate change, Euro/EU collapse, a democratic or collapsed China, a reformed Iran, nuclear war or WMD/cyber-attack, solar geomagnetic storms, U.S

  12. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    PubMed

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  13. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  14. Injured civilian survivors of suicide bomb attacks: from partial PTSD to recovery or to traumatisation. Where is the turning point?

    PubMed

    Dolberg, Ornah T; Barkai, Gabriel; Leor, Agnes; Rapoport, Helena; Bloch, Miki; Schreiber, Shaul

    2010-03-01

    To assess the short- (3-9 months) and medium-term (30 months) occurrence and severity of post-traumatic stress disorder (PTSD) in civilian survivors of suicide bombing terrorist attacks. We evaluated 129 injured survivors of nine attacks in Israel who were treated in our emergency room between June 2000 and September 2002. Data on demographics, physical injuries and psychiatric symptoms were collected by both a structured clinical interview and standard assessment scales for depression, anxiety, and sleep quality. Diagnosis of PTSD was based on a Hebrew-validated DSM-IV SCID-PTSD rating scale. At the first assessment (short-term), 20 survivors (15.5%) met the criteria for full-blown PTSD and 54 (42%) for sub-clinical PTSD, while 55 (42.5%) evidenced no symptoms of PTSD. Two years later, only 54 patients could be located: 19 (35%) of them had either persistent or de novo PTSD and none had residual sub-clinical PTSD. Relatively few survivors of suicide bomb attacks had full-blown PTSD, while a substantial number of survivors had short-term sub-clinical PTSD. Two-year follow-up evaluations revealed that a significant a number of the patients available for testing (35%) had full-blown PTSD. These findings imply that medium-term follow-up of survivors is needed in order to establish the actual prevalence of PTSD.

  15. Grief-related panic symptoms in Complicated Grief.

    PubMed

    Bui, Eric; Horenstein, Arielle; Shah, Riva; Skritskaya, Natalia A; Mauro, Christine; Wang, Yuanjia; Duan, Naihua; Reynolds, Charles F; Zisook, Sidney; Shear, M Katherine; Simon, Naomi M

    2015-01-01

    Although Complicated Grief (CG) has been associated with comorbid Panic Disorder (PD), little is known about panic attacks in CG, and whether panic symptoms may be grief-related. The present study examines the presence and impact of grief-related panic symptoms in CG. Individuals with CG (n=146, 78% women, mean (SD) age=52.4(15.0)) were assessed for CG, DSM-IV diagnoses, work and social impairment, and with the Panic Disorder Severity Scale modified to assess symptoms "related to or triggered by reminders of your loss" and anticipatory worry. Overall, 39.7% reported at least one full or limited-symptom grief-related panic attack over the past week, and 32.2% reported some level of anticipatory worry about grief-related panic. Of interest, 17% met DSM criteria for PD. Among those without PD, 34.7% reported at least one full or limited-symptom grief-related panic attack over the past week, and this was associated with higher CG symptom severity (t=-2.23, p<0.05), and functional impairment (t=-3.31, p<0.01). Among the full sample, controlling for CG symptom severity and current PD, the presence of at least one full or limited-symptom grief-related panic attack was independently associated with increased functional impairment (B(SE)=4.86(1.7), p<0.01). Limitations include a lack of assessment of non-grief-related panic symptoms and examination of a sample of individuals seeking treatment for CG. Grief-related panic symptoms may be prevalent among individuals with CG and independently contribute to distress and functional impairment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Pathologic features of fatal shark attacks.

    PubMed

    Byard, R W; Gilbert, J D; Brown, K

    2000-09-01

    To examine the pattern of injuries in cases of fatal shark attack in South Australian waters, the authors examined the files of their institution for all cases of shark attack in which full autopsies had been performed over the past 25 years, from 1974 to 1998. Of the seven deaths attributed to shark attack during this period, full autopsies were performed in only two cases. In the remaining five cases, bodies either had not been found or were incomplete. Case 1 was a 27-year-old male surfer who had been attacked by a shark. At autopsy, the main areas of injury involved the right thigh, which displayed characteristic teeth marks, extensive soft tissue damage, and incision of the femoral artery. There were also incised wounds of the right wrist. Bony injury was minimal, and no shark teeth were recovered. Case 2 was a 26-year-old male diver who had been attacked by a shark. At autopsy, the main areas of injury involved the left thigh and lower leg, which displayed characteristic teeth marks, extensive soft tissue damage, and incised wounds of the femoral artery and vein. There was also soft tissue trauma to the left wrist, with transection of the radial artery and vein. Bony injury was minimal, and no shark teeth were recovered. In both cases, death resulted from exsanguination following a similar pattern of soft tissue and vascular damage to a leg and arm. This type of injury is in keeping with predator attack from underneath or behind, with the most severe injuries involving one leg. Less severe injuries to the arms may have occurred during the ensuing struggle. Reconstruction of the damaged limb in case 2 by sewing together skin, soft tissue, and muscle bundles not only revealed that no soft tissue was missing but also gave a clearer picture of the pattern of teeth marks, direction of the attack, and species of predator.

  17. Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Cross, J. B.; Hoffbauer, M. A.; Kirkendahl, T. D.

    1991-01-01

    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission.

  18. Analysis of Wind Forces on Roof-Top Solar Panel

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Kudav, Ganesh

    2011-03-01

    Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).

  19. Coatings Would Protect Polymers Against Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1995-01-01

    Proposed interposition of layers of silver oxide tens to hundreds of angstroms thick between polymeric substrates and overlying films helps protect substrates against chemical attack by monatomic oxygen. In original application, polymer substrate would be, sheet of polyimide supporting array of solar photovoltaic cells on spacecraft in low orbit around Earth. Concept also applicable to protection of equipment in terrestrial laboratory and industrial vacuum and plasma chambers in which monatomic oxygen present.

  20. The Origin of the "Seasons" in Space Weather

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Cally, Paul S.; McIntosh, Scott W.; Heifetz, Eyal

    2017-11-01

    Powerful `space weather' events caused by solar activity pose serious risks to human health, safety, economic activity and national security. Spikes in deaths due to heart attacks, strokes and other diseases occurred during prolonged power outages. Currently it is hard to prepare for and mitigate the impact of space weather because it is impossible to forecast the solar eruptions that can cause these terrestrial events until they are seen on the Sun. However, as recently reported in Nature, eruptive events like coronal mass ejections and solar flares, are organized into quasi-periodic "seasons", which include enhanced bursts of eruptions for several months, followed by quiet periods. We explored the dynamics of sunspot-producing magnetic fields and discovered for the first time that bursty and quiet seasons, manifested in surface magnetic structures, can be caused by quasi-periodic energy-exchange among magnetic fields, Rossby waves and differential rotation of the solar interior shear-layer (called tachocline). Our results for the first time provide a quantitative physical mechanism for forecasting the strength and duration of bursty seasons several months in advance, which can greatly enhance our ability to warn humans about dangerous solar bursts and prevent damage to satellites and power stations from space weather events.

  1. The Origin of the "Seasons" in Space Weather.

    PubMed

    Dikpati, Mausumi; Cally, Paul S; McIntosh, Scott W; Heifetz, Eyal

    2017-11-07

    Powerful 'space weather' events caused by solar activity pose serious risks to human health, safety, economic activity and national security. Spikes in deaths due to heart attacks, strokes and other diseases occurred during prolonged power outages. Currently it is hard to prepare for and mitigate the impact of space weather because it is impossible to forecast the solar eruptions that can cause these terrestrial events until they are seen on the Sun. However, as recently reported in Nature, eruptive events like coronal mass ejections and solar flares, are organized into quasi-periodic "seasons", which include enhanced bursts of eruptions for several months, followed by quiet periods. We explored the dynamics of sunspot-producing magnetic fields and discovered for the first time that bursty and quiet seasons, manifested in surface magnetic structures, can be caused by quasi-periodic energy-exchange among magnetic fields, Rossby waves and differential rotation of the solar interior shear-layer (called tachocline). Our results for the first time provide a quantitative physical mechanism for forecasting the strength and duration of bursty seasons several months in advance, which can greatly enhance our ability to warn humans about dangerous solar bursts and prevent damage to satellites and power stations from space weather events.

  2. Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications

    PubMed Central

    Mazza, Carlos A.; Zavala, Jorge; Scopel, Ana L.; Ballaré, Carlos L.

    1999-01-01

    Most of our present knowledge about the impacts of solar UVB radiation on terrestrial ecosystems comes from studies with plants. Recently, the effects of UVB on the growth and survival of consumer species have begun to receive attention, but very little is known about UVB impacts on animal behavior. Here we report that manipulations of the flux of solar UVB received by field-grown soybean crops had large and consistent effects on the density of the thrips (Caliothrips phaseoli, Thysanoptera: Thripidae) populations that invaded the canopies, as well as on the amount of leaf damage caused by the insects. Solar UVB strongly reduced thrips herbivory. Thrips not only preferred leaves from plants that were not exposed to solar UVB over leaves from UVB-exposed plants in laboratory and field choice experiments, but they also appeared to directly sense and avoid exposure to solar UVB. Additional choice experiments showed that soybean leaf consumption by the late-season soybean worm Anticarsia gemmatalis (Lepidoptera: Noctuidae) was much less intense in leaves with even slight symptoms of an early thrips attack than in undamaged leaves. These experiments suggest that phytophagous insects can present direct and indirect behavioral responses to solar UVB. The indirect responses are mediated by changes in the plant host that are induced by UVB and, possibly, by other insects whose behavior is affected by UVB. PMID:9927679

  3. Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Qin, Hao; Kumar, Rupesh; Alléaume, Romain

    2016-07-01

    We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.

  4. Does topological information matter for power grid vulnerability?

    PubMed

    Ouyang, Min; Yang, Kun

    2014-12-01

    Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.

  5. Does topological information matter for power grid vulnerability?

    NASA Astrophysics Data System (ADS)

    Ouyang, Min; Yang, Kun

    2014-12-01

    Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.

  6. Summary of engineering-scale experiments for the Solar Detoxification of Water project

    NASA Astrophysics Data System (ADS)

    Pacheco, J. E.; Yellowhorse, L.

    1992-03-01

    This report contains a summary of large-scale experiments conducted at Sandia National Laboratories under the Solar Detoxification of Water project. The objectives of the work performed were to determine the potential of using solar radiation to destroy organic contaminants in water by photocatalysis and to develop the process and improve its performance. For these experiments, we used parabolic troughs to focus sunlight onto glass pipes mounted at the trough's focus. Water spiked with a contaminant and containing suspended titanium dioxide catalyst was pumped through the illuminated glass pipe, activating the catalyst with the ultraviolet portion of the solar spectrum. The activated catalyst creates oxidizers that attack and destroy the organics. Included in this report are a summary and discussion of the implications of experiments conducted to determine: the effect of process kinetics on the destruction of chlorinated solvents (such as trichloroethylene, perchloroethylene, trichloroethane, methylene chloride, chloroform and carbon tetrachloride), the enhancement due to added hydrogen peroxide, the optimal catalyst loading, the effect of light intensity, the inhibition due to bicarbonates, and catalyst issues.

  7. Quantized Advantages to a Proposed Satellite at L5 from Simulated Synoptic Magnetograms

    NASA Astrophysics Data System (ADS)

    Schwarz, A. M.; Petrie, G. J. D.

    2017-12-01

    The dependency the Earth and its inhabitants have on the Sun is delicate and complex and sometimes dangerous. At the NSO, we provide 24/7 coverage of the full-disk solar magnetic field used in solar forecasting, however this only includes data from the Sun's Earth facing side. Ideally we would like to have constant coverage of the entire solar surface, however we are limited in our solar viewing angle. Our project attempts to quantify the advantages of full-disk magnetograms from a proposed satellite at L5. With instrumentation at L5 we would have an additional 60 degrees of solar surface coverage not seen from Earth. These 60 degrees crucially contain the solar longitudes that are about to rotate towards Earth. Using a full-surface flux-transport model of the evolving solar photospheric field, I created a simulation of full-disk observations from Earth and L5. Using standard solar forecasting tools we quantify the relative accuracy of the Earth-Only and Earth plus L5 forecasts relative to the "ground truth" of the full surface field model, the ideal case. My results gauge exactly how much polar coverage is improved, contrast the spherical multipoles of each model, and use a Potential-Field Source-Surface (PFSS) magnetic field analysis model to find comparisons in the neutral lines and open field coverage.

  8. Analysis of characteristics associated with reinjection of icatibant: Results from the icatibant outcome survey.

    PubMed

    Longhurst, Hilary J; Aberer, Werner; Bouillet, Laurence; Caballero, Teresa; Fabien, Vincent; Zanichelli, Andrea; Maurer, Marcus

    2015-01-01

    Phase 3 icatibant trials showed that most hereditary angioedema (HAE) (C1 inhibitor deficiency) acute attacks were treated successfully with one injection of icatibant, a selective bradykinin B2 receptor antagonist. We conducted a post hoc analysis of icatibant reinjection for HAE type I and II attacks in a real-world setting by using data from the Icatibant Outcome Survey, an ongoing observational study that monitors the safety and effectiveness of icatibant treatment. Descriptive retrospective analyses of icatibant reinjection were performed on Icatibant Outcome Survey data (February 2008 to December 2012). New attacks were defined as the onset of new symptoms after full resolution of the previous attack. Potential associations between the patient and attack characteristics and reinjection were explored by using logistic regression analysis. Icatibant was administered for 652 attacks in 170 patients with HAE type I or II. Most attacks (89.1%) were treated with a single icatibant injection. For attacks that required two or three injections, the second injection was given a median of 11.0 hours after the first injection, with 90.4% of second injections administered ≥6 hours after the first injection. Time to resolution and attack duration were significantly longer for two or three injections versus one icatibant injection (p < 0.0001 and p < 0.05, respectively). Multivariate logistic regression analysis identified sex, attack severity, and laryngeal attacks as significantly correlated with reinjection (all p ≤ 0.05). These factors did not remain predictors for reinjection when two outlier patients with distinct patterns of icatibant use were excluded. In this real-world setting, most HAE attacks resolved with one icatibant injection. There was no distinct profile for patients or attacks that required reinjection when outliers with substantially different patterns of use were excluded. Because new attacks were not distinguished from the recurrence of symptoms, reinjection rates may be slightly higher than shown here. Clinical trial identifier: NCT01034969.

  9. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  10. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    PubMed

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  11. Russian Military Politics and Russia’s 2010 Defense Doctrine

    DTIC Science & Technology

    2011-03-01

    Institute (SSI) publica- tions enjoy full academic freedom, provided they do not disclose classified information, jeopardize operations security , or... attack as well, under certain, not specified, critical circum- stances for national security . This attitude was not un- expected, since the on-going... attacks in the United States—needed revision because of the deterioration of the international security situa- tion since then. Subsequently, in March

  12. Test data report: Low speed wind tunnel tests of a full scale, fixed geometry inlet, with engine, at high angles of attack

    NASA Technical Reports Server (NTRS)

    Shain, W. M.

    1976-01-01

    A full scale inlet test was to be done in the NASA-ARC 40' X 80' WT to demonstrate satisfactory inlet performance at high angles of attack. The inlet was designed to match a Hamilton-Standard 55 inch, variable pitch fan, driven by a Lycoming T55-L-11A gas generator. The test was installed in the wind tunnel on two separate occasions, but mechanical failures in the fan drive gear box early in each period terminated testing. A detailed description is included of the Model, installation, instrumentation and data reduction procedures.

  13. Comparison of theoretically predicted lateral-directional aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    NASA Technical Reports Server (NTRS)

    Griswold, M.; Roskam, J.

    1980-01-01

    An analytical method is presented for predicting lateral-directional aerodynamic characteristics of light twin engine propeller-driven airplanes. This method is applied to the Advanced Technology Light Twin Engine airplane. The calculated characteristics are correlated against full-scale wind tunnel data. The method predicts the sideslip derivatives fairly well, although angle of attack variations are not well predicted. Spoiler performance was predicted somewhat high but was still reasonable. The rudder derivatives were not well predicted, in particular the effect of angle of attack. The predicted dynamic derivatives could not be correlated due to lack of experimental data.

  14. A benchmark system to optimize our defense against an attack on the US food supply using the Risk Reduction Effectiveness and Capabilities Assessment Program.

    PubMed

    Hodoh, Ofia; Dallas, Cham E; Williams, Paul; Jaine, Andrew M; Harris, Curt

    2015-01-01

    A predictive system was developed and tested in a series of exercises with the objective of evaluating the preparedness and effectiveness of the multiagency response to food terrorism attacks. A computerized simulation model, Risk Reduction Effectiveness and Capabilities Assessment Program (RRECAP), was developed to identify the key factors that influence the outcomes of an attack and quantify the relative reduction of such outcomes caused by each factor. The model was evaluated in a set of Tabletop and Full-Scale Exercises that simulate biological and chemical attacks on the food system. More than 300 participants representing more than 60 federal, state, local, and private sector agencies and organizations. The exercises showed that agencies could use RRECAP to identify and prioritize their advance preparation to mitigate such attacks with minimal expense. RRECAP also demonstrated the relative utility and limitations of the ability of medical resources to treat patients if responders do not recognize and mitigate the attack rapidly, and the exercise results showed that proper advance preparation would reduce these deficiencies. Using computer simulation prediction of the medical outcomes of food supply attacks to identify optimal remediation activities and quantify the benefits of various measures provides a significant tool to agencies in both the public and private sector as they seek to prepare for such an attack.

  15. Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon

    NASA Technical Reports Server (NTRS)

    Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.

    1996-01-01

    An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.

  16. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  17. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  18. Brain Circulation during Panic Attack: A Transcranial Doppler Study with Clomipramine Challenge.

    PubMed

    Rotella, Francesco; Marinoni, Marinella; Lejeune, Francesca; Alari, Fabiana; Depinesi, Daniela; Cosci, Fiammetta; Faravelli, Carlo

    2014-01-01

    Introduction. Cerebral blood flow has been well studied in patients with panic disorder, but only few studies analyzed the mechanisms underlying the onset of a panic attack. The aim of the present study was to monitor the cerebral hemodynamics modifications during a panic attack. Materials and Methods. 10 panic disorder patients with recent onset, fully drug naïve, were compared to 13 patients with panic disorder with a previous history of treatment and to 14 controls. A continuous bilateral monitoring of mean flow velocities in right and left middle cerebral arteries was performed by transcranial Doppler. Clomipramine was chosen as challenge. Results. Eight out of 10 patients drug naïve and 6 control subjects out of 13 had a full blown panic attack during the test, whereas none of the patients with a history of treatment panicked. The occurrence of a panic attack was accompanied by a rapid decrease of flow velocities in both right and left middle cerebral arteries. Discussion. The bilateral acute decrease of mean flow velocity during a panic attack suggests the vasoconstriction of the microcirculation of deep brain structures perfused by middle cerebral arteries and involved in the so-called "fear circuitry," thus suggesting that cerebral homeostatic dysfunctions seem to have a key role in the onset of a panic attack.

  19. A numerical analysis of the British Experimental Rotor Program blade

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  20. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011-2014.

    PubMed

    Wilken, Jason A; Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C; Lee, Lauren; Materna, Barbara L

    2015-11-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power-generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011-April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non-Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department.

  1. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014

    PubMed Central

    Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J.; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C.; Lee, Lauren; Materna, Barbara L.

    2015-01-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power–generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011–April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non–Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  2. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  3. TERROR 2000: The Future Face of Terrorism

    DTIC Science & Technology

    1994-06-24

    defused a crude bomb planted near the local office of Ameri- can Airlines. In the other, two men attacked a Malaysian security guard stationed on the...Security system will be reformed. Those reforms will include means testing and taxation of benefits. 4. Rural land is being colonized by suburbs and...its present liabilities in the U.S. to become a major source of energy. .64 2018 57.43 US 4. Electric cars, augmented by solar panels, become available

  4. In-flight flow visualization results from the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Saltzman, John A.

    1992-01-01

    Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.

  5. Investigation of the Low-Subsonic Stability and Control Characteristics of a Free-Flying Model of a Thick 70 deg Delta Reentry Configuration

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Shanks, Robert E.

    1961-01-01

    An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.

  6. Windows NT Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    2000-06-01

    their passwords never expire. Their privileges allow telnet access and FTP access to the system, but do not allow local logins . Each user can...default: • Administrator: This root account allows remote and local logins and full control of system software. • Guest: This default account, setup by...realizing that the Netbus server was installed. The attack also edits the Windows NT Registry so the Netbus server restarts at every login . This

  7. Security Measures to Protect Mobile Agents

    NASA Astrophysics Data System (ADS)

    Dadhich, Piyanka; Govil, M. C.; Dutta, Kamlesh

    2010-11-01

    The security issues of mobile agent systems have embarrassed its widespread implementation. Mobile agents that move around the network are not safe because the remote hosts that accommodate the agents initiates all kinds of attacks. These hosts try to analyze the agent's decision logic and their accumulated data. So, mobile agent security is the most challenging unsolved problems. The paper analyzes various security measures deeply. Security especially the attacks performed by hosts to the visiting mobile agent (the malicious hosts problem) is a major obstacle that prevents mobile agent technology from being widely adopted. Being the running environment for mobile agent, the host has full control over them and could easily perform many kinds of attacks against them.

  8. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    PubMed

    Packer, Craig; Swanson, Alexandra; Ikanda, Dennis; Kushnir, Hadas

    2011-01-01

    Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset). Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  9. Foveal and peripheral fields of vision influences perceptual skill in anticipating opponents' attacking position in volleyball.

    PubMed

    Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph

    2013-09-01

    The importance of perceptual-cognitive expertise in sport has been repeatedly demonstrated. In this study we examined the role of different sources of visual information (i.e., foveal versus peripheral) in anticipating volleyball attack positions. Expert (n = 11), advanced (n = 13) and novice (n = 16) players completed an anticipation task that involved predicting the location of volleyball attacks. Video clips of volleyball attacks (n = 72) were spatially and temporally occluded to provide varying amounts of information to the participant. In addition, participants viewed the attacks under three visual conditions: full vision, foveal vision only, and peripheral vision only. Analysis of variance revealed significant between group differences in prediction accuracy with higher skilled players performing better than lower skilled players. Additionally, we found significant differences between temporal and spatial occlusion conditions. Both of those factors interacted separately, but not combined with expertise. Importantly, for experts the sum of both fields of vision was superior to either source in isolation. Our results suggest different sources of visual information work collectively to facilitate expert anticipation in time-constrained sports and reinforce the complexity of expert perception.

  10. Using Discrete Event Simulation to Model Attacker Interactions with Cyber and Physical Security Systems

    DOE PAGES

    Perkins, Casey; Muller, George

    2015-10-08

    The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less

  11. Proactive Alleviation Procedure to Handle Black Hole Attack and Its Version

    PubMed Central

    Babu, M. Rajesh; Dian, S. Moses; Chelladurai, Siva; Palaniappan, Mathiyalagan

    2015-01-01

    The world is moving towards a new realm of computing such as Internet of Things. The Internet of Things, however, envisions connecting almost all objects within the world to the Internet by recognizing them as smart objects. In doing so, the existing networks which include wired, wireless, and ad hoc networks should be utilized. Moreover, apart from other networks, the ad hoc network is full of security challenges. For instance, the MANET (mobile ad hoc network) is susceptible to various attacks in which the black hole attacks and its versions do serious damage to the entire MANET infrastructure. The severity of this attack increases, when the compromised MANET nodes work in cooperation with each other to make a cooperative black hole attack. Therefore this paper proposes an alleviation procedure which consists of timely mandate procedure, hole detection algorithm, and sensitive guard procedure to detect the maliciously behaving nodes. It has been observed that the proposed procedure is cost-effective and ensures QoS guarantee by assuring resource availability thus making the MANET appropriate for Internet of Things. PMID:26495430

  12. Using Discrete Event Simulation to Model Attacker Interactions with Cyber and Physical Security Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Casey; Muller, George

    The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less

  13. Proactive Alleviation Procedure to Handle Black Hole Attack and Its Version.

    PubMed

    Babu, M Rajesh; Dian, S Moses; Chelladurai, Siva; Palaniappan, Mathiyalagan

    2015-01-01

    The world is moving towards a new realm of computing such as Internet of Things. The Internet of Things, however, envisions connecting almost all objects within the world to the Internet by recognizing them as smart objects. In doing so, the existing networks which include wired, wireless, and ad hoc networks should be utilized. Moreover, apart from other networks, the ad hoc network is full of security challenges. For instance, the MANET (mobile ad hoc network) is susceptible to various attacks in which the black hole attacks and its versions do serious damage to the entire MANET infrastructure. The severity of this attack increases, when the compromised MANET nodes work in cooperation with each other to make a cooperative black hole attack. Therefore this paper proposes an alleviation procedure which consists of timely mandate procedure, hole detection algorithm, and sensitive guard procedure to detect the maliciously behaving nodes. It has been observed that the proposed procedure is cost-effective and ensures QoS guarantee by assuring resource availability thus making the MANET appropriate for Internet of Things.

  14. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    PubMed

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Magnus effects on spinning transonic missiles

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  16. Achieving network level privacy in Wireless Sensor Networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  17. Achieving Network Level Privacy in Wireless Sensor Networks†

    PubMed Central

    Shaikh, Riaz Ahmed; Jameel, Hassan; d’Auriol, Brian J.; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks. PMID:22294881

  18. Homeland defense: looking back, moving forward

    NASA Astrophysics Data System (ADS)

    Quine, Dennis H.

    2002-07-01

    A concern for homeland defense has been with us since the inception of the Republic. However, it has changed in focus and emphasis depending on the nature of the threat we perceived. In the earliest decades the threat was from invasion by a Britain that still did not accept the results of the Revolutionary War. Later the focus shifted to concern about possible attack by ships, and during WW I and WW II, by submarines. With the advent of the intercontinental nuclear-armed bomber in 1950, our focus changed again. When we could be attacked by ballistic missiles after 1960, our concern focused on that threat. Now that we have seen that damaging attacks can be brought to the homeland 'under the radar screen', by terrorist operations, the focus has shifted again. We are now entering an era when we must address potential homeland attacks with weapons of mass destruction (WMD) that may be delivered by a range of means, depending on the source of the attack. In response to this full spectrum of attack modes, the U.S. has implemented a three-stage defense policy that integrates overseas 'offense' and homeland 'defense'. This framework for defense analysis and planning is likely to be with us into the indefinite future.

  19. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum hacking on a practical continuous-variable quantum cryptosystem by inserting an external light

    NASA Astrophysics Data System (ADS)

    Qin, Hao; Kumar, Rupesh; Alleaume, Romain

    2015-10-01

    We report here a new side channel attack on a practical continuous-variable (CV) quantum key distribution (QKD) system. Inspired by blinding attack in discrete-variable QKD, we formalize an attack strategy by inserting an external light into a CV QKD system implemented Gaussian-modulated coherent state protocol and show that our attack can compromise its practical security. In this attack, we concern imperfections of a balanced homodyne detector used in CV QKD. According to our analysis, if one inserts an external light into Bob's signal port, due to the imperfect subtraction from the homodyne detector, the leakage of the external light contributes a displacement on the homodyne signal which causes detector electronics saturation. In consequence, Bob's quadrature measurement is not linear with the quadrature sent by Alice. By considering such vulnerability, a potential Eve can launch a full intercept-resend attack meanwhile she inserts an external light into Bob's signal port. By selecting proper properties of the external light, Eve actively controls the induced displacement value from the inserted light which results saturation of homodyne detection. In consequence, Eve can bias the excess noise due to the intercept-resend attack and the external light, such that Alice and Bob believe their excess noise estimation is below the null key threshold and they can still share a secret key. Our attack shows that the detector loopholes also exist in CV QKD, and it seems influence all the CV QKD systems using homodyne detection, since all the practical detectors have finite detection range.

  1. The Risk of Termination Shock From Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Parker, Andy; Irvine, Peter J.

    2018-03-01

    If solar geoengineering were to be deployed so as to mask a high level of global warming, and then stopped suddenly, there would be a rapid and damaging rise in temperatures. This effect is often referred to as termination shock, and it is an influential concept. Based on studies of its potential impacts, commentators often cite termination shock as one of the greatest risks of solar geoengineering. However, there has been little consideration of the likelihood of termination shock, so that conclusions about its risk are premature. This paper explores the physical characteristics of termination shock, then uses simple scenario analysis to plot out the pathways by which different driver events (such as terrorist attacks, natural disasters, or political action) could lead to termination. It then considers where timely policies could intervene to avert termination shock. We conclude that some relatively simple policies could protect a solar geoengineering system against most of the plausible drivers. If backup deployment hardware were maintained and if solar geoengineering were implemented by agreement among just a few powerful countries, then the system should be resilient against all but the most extreme catastrophes. If this analysis is correct, then termination shock should be much less likely, and therefore much less of a risk, than has previously been assumed. Much more sophisticated scenario analysis—going beyond simulations purely of worst-case scenarios—will be needed to allow for more insightful policy conclusions.

  2. Development and evaluation of die and container materials. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesx, D. E.

    1979-01-01

    Specific compositions of high purity silicon aluminum oxynitride (Sialon) and silicon beryllium oxynitride (Sibeon) solid solutions were shown to be promising refractory materials for handling and manipulating solar grade silicon into silicon ribbon. Evaulation of the interaction of these materials in contact with molten silicon indicated that solid solutions based upon beta-Si3N4 were more stable than those based on Si2N2O. Sibeon was more resistant to molten silicon attack than Sialon. Both materials should preferably be used in an inert atmosphere rather than under vacuum conditions because removal of oxygen from the silicon melt occurs as SiO enhances the dissolution of aluminum and beryllium. The wetting angles of these materials were low enough for these materials to be considered as both die and container materials.

  3. Rate of improvement during and across three treatments for panic disorder with or without agoraphobia: cognitive behavioral therapy, selective serotonin reuptake inhibitor or both combined.

    PubMed

    Van Apeldoorn, Franske J; Van Hout, Wiljo J P J; Timmerman, Marieke E; Mersch, Peter Paul A; den Boer, Johan A

    2013-09-05

    Existing literature on panic disorder (PD) yields no data regarding the differential rates of improvement during Cognitive Behavioral Therapy (CBT), Selective Serotonin Reuptake Inhibitor (SSRI) or both combined (CBT+SSRI). Patients were randomized to CBT, SSRI or CBT+SSRI which each lasted one year including three months of medication taper. Participating patients kept record of the frequency of panic attacks throughout the full year of treatment. Rate of improvement on panic frequency and the relationship between rate of improvement and baseline agoraphobia (AG) were examined. A significant decline in frequency of panic attacks was observed for each treatment modality. SSRI and CBT+SSRI were associated with a significant faster rate of improvement as compared to CBT. Gains were maintained after tapering medication. For patients with moderate or severe AG, CBT+SSRI was associated with a more rapid improvement on panic frequency as compared to patients receiving either mono-treatment. Frequency of panic attacks was not assessed beyond the full year of treatment. Second, only one process variable was used. Patients with PD respond well to each treatment as indicated by a significant decline in panic attacks. CBT is associated with a slower rate of improvement as compared to SSRI and CBT+SSRI. Discontinuation of SSRI treatment does not result in a revival of frequency of panic attacks. Our data suggest that for patients without or with only mild AG, SSRI-only will suffice. For patients with moderate or severe AG, the combined CBT+SSRI treatment is recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Resilient control of cyber-physical systems against intelligent attacker: a hierarchal stackelberg game approach

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Sun, Fuchun; Liu, Huaping

    2016-07-01

    This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.

  5. Switching LPV Control for High Performance Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.

  6. An Overview of the RTO Symposium on Vortex Flow and High Angle of Attack Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2002-01-01

    In May of 2001 the Research and Technology Organization (RTO) sponsored a symposium on Vortex Flow and High Angle of Attack aerodynamics. Forty-six papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results. Selected highlights are included in this paper to provide a perspective toward the scope of the full symposium.

  7. A Systems-Based Risk Assessment Framework for Intentional Electromagnetic Interference (IEMI) on Critical Infrastructures.

    PubMed

    Oakes, Benjamin Donald; Mattsson, Lars-Göran; Näsman, Per; Glazunov, Andrés Alayón

    2018-06-01

    Modern infrastructures are becoming increasingly dependent on electronic systems, leaving them more vulnerable to electrical surges or electromagnetic interference. Electromagnetic disturbances appear in nature, e.g., lightning and solar wind; however, they may also be generated by man-made technology to maliciously damage or disturb electronic equipment. This article presents a systematic risk assessment framework for identifying possible, consequential, and plausible intentional electromagnetic interference (IEMI) attacks on an arbitrary distribution network infrastructure. In the absence of available data on IEMI occurrences, we find that a systems-based risk assessment is more useful than a probabilistic approach. We therefore modify the often applied definition of risk, i.e., a set of triplets containing scenario, probability, and consequence, to a set of quadruplets: scenario, resource requirements, plausibility, and consequence. Probability is "replaced" by resource requirements and plausibility, where the former is the minimum amount and type of equipment necessary to successfully carry out an attack scenario and the latter is a subjective assessment of the extent of the existence of attackers who possess the motivation, knowledge, and resources necessary to carry out the scenario. We apply the concept of intrusion areas and classify electromagnetic source technology according to key attributes. Worst-case scenarios are identified for different quantities of attacker resources. The most plausible and consequential of these are deemed the most important scenarios and should provide useful decision support in a countermeasures effort. Finally, an example of the proposed risk assessment framework, based on notional data, is provided on a hypothetical water distribution network. © 2017 Society for Risk Analysis.

  8. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  9. Sweet smells prepare plants for future stress: airborne induction of plant disease immunity.

    PubMed

    Yi, Hwe-Su; Ryu, Choong-Min; Heil, Martin

    2010-05-01

    Plants require protection against a wide range of attackers such as insects and pathogens. The adequate plant defense responses are regulated via sophisticated signal cascades, which are activated following the perception of specific cues of the attackers. Plants might, however, gain a significant fitness advantage when pre-empting enemy attack before it actually occurs. Monitoring cues from attacked neighbors can permit plants to reach this goal. We have recently found airborne disease resistance against a bacterial pathogen in uninfected lima bean plants when these were located close to conspecific, resistance-expressing neighbors. The emitters could be chemically induced with benzothiadiazole or biologically with an avirulent pathogen. Unexpectedly, receiver plants, although expressing a functioning resistance, did not show reduced growth rates, which represent a common side-effect of directly induced pathogen resistance. Nonanal was identified as an active volatile and, rather than directly inducing full resistance, primed defense gene expression, which became fully activated only when the plants were subsequently challenged by a virulent pathogen. Priming by airborne signals allows for a more efficient and less costly preparation of plants for future attack and airborne signaling can affect resistance against both major groups of plant enemies: herbivores and pathogens.

  10. Defending Against Advanced Persistent Threats Using Game-Theory.

    PubMed

    Rass, Stefan; König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system's protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest.

  11. Meniere's Disease

    MedlinePlus

    ... vertigo (attacks of a spinning sensation), hearing loss, tinnitus (a roaring, buzzing, or ringing sound in the ... of the disease, hearing loss often becomes permanent. Tinnitus and fullness of the ear may come and ...

  12. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  13. Full-field implementation of a perfect eavesdropper on a quantum cryptography system.

    PubMed

    Gerhardt, Ilja; Liu, Qin; Lamas-Linares, Antía; Skaar, Johannes; Kurtsiefer, Christian; Makarov, Vadim

    2011-06-14

    Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.

  14. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    2017-09-01

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  15. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  16. O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling.

    PubMed

    Shaffer, David W; Xie, Yan; Concepcion, Javier J

    2017-10-16

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.

  17. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study.

    PubMed

    Goadsby, P J; Grosberg, B M; Mauskop, A; Cady, R; Simmons, K A

    2014-10-01

    We sought to assess a novel, noninvasive, portable vagal nerve stimulator (nVNS) for acute treatment of migraine. Participants with migraine with or without aura were eligible for an open-label, single-arm, multiple-attack study. Up to four migraine attacks were treated with two 90-second doses, at 15-minute intervals delivered to the right cervical branch of the vagus nerve within a six-week time period. Subjects were asked to self-treat at moderate or severe pain, or after 20 minutes of mild pain. Of 30 enrolled patients (25 females, five males, median age 39), two treated no attacks, and one treated aura only, leaving a Full Analysis Set of 27 treating 80 attacks with pain. An adverse event was reported in 13 patients, notably: neck twitching (n = 1), raspy voice (n = 1) and redness at the device site (n = 1). No unanticipated, serious or severe adverse events were reported. The pain-free rate at two hours was four of 19 (21%) for the first treated attack with a moderate or severe headache at baseline. For all moderate or severe attacks at baseline, the pain-free rate was 12/54 (22%). nVNS may be an effective and well-tolerated acute treatment for migraine in certain patients. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. RELEVANT ASPECTS OF MEDIUM-SCALE TIDs RELATED WITH MIDLATITUDES SPREAD- F OBSERVED BY ALL-SKY IMAGING SYSTEM IN THE SOUTHERN HEMISPHERE OVER TWO FULL SOLAR CYCLES

    NASA Astrophysics Data System (ADS)

    Pimenta, A. A.

    2009-12-01

    Using ground-based measurements we investigate the occurrence of medium-scale TIDs (MSTIDs) in the OI 630 nm nightglow emission all-sky images in the Brazilian low latitudes region related with midlatitude Spread F, during over two full solar cycles. The OI 630 nm images obtained during these periods show thermospheric dark band structures (MSTIDs) in low latitudes region propagating from southeast to northwest. These dark patches moved with average speed of about 50-200 m/s. Only during low solar activity period (LSA), ascending solar activity period (ASA) and descending solar activity period the DBS occurrences were observed in the OI630 nm nightglow emission all-sky images. However, during high solar activity (HAS) we didn’t observe the DBS in the all-sky images. In addition, ionospheric data over two stations in Brazil, one at the magnetic equator (São Luís) and the other close to the southern crest of the equatorial ionization anomaly (Cachoeira Paulista) were used to study this kind of structures during high and low solar activity periods. It should be pointed out that these thermospheric/ionospheric events are not related to geomagnetic disturbed conditions. In this work, we present and discuss this phenomenon in the Brazilian sector over two full solar cycles under different solar activity conditions. A possible mechanism for generation of these dark band structures is presented.

  19. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    PubMed Central

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305

  20. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  1. A generalized architecture of quantum secure direct communication for N disjointed users with authentication

    NASA Astrophysics Data System (ADS)

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.

    2015-11-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.

  2. A generalized architecture of quantum secure direct communication for N disjointed users with authentication.

    PubMed

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A

    2015-11-18

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.

  3. Develop a solution for protecting and securing enterprise networks from malicious attacks

    NASA Astrophysics Data System (ADS)

    Kamuru, Harshitha; Nijim, Mais

    2014-05-01

    In the world of computer and network security, there are myriad ways to launch an attack, which, from the perspective of a network, can usually be defined as "traffic that has huge malicious intent." Firewall acts as one of the measure in order to secure the device from incoming unauthorized data. There are infinite number of computer attacks that no firewall can prevent, such as those executed locally on the machine by a malicious user. From the network's perspective, there are numerous types of attack. All the attacks that degrade the effectiveness of data can be grouped into two types: brute force and precision. The Firewall that belongs to Juniper has the capability to protect against both types of attack. Denial of Service (DoS) attacks are one of the most well-known network security threats under brute force attacks, which is largely due to the high-profile way in which they can affect networks. Over the years, some of the largest, most respected Internet sites have been effectively taken offline by Denial of Service (DOS) attacks. A DoS attack typically has a singular focus, namely, to cause the services running on a particular host or network to become unavailable. Some DoS attacks exploit vulnerabilities in an operating system and cause it to crash, such as the infamous Win nuke attack. Others submerge a network or device with traffic so that there are no more resources to handle legitimate traffic. Precision attacks typically involve multiple phases and often involves a bit more thought than brute force attacks, all the way from reconnaissance to machine ownership. Before a precision attack is launched, information about the victim needs to be gathered. This information gathering typically takes the form of various types of scans to determine available hosts, networks, and ports. The hosts available on a network can be determined by ping sweeps. The available ports on a machine can be located by port scans. Screens cover a wide variety of attack traffic as they are configured on a per-zone basis. Depending on the type of screen being configured, there may be additional settings beyond simply blocking the traffic. Attack prevention is also a native function of any firewall. Juniper Firewall handles traffic on a per-flow basis. We can use flows or sessions as a way to determine whether traffic attempting to traverse the firewall is legitimate. We control the state-checking components resident in Juniper Firewall by configuring "flow" settings. These settings allow you to configure state checking for various conditions on the device. You can use flow settings to protect against TCP hijacking, and to generally ensure that the fire-wall is performing full state processing when desired. We take a case study of attack on a network and perform study of the detection of the malicious packets on a Net screen Firewall. A new solution for securing enterprise networks will be developed here.

  4. Variation of lunar sodium emission intensity with phase angle

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1994-01-01

    We report new measurements of the sodium emission intensity seen in a line of sight just above the surface of the Moon. These data show a strong dependence on lunar phase. The emission intensity decreases from a maximum around first quarter (phase angle 90 deg) to very small values near full Moon (phase angle 0 deg). This suggests that the rate of sodium vapor production from the lunar surface is largest at the subsolar point and becomes small near the terminator. However, the sodium emission near full Moon falls below that which would be expected for solar photon-driven processes. Since the solar wind flux decreases substantially when the Moon enters the Earth's magnetotail near full Moon, while the global solar photon flux is undiminished, we suggest that solar wind sputtering is the dominant process for sodium production.

  5. Thin-layer and full Navier-Stokes calculations for turbulent supersonic flow over a cone at an angle of attack

    NASA Technical Reports Server (NTRS)

    Smith, Crawford F.; Podleski, Steve D.

    1993-01-01

    The proper use of a computational fluid dynamics code requires a good understanding of the particular code being applied. In this report the application of CFL3D, a thin-layer Navier-Stokes code, is compared with the results obtained from PARC3D, a full Navier-Stokes code. In order to gain an understanding of the use of this code, a simple problem was chosen in which several key features of the code could be exercised. The problem chosen is a cone in supersonic flow at an angle of attack. The issues of grid resolution, grid blocking, and multigridding with CFL3D are explored. The use of multigridding resulted in a significant reduction in the computational time required to solve the problem. Solutions obtained are compared with the results using the full Navier-Stokes equations solver PARC3D. The results obtained with the CFL3D code compared well with the PARC3D solutions.

  6. 78 FR 32240 - Notice of Inent (NOI) To Prepare an Environmental Impact Statement (EIS) for the Oro Verde Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... additional alternatives. Alternative A includes full-scale project development of a 450 Megawatt solar PV... the Oro Verde Solar Project at Edwards Air Force Base and County of Kern, CA AGENCY: Department of the... with the development of the Oro Verde Solar Project (OVSP) on Edwards AFB. The OVSP is a solar...

  7. Spatial Searching for Solar Physics Data

    NASA Astrophysics Data System (ADS)

    Hourcle, Joseph; Spencer, J. L.; The VSO Team

    2013-07-01

    The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.

  8. Validation of a three-dimensional viscous analysis of axisymmetric supersonic inlet flow fields

    NASA Technical Reports Server (NTRS)

    Benson, T. J.; Anderson, B. H.

    1983-01-01

    A three-dimensional viscous marching analysis for supersonic inlets was developed. To verify this analysis several benchmark axisymmetric test configurations were studied and are compared to experimental data. Detailed two-dimensional results for shock-boundary layer interactions are presented for flows with and without boundary layer bleed. Three dimensional calculations of a cone at angle of attack and a full inlet at attack are also discussed and evaluated. Results of the calculations demonstrate the code's ability to predict complex flow fields and establish guidelines for future calculations using similar codes.

  9. Wind tunnel tests of four flexible wing ultralight gliders

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1979-01-01

    The aerodynamic lift, drag, and pitching moment characteristics of four full scale, flexible wing, ultralight gliders were measured in the settling chamber of a low speed wind tunnel. The gliders were tested over a wide range of angle of attack and at two different velocities. Particular attention was devoted to the lift and pitching moment behavior at low and negative angles of attack because of the potential loss of longitudinal stability of flexible wing gliders in this regime. The test results were used to estimate the performance and longitudinal control characteristics of the gliders.

  10. ENGINEERING DEVELOPMENT UNIT SOLAR SAIL

    NASA Image and Video Library

    2016-01-13

    TIFFANY LOCKETT OVERSEES THE HALF SCALE (36 SQUARE METERS) ENGINEERING DEVELOPMENT UNIT (EDU) SOLAR SAIL DEPLOYMENT DEMONSTRATION IN PREPARATION FOR FULL SCALE EDU (86 SQUARE METERS) DEPLOYMENT IN APRIL, 2016. DETAILS OF RIPS AND HOLES IN SOLAR SAIL FABRIC.

  11. Optimal Resource Allocation in Electrical Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y; Edmunds, T; Papageorgiou, D

    2004-01-15

    Infrastructure networks supplying electricity, natural gas, water, and other commodities are at risk of disruption due to well-engineered and coordinated terrorist attacks. Countermeasures such as hardening targets, acquisition of spare critical components, and surveillance can be undertaken to detect and deter these attacks. Allocation of available countermeasures resources to sites or activities in a manner that maximizes their effectiveness is a challenging problem. This allocation must take into account the adversary's response after the countermeasure assets are in place and consequence mitigation measures the infrastructure operation can undertake after the attack. The adversary may simply switch strategies to avoid countermeasuresmore » when executing the attack. Stockpiling spares of critical energy infrastructure components has been identified as a key element of a grid infrastructure defense strategy in a recent National Academy of Sciences report [1]. Consider a scenario where an attacker attempts to interrupt the service of an electrical network by disabling some of its facilities while a defender wants to prevent or minimize the effectiveness of any attack. The interaction between the attacker and the defender can be described in three stages: (1) The defender deploys countermeasures, (2) The attacker disrupts the network, and (3) The defender responds to the attack by rerouting power to maintain service while trying to repair damage. In the first stage, the defender considers all possible attack scenarios and deploys countermeasures to defend against the worst scenarios. Countermeasures can include hardening targets, acquiring spare critical components, and installing surveillance devices. In the second stage, the attacker, with full knowledge of the deployed countermeasures, attempts to disable some nodes or links in the network to inflict the greatest loss on the defender. In the third stage, the defender re-dispatches power and restores disabled nodes or links to minimize the loss. The loss can be measured in costs, including the costs of using more expensive generators and the economic losses that can be attributed to loss of load. The defender's goal is to minimize the loss while the attacker wants to maximize it. Assuming some level of budget constraint, each side can only defend or attack a limited number of network elements. When an element is attacked, it is assumed that it will be totally disabled. It is assumed that when an element is defended it cannot be disabled, which may mean that it will be restored in a very short time after being attacked. The rest of the paper is organized as follows. Section 2 will briefly review literature related to multilevel programming and network defense. Section 3 presents a mathematical formulation of the electrical network defense problem. Section 4 describes the solution algorithms. Section 5 discusses computational results. Finally, Sec. 6 explores future research directions.« less

  12. Full-Sun observations for identifying the source of the slow solar wind

    PubMed Central

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.

    2015-01-01

    Fast (>700 km s−1) and slow (~400 km s−1) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknown. Here we identify possible sites of origin using a slow solar wind source map of the entire Sun, which we construct from specially designed, full-disk observations from the Hinode satellite, and a magnetic field model. Our map provides a full-Sun observation that combines three key ingredients for identifying the sources: velocity, plasma composition and magnetic topology and shows them as solar wind composition plasma outflowing on open magnetic field lines. The area coverage of the identified sources is large enough that the sum of their mass contributions can explain a significant fraction of the mass loss rate of the solar wind. PMID:25562705

  13. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  14. Concentrating Solar Power Projects - Likana Solar Energy Project |

    Science.gov Websites

    three 130 megawatt (MW) solar thermal towers each with 13 hours of full load energy storage, delivering Thermal Storage Storage Type: 2-tank direct Storage Capacity: 13 hours Thermal Storage Description: Molten

  15. Network Anomaly Detection Based on Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  16. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  17. Present Status and Future Prospects of Silicon Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Konagai, Makoto

    2011-03-01

    In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.

  18. Nonlinear analysis and control of an aircraft in the neighbourhood of deep stall

    NASA Astrophysics Data System (ADS)

    Kolb, Sébastien; Hétru, Laurent; Faure, Thierry M.; Montagnier, Olivier

    2017-01-01

    When an aircraft is locked in a stable equilibrium at high angle-of-attack, we have to do with the so-called deep stall which is a very dangerous situation. Airplanes with T-tail are mainly concerned with this phenomenon since the wake of the main wing flows over the horizontal tail and renders it ineffective but other aircrafts such as fighters can also be affected. First the phase portrait and bifurcation diagram are determined and characterized (with three equilibria in a deep stall prone configuration). It allows to diagnose the configurations of aircrafts susceptible to deep stall and also to point out the different types of time evolutions. Several techniques are used in order to determine the basin of attraction of the stable equilibrium at high angle-of-attack. They are based on the calculation of the stable manifold of the saddle-point equilibrium at medium angle-of-attack. Then several ways are explored in order to try to recover from deep stall. They exploits static features (such as curves of pitching moment versus angle-of-attack for full pitch down and full pitch up elevators) or dynamic aspects (excitation of the eigenmodes and improvement of the aerodynamic efficiency of the tail). Finally, some properties of a deep stall prone aircraft are pointed out and some control tools are also implemented. We try also to apply this mathematical results in a concrete situation by taking into account the captors specificities or by estimating the relevant variables thanks to other available information.

  19. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.

  20. 76 FR 70966 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... modules (solar cells), from the People's Republic of China (PRC) filed in proper form by SolarWorld...), Petitioner alleges that producers/exporters of solar cells from the PRC received countervailable subsidies... the scope of this investigation are solar cells from the PRC. For a full description of the scope of...

  1. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan,

    2018-05-30

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  2. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART IV. SOLAR COLLECTOR DEVELOPMENT SUPPORT TASKS. VOL. VII. ENGINEERING DEVELOPMENT GROUND TEST PLAN FOR THE ASTEC SOLAR ENERGY COLLECTOR.

    DTIC Science & Technology

    optical, and structural integrity of the full scale ASTEC solar collector before further development proceeds. This document specifies these initial...engineering ground tests recommended for testing petals and other critical components of the ASTEC collector. It defines the requirements and

  3. A generalized architecture of quantum secure direct communication for N disjointed users with authentication

    PubMed Central

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.

    2015-01-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N − 1 disjointed users u1, u2, …, uN−1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N − 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N − 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement. PMID:26577473

  4. Solar UV variability

    NASA Technical Reports Server (NTRS)

    Donnelly, Richard F.

    1989-01-01

    Measurements from the Solar Backscatter Ultraviolet (SBUV) provide solar UV flux in the 160 to 400 nm wavelength range, backed up by independent measurement in the 115 to 305 nm range from the Solar Mesosphere Explorer (SME). The full disc UV flux from spatially resolved measurements of solar activity was modeled, which provides a better understanding of why the UV variations have their observed temporal and wavelength dependencies. Long term, intermediate term, and short term variations are briefly examined.

  5. Castable Cement Can Prevent Molten-Salt Corrosion in CSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-09-01

    NREL's study demonstrated that castable cements on metals are a protective barrier that can prevent permeation of molten salts toward metallic surfaces. The silica-based castable cement Aremco 645-N, when sprayed with boron nitride, can protect containment metallic alloys from attack by molten chlorides at high temperatures (650 degrees C) in short-term tests. Improved thermal energy storage technology could increase the performance of CSP and reduce costs, helping to reach the goal of the U.S. Department of Energy's SunShot Initiative to make solar cost-competitive with other non-renewable sources of electricity by 2020.

  6. Calculations of transonic boattail flow at small angle of attack

    NASA Technical Reports Server (NTRS)

    Nakayama, A.; Chow, W. L.

    1979-01-01

    A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.

  7. Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack

    NASA Technical Reports Server (NTRS)

    Shain, W. M.

    1978-01-01

    A low speed wind tunnel test of a fixed lip inlet with engine, was performed. The inlet was close coupled to a Hamilton Standard 1.4 meter, variable pitch fan driven by a lycoming T55-L-11A engine. Tests were conducted with various combinations of inlet angle of attack freestream velocities, and fan airflows. Data were recorded to define the inlet airflow separation boundaries, performance characteristics, and fan blade stresses. The test model, installation, instrumentation, test, data reduction and final data are described.

  8. Aerodynamics, aeroelasticity, and stability of hang gliders. Experimental results. [Ames 7- by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kroo, I. M.

    1981-01-01

    One-fifth-scale models of three basic ultralight glider designs were constructed to simulate the elastic properties of full scale gliders and were tested at Reynolds numbers close to full scale values. Twenty-four minor modifications were made to the basic configurations in order to evaluate the effects of twist, reflex, dihedral, and various stability enhancement devices. Longitudinal and lateral data were obtained at several speeds through an angle of attack range of -30 deg to +45 deg with sideslip angles of up to 20 deg. The importance of vertical center of gravity displacement is discussed. Lateral data indicate that effective dihedral is lost at low angles of attack for nearly all of the configurations tested. Drag data suggest that lift-dependent viscous drag is a large part of the glider's total drag as is expected for thin, cambered sections at these relatively low Reynolds numbers.

  9. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  10. Benefits of full scope simulators during solar thermal power plants design and construction

    NASA Astrophysics Data System (ADS)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  11. Solar Flare Dynamic Microwave Imaging with EOVSA

    NASA Astrophysics Data System (ADS)

    Gary, D. E.; Chen, B.; Nita, G. M.; Fleishman, G. D.; Yu, S.; White, S. M.; Hurford, G. J.; McTiernan, J. M.

    2017-12-01

    The Expanded Owens Valley Solar Array (EOVSA) is both an expansion of our existing solar array and serves as a prototype for a much larger future project, the Frequency Agile Solar Radiotelescope (FASR). EOVSA is now complete, and is producing daily imaging of the full solar disk, including active regions and solar radio bursts at hundreds of frequencies in the range 2.8-18 GHz. We present highlights of the 1-s-cadence dynamic imaging spectroscropy of radio bursts we have obtained to date, along with deeper analysis of multi-wavelength observations and modeling of a well-observed burst. These observations are revealing the full life-cycle of the trapped population of high-energy electrons, from their initial acceleration and subsequent energy-evolution to their eventual decay through escape and thermalization. All of our data are being made available for download in both quick-look image form and in the form of the community-standard CASA measurement sets for subsequent imaging and analysis.

  12. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  13. Transonic wind tunnel tests of A.015 scale space shuttle orbiter model, volume 1

    NASA Technical Reports Server (NTRS)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The first part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers for 3.5 million to 8.2 million per foot. The angle of attack was varied from -1 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  14. Transonic wind tunnel tests of a .015 scale space shuttle orbiter model, volume 2

    NASA Technical Reports Server (NTRS)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The second part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers from 3.5 million to 8.2 million per foot. The angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  15. The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil

    1992-01-01

    The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.

  16. Thermal Model Correlation for Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; Gasbarre, Joseph F.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C.

  17. Full-scale wind-tunnel investigation of the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Johnson, J. L., Jr.; Newsom, W. A.; Satran, D. R.

    1980-01-01

    The paper presents the results of a recent investigation to determine the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane in the Langley Full-Scale Wind Tunnel. The investigation was conducted to provide aerodynamic information for correlation and analysis of flight-test results obtained for the configuration. The wind-tunnel investigation consisted of force and moment measurements, wing pressure measurements, flow surveys, and flow visualization studies utilizing a tuft grid, smoke and nonintrusive mini-tufts which were illuminated by ultra-violet light. In addition to the tunnel scale system which measured overall forces and moments, the model was equipped with an auxiliary strain-gage balance within the left wing panel to measure lift and drag forces on the outer wing panel independent of the tunnel scale system. The leading-edge modifications studied included partial- and full-span leading-edge droop arrangements as well as leading-edge slats.

  18. A practical six-degree of freedom solar sail dynamics model for optimizing solar sail trajectories with torque constraints

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.

    2004-01-01

    Controlled flight of a solar sail-propelled spacecraft ('sailcraft') is a six-degree-of-freedom dynamics problem. Current state-of-the-art tools that simulate and optimize the trajectories flown by sailcraft do not treat the full kinetic (i.e. force and torque-constrained) motion, instead treating a discrete history of commanded sail attitudes, and either neglecting the sail attitude motion over an integration timestep, or treating the attitude evolution kinematically with a spline or similar treatment. The present paper discusses an aspect of developing a next generation sailcraf trajectory designing optimization tool JPL, for NASA's Solar Sail Spaceflight Simulation Software (SS). The aspect discussed in an experimental approach to modeling full six-degree-of-freedom kinetic motion of a solar sail in a trajectory propagator. Early results from implementing this approach in a new trajectory propagation tool are given.

  19. Directing solar photons to sustainably meet food, energy, and water needs.

    PubMed

    Gençer, Emre; Miskin, Caleb; Sun, Xingshu; Khan, M Ryyan; Bermel, Peter; Alam, M Ashraf; Agrawal, Rakesh

    2017-06-09

    As we approach a "Full Earth" of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity's FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locally is critical, as significant population growth is expected in less-developed areas of the world. The proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used-a major step for Full Earth preparedness.

  20. Reactions of Oklahoma City bombing survivors to media coverage of the September 11, 2001, attacks.

    PubMed

    Pfefferbaum, Betty; Nitiéma, Pascal; Pfefferbaum, Rose L; Houston, J Brian; Tucker, Phebe; Jeon-Slaughter, Haekyung; North, Carol S

    2016-02-01

    This study explored the effects of media coverage of a terrorist incident in individuals remote from the location of a major attack who had directly experienced a prior terrorist incident. Directly-exposed survivors of the 1995 Oklahoma City bombing, initially studied six months after the incident, and indirectly-affected Oklahoma City community residents were assessed two to seven months after the September 11, 2001, attacks. Survivors were assessed for a diagnosis of bombing-related posttraumatic stress disorder (PTSD) at index and follow up, and emotional reactions and September 11 media behavior were assessed in all participants. Among the three investigated forms of media (television, radio, and newspaper), only television viewing was associated with 9/11-related posttraumatic stress reactions. Exposure to the Oklahoma City bombing was associated with greater arousal in relation to the September 11 attacks, and among survivors, having developed bombing-related PTSD was associated with higher scores on all three September 11 posttraumatic stress response clusters (intrusion, avoidance, and arousal). Although time spent watching television coverage of the September 11 attacks and fear-related discontinuation of media contact were not associated with Oklahoma City bombing exposure, discontinuing September 11 media contact due to fear was associated with avoidance/numbing in the full sample and in the analysis restricted to the bombing survivors. Surviving a prior terrorist incident and developing PTSD in relation to that incident may predispose individuals to adverse reactions to media coverage of a future terrorist attack. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Solar energy system performance evaluation: Seasonal report for Decade 80 House, Tucson, Arizona

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the Decade 80 solar energy system is described. The system was designed by Cooper Development Association, Inc. with space heating and space cooling to a one-story, single family residence located in Tucson, Arizona. The Decade 80 House was designed and built in the mid-70's to be a showplace/workshop for solar energy utilization. Superior construction techniques, the use of quality materials and a full time maintenance staff have served to make the entire system an outstanding example of the application of solar energy for residential purposes. The luxury of a full time, on-site maintenance person is perhaps the single most important aspect of this program. While most installations cannot support this level of maintenance, it was very useful in keeping all subsystems operating in top form and allowing for a full season data collection to be obtained. Several conclusions were drawn from the long term monitoring effort, among which are: (1) flat plate collectors will support cooling; (2) definite energy savings can be realized; and (3) more frequent periodic maintenance may be required on solar energy systems that are not custom built.

  2. Exercise-induced downbeat nystagmus in a Korean family with a nonsense mutation in CACNA1A.

    PubMed

    Choi, Jae-Hwan; Seo, Jae-Deuk; Choi, Yu Ri; Kim, Min-Ji; Shin, Jin-Hong; Kim, Ji Soo; Choi, Kwang-Dong

    2015-08-01

    Episodic ataxia type 2 (EA2) is characterized by recurrent attacks of vertigo and ataxia lasting hours triggered by emotional stress or exercise. Although interictal horizontal gaze-evoked nystagmus and rebound nystagmus are commonly observed in patients with EA2, the nystagmus has been rarely reported during the vertigo attack. To better describe exercise-induced nystagmus in EA2, four affected members from three generations of a Korean family with EA2 received full neurological and neuro-otological evaluations. Vertigo was provoked in the proband with running for 10 min to record eye movements during the vertigo attack. We performed a polymerase chain reaction-based direct sequence analysis of all coding regions of CACNA1A in all participants. The four affected members had a history of exertional vertigo, imbalance, childhood epilepsy, headache, and paresthesia. The provocation induced severe vertigo and imbalance lasting several hours, and oculography documented pure downbeat nystagmus during the attack. Genetic analyses identified a nonsense mutation in exon 23 which has been registered in dbSNP as a pathogenic allele (c.3832C>T, p.R1278X) in all the affected members. Ictal downbeat nystagmus in the studied family indicates cerebellar dysfunction during the vertigo attack in EA2. In patients with episodic vertigo and ataxia, the observation of exercise-induced nystagmus would provide a clue for EA2.

  3. The "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code” Modules

    NASA Astrophysics Data System (ADS)

    Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.

    2010-05-01

    We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.

  4. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    DOE PAGES

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...

    2016-07-05

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less

  5. Neural Network for Positioning Space Station Solar Arrays

    NASA Technical Reports Server (NTRS)

    Graham, Ronald E.; Lin, Paul P.

    1994-01-01

    As a shuttle approaches the Space Station Freedom for a rendezvous, the shuttle's reaction control jet firings pose a risk of excessive plume impingement loads on Freedom solar arrays. The current solution to this problem, in which the arrays are locked in a feathered position prior to the approach, may be neither accurate nor robust, and is also expensive. An alternative solution is proposed here: the active control of Freedom's beta gimbals during the approach, positioning the arrays dynamically in such a way that they remain feathered relative to the shuttle jet most likely to cause an impingement load. An artificial neural network is proposed as a means of determining the gimbal angles that would drive plume angle of attack to zero. Such a network would be both accurate and robust, and could be less expensive to implement than the current solution. A network was trained via backpropagation, and results, which compare favorably to the current solution as well as to some other alternatives, are presented. Other training options are currently being evaluated.

  6. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    NASA Astrophysics Data System (ADS)

    John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.

    2012-08-01

    Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  7. ENGINEERING DEVELOPMENT UNIT SOLAR SAIL

    NASA Image and Video Library

    2016-01-13

    TIFFANY LOCKETT OVERSEES THE HALF SCALE (36 SQUARE METERS) ENGINEERING DEVELOPMENT UNIT (EDU) SOLAR SAIL DEPLOYMENT DEMONSTRATION IN PREPARATION FOR FULL SCALE EDU (86 SQUARE METERS) DEPLOYMENT IN APRIL, 2016

  8. Results of aerothermodynamic heating tests on a 0.013-scale model solid rocket booster in the NASA/LaRC unitary plan wind tunnel (SH12F)

    NASA Technical Reports Server (NTRS)

    Brewer, E. B.

    1975-01-01

    A 0.013 scale model of the solid rocket booster (SRB) used to launch the space shuttle was tested at a Mach number of 3.7 and Reynolds numbers of 1,500,000 and 3,500,000 per foot. The objective of the test was to obtain aerodynamic heat transfer data on the surface of scaled models of the SRB at simulated full scale reentry flight conditions. Three separate models were utilized to measure film coefficients over an angle of attack range from 0 deg to 180 deg at 0 deg sideslip. All three models were representations of the MCR0200 baseline configuration and varied only by the way they were mounted in the tunnel. Model A, sting mounted thru the model base, was utilized for testing between 0 deg and 40 deg angle of attack. Model B was blade mounted from the top of the model and was tested between 60 deg and 120 deg angle of attack. Model C was sting mounted thru the model nose and utilized for testing between 140 deg and 180 deg angle of attack.

  9. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed Central

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-01-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel ‘attack box’ method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance byI. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785

  10. Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1991-01-01

    The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.

  11. PHOTOMETRIC TRENDS IN THE VISIBLE SOLAR CONTINUUM AND THEIR SENSITIVITY TO THE CENTER-TO-LIMB PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, C. L.; Rast, M. P.

    2015-08-01

    Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solarmore » Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging.« less

  12. Wind tunnel research concerning lateral control devices, particularly at high angles of attack VII : Handley Page tip and full-span slots with ailerons and spoilers

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1933-01-01

    Tests were made with ordinary ailerons and different sizes of spoilers on rectangular Clark Y wing models with Handley Page tip and full span slots. The tests showed the effect of the control devices on the general performance of the wings as well as on the lateral control and lateral stability characteristics.

  13. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  14. Photogrammetry and Videogrammetry Methods for Solar Sails and Other Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2004-01-01

    Ultra-lightweight and inflatable gossamer space structures are designed to be tightly packaged for launch, then deploy or inflate once in space. These properties will allow for in-space construction of very large structures 10 to 1000 meters in size such as solar sails, inflatable antennae, and space solar power stations using a single launch. Solar sails are of particular interest because of their potential for propellantless propulsion. Gossamer structures do, however, have significant complications. Their low mass and high flexibility make them very difficult to test on the ground. The added mass and stiffness of attached measurement devices can significantly alter the static and dynamic properties of the structure. This complication necessitates an alternative approach for characterization. This paper discusses the development and application of photogrammetry and videogrammetry methods for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, noncontact, dynamic characterization using dot projection videogrammetry.

  15. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    PubMed

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  16. TESIS experiment on EUV imaging spectroscopy of the Sun

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.

    2009-03-01

    TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.

  17. On the optimality of individual entangling-probe attacks against BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Herbauts, I. M.; Bettelli, S.; Hã¼bel, H.; Peev, M.

    2008-02-01

    Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their implementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312 (2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)]. A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community and among the general public by misinterpreting the implications of this work. The present article proves the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys. Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably superior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev. A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383 (1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was not previously known).

  18. IDMA: improving the defense against malicious attack for mobile ad hoc networks based on ARIP protocol

    NASA Astrophysics Data System (ADS)

    Peng, Chaorong; Chen, Chang Wen

    2008-04-01

    Malicious nodes are mounting increasingly sophisticated attacking operations on the Mobile Ad Hoc Networks (MANETs). This is mainly because the IP-based MANETs are vulnerable to attacks by various malicious nodes. However, the defense against malicious attack can be improved when a new layer of network architecture can be developed to separate true IP address from disclosing to the malicious nodes. In this paper, we propose a new algorithm to improve the defense against malicious attack (IDMA) that is based on a recently developed Assignment Router Identify Protocol (ARIP) for the clustering-based MANET management. In the ARIP protocol, we design the ARIP architecture based on the new Identity instead of the vulnerable IP addresses to provide the required security that is embedded seamlessly into the overall network architecture. We make full use of ARIP's special property to monitor gateway forward packets by Reply Request Route Packets (RREP) without additional intrusion detection layer. We name this new algorithm IDMA because of its inherent capability to improve the defense against malicious attacks. Through IDMA, a watching algorithm can be established so as to counterattack the malicious node in the routing path when it unusually drops up packets. We provide analysis examples for IDMA for the defense against a malicious node that disrupts the route discovery by impersonating the destination, or by responding with state of corrupted routing information, or by disseminating forged control traffic. The IDMA algorithm is able to counterattack the malicious node in the cases when the node lunch DoS attack by broadcast a large number of route requests, or make Target traffic congestion by delivering huge mount of data; or spoof the IP addresses and send forge packets with a fake ID to the same Target causing traffic congestion at that destination. We have implemented IDMA algorism using the GloMoSim simulator and have demonstrated its performance under a variety of operational conditions.

  19. Determining Correlation between Shark Location and Atmospheric Wind and Thermal Parameters.

    NASA Astrophysics Data System (ADS)

    Merchant, J.

    2017-12-01

    Millions of people visit the nation's shorelines every summer. As recreational use of the ocean increases across the country, so too does the risk of shark attacks on people. According to George H. Burgess, curator for the International Shark Attack File and the Florida Program for Shark Research "The number of shark-human interactions occurring in a given year is directly correlated with the amount of time humans spend in the sea. As world population continues its upsurge and interest in aquatic recreation concurrently rises, we realistically should expect increases in the number of shark attacks and other aquatic recreation-related injuries". Burgess' analysis released in February of 2016, states "2015 yearly total of 98 unprovoked attacks (worldwide) was the highest on record" until 2016. Adding to the previous record number of global shark/human interactions in 2015 were 10 confirmed cases of people bitten by sharks off the shores of North Carolina and South Carolina over a five week period in June and July of 2015. The unusually high amount of attacks within close proximity over a short period of time garnered significant media attention nationwide. Preliminary data resulting from the analysis of these 2015 shark attacks and separate acoustic shark location data from Dr. Gregory Skomal's (Program Manager, Senior Marine Fisheries Biologist for the state of Massachusetts) ongoing research across Cape Code do indicate a correlation between environmental and biological factors leading up to human/shark interactions. Not only will these preliminary findings be presented, but a full description of how the use of higher resolution remote sensing and in-situ surface wind and thermal measurements would improve real time detection and prediction of these dangerous conditions, up to hours in advance, mitigating human risk and interaction with shark.

  20. Development of simplified process for environmentally resistant cells

    NASA Technical Reports Server (NTRS)

    King, W. J.

    1980-01-01

    This report describes a program to develop a simple, foolproof, all vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (SI, Al2O3, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press formed metallic superstructure with a separated glass cover for missile, etc., protection.

  1. The lunar cycle: effects of full moon on renal colic.

    PubMed

    Molaee Govarchin Ghalae, Hojjat; Zare, Samad; Choopanloo, Maryam; Rahimian, Roya

    2011-01-01

    To evaluate renal colic frequency in different seasons and around full moon. A total of 1481 patients with renal colic were studied retrospectively addressing days of a month both in solar and lunar calendar. The mean age of the patients was 57 ± 13 years. Total admissions in summer was 613; of which 288 (41%), 199 (39%), and 126 (43%) were in years 2002, 2003, and 2004, respectively. The highest frequencies in solar calendar were on days 2 (56), 20 (63), and 27 (59) and the lowest were on days 6 (36), 22 (38), 26 (34), and 31 (31). We did not find any statistically significant association according to solar calendar (P = .3). In lunar calendar, most of the admissions were on day 15 (69) and the lowest rates were on days 1 (25) and 30 (26), which was statistically significant (P = .04). Renal colic frequency is not correlated with solar calendar, but its highest frequency in lunar calendar is in the middle of the month period. Although we found a correlation between full moon effect and renal tide, but this is a new window for further studies.

  2. Directing solar photons to sustainably meet food, energy, and water needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gencer, Emre; Miskin, Caleb; Sun, Xingshu

    As we approach a “Full Earth” of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity’s FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locallymore » is critical, as significant population growth is expected in less-developed areas of the world. As a result, the proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used—a major step for Full Earth preparedness.« less

  3. Real-Time flare detection using guided filter

    NASA Astrophysics Data System (ADS)

    Lin, Jiaben; Deng, Yuanyong; Yuan, Fei; Guo, Juan

    2017-04-01

    A procedure is introduced for the automatic detection of solar flare using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. And then we adopt guided filter, which is first introduced into the astronomical image detection, to enhance the edges of flares and restrain the solar limb darkening. Flares are then detected by modified Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedure, the new procedure has some advantages such as real time and reliability as well as no need of image division and local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result of flares detection shows that the number of flares detected by our procedure is well consistent with the manual one.

  4. Solar Seismology from Space. a Conference at Snowmass, Colorado

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Harvey, J.; Rhodes, E. J., Jr.; Toomre, J.

    1984-01-01

    The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure.

  5. Directing solar photons to sustainably meet food, energy, and water needs

    DOE PAGES

    Gencer, Emre; Miskin, Caleb; Sun, Xingshu; ...

    2017-06-09

    As we approach a “Full Earth” of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity’s FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locallymore » is critical, as significant population growth is expected in less-developed areas of the world. As a result, the proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used—a major step for Full Earth preparedness.« less

  6. Longitudinal Stability and Control Characteristics as Determined by the Rocket-model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-aspect-ratio Wing Having Trailing-edge Flap Controls for a Mach Number Range of 0.7 to 1.

    NASA Technical Reports Server (NTRS)

    Baber, Hal T , Jr; Moul, Martin T

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  7. Longitudinal Stability and Control Characteristics as Determined by the Rocket-Model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-Aspect-Ratio Wing Having Trailing-Edge Flap Controls for a Mach Number Range of 0.7 to 1.8

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Moul, M. T.

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  8. Posttraumatic stress disorder following the September 11, 2001, terrorist attacks: a review of the literature among highly exposed populations.

    PubMed

    Neria, Yuval; DiGrande, Laura; Adams, Ben G

    2011-09-01

    The September 11, 2001 (9/11), terrorist attacks were unprecedented in their magnitude and aftermath. In the wake of the attacks, researchers reported a wide range of mental and physical health outcomes, with posttraumatic stress disorder (PTSD) the one most commonly studied. In this review, we aim to assess the evidence about PTSD among highly exposed populations in the first 10 years after the 9/11 attacks. We performed a systematic review. Eligible studies included original reports based on the full Diagnostic and Statistical Manual of Mental Disorders (4th ed., rev.; American Psychiatric Association, 2000) criteria of PTSD among highly exposed populations such as those living or working within close proximity to the World Trade Center (WTC) and the Pentagon in New York City and Washington, DC, respectively, and first responders, including rescue, cleaning, and recovery workers. The large body of research conducted after the 9/11 attacks in the past decade suggests that the burden of PTSD among persons with high exposure to 9/11 was substantial. PTSD that was 9/11-related was associated with a wide range of correlates, including sociodemographic and background factors, event exposure characteristics, loss of life of significant others, and social support factors. Few studies used longitudinal study design or clinical assessments, and no studies reported findings beyond six years post-9/11, thus hindering documentation of the long-term course of confirmed PTSD. Future directions for research are discussed. © 2011 American Psychological Association

  9. Posttraumatic Stress Disorder Following the September 11, 2001, Terrorist Attacks

    PubMed Central

    Neria, Yuval; DiGrande, Laura; Adams, Ben G.

    2012-01-01

    The September 11, 2001 (9/11), terrorist attacks were unprecedented in their magnitude and aftermath. In the wake of the attacks, researchers reported a wide range of mental and physical health outcomes, with posttraumatic stress disorder (PTSD) the one most commonly studied. In this review, we aim to assess the evidence about PTSD among highly exposed populations in the first 10 years after the 9/11 attacks. We performed a systematic review. Eligible studies included original reports based on the full Diagnostic and Statistical Manual of Mental Disorders (4th ed., rev.; American Psychiatric Association, 2000) criteria of PTSD among highly exposed populations such as those living or working within close proximity to the World Trade Center (WTC) and the Pentagon in New York City and Washington, DC, respectively, and first responders, including rescue, cleaning, and recovery workers. The large body of research conducted after the 9/11 attacks in the past decade suggests that the burden of PTSD among persons with high exposure to 9/11 was substantial. PTSD that was 9/11-related was associated with a wide range of correlates, including sociodemographic and background factors, event exposure characteristics, loss of life of significant others, and social support factors. Few studies used longitudinal study design or clinical assessments, and no studies reported findings beyond six years post-9/11, thus hindering documentation of the long-term course of confirmed PTSD. Future directions for research are discussed. PMID:21823772

  10. High-Frequency Peaks in the Power Spectrum of Solar Velocity Observations from the GOLF Experiment

    NASA Astrophysics Data System (ADS)

    García, R. A.; Pallé, P. L.; Turck-Chièze, S.; Osaki, Y.; Shibahashi, H.; Jefferies, S. M.; Boumier, P.; Gabriel, A. H.; Grec, G.; Robillot, J. M.; Cortés, T. Roca; Ulrich, R. K.

    1998-09-01

    The power spectrum of more than 630 days of full-disk solar velocity data, provided by the GOLF spectrophotometer aboard the Solar and Heliospheric Observatory, has revealed the presence of modelike structure well beyond the acoustic cutoff frequency for the solar atmosphere (νac~5.4 mHz). Similar data produced by full-disk instruments deployed in Earth-based networks (BiSON and IRIS) had not shown any peak structure above νac: this is probably due to the higher levels of noise that are inherent in Earth-based experiments. We show that the observed peak structure (νac<=ν<=7.5 mHz) can be explained by a simple two-wave interference model if the high-frequency waves are partially reflected at the back side of the Sun.

  11. A 928 sq m (10000 sq ft) solar array

    NASA Technical Reports Server (NTRS)

    Lindberg, D. E.

    1972-01-01

    As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, N. B.; Kong, D. F., E-mail: nanbin@ynao.ac.cn

    The Physikalisch Meteorologisches Observatorium Davos total solar irradiance (TSI), Active Cavity Radiometer Irradiance Monitoring TSI, and Royal Meteorological Institute of Belgium TSI are three typical TSI composites. Magnetic Plage Strength Index (MPSI) and Mount Wilson Sunspot Index (MWSI) should indicate the weak and strong magnetic field activity on the solar full disk, respectively. Cross-correlation (CC) analysis of MWSI with three TSI composites shows that TSI should be weakly correlated with MWSI, and not be in phase with MWSI at timescales of solar cycles. The wavelet coherence (WTC) and partial wavelet coherence (PWC) of TSI with MWSI indicate that the inter-solar-cyclemore » variation of TSI is also not related to solar strong magnetic field activity, which is represented by MWSI. However, CC analysis of MPSI with three TSI composites indicates that TSI should be moderately correlated and accurately in phase with MPSI at timescales of solar cycles, and that the statistical significance test indicates that the correlation coefficient of three TSI composites with MPSI is statistically significantly higher than that of three TSI composites with MWSI. Furthermore, the cross wavelet transform (XWT) and WTC of TSI with MPSI show that the TSI is highly related and actually in phase with MPSI at a timescale of a solar cycle as well. Consequently, the CC analysis, XWT, and WTC indicate that the solar weak magnetic activity on the full disk, which is represented by MPSI, dominates the inter-solar-cycle variation of TSI.« less

  13. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-01-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.

  14. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-06-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.

  15. The Outer Solar System Origin Survey full data release orbit catalog and characterization.

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Alexandersen, Mike; Chen, Ying-Tung; Volk, Kathryn; OSSOS Collaboration.

    2017-10-01

    The Outer Solar System Origin Survey (OSSOS) completed main data acquisition in February 2017. Here we report the release of our full orbit sample, which include 836 TNOs with high precision orbit determination and classification. We combine the OSSOS orbit sample with previously release Canada-France Ecliptic Plane Survey (CFEPS) and a precursor survey to OSSOS by Alexandersen et al. to provide a sample of over 1100 TNO orbits with high precision classified orbits and precisely determined discovery and tracking circumstances (characterization). We are releasing the full sample and characterization to the world community, along with software for conducting ‘Survey Simulations’, so that this sample of orbits can be used to test models of the formation of our outer solar system against the observed sample. Here I will present the characteristics of the data set and present a parametric model for the structure of the classical Kuiper belt.

  16. Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James

    2004-03-01

    Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.

  17. Preventing Shoulder-Surfing Attack with the Concept of Concealing the Password Objects' Information

    PubMed Central

    Ho, Peng Foong; Kam, Yvonne Hwei-Syn; Wee, Mee Chin

    2014-01-01

    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to “shoulder-surfing” attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack. PMID:24991649

  18. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  19. Shall we trust WDDL?

    NASA Astrophysics Data System (ADS)

    Guilley, Sylvain; Chaudhuri, Sumanta; Sauvage, Laurent; Graba, Tarik; Danger, Jean-Luc; Hoogvorst, Philippe; Vong, Vinh-Nga; Nassar, Maxime; Flament, Florent

    Security is not only a matter of cryptographic algorithms robustness but becomes also a question of securing their implementation. P. Kocher’s differential power analysis (DPA) is one of the many side-channel attacks that are more and more studied by the security community. Indeed, side-channel attacks (SCA) have proved to be very powerful on cryptographic algorithms such as DES and AES, customarily implemented in a wide variety of devices, ranging from smart-cards or ASICs to FPGAs. Among the proposed countermeasures, the “dual-rail with precharge logic” (DPL) aims at hiding information leaked by the circuit by making the power consumption independent of the calculation. However DPL logic could be subject to second order attacks exploiting timing difference between dual nets. In this article, we characterize by simulation, the vulnerability due to timing unbalance in the eight DES substitution boxes implemented in DPL WDDL style. The characterization results in a classification of the nodes according to their timing unbalance. Our results show that the timing unbalance is a major weakness of the WDDL logic, and that it could be used to retrieve the key using a DPA attack. This vulnerability has been experimentally observed on a full DES implementation using WDDL style for Altera Stratix EP1S25 FPGA.

  20. Defending Against Advanced Persistent Threats Using Game-Theory

    PubMed Central

    König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker’s incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system’s protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest. PMID:28045922

  1. Skylab

    NASA Image and Video Library

    1974-07-26

    In this photograph, a skylab-4 astronaut performs Extra Vehicular Activities (EVA) outside of the lab. The third crew (Skylab-4) spent 84 days in the orbiting laboratory. The solar observatory was designed for full exposure to the Sun throughout most of the Skylab mission. Solar energy was transformed into electrical power for operation of all spacecraft systems. The proper operation of these solar arrays was vital to the mission.

  2. Skylab

    NASA Image and Video Library

    1974-01-01

    This photograph was taken as the third crew (Skylab-4) departed the space station. The solar observatory was designed for full exposure to the Sun throughout most of the Skylab mission. Solar energy was transformed into electrical power for operation of all spacecraft systems. The proper operation of these solar arrays was vital to the mission. This Skylab in orbit view was taken by the Skylab-4 crew.

  3. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack XII : upper-surface ailerons on wings with split flaps

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1935-01-01

    This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.

  4. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  5. Opportunistic quantum network coding based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  6. Development of the prototype data management system of the solar H-alpha full disk observation

    NASA Astrophysics Data System (ADS)

    Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong

    2004-06-01

    The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.

  7. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  8. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    PubMed

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  9. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  10. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  11. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  12. Filling in the Gaps: Xenoliths in Meteorites are Samples of "Missing" Asteroid Lithologies

    NASA Technical Reports Server (NTRS)

    Zolensky, Mike

    2016-01-01

    We know that the stones that fall to earth as meteorites are not representative of the full diversity of small solar system bodies, because of the peculiarities of the dynamical processes that send material into Earth-crossing paths [1] which result in severe selection biases. Thus, the bulk of the meteorites that fall are insufficient to understand the full range of early solar system processes. However, the situation is different for pebble- and smaller-sized objects that stream past the giant planets and asteroid belts into the inner solar system in a representative manner. Thus, micrometeorites and interplanetary dust particles have been exploited to permit study of objects that do not provide meteorites to earth. However, there is another population of materials that sample a larger range of small solar system bodies, but which have received little attention - pebble-sized foreign clasts in meteorites (also called xenoliths, dark inclusions, clasts, etc.). Unfortunately, most previous studies of these clasts have been misleading, in that these objects have simply been identified as pieces of CM or CI chondrites. In our work we have found this to be generally erroneous, and that CM and especially CI clasts are actually rather rare. We therefore test the hypothesis that these clasts sample the full range of small solar system bodies. We have located and obtained samples of clasts in 81 different meteorites, and have begun a thorough characterization of the bulk compositions, mineralogies, petrographies, and organic compositions of this unique sample set. In addition to the standard e-beam analyses, recent advances in technology now permit us to measure bulk O isotopic compositions, and major- though trace-element compositions of the sub-mm-sized discrete clasts. Detailed characterization of these clasts permit us to explore the full range of mineralogical and petrologic processes in the early solar system, including the nature of fluids in the Kuiper belt and the outer main asteroid belt, as revealed by the mineralogy of secondary phases.

  13. Neural Synchronization and Cryptography

    NASA Astrophysics Data System (ADS)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  14. Full 3D opto-electronic simulation tool for nanotextured solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Michallon, Jérôme; Collin, Stéphane

    2017-04-01

    Increasing efforts on the photovoltaics research have recently been devoted to material savings, leading to the emergence of new designs based on nanotextured and nanowire-based solar cells. The use of small absorber volumes, light-trapping nanostructures and unconventional carrier collection schemes (radial nanowire junctions, point contacts in planar structures,…) increases the impact of surfaces recombination and induces homogeneity in the photogenerated carrier concentrations. The investigation of their impacts on the device performances need to be addressed using full 3D coupled opto-electrical modeling. In this context, we have developed a new tool for full 3D opto-electrical simulation using the most advanced optical and electrical simulation techniques. We will present an overview of its simulation capabilities and the key issues that have been solved to make it fully operational and reliable. We will provide various examples of opto-electronic simulation of (i) nanostructured solar cells with localized contacts and (ii) nanowire solar cells. We will also show how opto-electronic simulation can be used to simulate light- and electron-beam induced current (LBIC/EBIC) experiments, targeting quantitative analysis of the passivation properties of surfaces.

  15. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    NASA Astrophysics Data System (ADS)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  16. Concluding remarks

    NASA Astrophysics Data System (ADS)

    Bjørnholm, S.

    1991-03-01

    Viewing cluster science as the embryology of the full-grown forms of matter we encounter in our surroundings, makes it appear to a relative newcomer as a highly dynamic discipline. Lines of attack showing marked progress or potential promise are briefly reviewed, and a sketch of the vast field of still-open problems is presented.

  17. Treatment of Panic Disorder: A Clinical Update.

    ERIC Educational Resources Information Center

    Beamish, Patricia M.; Belcastro, Amy L.; Granello, Darcy Haag

    This article presents specific, practical information to guide mental health counselors in treating individuals who meet the criteria for panic disorder. It delineates the specific strategies identified in the research literature for use by mental health counselors. Full resolution of panic attacks by one form of treatment may not always be…

  18. Iwo Jima: The Unnecessary Battle

    DTIC Science & Technology

    2011-03-25

    bathe on two occasions, both times in a natural spring full of hot sulfur brine (rendering the water too brackish to drink). 72 When the attack on...AppendixB Iwo Jima Monument, Arlington, Virginia Sculpted by Felix W de Weldon and formally opened by President Dwight D. Eishenhower in 1954 http

  19. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  20. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  1. First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    NASA Astrophysics Data System (ADS)

    Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.

    2018-05-01

    Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond to ALMA bright points. Conclusions: These observational results are in general agreement with sparse earlier measurements at similar wavelengths. The identification of coronal bright points represents the most important new result. By comparing ALMA and other maps, it was found that the ALMA image was oriented properly and that the procedure of overlaying the ALMA image with other images is accurate at the 5 arcsec level. The potential of ALMA for physics of the solar chromosphere is emphasised.

  2. Photo-oxidation degradation mechanisms in P3HT for organic solar cells: Insights from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Leung, Kevin; Sai, Na; Zador, Judit; Henkelman, Graeme

    2014-03-01

    Photo-oxidation is one of the leading chemical degradation mechanisms in polymer solar cells. In this work, using hybrid density functional theory and periodic boundary condition, we investigate reaction pathways that may lead to the sulfur oxidation in poly(3-hexylthiophene)(P3HT) as a step toward breaking the macromolecule backbone. We calculate energy barriers for reactions of P3HT backbone with oxidizing radicals suggested by infrared spectroscopy (IR) and XPS studies. Our results strongly suggest that an attack of hydroxyl radical on sulfur as proposed in the literature is unlikely to be thermodynamically favored. On the other hand, a reaction between the alkylperoxyl radical and the polymer backbone may provide low barrier reaction pathways to photo-oxidation of conjugated polymers with side chains. Our work paves way for future studies using ab-initio calculations in a condensed phase setting to model complex chemical reactions relevant to photochemical stability of novel polymers. Supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award #DE-SC0001091.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, N. B.; Qu, Z. N., E-mail: znqu@ynao.ac.cn

    The ensemble empirical mode decomposition (EEMD) analysis is utilized to extract the intrinsic mode functions (IMFs) of the solar mean magnetic field (SMMF) observed at the Wilcox Solar Observatory of Stanford University from 1975 to 2014, and then we analyze the periods of these IMFs as well as the relation of IMFs (SMMF) with some solar activity indices. The two special rotation cycles of 26.6 and 28.5 days should be derived from different magnetic flux elements in the SMMF. The rotation cycle of the weak magnetic flux element in the SMMF is 26.6 days, while the rotation cycle of themore » strong magnetic flux element in the SMMF is 28.5 days. The two rotation periods of the structure of the interplanetary magnetic field near the ecliptic plane are essentially related to weak and strong magnetic flux elements in the SMMF, respectively. The rotation cycle of weak magnetic flux in the SMMF did not vary over the last 40 years because the weak magnetic flux element derived from the weak magnetic activity on the full disk is not influenced by latitudinal migration. Neither the internal rotation of the Sun nor the solar magnetic activity on the disk (including the solar polar fields) causes the annual variation of SMMF. The variation of SMMF at timescales of a solar cycle is more related to weak magnetic activity on the full solar disk.« less

  4. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    NASA Astrophysics Data System (ADS)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  5. The reconnaissance and early-warning optical system design for dual field of space-based "solar blind ultraviolet"

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu

    2016-07-01

    With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.

  6. Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products.

    PubMed

    Fotiou, Theodora; Triantis, Theodoros; Kaloudis, Triantafyllos; Hiskia, Anastasia

    2015-01-01

    Cyanobacteria (blue-green algae) are considered an important water quality problem, since several genera can produce toxins, called cyanotoxins that are harmful to human health. Cylindrospermopsin (CYN) is an alkaloid-like potent cyanotoxin that has been reported in water reservoirs and lakes worldwide. In this paper the removal of CYN from water by UV-A, solar and visible light photocatalysis was investigated. Two different commercially available TiO2 photocatalysts were used, i.e., Degussa P25 and Kronos-vlp7000. Complete degradation of CYN was achieved with both photocatalysts in 15 and 40 min under UV-A and 40 and 120 min under solar light irradiation, for Degussa P25 and Kronos vlp-7000 respectively. Experiments in the absence of photocatalysts showed that direct photolysis was negligible. Under visible light irradiation only the Kronos vlp-7000 which is a visible light activated catalyst was able to degrade CYN. A number of intermediates were identified and a complete degradation pathway is proposed, leading to the conclusion that hydroxyl radical attack is the main mechanism followed. TOC and inorganic ions (NO2-, NO3-, SO4(2-) and NH4+) determinations suggested that complete mineralization of CYN was achieved under UV-A in the presence of Degussa P25. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Spatio-temporal patterns of attacks on human and economic losses from wildlife in Chitwan National Park, Nepal

    PubMed Central

    Persoon, Gerard A.; Leirs, Herwig; Poudel, Shashank; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Bhattarai, Santosh; Thapaliya, Bishnu Prasad; de Iongh, Hans H.

    2018-01-01

    Wildlife attacks on humans and economic losses often result in reduced support of local communities for wildlife conservation. Information on spatial and temporal patterns of such losses in the highly affected areas contribute in designing and implementing effective mitigation measures. We analyzed the loss of humans, livestock and property caused by wildlife during 1998 to 2016, using victim family’s reports to Chitwan National Park authorities and Buffer Zone User Committees. A total of 4,014 incidents were recorded including attacks on humans, livestock depredation, property damage and crop raiding caused by 12 wildlife species. In total >400,000 US dollar was paid to the victim families as a relief over the whole period. Most of the attacks on humans were caused by rhino, sloth bear, tiger, elephant, wild boar and leopard. A significantly higher number of conflict incidents caused by rhino and elephant were observed during full moon periods. An increase in the wildlife population did not coincide with an equal rise in conflict incidents reported. Underprivileged ethnic communities were attacked by wildlife more frequently than expected. Number of attacks on humans by carnivores and herbivores did not differ significantly. An insignificant decreasing trend of wildlife attacks on humans and livestock was observed with significant variation over the years. Tiger and leopard caused >90% of livestock depredation. Tigers killed both large (cattle and buffalo) and medium sized (goat, sheep, pig) livestock but leopard mostly killed medium sized livestock. Most (87%) of the livestock killing during 2012–2016 occurred within the stall but close (<500m) to the forest edge. Both the percentage of households with livestock and average holding has decreased over the years in buffer zone. Decreased forest dependency as well as conflict mitigation measures (electric and mesh wire fences) have contributed to keep the conflict incidents in control. Strengthening mitigation measures like construction of electric or mesh wire fences and predator-proof livestock corrals along with educating local communities about wildlife behavior and timely management of problem animals (man-eater tiger, rage elephant etc.) will contribute to reduce the conflict. PMID:29672538

  8. Spatio-temporal patterns of attacks on human and economic losses from wildlife in Chitwan National Park, Nepal.

    PubMed

    Lamichhane, Babu Ram; Persoon, Gerard A; Leirs, Herwig; Poudel, Shashank; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Bhattarai, Santosh; Thapaliya, Bishnu Prasad; de Iongh, Hans H

    2018-01-01

    Wildlife attacks on humans and economic losses often result in reduced support of local communities for wildlife conservation. Information on spatial and temporal patterns of such losses in the highly affected areas contribute in designing and implementing effective mitigation measures. We analyzed the loss of humans, livestock and property caused by wildlife during 1998 to 2016, using victim family's reports to Chitwan National Park authorities and Buffer Zone User Committees. A total of 4,014 incidents were recorded including attacks on humans, livestock depredation, property damage and crop raiding caused by 12 wildlife species. In total >400,000 US dollar was paid to the victim families as a relief over the whole period. Most of the attacks on humans were caused by rhino, sloth bear, tiger, elephant, wild boar and leopard. A significantly higher number of conflict incidents caused by rhino and elephant were observed during full moon periods. An increase in the wildlife population did not coincide with an equal rise in conflict incidents reported. Underprivileged ethnic communities were attacked by wildlife more frequently than expected. Number of attacks on humans by carnivores and herbivores did not differ significantly. An insignificant decreasing trend of wildlife attacks on humans and livestock was observed with significant variation over the years. Tiger and leopard caused >90% of livestock depredation. Tigers killed both large (cattle and buffalo) and medium sized (goat, sheep, pig) livestock but leopard mostly killed medium sized livestock. Most (87%) of the livestock killing during 2012-2016 occurred within the stall but close (<500m) to the forest edge. Both the percentage of households with livestock and average holding has decreased over the years in buffer zone. Decreased forest dependency as well as conflict mitigation measures (electric and mesh wire fences) have contributed to keep the conflict incidents in control. Strengthening mitigation measures like construction of electric or mesh wire fences and predator-proof livestock corrals along with educating local communities about wildlife behavior and timely management of problem animals (man-eater tiger, rage elephant etc.) will contribute to reduce the conflict.

  9. Comparison of ZigBee Replay Attacks Using a Universal Software Radio Peripheral and USB Radio

    DTIC Science & Technology

    2014-03-27

    authentication code (CBC-MAC) CPU central processing unit CUT component under test db decibel dbm decibel referenced to one milliwatt FFD full- fuction ...categorized into two different types: full- fuction devices (FFDs) and reduced-function devices (RFDs). The difference between an FFD and an RFD is that...KillerBee Hardware. Although KillerBee can be used with any hardware that can interact with 802.15.4 networks, the primary development hardware is the

  10. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  11. SOHO EIT Carrington maps from synoptic full-disk data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Newmark, J. S.; Gurman, J. B.; Delaboudiniere, J. P.; Clette, F.; Gibson, S. E.

    1997-01-01

    The solar synoptic maps, obtained from observations carried out since May 1996 by the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), are presented. The maps were constructed for each Carrington rotation with the calibrated data. The off-limb maps at 1.05 and 1.10 solar radii were generated for three coronal lines using the standard applied to coronagraph synoptic maps. The maps reveal several aspects of the solar structure over the entire rotation and are used in the whole sun month modeling campaign. @txt extreme-ultraviolet imaging telescope

  12. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  13. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less

  14. Development of a solar receiver for an organic rankine cycle engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskins, H.J.; Taylor, R.M.; Osborn, D.B.

    A solar receiver is described for use with an organic Rankine cycle (ORC) engine as part of the Small Community Solar Thermal Power Experiment (SCSE). The selected receiver concept is a direct-heated, once-through, monotube boiler normally operating at supercritical pressure. Fabrication methods for the receiver core have been developed and validated with flat braze samples, cylindrical segment samples, and a complete full-scale core assembly.

  15. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the twomore » instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.« less

  16. Three-Dimensional, Ten-Moment, Two-Fluid Simulation of the Solar Wind Interaction with Mercury

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Wang, L.; Hakim, A.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.

    2018-05-01

    We investigate solar wind interaction with Mercury’s magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum, and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations.

  17. Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.

  18. Quantum key distribution with untrusted detectors

    NASA Astrophysics Data System (ADS)

    González, P.; Rebón, L.; Ferreira da Silva, T.; Figueroa, M.; Saavedra, C.; Curty, M.; Lima, G.; Xavier, G. B.; Nogueira, W. A. T.

    2015-08-01

    Side-channel attacks currently constitute the main challenge for quantum key distribution (QKD) to bridge theory with practice. So far two main approaches have been introduced to address this problem, (full) device-independent QKD and measurement-device-independent QKD. Here we present a third solution that might exceed the performance and practicality of the previous two in circumventing detector side-channel attacks, which arguably is the most hazardous part of QKD implementations. Our proposal has, however, one main requirement: the legitimate users of the system need to ensure that their labs do not leak any unwanted information to the outside. The security in the low-loss regime is guaranteed, while in the high-loss regime we already prove its robustness against some eavesdropping strategies.

  19. The equivalent angle-of-attack method for estimating the nonlinear aerodynamic characteristics of missile wings and control surfaces

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1982-01-01

    A method has been developed for estimating the nonlinear aerodynamic characteristics of missile wing and control surfaces. The method is based on the following assumption: if a fin on a body has the same normal-force coefficient as a wing alone composed of two of the same fins joined together at their root chords, then the other force and moment coefficients of the fin and the wing alone are the same including the nonlinearities. The method can be used for deflected fins at arbitrary bank angles and at high angles of attack. In the paper, a full derivation of the method is given, its accuracy demonstrated and its use in extending missile data bases is shown.

  20. Installed nacelle drag-improvement tests of an M = 0.8 turboprop transport configuration

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Smith, R. C.

    1983-01-01

    An unpowered semispan model of a representative turboprop configuration was tested to determine the effect of configuration modifications on the the nonmetric body and wing juncture. It is indicated that the jet off nacelle-installation drag can be approximately 25% of the cruise drag. However, the losses can be reduced to 17% by changes to the wing leading edge and nacelle intersection. Comparison of test results from a semispan nonmetric fuselage model with those from a full span metric fuselage show differences in angles of attack produced the same lift. It is found that the constant lift drag rise of the semispan model is higher because of the increased angle of attack to achieve the same lift.

  1. The Lyman-alpha Solar Telescope for the ASO-S

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-08-01

    The Lyman-alpha Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 Rsun, a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 Rsun, and a full-disk White-light Solar Telescope (WST) with an FOV of 1.2 Rsun, which also serves as the guiding telescope. The SCI is designed to work at the Lyman-alpha waveband and white-light, while the SDI will work at the Lyman-alpha waveband only. The WST works both in visible (for guide) and ultraviolet (for science) white-light. The LST will observe the Sun from disk-center up to 2.5 solar radii for both solar flares and coronal mass ejections. In this presentation, I will give an introduction to LST, including scientific objectives, science requirement, instrument design and current status.

  2. The Lyman-α Solar Telescope (LST) for the ASO-S mission

    NASA Astrophysics Data System (ADS)

    Li, Hui

    The Lyman-α (Lyα) Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 R⊙ (R⊙ = solar radius), a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 R⊙, and a full-disk White-light Solar Telescope (WST) with the same FOV as the SDI, which also serves as the guiding telescope. The SCI is designed to work in the Lyα (121.6 nm) waveband and white-light (for polarization brightness observation), while the SDI will work in the Lyα waveband only. The WST works in both visible (for guide) and ultraviolet (for science) broadband. The LST will observe the Sun from disk-center up to 2.5 R⊙ for both solar flares and coronal mass ejections with high tempo-spatial resolution

  3. Comparison of Angle of Attack Measurements for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas, W.; Hoppe, John C.

    2001-01-01

    Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.

  4. The Solar Dynamics Observatory: Your Eye On The Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    The Sun hiccups and satellites die. That is what NASA's Living With a Star Program is all about. The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in LWS. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine E/UV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can "observe the database" to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  5. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  6. Performance Comparison at Mach Numbers 1.8 and 2.0 of Full Scale and Quarter Scale Translating-Spike Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Dryer, M.; Hearth, D. P.

    1957-01-01

    The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.

  7. Press touch code: A finger press based screen size independent authentication scheme for smart devices.

    PubMed

    Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.

  8. Press touch code: A finger press based screen size independent authentication scheme for smart devices

    PubMed Central

    Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262

  9. Seeking Full Citizenship: A Defense of Tenure Faculty Status for Librarians

    ERIC Educational Resources Information Center

    Coker, Catherine; vanDuinkerken, Wyoma; Bales, Stephen

    2010-01-01

    Tenure status for library faculty in the academic environment is coming under increasing attack from administration, faculty members in other departments, and non-academics. This is due to incorrect perceptions about what academic librarians do and how they serve their profession. This paper describes the many challenges faculty librarians face in…

  10. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  11. Locations and attributes of utility-scale solar power facilities in Colorado and New Mexico, 2011

    USGS Publications Warehouse

    Ignizio, Drew A.; Carr, Natasha B.

    2012-01-01

    The data series consists of polygonal boundaries for utility-scale solar power facilities (both photovoltaic and concentrating solar power) located within Colorado and New Mexico as of December 2011. Attributes captured for each facility include the following: facility name, size/production capacity (in MW), type of solar technology employed, location, state, operational status, year the facility came online, and source identification information. Facility locations and perimeters were derived from 1-meter true-color aerial photographs (2011) produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters (accessed from the NAIP GIS service: http://gis.apfo.usda.gov/arcgis/services). Solar facility perimeters represent the full extent of each solar facility site, unless otherwise noted. When visible, linear features such as fences or road lines were used to delineate the full extent of the solar facility. All related equipment including buildings, power substations, and other associated infrastructure were included within the solar facility. If solar infrastructure was indistinguishable from adjacent infrastructure, or if solar panels were installed on existing building tops, only the solar collecting equipment was digitized. The "Polygon" field indicates whether the "equipment footprint" or the full "site outline" was digitized. The spatial accuracy of features that represent site perimeters or an equipment footprint is estimated at +/- 10 meters. Facilities under construction or not fully visible in the NAIP imagery at the time of digitization (December 2011) are represented by an approximate site outline based on the best available information and documenting materials. The spatial accuracy of these facilities cannot be estimated without more up-to-date imagery – users are advised to consult more recent imagery as it becomes available. The "Status" field provides information about the operational status of each facility as of December 2011. This data series contributes to an Online Interactive Energy Atlas currently in development by the U.S. Geological Survey. The Energy Atlas will synthesize data on existing and potential energy development in Colorado and New Mexico and will include additional natural resource data layers. This information may be used by decision makers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, metadata, and decision support tools will be included in the Energy Atlas. The format of the Energy Atlas will facilitate the integration of information about energy with key terrestrial and aquatic resources for evaluating resource values and minimizing risks from energy development activities.

  12. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  13. Future Market Share of Space Solar Electric Power Under Open Competition

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of electricity generated by Space Solar Power. In agreement with previous work on this subject, we note that launch costs are a significant impediment for the widespread implementation of Space Solar Power. KEY WORDS: space satellite power, advanced electric generation, electricity price, climate change

  14. Hybrid Wing Body (HWB) Slat Noise Analysis

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Brunsniak, Leon; Czech, Michael; Thomas, Russell H.

    2013-01-01

    This paper presents an analysis of the slat noise for Hybrid Wing Body (HWB) aircraft, based on a database from a 3% scale wind tunnel test. It is shown that the HWB slats are one of the dominant noise components, characterized by its broad spectral shape with a peak frequency that depends on both the mean flow velocity and the aircraft angle of attack, the former following the conventional Strouhal number scaling and the latter explainable by the dependence of the coherence length of the slat unsteady flows on the aircraft angle of attack. While the overall levels of the slat noise are shown to approximately follow the fifth power law in the flow Mach number, the effects of the Mach number manifest themselves in the noise spectra in both the amplitude and the spectral shape. The slat noise amplitude is shown to also depend on the angle of attack, assuming a minimum in the range of 3 to 5 degrees and increasing when the angle of attack moves away from this range. These features are all modeled and incorporated in slat noise prediction methodologies, extending the prediction capability from conventional aircraft designs to HWB configurations. Comparisons between predictions and data show very good agreements both in various parametric trends and in the absolute levels. The HWB aircraft is designed to operate at angles of attack much higher than those of conventional aircraft. This is shown to significantly increase the HWB slat noise. To further illustrate, the test data are extrapolated to full scale and compared with the slat noise of the Boeing 777 aircraft, showing that the former is higher the latter.

  15. A Study of Sympathetic Flaring Using a Full-Sun Event Catalog

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Schrijver, C. J.; Title, A. M.; Bloomfield, D.; Gallagher, P.

    2013-12-01

    There has been a trove of papers published on the statistics of flare occurrence. These studies are trying to answer the question of whether or not subsequent solar flares are related. The majority of these works have not included both flare location information and the physical properties of the regions responsible for the eruptions, and none have taken advantage of full-Sun event coverage. Now that SDO/AIA is available and the STEREO spacecraft have progressed past 90 degrees from Earth's heliographic longitude, this new information is available to us. This work aims to quantify how common sympathetic events are, and how important they are in the forecasting of solar flares. A 3D plot of detected and clustered flare events for a full solar rotation, including the Valentine's Day Event of 2011. A full-Sun image in the EUV (304A) including both STEREO view points and AIA. The GOES X-ray light curves during the February period of 2011 are shown in the bottom panel. Detected flare events are indicated by the green dashed lines and the time stamp of this image is denoted by the red line.

  16. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  17. Full space device optimization for solar cells.

    PubMed

    Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H

    2017-09-20

    Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.

  18. Multi-thermal observations of flares and eruptions with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Aia Science Team

    2010-12-01

    The revolutionary advance in observational capabilities offered by SDO's AIA offers new views of solar flares and eruptions. The high cadence and spatial resolution, the full-Sun coverage, and the variety of thermal responses of the AIA channels from thousands to millions of degrees enable the study the source regions of solar explosions, as well as the responses of the solar corona from their immediate vicinity to regions over a solar radius away. These observations emphasize the importance of magnetic connectivity and topology, the frequent occurrence of fast wave-like perturbations, and the contrasts between impulsive compact X-ray-bright flares and long-duration EUV-bright phenomena.

  19. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  20. Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector

    NASA Astrophysics Data System (ADS)

    Schlutter, D. J.; Pepin, R. O.

    2005-12-01

    The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.

  1. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  2. Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.

  3. Turbulence and Solar p-Mode Oscillations

    NASA Astrophysics Data System (ADS)

    Bi, S. L.; Xu, H. Y.

    The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction.

  4. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Astrophysics Data System (ADS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-09-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  5. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Technical Reports Server (NTRS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-01-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  6. Comparison of corrosion performance of grade 316 and grade 347H stainless steels in molten nitrate salt

    NASA Astrophysics Data System (ADS)

    Trent, M. C.; Goods, S. H.; Bradshaw, R. W.

    2016-05-01

    Stainless steel samples machined from SA-312 TP316 and SA-213 TP347H pipe were exposed to a molten nitrate salt environment at 600°C (1112°F) for up to 3000 hours in order to generate corrosion rates for use in concentrated solar power (CSP) facilities. Descaled weight loss measurements were made at 1000, 2000, and 3000 hours, with optical and scanning electron microscopy being performed on samples at the longest exposure time. The 316 and 347H alloys exhibited metal losses of 4.4 and 4.8 um respectively at 3000 hours. A linear fit to the data sets yielded annualized metal loss rates of 8.4 and 8.8 um/yr. The oxides were relatively uniform in thickness and multilayered. The inner layer consisted of a (Fe, Cr)-spinel with appreciable amounts of Mn while the outer layer was an oxide composed of only Fe. No pitting, intergranular attack, or other localized attack was found, despite the presence of a sensitized microstructure in both alloys and chloride impurity in the salt mixture. The observations presented here indicate that the two alloys perform quite comparably with respect to molten salt-induced corrosion and in that regard; either would be expected to perform satisfactorily in the intended application.

  7. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.; Wilmoth, Richard G.

    1995-01-01

    The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.

  8. The ``Sol Kitchen'' solar coffee can cooker kit and curriculum package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, R.M.

    1999-07-01

    The Sol Kitchen Solar Coffee Can Cooker Kit is being developed, by Solar utilities, as a product, with several contexts in mind, including (1) the need to sustain the long term market development of solar energy through education, (2) the need for an improved set of performance criteria for the technology, as it is presented in the classroom and (3) an awareness of newly evolving bench marks in environmental education ({hor_ellipsis}which is about learning how to save the earth.). The category of technology discussed in this paper is the solar cooker, also known as, the solar oven, furnace, or boxmore » cooker, with or without reflective panels. The use of full scale solar cookers, modified to act as curriculum aids, can augment educational programs; but only if they work well, are appropriate to the educational objectives, and engage the attention and active involvement of the learners.« less

  9. Key Barriers to the Implementation of Solar Energy in Nigeria: A Critical Analysis

    NASA Astrophysics Data System (ADS)

    Abdullahi, D.; Suresh, S.; Renukappa, S.; Oloke, D.

    2017-08-01

    Nigeria, potentially, has abundant sunshine throughout the year, making it full thirst for solar energy generation. Even though, the country’s solar energy projects have not realised a fair result over the years, due to many barriers associated with initiatives implementation. Therefore, the entire power sector remains incapacitated to generate, transmit and distribute a clean, affordable and sustainable energy to assist economic growth. The research integrated five African counterpart’s solar energy initiatives, barriers, policies and strategies adopted as a lesson learned to Nigeria. Inadequate solar initiative’s research, lack of technological know-how, short-term policies, lack of awareness and political instability are the major barriers that made the implementation of solar initiatives almost impossible in Nigeria. The shock of the barriers therefore, constitutes a major negative contribution to the crippling of the power sector in the state. Future research will concentrate on initiatives for mitigating solar and other renewable energy barriers.

  10. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    NASA Astrophysics Data System (ADS)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  11. Castro Valley High School's Solar Panels

    NASA Astrophysics Data System (ADS)

    Lew, A.; Ham, S.; Shin, Y.; Yang, W.; Lam, J.

    2014-12-01

    Solar panels are photovoltaic cells that are designed to convert the sun's kinetic energy to generate usable energy in the form of electricity. Castro Valley High School has tried to offset the cost of electricity by installing solar panels, costing the district approximately 3.29 million dollars, but have been installed incorrectly and are not operating at peak efficency. By using trigonometry we deduced that Castro Valley High School's south facing solar panels were at an incline of 10o and that the east and west facing solar panels are at an incline of 5o. By taking the averages of the optimum angles for the months of September through May, roughly when school is in session, we found that the optimum angle for south facing solar panels should be roughly 46o. This shows that Castro Valley High School has not used it's budget to its full potential due to the fact that the solar panels were haphazardly installed.

  12. Solar energy system performance evaluation report for IBM System 3, Glendo, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The analysis used was based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is described. Technical contributions to the definition of techniques and requirements for solar energy system design are given.

  13. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes.

    PubMed

    Zong, Xueping; Liang, Mao; Chen, Tao; Jia, Jiangnan; Wang, Lina; Sun, Zhe; Xue, Song

    2012-07-07

    Two new truxene-based organic sensitizers (M15 and M16) featuring high extinction coefficients were synthesized for dye-sensitized solar cells employing cobalt electrolyte. The M16-sensitized device displays a 7.6% efficiency at an irradiation of AM1.5 full sunlight.

  14. Energy conservation in housing design using solar energy, mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, N.M.W.

    1985-01-01

    This paper presents the first experimental full-scale house built by the Solar Energy Research Center of Baghdad to be heated and cooled by solar energy. The various architectural and environmental considerations which entered into the design process are discussed, as well as the range of passive techniques examined for their compatibility with the local climate and their ability to optimize the energy efficiency of the house. The mechanical systems which were ultimately implemented are described.

  15. Development of Advanced Deposition Technology for Microcrystalline Si Based Solar Cells and Modules: Final Technical Report, 1 May 2002-31 July 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y. M.

    2004-12-01

    The key objective of this subcontract was to take the first steps to extend the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) manufacturing technology of Energy Photovoltaics, Inc. (EPV), to the promising field of a-Si/nc-Si solar cell fabrication by demonstrating ''proof-of-concept'' devices of good efficiencies that previously were believed to be unobtainable in single-chamber reactors owing to contamination problems. A complementary goal was to find a new high-rate deposition method that can conceivably be deployed in large PECVD-type reactors. We emphasize that our goal was not to produce 'champion' devices of near-record efficiencies, but rather, to achieve modestly high efficiencies usingmore » a far simpler (cheaper) system, via practical processing methods and materials. To directly attack issues in solar-cell fabrication at EPV, the nc-Si thin films were studied almost exclusively in the p-i-n device configuration (as absorbers or i-layers), not as stand-alone films. Highly efficient, p-i-n type, nc-Si-based solar cells are generally grown on expensive, laboratory superstrates, such as custom ZnO/glass of high texture (granular surface) and low absorption. Also standard was the use of a highly effective back-reflector ZnO/Ag, where the ZnO can be surface-textured for efficient diffuse reflection. The high-efficiency ''champion'' devices made by the PECVD methods were invariably prepared in sophisticated (i.e., expensive), multi-chamber, or at least load-locked deposition systems. The electrode utilization efficiency, defined as the surface-area ratio of the powered electrode to that of the substrates, was typically low at about one (1:1). To evaluate the true potential of nc-Si absorbers for cost-competitive, commercially viable manufacturing of large-area PV modules, we took a more down-to-earth approach, based on our proven production of a-Si PV modules by a massively parallel batch process in single-chamber RF-PECVD systems, to the study of nc-Si solar cells, with the aim of producing high-efficiency a-Si/nc-Si solar cells and sub-modules.« less

  16. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  17. Procedure for developing experimental designs for accelerated tests for service-life prediction. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Thomas, R. E.; Gaines, G. B.

    1978-01-01

    Recommended design procedures to reduce the complete factorial design by retaining information on anticipated important interaction effects, and by generally giving up information on unconditional main effects are discussed. A hypothetical photovoltaic module used in the test design is presented. Judgments were made of the relative importance of various environmental stresses such as UV radiation, abrasion, chemical attack, temperature, mechanical stress, relative humidity and voltage. Consideration is given to a complete factorial design and its graphical representation, elimination of selected test conditions, examination and improvement of an engineering design, and parametric study. The resulting design consists of a mix of conditional main effects and conditional interactions and represents a compromise between engineering and statistical requirements.

  18. Forest Health Monitoring in Connecticut, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    Connecticut has mature forests dominated by hardwoods. Most trees are healthy with full crowns (low transparency and high density), little dieback and little damage. The exception is eastern hemlock, which was in poor condition, with thin crowns, more dieback and more damage, especially broken tops. These conditions are likely the result of attack by the hemlock woolly...

  19. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  20. Forecasting of global solar radiation using anfis and armax techniques

    NASA Astrophysics Data System (ADS)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  1. Impact of solar-energy development. The aggregate impact on basic economic objectives

    NASA Astrophysics Data System (ADS)

    Parker, A.; Kirschner, C.; Roach, F.

    Two categories of incentives for the development of solar energy are described: those that increase the benefits associated with the ownership of a solar energy system and those that reduce the cost of the system. The impact of two alternative programs are presented. Short run and long run impacts expected to result from the installation of passive solar designs on existing housing rock are distinguished. Impacts associated with a program to deregulate natural gas and one combining tax credits and low interest loans are compared. The impacts of solar programs on seven basic economic goals are analyzed. The goals are full employment, price stability, economic efficienty, equitable distribution of income, economic growth, balancing the federal budget, and a strong national defense.

  2. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    NASA Technical Reports Server (NTRS)

    Brown, Clarence A , Jr

    1957-01-01

    A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  3. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.

    1957-01-01

    A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  4. The Weather and Ménière's Disease: A Longitudinal Analysis in the UK.

    PubMed

    Schmidt, Wiebke; Sarran, Christophe; Ronan, Natalie; Barrett, George; Whinney, David J; Fleming, Lora E; Osborne, Nicholas J; Tyrrell, Jessica

    2017-02-01

    Changes in the weather influence symptom severity in Ménière's disease (MD). MD is an unpredictable condition that significantly impacts on quality of life. It is suggested that fluctuations in the weather, especially atmospheric pressure may influence the symptoms of MD. However, to date, limited research has investigated the impact of the weather on MD. In a longitudinal study, a mobile phone application collected data from 397 individuals (277 females and 120 males with an average age of 50 yr) from the UK reporting consultant-diagnosed MD. Daily symptoms (vertigo, aural fullness, tinnitus, hearing loss, and attack prevalence) and GPS locations were collected; these data were linked with Met Office weather data (including atmospheric pressure, humidity, temperature, visibility, and wind speed). Symptom severity and attack prevalence were reduced on days when atmospheric pressure was higher. When atmospheric pressure was below 1,013 hectopascals, the risk of an attack was 1.30 (95% confidence interval: 1.10, 1.54); when the humidity was above 90%, the risk of an attack was 1.26 (95% confidence interval 1.06, 1.49). This study provides the strongest evidence to date that changes in atmospheric pressure and humidity are associated with symptom exacerbation in MD. Improving our understanding of the role of weather and other environmental triggers in Ménière's may reduce the uncertainty associated with living with this condition, significantly contributing to improved quality of life.

  5. The Weather and Ménière’s Disease: A Longitudinal Analysis in the UK

    PubMed Central

    Schmidt, Wiebke; Sarran, Christophe; Ronan, Natalie; Barrett, George; Whinney, David J.; Fleming, Lora E.; Osborne, Nicholas J.; Tyrrell, Jessica

    2016-01-01

    Hypothesis Changes in the weather influence symptom severity in Ménière’s disease (MD). Background MD is an unpredictable condition that significantly impacts on quality of life. It is suggested that fluctuations in the weather, especially atmospheric pressure may influence the symptoms of MD. However, to date, limited research has investigated the impact of the weather on MD. Methods In a longitudinal study, a mobile phone application collected data from 397 individuals (277 females and 120 males with an average age of 50 yr) from the UK reporting consultant-diagnosed MD. Daily symptoms (vertigo, aural fullness, tinnitus, hearing loss, and attack prevalence) and GPS locations were collected; these data were linked with Met Office weather data (including atmospheric pressure, humidity, temperature, visibility, and wind speed). Results Symptom severity and attack prevalence were reduced on days when atmospheric pressure was higher. When atmospheric pressure was below 1,013 hectopascals, the risk of an attack was 1.30 (95% confidence interval: 1.10, 1.54); when the humidity was above 90%, the risk of an attack was 1.26 (95% confidence interval 1.06, 1.49). Conclusion This study provides the strongest evidence to date that changes in atmospheric pressure and humidity are associated with symptom exacerbation in MD. Improving our understanding of the role of weather and other environmental triggers in Ménière’s may reduce the uncertainty associated with living with this condition, significantly contributing to improved quality of life. PMID:27861300

  6. Wind tunnel research comparing lateral control devices, particularly at high angles of attack XI : various floating tip ailerons on both rectangular and tapered wings

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Harris, Thomas A

    1933-01-01

    Discussed here are a series of systematic tests being conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present tests were made with six different forms of floating tip ailerons of symmetrical section. The tests showed the effect of the various ailerons on the general performance characteristics of the wing, and on the lateral controllability and stability characteristics. In addition, the hinge moments were measured for the most interesting cases. The results are compared with those for a rectangular wing with ordinary ailerons and also with those for a rectangular wing having full-chord floating tip ailerons. Practically all the floating tip ailerons gave satisfactory rolling moments at all angles of attack and at the same time gave no adverse yawing moments of appreciable magnitude. The general performance characteristics with the floating tip ailerons, however, were relatively poor, especially the rate of climb. None of the floating tip ailerons entirely eliminated the auto rotational moments at angles of attack above the stall, but all of them gave lower moments than a plain wing. Some of the floating ailerons fluttered if given sufficiently large deflection, but this could have been eliminated by moving the hinge axis of the ailerons forward. Considering all points including hinge moments, the floating tip ailerons on the wing with 5:1 taper are probably the best of those which were tested.

  7. Whirling Arm Tests on the Effect of Ground Proximity to an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Long, M. E.

    1944-01-01

    This report gives the results of tests on a rectangular wing model with a 20% full spun split flap, conducted on the whirling arm at the Daniel Guggenheim Airship Institute in Akron, Ohio. The effect of a ground board on the lift and pitching moment was measured. The ground board consisted of an inclined ramp rising up in the test channel to a level floor extending for some distance parallel to the model path. The path of the wing model with respect to the ground board accordingly represented with comparative exactness an airplane coming in for a landing. The ground clearances over the level portion of the board varied from 0 6 to 1,6 chord lengths. Results are given in the standard dimensionless coefficients plotted versus angle of attack for a particular ground clearance. The effect of the ground board is to increase the lift coefficient for a given angle of attack all the way up the stall. The magnitude of the increase varies both with the ground clearance and the angle of attack. The effect on the pitching moment coefficient is not so readily apparent due to experimental difficulties but, in general, the diving moment increases over the ground board. This effect is apparent principally at the high angles of attack. An exception to this effect occurs with flaps deflected at the lowest ground clearance (0.6 chords). Here the diving moment decreases over the ground board.

  8. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology.

    PubMed

    El-Ghenymy, Abdellatif; Garcia-Segura, Sergi; Rodríguez, Rosa María; Brillas, Enric; El Begrani, Mohamed Soussi; Abdelouahid, Ben Ali

    2012-06-30

    A central composite rotatable design and response surface methodology were used to optimize the experimental variables of the electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) degradations of 2.5L of sulfanilic acid solutions in 0.05M Na(2)SO(4). Electrolyses were performed with a pre-pilot flow plant containing a Pt/air diffusion reactor generating H(2)O(2). In SPEF, it was coupled with a solar photoreactor under an UV irradiation intensity of ca. 31Wm(-2). Optimum variables of 100mAcm(-2), 0.5mM Fe(2+) and pH 4.0 were determined after 240min of EF and 120min of SPEF. Under these conditions, EF gave 47% of mineralization, whereas SPEF was much more powerful yielding 76% mineralization with 275kWh kg(-1) total organic carbon (TOC) energy consumption and 52% current efficiency. Sulfanilic acid decayed at similar rate in both treatments following a pseudo-first-order kinetics. The final solution treated by EF contained a stable mixture of tartaric, acetic, oxalic and oxamic acids, which form Fe(III) complexes that are not attacked by hydroxyl radicals formed from H(2)O(2) and added Fe(2+). The quick photolysis of these complexes by UV light of sunlight explains the higher oxidation power of SPEF. NH(4)(+) was the main inorganic nitrogen ion released in both processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    PubMed

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  11. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    McBride, Neil; Gilmour, Iain

    2004-03-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation that reviews in detail the terrestrial planets, giant planets and minor bodies. It concludes with a discussion of the origin of the Solar System. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials.

  12. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  13. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  14. Single-step colloidal quantum dot films for infrared solar harvesting

    NASA Astrophysics Data System (ADS)

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-10-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  15. The Nine Planets Solar System Tour

    Science.gov Websites

    Astronomy news section which gives news, notes and general observations, we also have an interactive tour of ; Notes Astronomy picture of the day. For a full list of contents please see here. cna classes online Professional Astronomy research paper writing help can be found at AdvancedWriters.com. Solar system tour

  16. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  17. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  18. NASA's Next Solar Sail: Lessons Learned from NanoSail - D2

    NASA Technical Reports Server (NTRS)

    Katan, Chelsea

    2012-01-01

    NanoSail-D2 unfurled January 17th, 2011 and commenced a nine month Low Earth Orbit path to reentry to evaluate a sail's capacity to deploy in space and deorbit satellites. The orbit was strongly affected by variables including but not limited to: initial attitude, orbit lighting, solar radiation pressure, aerodynamic drag, gravity, and Center of Pressure offsets. The effects of these variables were evaluated through a 3-DOF rigid body simulation. The sail experienced stability in orbits which were continuously lit, i.e. did not orbit behind Earth. Probable drag area experienced by the sail for the mission is also estimated from orbital data and compared to the attitude simulation results. Analysis focuses on sail behavior in full lighting conditions to establish the limits of the sails stability in full lighting. Solar radiation pressure, aerodynamic drag, and gravity torque effects are described. Lastly, a reasonable upper bound on the variation of the Center of Pressure from the geometric center of the sail plane is established. Each of these results contributes to the design requirements for future solar sails.

  19. Bi1−xLaxCuSeO as New Tunable Full Solar Light Active Photocatalysts

    PubMed Central

    Wang, Huanchun; Li, Shun; Liu, Yaochun; Ding, Jinxuan; Lin, Yuan-Hua; Xu, Haomin; Xu, Ben; Nan, Ce-Wen

    2016-01-01

    Photocatalysis is attracting enormous interest driven by the great promise of addressing current energy and environmental crises by converting solar light directly into chemical energy. However, efficiently harvesting solar energy for photocatalysis remains a pressing challenge, and the charge kinetics and mechanism of the photocatalytic process is far from being well understood. Here we report a new full solar spectrum driven photocatalyst in the system of a layered oxyselenide BiCuSeO with good photocatalytic activity for degradation of organic pollutants and chemical stability under light irradiation, and the photocatalytic performance of BiCuSeO can be further improved by band gap engineering with introduction of La. Our measurements and density-functional-theory calculations reveal that the effective mass and mobility of the carriers in BiCuSeO can be tuned by the La-doping, which are responsible for the tunable photocatalytic activity. Our findings may offer new perspectives for understanding the mechanism of photocatalysis through modulating the charge mobility and the effective mass of carriers and provide a guidance for designing efficient photocatalyts. PMID:27095046

  20. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  1. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise asmore » part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.« less

  2. Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks

    NASA Astrophysics Data System (ADS)

    Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai

    2017-09-01

    Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.

  3. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  4. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  5. A Lightweight White-Box Symmetric Encryption Algorithm against Node Capture for WSNs †

    PubMed Central

    Shi, Yang; Wei, Wujing; He, Zongjian

    2015-01-01

    Wireless Sensor Networks (WSNs) are often deployed in hostile environments and, thus, nodes can be potentially captured by an adversary. This is a typical white-box attack context, i.e., the adversary may have total visibility of the implementation of the build-in cryptosystem and full control over its execution platform. Handling white-box attacks in a WSN scenario is a challenging task. Existing encryption algorithms for white-box attack contexts require large memory footprint and, hence, are not applicable for wireless sensor networks scenarios. As a countermeasure against the threat in this context, in this paper, we propose a class of lightweight secure implementations of the symmetric encryption algorithm SMS4. The basic idea of our approach is to merge several steps of the round function of SMS4 into table lookups, blended by randomly generated mixing bijections. Therefore, the size of the implementations are significantly reduced while keeping the same security efficiency. The security and efficiency of the proposed solutions are theoretically analyzed. Evaluation shows our solutions satisfy the requirement of sensor nodes in terms of limited memory size and low computational costs. PMID:26007737

  6. Transonic high Reynolds number stability and control characteristics of a 0.015-scale remotely controlled elevon model (44-0) of the space shuttle orbiter tested in calspan 8-foot TWT (LA70)

    NASA Technical Reports Server (NTRS)

    Parrell, H.; Gamble, J. D.

    1977-01-01

    Transonic Wind Tunnel tests were run on a .015 scale model of the space shuttle orbiter vehicle in the 8-foot transonic wind tunnel. Purpose of the test program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds number. Tests were performed at Mach numbers from .35 to 1.20 and Reynolds numbers from 3,500,000 to 8,200,000 per foot. The high Reynolds number conditions (nominal 8,000,000/foot) were obtained using the ejector augmentation system. Angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, and +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Aileron settings were varied from -5 to +10 degrees at elevon deflections of -10, 0, and +10 degrees. Fixed aileron settings of 0 and 2 degrees in combination with various fixed elevon settings between -20 and +5 degrees were also run at varying angles of attack.

  7. Precise Determination of the Orientation of the Solar Image

    NASA Astrophysics Data System (ADS)

    Győri, L.

    2010-12-01

    Accurate heliographic coordinates of objects on the Sun have to be known in several fields of solar physics. One of the factors that affect the accuracy of the measurements of the heliographic coordinates is the accuracy of the orientation of a solar image. In this paper the well-known drift method for determining the orientation of the solar image is applied to data taken with a solar telescope equipped with a CCD camera. The factors that influence the accuracy of the method are systematically discussed, and the necessary corrections are determined. These factors are as follows: the trajectory of the center of the solar disk on the CCD with the telescope drive turned off, the astronomical refraction, the change of the declination of the Sun, and the optical distortion of the telescope. The method can be used on any solar telescope that is equipped with a CCD camera and is capable of taking solar full-disk images. As an example to illustrate the method and its application, the orientation of solar images taken with the Gyula heliograph is determined. As a byproduct, a new method to determine the optical distortion of a solar telescope is proposed.

  8. Jason and "The Flaming Hamsters of Death": A Reality Rub Reclaiming Intervention

    ERIC Educational Resources Information Center

    Laursen, Erik K.; Felski-Smith, Cara

    2008-01-01

    Jason is a 17-year-old high school senior currently classified as a student who is Other Health Impaired due to anxiety, obsessive compulsive disorder, and germ phobia (an intense fear of something that poses little actual threat--but can cause severe anxiety or a full panic attack). He also has a severe learning disability in reading. Jason is…

  9. Research and Activism about Girls' Education for Global Democracy: The Case of the Campaign "Etna, Volcano of Peace," Catania, Italy

    ERIC Educational Resources Information Center

    Cristaldi, Melita; Pampanini, Giovanni

    2016-01-01

    According to a progressive interpretation of human development, girls' education should form an integral part of a full democratic system. Nevertheless, girls' education is threatened and attacked in many ways in current societies, be they authoritarian or democratic societies, developing or developed ones. In this article the two authors, both…

  10. A Model of Network Porosity

    DTIC Science & Technology

    2016-11-09

    the model does not become a full probabilistic attack graph analysis of the network , whose data requirements are currently unrealistic. The second...flow. – Untrustworthy persons may intentionally try to exfiltrate known sensitive data to ex- ternal networks . People may also unintentionally leak...section will provide details on the components, procedures, data requirements, and parameters required to instantiate the network porosity model. These

  11. Lifting-surface-theory aspect-ratio corrections to the lift and hinge-moment parameters for full-span elevators on horizontal tail surfaces

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Crandall, Stewart M

    1948-01-01

    A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)

  12. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    NASA Astrophysics Data System (ADS)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  13. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  14. The contribution of collective attack tactics in differentiating handball score efficiency.

    PubMed

    Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka

    2004-12-01

    The prevalence of 19 elements of collective tactics in score efficient and score inefficient teams was analyzed in 90 First Croatian Handball League--Men games during the 1998-1999 season. Prediction variables were used to describe duration, continuity, system, organization and spatial direction of attacks. Analysis of the basic descriptive and distribution statistical parameters revealed normal distribution of all variables and possibility to use multivariate methods. Canonic discrimination analysis and analysis of variance showed the use of collective tactics elements on attacks to differ statistically significantly between the winning and losing teams. Counter-attacks and uninterrupted attacks predominate in winning teams. Other types of attacks such as long position attack, multiply interrupted attack, attack with one circle runner attack player/pivot, attack based on basic principles, attack based on group cooperation, attack based on independent action, attack based on group maneuvering, rightward directed attack and leftward directed attack predominate in losing teams. Winning teams were found to be clearly characterized by quick attacks against unorganized defense, whereas prolonged, interrupted position attacks against organized defense along with frequent and diverse tactical actions were characteristic of losing teams. The choice and frequency of using a particular tactical activity in position attack do not warrant score efficiency but usually are consequential to the limited anthropologic potential and low level of individual technical-tactical skills of the players in low-quality teams.

  15. Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  16. Evolution of Our Understanding of the Solar Dynamo During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.

    2017-12-01

    Solar cycle 24 has been an exciting cycle for our understanding of the solar dynamo: 1. It was the first cycle for which dynamo based predictions were ever used teaching us valuable lessons. 2. It has given us the opportunity to observe a deep minimum and a weak cycle with a high level of of observational detail . 3. It is full of breaktrhoughs in anelastic MHD dynamo simulations (regular cycles, buoyant flux-tubes, mounder-like events). 4. It has seen the creation of bridges between the kinematic flux-transport and anelastic MHD approaches. 5. It has ushered a new generation of realistic surface flux-transport simulations 6. We have achieved significant observational progress in our understanding of solar cycle propagation. The objective of this talk is to highlight some of the most important results, giving special emphasis on what they have taught us about solar cycle predictability.

  17. KSC-00pp1212

    NASA Image and Video Library

    2000-08-30

    Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. KSC-00pp1213

    NASA Image and Video Library

    2000-08-30

    An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  19. Solar and stellar flares and their impact on planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  20. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    PubMed

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  1. Contribution of strong discontinuities to the power spectrum of the solar wind.

    PubMed

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  2. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  3. Moon Connection with MEGA and Giant Earthquakes in Subduction Zones during One Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hagen, M. T.; Azevedo, A. T.

    2016-12-01

    We investigated in this paper the possible influences of the moon on earthquakes during one Solar cycle. The Earth - Moon gravitational force produces a variation in the perigee force that may trigger seismological events. The oscillation force creates a wave that is generated by the moon rotation around the earth, which takes a month. The wave complete a cycle after 13- 14 months in average and the period is roughly 5400 hours as calculated. The major moon phases which are New and Full Moon is when the perigee force is stronger. The Solar Wind charges the Moon during the New phases. The plasmasphere charges the satellite during the Full Moon. Both create the Spring Tides what affects mostly the subduction zones connected with the Mega and Giant events in Pacific areas. Moon - Earth connections are resilient in locations with convergent tectonic plates. Inserted:

  4. Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez, L. A.; Moretón, A.; Guada, M.; Rodríguez-Conde, S.; Martínez, O.; González, M. A.; Jiménez, J.

    2018-05-01

    Today's photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical-grade Si solar cells are studied using these two techniques.

  5. KSC-00pp1194

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  6. KSC-00pp1199

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  7. KSC-00pp1219

    NASA Image and Video Library

    2000-08-30

    A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  8. KSC-00pp1193

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility get ready to move Solar Array Wing-3, a component of the International Space Station, for installation onto the Integrated Electronic Assembly. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  9. KSC-00pp1198

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  10. KSC-00pp1195

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3 (at top), a component of the International Space Station, hovers above the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  11. Nanoplasmonics: a frontier of photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong

    2012-12-01

    Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.

  12. A compact Dopplergraph/magnetograph suitable for space-based measurements of solar oscillations and magnetic fields

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.; Blamont, J.; Howard, R. F.; Dumont, P.; Smith, E. J.

    1984-01-01

    A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-omega power spectra which show clear- the solar nonradial p-mode oscilations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.

  13. EERE Showcase Event (Solar Decathlon 2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolles, Eric

    The goal of the Orange County Great Park Corporation (Great Park) is to successfully host the U.S. Department of Energy Solar Decathlon 2015. In furtherance of that goal, tasks to be performed within the current reporting period include the following: Task 1.0 Arrange Site Team Visits for January 2015 The Great Park arranged appropriate meeting space for the site team visits over a three-day period, January 8, 2015 through January 10, 2015. Instead of a meeting in Hanger 244, the DOE requested a different meeting space. The working team met in the Operations offices on January 8th. The student teamsmore » were welcomed at the City of Irvine’s Lakeview Senior Center on January 9th, and came back on January 10th for breakout sessions. Task 2.0 Outreach Activities The following outreach activities related to the U.S. Department of Energy Solar Decathlon 2015 occurred during and prior to the event: • Promoted the return of the Solar Decathlon 2015 on the City’s website. (cityofirvine.org) • Promoted the return of the Solar Decathlon 2015 through the City’s and Great Park’s social media channels, including Facebook and Twitter. (facebook.com/cityofirvine, facebook.com/orangecountygreatpark, twitter.com/City_of_Irvine, twitter.com/ocgreatpark) • Promoted the return of the Solar Decathlon 2015 and student visit through a City Council Announcement. • Worked to set-up meetings between the U.S. Department of Energy team and potential donors/key stakeholders in Irvine. • Began ICTV filming and coverage of the Solar Decathlon 2015 teams. This includes student team interviews, interview with Richard King and b-roll footage. • Facilitated an interview with Sarah Farrar and the Orange County Register during the recent student visit in January • Information in May was provided to Irvine Unified School District and Tustin Unified School District promoting the three Education Days that the DOE will host during the event. More DOE information is due in August, which will be forwarded to the school districts that will provide important information for school tours. • A promotional ICTV video has been sent through the Irvine Chamber of Commerce and to dozens of businesses in Irvine promoting the Solar Decathlon 2015 and inviting attendance. • Cover story of Fall Inside Irvine magazine detailed teams competing in Solar Decathlon. Magazine goes to more than 100,000 Irvine residences. • Produced public service announcement with KPCC radio to air 9/28-10/16. Outreach also included a web banner on the station’s website. • Full-page advertisements in special sections of the Orange County Register, including UCI 50th Anniversary magazine that went to over 1 million readers of the Register, the Riverside Press Enterprise and the L.A. Times; Best of Orange County magazine; and Solar Decathlon special section. • Full-page ad in Urban Land magazine Sept./Oct. issue. • Produced ad for Irvine Global Village Festival brochure (tens of thousands in attendance at event.) • Ten posters displayed at Irvine Company properties throughout the City, including the Irvine Spectrum Center. • Rack cards promoting Solar Decathlon displayed at Irvine Spectrum Center, Discovery Science Center, Orange County Farm Bureau (at farmers markets) and at City facilities. • Tote bags promoting Solar Decathlon filled with magnets and rack cards on the event distributed at Irvine Global Village Festival, Great Park farmers market and UCI Festival of Discovery; some 8,000 bags handed out. • E-blast from City of Irvine Community Services Department included information on Solar Decathlon. (List contains 51,000 recipients.) • E-blast to Irvine Co. mailing list sent out 9/30. Web banner posted at shopirvinespectrumcenter.com. • E-blast sent to Orange County Register mailing list on 10/6. • Web banner posted on Orange County Register’s homepage. • E-blast sent by Irvine Chamber of Commerce on 10/9. • E-blast using City’s GovDelivery to 2,100 on 10/12. • Produced additional ads for the Orange County Register to fulfill the in-kind agreement between the DOE and the Register: Friday, Oct. 9, Local front page strip ad; Saturday, Oct. 10, half-page Home & Garden section ad; Sunday, Oct. 11, full page Local section ad; Wednesday, Oct. 14, ½ page Main or Local ad; Friday, Oct. 16, full Local or Main section ad; Saturday, Oct. 17, half-page Home & Garden section ad; Sunday Oct. 18, full page Local or Main ad. • Produced two additional Register ads promoting final days of the event: Full page Main or Local ad for Thursday, Oct. 15 and full page ad in Irvine World News weekly publication. • Produced separate press releases on Solar Decathlon, Volunteer Effort, Children’s Activities Area and Final Days. • Produced and distributed Children’s Activities Days rack cards. • Continued to promote the event on the City’s webpage, Great Park webpage and social media channels. • ICTV produced the “Solar Decathlon Minute” videos, which were posted on the City’s YouTube channel and the solardecathlon.gov website. • Four-minute video promoting Solar Decathlon shown on iShuttles in the City in weeks leading up to event. • Promoted a “Business Day” to local businesses in which businesses could sign up for tour led by Solar Decathlon docents. • Access Irvine Special Event Button running 9/28-10/18/15. • Access Irvine Push Notification on 10/15/15. • Facebook ad boost 10/13-10/18.« less

  14. Predicting Factors of Zone 4 Attack in Volleyball.

    PubMed

    Costa, Gustavo C; Castro, Henrique O; Evangelista, Breno F; Malheiros, Laura M; Greco, Pablo J; Ugrinowitsch, Herbert

    2017-06-01

    This study examined 142 volleyball games of the Men's Super League 2014/2015 seasons in Brazil from which we analyzed 24-26 games of each participating team, identifying 5,267 Zone 4 attacks for further analysis. Within these Zone 4 attacks, we analyzed the association between the effect of the attack carried out and the separate effects of serve reception, tempo and type of attack. We found that the reception, tempo of attack, second tempo of attack, and power of diagonal attack were predictors of the attack effect in Zone 4. Moreover, placed attacks showed a tendency to not yield a score. In conclusion, winning points in high-level men's volleyball requires excellent receptions, a fast attack tempo and powerfully executed of attacks.

  15. The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy

    NASA Technical Reports Server (NTRS)

    Brueckner, Guenter E.; Howard, Russell A.; Koomen, Martin J.; Korendyke, C.; Michels, D. J.; Socker, D. G.; Lamy, Philippe; Llebaria, Antoine; Maucherat, J.; Schwenn, Rainer

    1992-01-01

    The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission. LASCO comprises three nested coronagraphs (C1, C2, and C3) that image the solar corona for 1.1 to 30 solar radii (C1: 1.1 to 3 solar radii, C2: 1.5 to 6 solar radii, and C3: 3 to 30.0 solar radii). The inner coronagraph (C1) is a newly developed mirror version of the classic Lyot coronagraph without an external occultor, while the middle coronagraph (C2) and the outer coronagraph (C3) are externally occulted instruments. High resolution coronal spectroscopy from 1.1 to 3 R solar radii can be performed by using a Fabry-Perot interferometer, which is part of C1. High volume memories and a high speed microprocessor enable extensive onboard image processing. Image compression by factors of 10 to 20 will result in the transmission of 10 to 20 full images per hour.

  16. Vehicle Integrated Photovoltaics for Compression Ignition Vehicles: An Experimental Investigation of Solar Alkaline Water Electrolysis for Improving Diesel Combustion and a Solar Charging System for Reducing Auxiliary Engine Loads

    NASA Astrophysics Data System (ADS)

    Negroni, Garry Inocentes

    Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated efficiency was 11.4%. The average voltage efficiency of the electrolyser during dynamometer testing was 69.16%, producing a solar-to-electrolysis efficiency of 7.88%. At varying engine speeds, HC emissions decreased an average of 54.4% at multiple engine speeds at part-load, while CO2 increased by 2.54% due to oxygen enrichment of intake air. However, the auto-ignition of a small amount of hydrogen (0.0035% of diesel fuel energy) had a negative impact on part-load power (-3.671%) and torque (-3.296%). Full-load sweep testing showed an increase in peak power (1.562%) and peak torque (2.608%). Solar electrolysis gas aspiration reduced soot opacity by 31.5%. The alternator-less part-load step tests show average HC and CO2 emissions decrease on average 25.05% and 1.14% respectively. The test also indicates an increase in average part-load power (1.57%) and torque (2.12%). Alternator-less operation can reduce soot opacity by 56.76%. Full-load testing of the vehicle with alternator unplugged indicates that alternator load upon an engine increase with engine ne speed even with no load and no pilot excitation. Alternator load elimination's performance and emissions improvements should be considered, however, practical limitations exist in winter-night, summer-midday scenarios and for longer duration of operation.

  17. Design of a very-low-bleed Mach 2.5 mixed-compression inlet with 45 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Shaw, R. J.; Neumann, H. E.

    1975-01-01

    A full-scale, mixed-compression inlet was designed for operation with the TF30-P-3 turbofan engine and tested at Mach numbers of 2.5 and 2.0. The two-cone axisymmetric inlet had minimum internal contraction consistent with high total pressure recovery and low cowl drag. At Mach 2.5, inlet recovery was 0.906 with only 0.021 centerbody bleed mass-flow ratio and no cowl bleed. Increased centerbody bleed gave a maximum inlet unstart angle of attack of 6.85 deg. At Mach 2.0, inlet recovery was 0.94 with only 0.014 centerbody bleed mass-flow ratio and no cowl bleed. Inlet performance and angle-of-attack tolerance is presented for operation at Mach numbers of 2.5 and 2.0.

  18. Transient ischaemic attacks due to a pulsating mass in the neck produced after incision and drainage of parapharyngeal abscess.

    PubMed

    Khan, Mohammad Iqbal; Tariq, Mohammad; Rashid, Danyal

    2008-01-01

    Carotid endarterectomy is the most commonly performed vascular surgical procedure. One of the complications of carotid endarterectomy is Pseudoaneurysm of the carotid artery frequently managed by endo-vascular technique. Pseudoaneurysm caused by other aetiological factors is rare entity. Penetrating trauma and neck surgery are known but very rare causes of pseudo aneurysm of the carotid artery. We have successfully managed a case of carotid artery pseudoaneurysm caused by incision and drainage of parapharyngeal abscess. This surgery also leads to the palsy of right vagus nerve causing complete hoarseness of voice. The patient presented with Transit Ischaemic Attacks (TIA) and amurosis fugos. Resection of aneurysm and reconstruction of right carotid artery lead to complete recovery. Vocal cord palsy was managed by Vox implant injection leading to full recovery.

  19. Determination of Ground Effect from Tests of a Glider in Towed Flight

    NASA Technical Reports Server (NTRS)

    Wetmore, J W; Turner, L I , Jr

    1940-01-01

    Report presents the results of an investigation made to find the effect of ground on the aerodynamic characteristics of a Franklin PS-2 glider. The lift, the drag, and the angle of attack of the glider in towed flight were determined at several heights from 0.14 to 1.19 span lengths and at various speeds for each height. Two wing arrangements were tested: the plain wing, and the wing with a nearly full-span 30-percent-chord split flap deflected 45 degrees. The experimental results for the plain wing were in good agreement with theoretical values calculated by the method of Wieselsberger for both the angle of attack and the drag coefficient at a height of 0.21 span length; Tani's refinements of the theory had a practically negligible effect on the computed values in this case.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsa, M. E.; Baldwin, T. E.; Berry, M. S.

    The terrorist attacks of September 11, 2001 (9/11), focused a great deal of interest and concern on how individual and social perceptions of risk change behavior and subsequently affect commercial sector venues. Argonne conducted a review of the literature to identify studies that quantify the direct and indirect economic consequences of avoidance behaviors that result from terrorist attacks. Despite a growing amount of literature addressing terrorism impacts, relatively little is known about the causal relationships between risk perception, human avoidance behaviors, and the economic effects on commercial venues. Nevertheless, the technical and academic literature does provide some evidence, both directlymore » and by inference, of the level and duration of post-event avoidance behaviors on commercial venues. Key findings are summarized in this Executive Summary. Also included as an appendix is a more detailed summary table of literature findings reproduced from the full report.« less

  1. An analysis of a candidate control algorithm for a ride quality augmentation system

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent; Downing, David R.

    1987-01-01

    This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.

  2. A New Solar Spectrum from 656 to 3088 nm

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Damé, L.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Sarkissian, A.; Djafer, D.; Hauchecorne, A.; Bekki, S.

    2017-08-01

    The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR-IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS 3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW m-2 nm-1 (1 σ), which is higher than recent ground-based evaluations.

  3. Breakthrough attacks in patients with hereditary angioedema receiving long-term prophylaxis are responsive to icatibant: findings from the Icatibant Outcome Survey.

    PubMed

    Aberer, Werner; Maurer, Marcus; Bouillet, Laurence; Zanichelli, Andrea; Caballero, Teresa; Longhurst, Hilary J; Perrin, Amandine; Andresen, Irmgard

    2017-01-01

    Patients with hereditary angioedema (HAE) due to C1-inhibitor deficiency (C1-INH-HAE) experience recurrent attacks of cutaneous or submucosal edema that may be frequent and severe; prophylactic treatments can be prescribed to prevent attacks. However, despite the use of long-term prophylaxis (LTP), breakthrough attacks are known to occur. We used data from the Icatibant Outcome Survey (IOS) to evaluate the characteristics of breakthrough attacks and the effectiveness of icatibant as a treatment option. Data on LTP use, attacks, and treatments were recorded. Attack characteristics, treatment characteristics, and outcomes (time to treatment, time to resolution, and duration of attack) were compared for attacks that occurred with versus without LTP. Data on 3228 icatibant-treated attacks from 448 patients with C1-INH-HAE were analyzed; 30.1% of attacks occurred while patients were using LTP. Attack rate, attack severity, and the distribution of attack sites were similar across all types of LTP used, and were comparable to the results found in patients who did not receive LTP. Attacks were successfully treated with icatibant; 82.5% of all breakthrough attacks were treated with a single icatibant injection without C1-INH rescue medication. Treatment outcomes were comparable for breakthrough attacks across all LTP types, and for attacks without LTP. Patients who use LTP should be aware that breakthrough attacks can occur, and such attacks can be severe. Thus, patients with C1-INH-HAE using LTP should have emergency treatment readily available. Data from IOS show that icatibant is effective for the treatment of breakthrough attacks. Trial Registration NCT01034969.

  4. Transparent superstrate terrestrial solar cell module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  5. A graph-based network-vulnerability analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.; Gaylor, T.

    1998-05-03

    This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example themore » class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.« less

  6. A graph-based network-vulnerability analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.; Gaylor, T.

    1998-01-01

    This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the classmore » of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less

  7. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study.

    PubMed

    Suhai, Bence; Horváth, Gábor

    2004-09-01

    We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.

  8. Method and tool for network vulnerability analysis

    DOEpatents

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  9. Definition study for photovoltaic residential prototype system

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  10. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  11. A World-Wide Net of Solar Radio Spectrometers: e-CALLISTO

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Monstein, C.; Meyer, H.; Manoharan, P. K.; Ramesh, R.; Altyntsev, A.; Lara, A.; Paez, J.; Cho, K.-S.

    2009-04-01

    Radio spectrometers of the CALLISTO type to observe solar flares have been distributed to nine locations around the globe. The instruments observe automatically, their data is collected every day via internet and stored in a central data base. A public web-interface exists through which data can be browsed and retrieved. The nine instruments form a network called e-CALLISTO. It is still growing in the number of stations, as redundancy is desirable for full 24 h coverage of the solar radio emission in the meter and low decimeter band. The e-CALLISTO system has already proven to be a valuable new tool for monitoring solar activity and for space weather research.

  12. Solar radio bursts as a tool for space weather forecasting

    NASA Astrophysics Data System (ADS)

    Klein, Karl-Ludwig; Matamoros, Carolina Salas; Zucca, Pietro

    2018-01-01

    The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth. xml:lang="fr"

  13. Comportamiento de la cromósfera solar en la línea H-alfa durante el período enero/05-agosto/06

    NASA Astrophysics Data System (ADS)

    Missio, H.; Davoli, D.; Aquilano, R.

    Using the instrument at Observatorio Astronómico Municipal de Rosario (OAMR), we analyze the solar chromospheric activity during the period January/05-August/06. The instrument is a Carl Zeiss refractor telescope of 150 mm aperture and 2250 mm of focal distance with a monochromatic filter in the H-alpha line. We take as proxy for the solar activity the area covered by chromospheric ``plages''. The measurements are done using photographic registers. We describe our technique and the results obtained. We observe a decrease of solar activity that corresponds to the end of cycle 23. FULL TEXT IN SPANISH

  14. About Heart Attacks

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Heart Attacks Updated:Jan 11,2018 A heart attack is ... coronary artery damage leads to a heart attack . Heart Attack Questions and Answers What is a heart attack? ...

  15. New shortwave solar radiometer with information-based sparse sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.L.; Carnal, C.L.; Ericson, M.N.

    1991-01-01

    A new concept for a real-time shortwave solar radiometer is presented, based on the premise that high resolution measurements of the shortwave solar spectrum are needed only in wavelength regions where the atmospheric physics are changing rapidly with respect to {Lambda}. The design features holographic optical elements (HOEs) for nonuniform sampling of the spectrum, customized photocells, and temperature-compensated monolithic wide dynamic range amplifiers. Preliminary results show full spectrum reconstruction accuracies to < 3% with a 10:1 reduction in the number of photocells required. 9 refs.

  16. New shortwave solar radiometer with information-based sparse sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.L.; Carnal, C.L.; Ericson, M.N.

    1991-12-31

    A new concept for a real-time shortwave solar radiometer is presented, based on the premise that high resolution measurements of the shortwave solar spectrum are needed only in wavelength regions where the atmospheric physics are changing rapidly with respect to {Lambda}. The design features holographic optical elements (HOEs) for nonuniform sampling of the spectrum, customized photocells, and temperature-compensated monolithic wide dynamic range amplifiers. Preliminary results show full spectrum reconstruction accuracies to < 3% with a 10:1 reduction in the number of photocells required. 9 refs.

  17. Transonic control effectiveness for full and partial span elevon configurations on a 0.0165 scale model space shuttle orbiter tested in the LaRC 8-foot transonic wind tunnel (LA48)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transonic pressure tunnel test is reported on an early version of the space shuttle orbiter (designated 089B-139) 0.0165 scale model to systematically determine both longitudinal and lateral control effectiveness associated with various combinations of inboard, outboard, and full span wing trailing edge controls. The test was conducted over a Mach number range from 0.6 to 1.08 at angles of attack from -2 deg to 23 deg at 0 deg sideslip.

  18. A graph-based system for network-vulnerability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.

    1998-06-01

    This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less

  19. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    NASA Astrophysics Data System (ADS)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  20. [Mortality rate of acute heart attack in Zalaegerszeg micro-region. Results of the first Hungarian 24-hour acute ST-elevation myocardial infarction intervention care unit].

    PubMed

    Lupkovics, Géza; Motyovszki, Akos; Németh, Zoltán; Takács, István; Kenéz, András; Burkali, Bernadett; Menyhárt, Ildikó

    2010-04-04

    Morbidity and mortality rates of acute heart attack emphasize the significance of this patient group worldwide. The prompt and exact diagnosis and the timing of adequate therapy is crucial for this patients. Modern supply of acute heart attack includes invasive cardiology intervention, primer percutaneous coronary intervention. In year 1999, American and European recommendations suggested primer percutaneous coronary intervention only as an alternative possibility instead of thrombolysis, or in case of cardiogenic shock. 24 hour intervention unit for patients with acute heart attack was first organized in Hungary in Zala County Hospital's Cardiology Department, in year 1998. Our present study confirms, that since the intervention treatment has been introduced, average mortality rate has been reduced considerably in our area comparing to the national average. Mortality rates in West Transdanubian region and in Zalaegerszeg's micro-region were studied and compared for the period between 1997-2004, according to the data of National Public Health and Medical Officer Service. These data were then compared with the national average mortality data of Hungarian Central Statistical Office. With the help of our own computerized database we examined this period and compared the number of the completed invasive interventions to the mortality statistics. In the first full year, in 1998, we completed 82 primer and 283 elective PCIs; these number increased to 318 and 1265 by year 2005. At the same time, significant decrease of acute infarction related mortality was detectable among men of the Zalaegerszeg micro-region, comparing to the national average (p<0.001). The first Hungarian 24 hour acute heart attack intervention care improved the area's mortality statistics significantly, comparing to the national average. The skilled work of the experienced team means an important advantage to the patients in Zalaegerszeg micro-region.

  1. Application of Cellular Automata to Detection of Malicious Network Packets

    ERIC Educational Resources Information Center

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  2. Cooperating attackers in neural cryptography.

    PubMed

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  3. Terrorist Attacks Escalate in Frequency and Fatalities Preceding Highly Lethal Attacks

    PubMed Central

    Martens, Andy; Sainudiin, Raazesh; Sibley, Chris G.; Schimel, Jeff; Webber, David

    2014-01-01

    Highly lethal terrorist attacks, which we define as those killing 21 or more people, account for 50% of the total number of people killed in all terrorist attacks combined, yet comprise only 3.5% of terrorist attacks. Given the disproportionate influence of these incidents, uncovering systematic patterns in attacks that precede and anticipate these highly lethal attacks may be of value for understanding attacks that exact a heavy toll on life. Here we examined whether the activity of terrorist groups escalates–both in the number of people killed per attack and in the frequency of attacks–leading up to highly lethal attacks. Analyses of terrorist attacks drawn from a state-of-the-art international terrorism database (The Global Terrorism Database) showed evidence for both types of escalation leading up to highly lethal attacks, though complexities to the patterns emerged as well. These patterns of escalation do not emerge among terrorist groups that never commit a highly lethal attack. PMID:24755753

  4. Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Morton, Scott

    2002-08-01

    An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.

  5. Entropy-as-a-Service: Unlocking the Full Potential of Cryptography.

    PubMed

    Vassilev, Apostol; Staples, Robert

    2016-09-01

    Securing the Internet requires strong cryptography, which depends on the availability of good entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales and remaining trustworthy unless much of the collective is compromised.

  6. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  7. Cannae

    DTIC Science & Technology

    1931-01-01

    flank and rear attacks, had not been imitated by their opponents. Prince van Hildburghau- sen bad received full recognition in 1’751 for the battle...allies followed d reached by 31 January, the line : Freystadt - Deutsch- au - Osterode - Allen- stein. They bad succeeded, as well as N lean on...his forces would be sufficient against the Hanoverians, using the other against the Bavarians. Beyer with his reserve was sent to Berka -Gerstungen

  8. Attacking Time

    DTIC Science & Technology

    2015-06-01

    version of the Bear operating system. The full system is depicted in Figure 3 and is composed of a minimalist micro-kernel with an associated...which are intended to support a general virtual machine execution environment, this minimalist hypervisor is designed to support only the operations...The use of a minimalist hypervisor in the Bear system opened the door to discovery of zero-day exploits. The approach leverages the hypervisors

  9. Experimental and Numerical Correlation of Gravity Sag in Solar Sail Quality Membranes

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Leifer, Jack; DeMoss, Joshua A.; Walker, Eric N.; Belvin, W. Keith

    2004-01-01

    Solar sails are among the most studied members of the ultra-lightweight and inflatable (Gossamer) space structures family due to their potential to provide propellentless propulsion. They are comprised of ultra-thin membrane panels that, to date, have proven very difficult to experimentally characterize and numerically model due to their reflectivity and flexibility, and the effects of gravity sag and air damping. Numerical models must be correlated with experimental measurements of sub-scale solar sails to verify that the models can be scaled up to represent full-sized solar sails. In this paper, the surface shapes of five horizontally supported 25 micron thick aluminized Kapton membranes were measured to a 1.0 mm resolution using photogrammetry. Several simple numerical models closely match the experimental data, proving the ability of finite element simulations to predict actual behavior of solar sails.

  10. KSC-00pp1217

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  11. KSC-00pp1215

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  12. KSC-00pp1218

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  13. KSC-00pp1196

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  14. KSC-00pp1209

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility prepare an overhead crane they will use to move a solar array, a component of the International Space Station, for installation onto the Integrated Equipment Assembly. The solar array is the second one being installed. They are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. KSC-00pp1197

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is moved toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  17. Solar chulha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy thatmore » is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.« less

  18. Comportamiento de la cromósfera solar en la línea H-alpha durante el ciclo 23

    NASA Astrophysics Data System (ADS)

    Davoli, D.; Aquilano, R.; Missio, H.

    Using the instrumental of the Observatorio Astronómico Municipal de Rosario (OAMR), we analyze the solar chromospheric activity during an approximate period of 11 years. The instrument is a Carl Zeiss refractor telescope of 150 mm aperture and 2250 mm of focal distance with monochromatic filter in the H-alpha line. We take as proxy for the solar activity the area covered by chromospheric plages. Simultaneously, we determine the relative wolf number from observations of the solar photosphere. We describe our technique and the results obtained. We observe 2 maxima of solar activity in the years 2000 and 2001 respectively, and a later decrease of this activity with low average values starting around 2006 that corresponds to the end of cycle 23. FULL TEXT IN SPANISH

  19. CHAIN-project and installation of the flare monitoring telescopes in developing countries

    NASA Astrophysics Data System (ADS)

    Ueno, Satoru; Shibata, Kazunari; Kimura, Goichi; Nakatani, Yoshikazu; Kitai, Reizaburo; Nagata, Shin'ichi

    2007-12-01

    The Flare Monitoring Telescope (FMT) was constructed in 1992 at the Hida Observatory in Japan to investigate the long-term variation of solar activity and explosive events, as a project of the international coordinated observations programme (STEP). The FMT consists of five solar imaging telescopes and one guide telescope. The five telescopes simultaneously observe the full-disk Sun at different wavelengths around H-alpha absorption line or in different modes. Therefore, the FMT can measure the three-dimensional velocity field of moving structures on the full solar disk without the atmospheric seeing effect. The science target of the FMT is to monitor solar flares and erupting filaments continuously all over the solar disk and as many events as possible and to investigate the relationship between such phenomena and space weather. Now we are planning to start a new worldwide project called as ``Continuous H-alpha Imaging Network (CHAIN)-project''. As part of this project, we are examining the possibility of installing telescopes similar to the FMT in developing countries with cooperative help by the United Nations. We have selected Peru as the candidate country where the first oversea FMT will be installed, and are beginning to study the natural environment, the seeing conditions, the proper design of the telescope for Peru and the training and education programme of operating staff, etc.

  20. Causal Attribution, Perceived Benefits, and Morbidity After a Heart Attack: An 8-Year Study.

    ERIC Educational Resources Information Center

    Affleck, Glenn; And Others

    1987-01-01

    Interviewed heart attack victims (N=287) seven weeks and eight years after their attack. Explored interrelations among causal attributions for the attack, survivor morbidity, and heart attack recurrence. Found that patients who cited benefits from their misfortune seven weeks after the first attack were less likely to have another attack and had…

  1. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to Popular Science and writes frequently for other publications.

  2. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data

    NASA Astrophysics Data System (ADS)

    Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.

    2017-09-01

    Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.

  3. The Importance of Solar Spectral Irradiance to the Sun-Earth Connection: Lessons-learned from SORCE and Their Relevance to Future Missions

    NASA Astrophysics Data System (ADS)

    Harder, J. W.; Snow, M. A.; Richard, E. C.; Rast, M.; Merkel, A. W.; Woods, T. N.

    2014-12-01

    The Solar Radiation and Climate Experiment (SORCE) mission has provided for the first time solar spectral irradiance (SSI) observations over a full solar cycle time period with wavelength coverage from the X-ray through the near infrared. This paper will discuss the lessons-learned from SORCE including the need to develop more effective methods to track on-orbit spectroscopic response and sensitivity degradation. This is especially important in using these data products as input to modern day chemistry-climate models that require very broad spectral coverage with moderate-to-high spectral and temporal resolution to constrain the solar component to the atmospheric response. A basic requirement to obtain this essential climate record is to 1) perform preflight radiometric calibrations that are traceable SI standards along with a complete specification of the instruments spectroscopic response, and 2) design the instrument to have the ability to perform instrument-only sensitivity corrections to objectively account for on-orbit degradation. The development of the NIST SIRCUS (National Institute of Science and Technology, Sources for Irradiance and Radiance Calibration with Uniform Sources) now permits the full characterization of the spectral radiometer's response, and on-orbit degradation characterization through comparisons of redundant detectors and spectrometers appears to be the most practical method to perform these corrections for the near ultraviolet through the near infrared. Going forward, we discuss a compact spectral radiometer development that will couple with advances in CubeSat technology to allow for shorter mission lengths, relatively inexpensive development and launch costs, and reduce the risk of data gaps between successive missions without compromising measurement accuracy. We also discuss the development of a radiometric solar imager that will both greatly improve the interpretation of existing Sun-as-a-star irradiance observations and provide a bridge from our current irradiance capabilities to future high spatial/temporal resolution solar physics assets such as the Daniel K. Inouye Solar Telescope (DKIST).

  4. Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation

    NASA Astrophysics Data System (ADS)

    Olsen, Espen Lyngdal; Leer, Egil

    1996-05-01

    In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.

  5. NREL's III-V Team Demonstrates Record Efficiency Dual-Junction Solar Cell |

    Science.gov Websites

    -junction solar cell, surpassing the previous mark by a full percentage. Under one sun of illumination, the . Department of Energy's National Renewable Energy Laboratory (NREL) have set a record efficiency for a dual lattice-mismatched, 1.1-eV GaInAs bottom cell, grown monolithically by atmospheric pressure metal-organic

  6. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  7. Expanded Owens Valley Solar Array (EOVSA) Testbed and Prototype

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Nita, G. M.; Sane, N.

    2012-05-01

    NJIT is engaged in constructing a new solar-dedicated radio array, the Expanded Owens Valley Solar Array (EOVSA), which is slated for completion in late 2013. An initial 3-antenna array, the EOVSA Subsystem Testbed (EST), is now in operation from 1-9 GHz based on three of the old OVSA antennas, to test certain design elements of the new array. We describe this instrument and show some results from recent solar flares observed with it. We also describe plans for an upcoming prototype of EOVSA, which will use three antennas of the new design over the full 1-18 GHz signal chain of the entirely new system. The EOVSA prototype will be in operation by late 2012. Highlights of the new design are ability to cover the entire 1-18 GHz in less than 1 s, simultaneous dual polarization, and improved sensitivity and stability. We discuss what can be expected from the prototype, and how it will compare with the full 13-antenna EOVSA. This work was supported by NSF grants AGS-0961867 and AST-0908344, and NASA grant NNX11AB49G to New Jersey Institute of Technology.

  8. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, Lauren N.; Cranmer, Steven R.

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPESTmore » is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.« less

  9. On Patarin's Attack against the lIC Scheme

    NASA Astrophysics Data System (ADS)

    Ogura, Naoki; Uchiyama, Shigenori

    In 2007, Ding et al. proposed an attractive scheme, which is called the l-Invertible Cycles (lIC) scheme. lIC is one of the most efficient multivariate public-key cryptosystems (MPKC); these schemes would be suitable for using under limited computational resources. In 2008, an efficient attack against lIC using Gröbner basis algorithms was proposed by Fouque et al. However, they only estimated the complexity of their attack based on their experimental results. On the other hand, Patarin had proposed an efficient attack against some multivariate public-key cryptosystems. We call this attack Patarin's attack. The complexity of Patarin's attack can be estimated by finding relations corresponding to each scheme. In this paper, we propose an another practical attack against the lIC encryption/signature scheme. We estimate the complexity of our attack (not experimentally) by adapting Patarin's attack. The attack can be also applied to the lIC- scheme. Moreover, we show some experimental results of a practical attack against the lIC/lIC- schemes. This is the first implementation of both our proposed attack and an attack based on Gröbner basis algorithm for the even case, that is, a parameter l is even.

  10. PEPSI deep spectra. I. The Sun-as-a-star

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Ilyin, I.; Steffen, M.

    2018-04-01

    Context. Full-disk solar flux spectra can be directly compared to stellar spectra and thereby serve as our most important reference source for, for example stellar chemical abundances, magnetic activity phenomena, radial-velocity signatures or global pulsations. Aim. As part of the first Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) key-science project, we aim to provide well-exposed and average-combined (viz. deep) high-resolution spectra of representative stellar targets. Such deep spectra contain an overwhelming amount of information, typically much more than what could be analyzed and discussed within a single publication. Therefore, these spectra will be made available in form of (electronic) atlases. The first star in this series of papers is our Sun. It also acts as a system-performance cornerstone. Methods: The Sun was monitored with PEPSI at the Large Binocular Telescope (LBT). Instead of the LBT we used a small robotic solar disk integration (SDI) telescope. The deep spectra in this paper are the results of combining up to ≈100 consecutive exposures per wavelength setting and are compared with other solar flux atlases. Results: Our software for the optimal data extraction and reduction of PEPSI spectra is described and verified with the solar data. Three deep solar flux spectra with a spectral resolution of up to 270 000, a continuous wavelength coverage from 383 nm to 914 nm, and a photon signal to noise ratio (S/N) of between 2000-8000:1 depending on wavelength are presented. Additionally, a time-series of 996 high-cadence spectra in one cross disperser is used to search for intrinsic solar modulations. The wavelength calibration based on Th-Ar exposures and simultaneous Fabry-Pérot combs enables an absolute wavelength solution within 10 m s-1 (rms) with respect to the HARPS laser-comb solar atlas and a relative rms of 1.2 m s-1 for one day. For science demonstration, we redetermined the disk-average solar Li abundance to 1.09 ± 0.04 dex on the basis of 3D NLTE model atmospheres. We detected disk-averaged p-mode RV oscillations with a full amplitude of 47 cm s-1 at 5.5 min. Conclusions: Comparisons with two solar FTS atlases, as well as with the HARPS solar atlas, validate the PEPSI data product. Now, PEPSI/SDI solar-flux spectra are being taken with a sampling of one deep spectrum per day, and are supposed to continue a full magnetic cycle of the Sun. Based on data acquired with PEPSI fed by the solar disk integration (SDI) telescope operated by AIP at the Large Binocular Telescope Observatory (LBTO). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam (AIP), and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  11. The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? The polar bear and marsupial koala compared.

    PubMed

    Dawson, Terence J; Webster, Koa N; Maloney, Shane K

    2014-02-01

    The furs of mammals have varied and complex functions. Other than for thermoregulation, fur is involved in physical protection, sensory input, waterproofing and colouration, the latter being important for crypsis or camouflage. Some of these diverse functions potentially conflict. We have investigated how variation in cryptic colouration and thermal features may interact in the coats of mammals and influence potential heat inflows from solar radiation, much of which is outside the visible spectral range. The coats of the polar bear (Ursus maritimus) and the marsupial koala (Phascolarctus cinereus) have insulative similarities but, while they feature cryptic colouration, they are of contrasting colour, i.e. whitish and dark grey. The reflectance of solar radiation by coats was measured across the full solar spectrum using a spectroradiometer. The modulation of incident solar radiation and resultant heat flows in these coats were determined at a range of wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectral distribution of radiation similar to the solar spectrum was used as a proxy for the sun. Crypsis by colour matching was apparent within the visible spectrum for the two species, U. maritimus being matched against snow and P. cinereus against Eucalyptus forest foliage. While reflectances across the full solar spectrum differed markedly, that of U. maritimus being 66 % as opposed to 10 % for P. cinereus, the heat influxes from solar radiation reaching the skin were similar. For both coats at low wind speed (1 m s(-1)), 19 % of incident solar radiation impacted as heat at the skin surface; at higher wind speed (10 m s(-1)) this decreased to approximately 10 %. Ursus maritimus and P. cinereus have high and comparable levels of fur insulation and although the patterns of reflectance and depths of penetrance of solar radiation differ for the coats, the considerable insulation limited the radiant heat reaching the skin. These data suggest that generally, if mammal coats have high insulation then heat flow from solar radiation into an animal is much restricted and the impact of coat colour is negligible. However, comparisons with published data from other species suggest that as fur insulation decreases, colour increasingly influences the heat inflow associated with solar radiation.

  12. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    PubMed

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Research on regional intrusion prevention and control system based on target tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin

    2017-08-01

    In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.

  14. Machine Learning Methods for Attack Detection in the Smart Grid.

    PubMed

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  15. Split-second escape decisions in blue tits (Parus caeruleus)

    NASA Astrophysics Data System (ADS)

    Lind, Johan; Kaby, Ulrika; Jakobsson, Sven

    2002-07-01

    Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.

  16. Hybrid attacks on model-based social recommender systems

    NASA Astrophysics Data System (ADS)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  17. Detecting Pulsing Denial-of-Service Attacks with Nondeterministic Attack Intervals

    NASA Astrophysics Data System (ADS)

    Luo, Xiapu; Chan, Edmond W. W.; Chang, Rocky K. C.

    2009-12-01

    This paper addresses the important problem of detecting pulsing denial of service (PDoS) attacks which send a sequence of attack pulses to reduce TCP throughput. Unlike previous works which focused on a restricted form of attacks, we consider a very broad class of attacks. In particular, our attack model admits any attack interval between two adjacent pulses, whether deterministic or not. It also includes the traditional flooding-based attacks as a limiting case (i.e., zero attack interval). Our main contribution is Vanguard, a new anomaly-based detection scheme for this class of PDoS attacks. The Vanguard detection is based on three traffic anomalies induced by the attacks, and it detects them using a CUSUM algorithm. We have prototyped Vanguard and evaluated it on a testbed. The experiment results show that Vanguard is more effective than the previous methods that are based on other traffic anomalies (after a transformation using wavelet transform, Fourier transform, and autocorrelation) and detection algorithms (e.g., dynamic time warping).

  18. Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation

    NASA Technical Reports Server (NTRS)

    Pittman, J. L.; Miller, D. S.; Mason, W. H.

    1984-01-01

    Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg.

  19. Wind Tunnel Test Results of Fairings on A.004 Scale Model Rockwell Space Shuttle Integrated Vehicle Aerodynamic Characteristics at Mach Numbers from 0.6 to 4.96 (IA62F)

    NASA Technical Reports Server (NTRS)

    Allen, E. C.; Hamilton, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a .004 scale model (34-OTS) orbiter, external tank, and solid rocket booster combined as an integrated vehicle in the NASA/MSFC 14 x 14 inch trisonic wind tunnel. The primary test objective was to determine the effect of a full length orbiter/external tank fairing on axial force. Secondary objectives were to define the static stability characteristics of the mated vehicle configuration with fairings over a Mach number range of 0.6 thru 4.96. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 10 deg at 0 deg sideslip angle and from -10 deg to 10 deg sideslip range at 0 deg and 5 deg angle of attack. Plotted and tabular results are presented herein.

  20. Control research in the NASA high-alpha technology program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph

    1990-01-01

    NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.

  1. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products.

    PubMed

    Michael, I; Hapeshi, E; Aceña, J; Perez, S; Petrović, M; Zapata, A; Barceló, D; Malato, S; Fatta-Kassinos, D

    2013-09-01

    This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Cyber-Physical Attacks With Control Objectives

    DOE PAGES

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2017-08-18

    This study studies attackers with control objectives against cyber-physical systems (CPSs). The goal of the attacker is to counteract the CPS's controller and move the system to a target state while evading detection. We formulate a cost function that reflects the attacker's goals, and, using dynamic programming, we show that the optimal attack strategy reduces to a linear feedback of the attacker's state estimate. By changing the parameters of the cost function, we show how an attacker can design optimal attacks to balance the control objective and the detection avoidance objective. In conclusion, we provide a numerical illustration based onmore » a remotely controlled helicopter under attack.« less

  3. Cyber-Physical Attacks With Control Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    This study studies attackers with control objectives against cyber-physical systems (CPSs). The goal of the attacker is to counteract the CPS's controller and move the system to a target state while evading detection. We formulate a cost function that reflects the attacker's goals, and, using dynamic programming, we show that the optimal attack strategy reduces to a linear feedback of the attacker's state estimate. By changing the parameters of the cost function, we show how an attacker can design optimal attacks to balance the control objective and the detection avoidance objective. In conclusion, we provide a numerical illustration based onmore » a remotely controlled helicopter under attack.« less

  4. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  5. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Consuelo Juanita

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or datamore » to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.« less

  7. Measured noise of a scale model high speed propeller at simulated takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1987-01-01

    A model high-speed advanced propeller, SR-7A, was tested in the NASA Lewis 9x15 foot anechoic wind tunnel at simulated takeoff/approach conditions of 0.2 Mach number. These tests were in support of the full-scale Propfan Text Assessment (PTA) flight program. Acoustic measurements were taken with fixed microphone arrays and with an axially translating microphone probe. Limited aerodynamic measurements were also taken to establish the propeller operating conditions. Tests were conducted with the propeller alone and with three down-stream wing configurations. The propeller was run over a range of blade setting angles from 32.0 deg. to 43.6 deg., tip speeds from 183 to 290 m/sec (600 to 950 ft/sec), and angles of attack from -10 deg. to +15 deg. The propeller alone BPF tone noise was found to increase 10 dB in the flyover plane at 15 deg. propeller axis angle of attack. The installation of the straight wing at minimum spacing of 0.54 wing chord increased the tone noise 5 dB under the wing of 10 deg. propeller axis angle of attack, while a similarly spaced inboard upswept wing only increased the tone noise 2 dB.

  8. Emergence of norovirus GI.2 outbreaks in military camps in Singapore.

    PubMed

    Ho, Zheng Jie Marc; Vithia, Gunalan; Ng, Ching Ging; Maurer-Stroh, Sebastian; Tan, Clive M; Loh, Jimmy; Lin, Tzer Pin Raymond; Lee, Jian Ming Vernon

    2015-02-01

    Simultaneous acute gastroenteritis (AGE) outbreaks occurred at two military camps. This study details the epidemiological findings, explores possible origins, and discusses preventive measures. Investigations included attack rate surveys, symptom surveys, hygiene inspections, and the testing of water, food, and stool samples. DNA/RNA was extracted from stool samples and amplified via real-time reverse transcription PCR (RT-PCR). Partial and full-length capsid nucleotide sequences were obtained, phylogenetic relationships inferred, and homology modelling of antigenic sites performed. The military outbreaks involved 775 persons and were preceded by two AGE outbreaks at restaurants in the local community. The outbreak was longer and larger in the bigger camp (21 days, attack rate 15.0%) than the smaller camp (6 days, attack rate 8.3%). Of 198 stool samples, norovirus GI.2 was detected in 32.5% (larger camp) and 28.6% (smaller camp). These were essentially identical to preceding community outbreaks. Antigenic site homology modelling also showed differences between identified and more common AGE outbreak strains (norovirus GII.4). Differences observed highlight difficulties in controlling person-to-person outbreaks among large groups in close proximity (e.g., military trainees). Distinct differences in antigenic sites may have contributed to increased immunological susceptibility of the soldiers to infection. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Effect of aerodynamic and angle-of-attack uncertainties on the May 1979 entry flight control system of the Space Shuttle from Mach 8 to 1.5

    NASA Technical Reports Server (NTRS)

    Stone, H. W.; Powell, R. W.

    1985-01-01

    A six degree of freedom simulation analysis was performed for the space shuttle orbiter during entry from Mach 8 to Mach 1.5 with realistic off nominal conditions by using the flight control systems defined by the shuttle contractor. The off nominal conditions included aerodynamic uncertainties in extrapolating from wind tunnel derived characteristics to full scale flight characteristics, uncertainties in the estimates of the reaction control system interaction with the orbiter aerodynamics, an error in deriving the angle of attack from onboard instrumentation, the failure of two of the four reaction control system thrusters on each side, and a lateral center of gravity offset coupled with vehicle and flow asymmetries. With combinations of these off nominal conditions, the flight control system performed satisfactorily. At low hypersonic speeds, a few cases exhibited unacceptable performances when errors in deriving the angle of attack from the onboard instrumentation were modeled. The orbiter was unable to maintain lateral trim for some cases between Mach 5 and Mach 2 and exhibited limit cycle tendencies or residual roll oscillations between Mach 3 and Mach 1. Piloting techniques and changes in some gains and switching times in the flight control system are suggested to help alleviate these problems.

  10. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  11. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  12. Atmospheric constituent density profiles from full disk solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Lumpe, J. D.; Chang, C. S.; Strickland, D. J.

    1991-01-01

    Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.

  13. Realization of a near-perfect antireflection coating for silicon solar energy utilization.

    PubMed

    Kuo, Mei-Ling; Poxson, David J; Kim, Yong Sung; Mont, Frank W; Kim, Jong Kyu; Schubert, E Fred; Lin, Shawn-Yu

    2008-11-01

    To harness the full spectrum of solar energy, Fresnel reflection at the surface of a solar cell must be eliminated over the entire solar spectrum and at all angles. Here, we show that a multilayer nanostructure having a graded-index profile, as predicted by theory [J. Opt. Soc. Am. 66, 515 (1976); Appl. Opt. 46, 6533 (2007)], can accomplish a near-perfect transmission of all-color of sunlight. An ultralow total reflectance of 1%-6% has been achieved over a broad spectrum, lambda = 400 to 1600 nm, and a wide range of angles of incidence, theta = 0 degrees-60 degrees . The measured angle- and wavelength-averaged total reflectance of 3.79% is the smallest ever reported in the literature, to our knowledge.

  14. THE Role OF Anisotropy AND Intermittency IN Solar Wind/Magnetosphere Coupling

    NASA Astrophysics Data System (ADS)

    Jankovicova, D.; Voros, Z.

    2006-12-01

    Turbulent fluctuations are common in the solar wind as well as in the Earth's magnetosphere. The fluctuations of both magnetic field and plasma parameters exhibit non-Gaussian statistics. Neither the amplitude of these fluctuations nor their spectral characteristics can provide a full statistical description of multi-scale features in turbulence. It substantiates a statistical approach including the estimation of experimentally accessible statistical moments. In this contribution, we will directly estimate the third (skewness) and the fourth (kurtosis) statistical moments from the available time series of magnetic measurements in the solar wind (ACE and WIND spacecraft) and in the Earth's magnetosphere (SYM-H index). Then we evaluate how the statistical moments change during strong and weak solar wind/magnetosphere coupling intervals.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    This paper intends to reveal the ability of the linear interpolation method to predict missing values in solar radiation time series. Reliable dataset is equally tends to complete time series observed dataset. The absence or presence of radiation data alters long-term variation of solar radiation measurement values. Based on that change, the opportunities to provide bias output result for modelling and the validation process is higher. The completeness of the observed variable dataset has significantly important for data analysis. Occurrence the lack of continual and unreliable time series solar radiation data widely spread and become the main problematic issue. However,more » the limited number of research quantity that has carried out to emphasize and gives full attention to estimate missing values in the solar radiation dataset.« less

  16. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  17. Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design

    DOE PAGES

    Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.

    2017-07-27

    We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less

  18. Far side Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Birch, A.; Gizon, L. C.; Löptien, B.; Schou, J.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Woch, J. G.; Schmidt, W.

    2016-12-01

    The Solar Orbiter mission, to be launched in October 2018, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude up to 34 degrees by the end of the extended mission and thus will enable the first local helioseismology studies of the polar regions. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. In this paper we will review the helioseismic objectives achievable with PHI, and will also give a short status report of the development of the Flight Model of PHI.

  19. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  20. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  1. Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.

    We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less

  2. High-performance, low-cost solar collectors for disinfection of contaminated water.

    PubMed

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  3. Performance Improvement of Power Analysis Attacks on AES with Encryption-Related Signals

    NASA Astrophysics Data System (ADS)

    Lee, You-Seok; Lee, Young-Jun; Han, Dong-Guk; Kim, Ho-Won; Kim, Hyoung-Nam

    A power analysis attack is a well-known side-channel attack but the efficiency of the attack is frequently degraded by the existence of power components, irrelative to the encryption included in signals used for the attack. To enhance the performance of the power analysis attack, we propose a preprocessing method based on extracting encryption-related parts from the measured power signals. Experimental results show that the attacks with the preprocessed signals detect correct keys with much fewer signals, compared to the conventional power analysis attacks.

  4. Attacks on public telephone networks: technologies and challenges

    NASA Astrophysics Data System (ADS)

    Kosloff, T.; Moore, Tyler; Keller, J.; Manes, Gavin W.; Shenoi, Sujeet

    2003-09-01

    Signaling System 7 (SS7) is vital to signaling and control in America's public telephone networks. This paper describes a class of attacks on SS7 networks involving the insertion of malicious signaling messages via compromised SS7 network components. Three attacks are discussed in detail: IAM flood attacks, redirection attacks and point code spoofing attacks. Depending on their scale of execution, these attacks can produce effects ranging from network congestion to service disruption. Methods for detecting these denial-of-service attacks and mitigating their effects are also presented.

  5. Novel mechanism of network protection against the new generation of cyber attacks

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit

    2012-06-01

    A new intelligent mechanism is presented to protect networks against the new generation of cyber attacks. This mechanism integrates TCP/UDP/IP protocol stack protection and attacker/intruder deception to eliminate existing TCP/UDP/IP protocol stack vulnerabilities. It allows to detect currently undetectable, highly distributed, low-frequency attacks such as distributed denial-of-service (DDoS) attacks, coordinated attacks, botnet, and stealth network reconnaissance. The mechanism also allows insulating attacker/intruder from the network and redirecting the attack to a simulated network acting as a decoy. As a result, network security personnel gain sufficient time to defend the network and collect the attack information. The presented approach can be incorporated into wireless or wired networks that require protection against known and the new generation of cyber attacks.

  6. Fast WEP-Key Recovery Attack Using Only Encrypted IP Packets

    NASA Astrophysics Data System (ADS)

    Teramura, Ryoichi; Asakura, Yasuo; Ohigashi, Toshihiro; Kuwakado, Hidenori; Morii, Masakatu

    Conventional efficient key recovery attacks against Wired Equivalent Privacy (WEP) require specific initialization vectors or specific packets. Since it takes much time to collect the packets sufficiently, any active attack should be performed. An Intrusion Detection System (IDS), however, will be able to prevent the attack. Since the attack logs are stored at the servers, it is possible to prevent such an attack. This paper proposes an algorithm for recovering a 104-bit WEP key from any IP packets in a realistic environment. This attack needs about 36, 500 packets with a success probability 0.5, and the complexity of our attack is equivalent to about 220 computations of the RC4 key setups. Since our attack is passive, it is difficult for both WEP users and administrators to detect our attack.

  7. CLARREO Pathfinder Mission to ISS: Demonstrating Greatly Increased Accuracy for Reflected Solar Space Based Observations: Calibration and Intercalibration

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.

    2016-12-01

    The CLARREO (Climate Absolute Radiance and Refractivity) Pathfinder mission is a new mission started by NASA in 2016. CLARREO Pathfinder will fly a new generation of high accuracy reflected solar spectrometer in orbit on the Inernational Space Station (ISS) to demonstrate the ability to increase accuracy of reflected solar observations from space by a factor of 3 to 20. The spectrometer will use the sun and moon as calibration sources with a baseline objective of 0.3% (1 sigma) reflectance calibration uncertainty for the contiguous spectrum from 350nm to 2300nm, covering over 95% of the Earth's reflected solar spectrum. Spectral sampling is 3nm with resolution of 6nm. The spectrometer is mounted on a 2-axis gimbal enabling a new ability to use the same optical path to view the sun, moon, and Earth. Planned launch is 2020 with at least 1 year on orbit to demonstrate the new capability. The mission will also demonstrate the ability to use the new spectrometer as a reference transfer spectrometer in orbit to achieve intercalibration of reflected solar instruments to within 0.3% (1 sigma) using space, time, spectral, and angle matched observations across the full scan width of remote sensing instruments. Intercalibration to 0.3% will be demonstrated across the full scan width of the NASA CERES broadband radiometer and the NOAA VIIRS imager reflected solar spectral channels. This mission will demonstrate reflected solar intercalibration across the full swath width as opposed to current nadir only intercalibration used by GSICS (Global Space Based InterCalibration System). Intercalibration will include a new capability to determine scan angle dependence of polarization sensitivity of instruments like VIIRS. The high accuracy goals of this mission are driven primarily by the accuracy required to more rapidly and accurately observe climate change signals such as cloud feedback (see Wielicki et al. 2013 Bulletin of the American Meteorological Society). The new high accuracy and intercalibration capability will also be very useful for serving as a reference calibrator for constellations of operational instruments in Geostationary or Low Earth Orbit (e.g. land resource imagers, ocean color, cloud imagers). The higher accuracy will enable operational sensors to more effectively serve as climate change sensors.

  8. NOAA Data Rescue of Key Solar Databases and Digitization of Historical Solar Images

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.

    2006-08-01

    Over a number of years, the staff at NOAA National Geophysical Data Center (NGDC) has worked to rescue key solar databases by converting them to digital format and making them available via the World Wide Web. NOAA has had several data rescue programs where staff compete for funds to rescue important and critical historical data that are languishing in archives and at risk of being lost due to deteriorating condition, loss of any metadata or descriptive text that describe the databases, lack of interest or funding in maintaining databases, etc. The Solar-Terrestrial Physics Division at NGDC was able to obtain funds to key in some critical historical tabular databases. Recently the NOAA Climate Database Modernization Program (CDMP) funded a project to digitize historical solar images, producing a large online database of historical daily full disk solar images. The images include the wavelengths Calcium K, Hydrogen Alpha, and white light photos, as well as sunspot drawings and the comprehensive drawings of a multitude of solar phenomena on one daily map (Fraunhofer maps and Wendelstein drawings). Included in the digitization are high resolution solar H-alpha images taken at the Boulder Solar Observatory 1967-1984. The scanned daily images document many phases of solar activity, from decadal variation to rotational variation to daily changes. Smaller versions are available online. Larger versions are available by request. See http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarimages.html. The tabular listings and solar imagery will be discussed.

  9. Robustness of coevolution in resolving prisoner's dilemma games on interdependent networks subject to attack

    NASA Astrophysics Data System (ADS)

    Liu, Penghui; Liu, Jing

    2017-08-01

    Recently, coevolution between strategy and network structure has been established as a rule to resolve social dilemmas and reach optimal situations for cooperation. Many follow-up researches have focused on studying how coevolution helps networks reorganize to deter the defectors and many coevolution methods have been proposed. However, the robustness of the coevolution rules against attacks have not been studied much. Since attacks may directly influence the original evolutionary process of cooperation, the robustness should be an important index while evaluating the quality of a coevolution method. In this paper, we focus on investigating the robustness of an elementary coevolution method in resolving the prisoner's dilemma game upon the interdependent networks. Three different types of time-independent attacks, named as edge attacks, instigation attacks and node attacks have been employed to test its robustness. Through analyzing the simulation results obtained, we find this coevolution method is relatively robust against the edge attack and the node attack as it successfully maintains cooperation in the population over the entire attack range. However, when the instigation probability of the attacked individuals is large or the attack range of instigation attack is wide enough, coevolutionary rule finally fails in maintaining cooperation in the population.

  10. BATSE Solar Flare Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1998-01-01

    This final report describes the progress originally proposed: (1) the continued improvement of a software and database environment capable of supporting all users of BATSE solar data as well as providing scientific expertise and effort to the BATSE solar community; (2) the continued participation with the PI team and other guest investigators in the detailed analysis of the BATSE detectors' response at low energies; (3) using spectroscopic techniques to fully exploit the potential of electron time-of-flight studies; and, (4) a full search for flare gamma-ray line emission at 2.2 MeV from all GOES X-class flares observed with BATSE.

  11. FOCUSing on Innovative Solar Technologies

    ScienceCinema

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2018-06-22

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  12. The Development of a New Model of Solar EUV Irradiance Variability

    NASA Technical Reports Server (NTRS)

    Warren, Harry; Wagner, William J. (Technical Monitor)

    2002-01-01

    The goal of this research project is the development of a new model of solar EUV (Extreme Ultraviolet) irradiance variability. The model is based on combining differential emission measure distributions derived from spatially and spectrally resolved observations of active regions, coronal holes, and the quiet Sun with full-disk solar images. An initial version of this model was developed with earlier funding from NASA. The new version of the model developed with this research grant will incorporate observations from SoHO as well as updated compilations of atomic data. These improvements will make the model calculations much more accurate.

  13. The global evolution of the primordial solar nebula

    NASA Technical Reports Server (NTRS)

    Ruden, S. P.; Lin, D. N. C.

    1986-01-01

    Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.

  14. Automated recognition and characterization of solar active regions based on the SOHO/MDI images

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Turmon, M.; Mukhtar, S.; Bogart, R.; Ulrich, R.; Froehlich, C.; Wehrli, C.

    1997-01-01

    The first results of a new method to identify and characterize the various surface structures on the sun, which may contribute to the changes in solar total and spectral irradiance, are shown. The full disk magnetograms (1024 x 1024 pixels) of the Michelson Doppler Imager (MDI) experiment onboard SOHO are analyzed. Use of a Bayesian inference scheme allows objective, uniform, automated processing of a long sequence of images. The main goal is to identify the solar magnetic features causing irradiance changes. The results presented are based on a pilot time interval of August 1996.

  15. Monte Carlo exploration of Mikheyev-Smirnov-Wolfenstein solutions to the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Shi, X.; Schramm, D. N.; Bahcall, J. N.

    1992-01-01

    The paper explores the impact of astrophysical uncertainties on the Mikheyev-Smirnov-Wolfenstein (MSW) solution by calculating the allowed MSW solutions for 1000 different solar models with a Monte Carlo selection of solar model input parameters, assuming a full three-family MSW mixing. Applications are made to the chlorine, gallium, Kamiokande, and Borexino experiments. The initial GALLEX result limits the mixing parameters to the upper diagonal and the vertical regions of the MSW triangle. The expected event rates in the Borexino experiment are also calculated, assuming the MSW solutions implied by GALLEX.

  16. Variations of Solar Radius Observed with RHESSI

    NASA Astrophysics Data System (ADS)

    Fivian, M. D.; Hudson, H. S.; Lin, R. P.

    2003-12-01

    The Solar Aspect System (SAS) of the rotating (at 15 rpm) RHESSI spacecraft has three subsystems. Each of these measures the position of the limb by sampling the full solar chord profile with a linear CCD using a narrow bandwidth filter at 670 nm. With a resolution of each CCD of 1.7 arcsec/pixel, the accuracy of each of the 6 limb positions is theoretically better than 50 mas using 4 pixels at each limb. Since the launch of RHESSI early 2002, solar limbs are sampled with at least 100 Hz. That provides a database of currently 4 x 109 single radius measurements. The main function of SAS is to determine the RHESSI pointing relative to Sun center. The observed precision of this determination has a typical instantaneous (16 Hz) value of about 200 mas (rms). We show and discuss first results of variations of solar radius observed with RHESSI.

  17. KSC-00pp1214

    NASA Image and Video Library

    2000-08-30

    The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. KSC-00pp1210

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  19. KSC-00pp1216

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  20. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  1. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  2. The three-dimensional analysis of hinode polar jets using images from LASCO C2, the STEREO COR2 coronagraphs, and SMEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H.-S.; Jackson, B. V.; Buffington, A.

    2014-04-01

    Images recorded by the X-ray Telescope on board the Hinode spacecraft are used to provide high-cadence observations of solar jetting activity. A selection of the brightest of these polar jets shows a positive correlation with high-speed responses traced into the interplanetary medium. LASCO C2 and STEREO COR2 coronagraph images measure the coronal response to some of the largest jets, and also the nearby background solar wind velocity, thereby giving a determination of their speeds that we compare with Hinode observations. When using the full Solar Mass Ejection Imager (SMEI) data set, we track these same high-speed solar jet responses intomore » the inner heliosphere and from these analyses determine their mass, flow energies, and the extent to which they retain their identity at large solar distances.« less

  3. The First Focused Hard X-Ray Images of the Sun with NuSTAR

    NASA Technical Reports Server (NTRS)

    Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.; hide

    2016-01-01

    We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  4. Modeling the heliolatitudinal gradient of the solar wind parameters with exact MHD solutions

    NASA Technical Reports Server (NTRS)

    Lima, J. J. G.; Tsinganos, K.

    1995-01-01

    The heliolatitudinal dependence of observations of the solar wind macroscopic quantities such as the averaged proton speed, density and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the variables in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar wind speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in wind speed with the latitude is offset by a gradient in density such that the mass and momentum flux vary relatively little.

  5. Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo

    NASA Technical Reports Server (NTRS)

    Boyer, D. W.; Levy, E. H.

    1992-01-01

    The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.

  6. β-FeSi II as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko

    2006-04-01

    β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.

  7. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

    NASA Astrophysics Data System (ADS)

    Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2017-11-01

    Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.

  8. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  9. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  10. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  11. Security under Uncertainty: Adaptive Attackers Are More Challenging to Human Defenders than Random Attackers

    PubMed Central

    Moisan, Frédéric; Gonzalez, Cleotilde

    2017-01-01

    Game Theory is a common approach used to understand attacker and defender motives, strategies, and allocation of limited security resources. For example, many defense algorithms are based on game-theoretic solutions that conclude that randomization of defense actions assures unpredictability, creating difficulties for a human attacker. However, many game-theoretic solutions often rely on idealized assumptions of decision making that underplay the role of human cognition and information uncertainty. The consequence is that we know little about how effective these algorithms are against human players. Using a simplified security game, we study the type of attack strategy and the uncertainty about an attacker's strategy in a laboratory experiment where participants play the role of defenders against a simulated attacker. Our goal is to compare a human defender's behavior in three levels of uncertainty (Information Level: Certain, Risky, Uncertain) and three types of attacker's strategy (Attacker's strategy: Minimax, Random, Adaptive) in a between-subjects experimental design. Best defense performance is achieved when defenders play against a minimax and a random attack strategy compared to an adaptive strategy. Furthermore, when payoffs are certain, defenders are as efficient against random attack strategy as they are against an adaptive strategy, but when payoffs are uncertain, defenders have most difficulties defending against an adaptive attacker compared to a random attacker. We conclude that given conditions of uncertainty in many security problems, defense algorithms would be more efficient if they are adaptive to the attacker actions, taking advantage of the attacker's human inefficiencies. PMID:28690557

  12. JPRS Report, Near East & South Asia

    DTIC Science & Technology

    1989-06-30

    free democracy," which fears for its very existence amid a sea of Arab aggression. The world has now come to acknowledge that this term, and what...labelled dissidents and imprisoned in Siberia or psychiatric hospitals. Russia and China are freeing themselves from political heathenism while we...to attack others. As a free , indepen- dent state, Afghanistan will carry only torches of good and light to every neighbor. • Regarding full Soviet

  13. Defending against Attribute-Correlation Attacks in Privacy-Aware Information Brokering

    NASA Astrophysics Data System (ADS)

    Li, Fengjun; Luo, Bo; Liu, Peng; Squicciarini, Anna C.; Lee, Dongwon; Chu, Chao-Hsien

    Nowadays, increasing needs for information sharing arise due to extensive collaborations among organizations. Organizations desire to provide data access to their collaborators while preserving full control over the data and comprehensive privacy of their users. A number of information systems have been developed to provide efficient and secure information sharing. However, most of the solutions proposed so far are built atop of conventional data warehousing or distributed database technologies.

  14. Applied Hypergame Theory for Network Defense

    DTIC Science & Technology

    2013-06-01

    information technology infrastructure as they are perhaps the most wired country on the planet . Government websites, banking systems, and even media...a long way from the simple lone youth down in the basement causing mischief. Organized swaths of intelligent computer savvy attackers now exist and...out of the five hypergames choose the hyperstrategy that is the same as the full game MSNE, with the Mid-Level defender being the lone difference. Thus

  15. Entropy-as-a-Service: Unlocking the Full Potential of Cryptography

    PubMed Central

    Vassilev, Apostol; Staples, Robert

    2016-01-01

    Securing the Internet requires strong cryptography, which depends on the availability of good entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales and remaining trustworthy unless much of the collective is compromised. PMID:28003687

  16. One-shot, low-dosage intratympanic gentamicin for Ménière's disease: Clinical, posturographic and vestibular test findings.

    PubMed

    Daneshi, Ahmad; Jahandideh, Hesam; Pousti, Seyed Behzad; Mohammadi, Shabahang

    2014-01-01

    Ménière's disease has been remained as a difficult therapeutic challenge. The present study aimed to determine the effects of one-shot low-dosage intratympanic gentamicin on vertigo control, auditory outcomes and findings of computerized dynamic posturography and vestibular evoked myogenic potentials in patients with unilateral Ménière's disease. In a prospective clinical study, 30 patients with unilateral Ménière's disease were treated with one-shot intratympanic injection of 20 milligrams gentamicin. Main outcome measures included clinical, audiometric, postural and vestibular outcomes evaluated 1 and 9 months after the treatment. Mean vertigo attacks frequency, pure tone average threshold and functional level scale significantly decreased after the treatment (P < 0.05). Effective vertigo control (class A and B) obtained in 95.8% of the patients. In total, 75% of patients reported decrease in both aural fullness and tinnitus. Vestibular evoked myogenic potentials became absent in all the patients but four of them. Posturographic scores were improved after the treatment. One-shot low-dosage gentamicin was effective in controlling vertigo attacks in Ménière's disease and has useful effects on aural fullness and tinnitus of patients as well. Postural and vestibular tests only have adjunctive role for monitoring therapeutic responses in intratympanic gentamicin-therapy.

  17. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle, coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.

  18. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  19. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2001-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.

  20. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2000-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.

  1. Blind Data Attack on BGP Routers

    DTIC Science & Technology

    2017-03-01

    implement blind attack protection, leaving long -standing connections, such as Border Gateway Protocol (BGP) sessions, vulnerable to exploitation. This...protection measures should a discovered vulnerability reduce attack complexity. 14. SUBJECT TERMS BGP, TCP, blind attack, blind data attack 15. NUMBER OF...implementations may not properly implement blind attack protection, leaving long -standing connections, such as BorderGateway Protocol (BGP) sessions

  2. Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Hootman, James A

    1938-01-01

    Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.

  3. Narcolepsy-cataplexy and loss of sphincter control.

    PubMed Central

    Vgontzas, A. N.; Sollenberger, S. E.; Kales, A.; Bixler, E. O.; Vela-Bueno, A.

    1996-01-01

    We describe the case of a 34-year-old man who presented intermittent faecal incontinence as a manifestation of cataplexy. The patient's sleep history was positive for the full narcoleptic tetrad (sleep attacks, cataplexy, sleep paralysis and hypnagogic hallucinations) while extensive neuropsychiatric work up was negative for any neurologic or psychiatric illness. Repeat polysomnograms (including a polysomnogram with a full seizure montage) were positive for pathologic sleepiness, but there was no evidence of a seizure disorder. The course of the patient's symptomatology and the favourable response of his symptoms to stimulants and imipramine support the theory that his intermittent loss of sphincter control is part of his narcolepsy-cataplexy. PMID:8796217

  4. Research on high power intra-channel crosstalk attack in optical networks

    NASA Astrophysics Data System (ADS)

    Ren, Shuai; Zhang, Yinfa; Wang, Jingyu; Zhang, Jumei; Rao, Xuejun; Fang, Yuanyuan

    2017-02-01

    The mechanism of high power intra-channel crosstalk attack is analyzed theoretically and the conclusion that power of attack signal and crosstalk coefficient of optical switch are the main factors for which high power intra-channel have destructive effect on quality of legitimate signals is drawn. Effects of high power intra-channel crosstalk attack on quality of legitimate signals and its capability of attack propagation are investigated quantitatively by building the simulation system in VPI software. The results show that legitimate signals through the first and the second stage optical switch are affected by attack and legitimate signal through the third stage optical switch is almost unaffected by attack when power of original attack signal (OAS) is above 20dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB at optical cross connect 1 (OXC1). High power intra-channel crosstalk attack has a certain capability of attack propagation. Attack capability of OAS can be propagated to OXC3 when power of OAS is 27dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB. We also find that the secondary attack signal (SAS) does not have capability of attack propagation.

  5. Warning Signs of Heart Attack, Stroke and Cardiac Arrest

    MedlinePlus

    ... a Heart Attack WARNING SIGNS OF HEART ATTACK, STROKE & CARDIAC ARREST HEART ATTACK WARNING SIGNS CHEST DISCOMFORT ... nausea or lightheadedness. Learn more about heart attack STROKE WARNING SIGNS Spot a stroke F.A.S.T.: - ...

  6. The role of mental disorder in attacks on European politicians 1990-2004.

    PubMed

    James, D V; Mullen, P E; Meloy, J R; Pathé, M T; Farnham, F R; Preston, L; Darnley, B

    2007-11-01

    The only systematic studies of attacks on public figures come from the USA. These studies de-emphasize the role of mental illness and suggest threats are of no predictive value. This study re-examines these questions through a study of attacks on European politicians. All non-terrorist attacks on elected politicians in Western Europe between 1990 and 2004 were analysed. Twenty-four attacks were identified, including five involving fatalities, and eight serious injuries. Ten attackers were psychotic, four drunk, nine politically motivated and one unclassifiable. Eleven attackers evidenced warning behaviours. The mentally disordered, most of whom gave warnings, were responsible for most of the fatal and seriously injurious attacks. A greater awareness of the link between delusional fixations on public figures and subsequent attacks could aid prevention. Equally importantly, recognition would encourage earlier intervention in people who, irrespective of whether they eventually attack, have delusional preoccupations which ruin their lives.

  7. An Exploration of Hypotheses that Explain Herbivore and Pathogen Attack in Restored Plant Communities

    PubMed Central

    Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.

    2015-01-01

    Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672

  8. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  9. Efficient conversion of solar energy to biomass and electricity.

    PubMed

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  10. Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy

    NASA Astrophysics Data System (ADS)

    Kwon, Cheolhyeon

    Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the computational cost. The proposed algorithm is validated through a linearized longitudinal motion of a UAV example. Finally, we propose an attack attenuation strategy via the controller design for CPSs that are robust to various types of cyber attacks. While the previous studies have investigated a secure control by assuming a specific attack strategy, in this research we propose a hybrid robust control scheme that contains multiple sub-controllers, each matched to a specific type of cyber attacks. Then the system can be adapted to various cyber attacks (including those that are not assumed for sub-controller design) by switching its sub-controllers to achieve the best performance. Then, a method for designing a secure switching logic to counter all possible cyber attacks is proposed and it verifies mathematically the system's performance and stability as well. The performance of the proposed control scheme is demonstrated by an example with the hybrid H2 - H-infinity controller applied to a UAV example.

  11. Reconstruction of total solar irradiance 1974-2009

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Wenzler, T.; Mortlock, D. J.; Jaffe, A. H.

    2012-05-01

    Context. The study of variations in total solar irradiance (TSI) is important for understanding how the Sun affects the Earth's climate. Aims: Full-disk continuum images and magnetograms are now available for three full solar cycles. We investigate how modelled TSI compares with direct observations by building a consistent modelled TSI dataset. The model, based only on changes in the photospheric magnetic flux can then be tested on rotational, cyclical and secular timescales. Methods: We use Kitt Peak and SoHO/MDI continuum images and magnetograms in the SATIRE-S model to reconstruct TSI over cycles 21-23. To maximise independence from TSI composites, SORCE/TIM TSI data are used to fix the one free parameter of the model. We compare and combine the separate data sources for the model to estimate an uncertainty on the reconstruction and prevent any additional free parameters entering the model. Results: The reconstruction supports the PMOD composite as being the best historical record of TSI observations, although on timescales of the solar rotation the IRMB composite provides somewhat better agreement. Further to this, the model is able to account for 92% of TSI variations from 1978 to 2009 in the PMOD composite and over 96% during cycle 23. The reconstruction also displays an inter-cycle, secular decline of 0.20+0.12-0.09 W m-2 between cycle 23 minima, in agreement with the PMOD composite. Conclusions: SATIRE-S is able to recreate TSI observations on all timescales of a day and longer over 31 years from 1978. This is strong evidence that changes in photospheric magnetic flux alone are responsible for almost all solar irradiance variations over the last three solar cycles.

  12. Method for Integrated Simulation (MINTSIM)

    DTIC Science & Technology

    1976-01-01

    sorties allocated to attack SAMs. FAPA = fraction of striking aircraft attacking air bases which attack parked aircraft in the open. TAAB...each striking aircraft. FAS = fraction of striking aircraft attacking air bases which attack sheltered aircraft. (NOTE: FAPA + FAS = 1.0

  13. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signalsmore » are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.« less

  14. Web Forms and Untraceable DDoS Attacks

    NASA Astrophysics Data System (ADS)

    Jakobsson, Markus; Menczer, Filippo

    We analyze a Web vulnerability that allows an attacker to perform an email-based attack on selected victims, using standard scripts and agents. What differentiates the attack we describe from other, already known forms of distributed denial of service (DDoS) attacks is that an attacker does not need to infiltrate the network in any manner - as is normally required to launch a DDoS attack. Thus, we see this type of attack as a poor man's DDoS. Not only is the attack easy to mount, but it is also almost impossible to trace back to the perpetrator. Along with descriptions of our attack, we demonstrate its destructive potential with (limited and contained) experimental results. We illustrate the potential impact of our attack by describing how an attacker can disable an email account by flooding its inbox; block competition during on-line auctions; harm competitors with an on-line presence; disrupt phone service to a given victim; disconnect mobile corporate leaders from their networks; and disrupt electronic elections. Finally, we propose a set of countermeasures that are light-weight, do not require modifications to the infrastructure, and can be deployed in a gradual manner.

  15. Replacement Attack: A New Zero Text Watermarking Attack

    NASA Astrophysics Data System (ADS)

    Bashardoost, Morteza; Mohd Rahim, Mohd Shafry; Saba, Tanzila; Rehman, Amjad

    2017-03-01

    The main objective of zero watermarking methods that are suggested for the authentication of textual properties is to increase the fragility of produced watermarks against tampering attacks. On the other hand, zero watermarking attacks intend to alter the contents of document without changing the watermark. In this paper, the Replacement attack is proposed, which focuses on maintaining the location of the words in the document. The proposed text watermarking attack is specifically effective on watermarking approaches that exploit words' transition in the document. The evaluation outcomes prove that tested word-based method are unable to detect the existence of replacement attack in the document. Moreover, the comparison results show that the size of Replacement attack is estimated less accurate than other common types of zero text watermarking attacks.

  16. Design and Analysis of an Enhanced Patient-Server Mutual Authentication Protocol for Telecare Medical Information System.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S

    2015-11-01

    In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.

  17. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  18. CO2 laser annealing of 50-microns-thick silicon solar cells

    NASA Technical Reports Server (NTRS)

    Walker, F. E.

    1979-01-01

    A test program is conducted to determine thin solar cell annealing effects using a laser energy source. A CO2 continuous-wave laser was used in annealing experiments on 50 micrometers-thick silicon solar cells after proton irradiation. Test cells were irradiated to a fluence of 1.0 x 10 to the 12th power protons/sq cm with 1.9 MeV protons. After irradiation, those cells receiving full proton dosage were degraded by an average of 30% in output power. In annealing tests laser beam exposure times on the solar cell varied from 2 seconds to 16 seconds reaching cell temperatures of from 400 C to 500 C. Under those conditions annealing test results showed recovery in cell output power of from 33% to 90%.

  19. Heartburn or Chest Pain: When Is It Heart Attack?

    MedlinePlus

    Heartburn or heart attack: When to worry Severe heartburn and heart attack can be hard to tell apart. Understand how they typically ... flow to your heart (angina) or an actual heart attack. Heartburn, angina and heart attack may feel very ...

  20. Know the Warning Signs of a Heart Attack

    MedlinePlus

    ... No. 22 Know the Warning Signs of a Heart Attack What is a heart attack? Aheart attack happens when the blood vessels that ... hurting your heart muscle. Another name for a heart attack is myocardial infarction, or MI. If you have ...

  1. Atmospheric Sensitivity to Spectral Top-of-Atmosphere Solar Irradiance Perturbations, Using MODTRAN-5 Radiative Transfer Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Berk, A.; Harder, G.; Fontenla, J.; Shettle, E.; Pilewski, P.; Kindel, B.; Chetwynd, J.; Gardner, J.; Hoke, M.; Jordan, A.; Lockwood, R.; Felde, G.; Archarya, P.

    2006-12-01

    The opportunity to insert state-of-the-art solar irradiance measurements and calculations, with subtle perturbations, into a narrow spectral resolution radiative transfer model has recently been facilitated through release of MODTRAN-5 (MOD5). The new solar data are from: (1) SORCE satellite measurements of solar variability over solar rotation cycle, & (2) ultra-narrow calculation of a new solar source irradiance, extending over the full MOD5 spectral range, from 0.2 um to far-IR. MODTRAN-5, MODerate resolution radiance and TRANsmittance code, has been developed collaboratively by Air Force Research Laboratory and Spectral Sciences, Inc., with history dating back to LOWTRAN. It includes approximations for all local thermodynamic equilibrium terms associated with molecular, cloud, aerosol and surface components for emission, scattering, and reflectance, including multiple scattering, refraction and a statistical implementation of Correlated-k averaging. The band model is based on 0.1 cm-1 (also 1.0, 5.0 and 15.0 cm-1 statistical binning for line centers within the interval, captured through an exact formulation of the full Voigt line shape. Spectroscopic parameters are from HITRAN 2004 with user-defined options for additional gases. Recent validation studies show MOD5 replicates line-by-line brightness temperatures to within ~0.02ºK average and <1.0ºK RMS. MOD5 can then serve as a surrogate for a variety of perturbation studies, including the two modes for the solar source function, Io. (1) Data from the Solar Radiation and Climate Experiment (SORCE) satellite mission provide state-of-the-art measurements of UV, visible, near-IR, plus total solar radiation, on near real-time basis. These internally consistent estimates of Sun's output over solar rotation and longer time scales are valuable inputs for studying effects of Sun's radiation on Earth's atmosphere and climate. When solar rotation encounters bright plage and dark sunspots, relative variations are expected to be very small in visible wavelengths, although absolute power is substantial. SORCE's Spectral Irradiance Monitor measurements are readily included in comparative MOD5 calculations. (2) The embedded solar irradiance within MOD5 must be compatible with the chosen band model resolution binning. By matching resolutions some issues related to the correlated-k band model parameterizations can be tested. Two high resolution solar irradiances, the MOD5 default irradiance (Kurucz) and a new compilation associated with Solar Radiation Physical Modeling project (Fontenla), are compared to address the potential impact of discrepancies between any sets of irradiances. The magnitude of solar variability, as measured and calculated, can lead to subtle changes in heating/cooling rates throughout the atmosphere, as a function of altitude and wavelength. By holding chemical & dynamical responses constant, only controlled distributions of absorbing gases, aerosols and clouds will contribute to observed 1st order radiative effects.

  2. Percolation of localized attack on isolated and interdependent random networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Percolation properties of isolated and interdependent random networks have been investigated extensively. The focus of these studies has been on random attacks where each node in network is attacked with the same probability or targeted attack where each node is attacked with a probability being a function of its centrality, such as degree. Here we discuss a new type of realistic attacks which we call a localized attack where a group of neighboring nodes in the networks are attacked. We attack a randomly chosen node, its neighbors, and its neighbor of neighbors and so on, until removing a fraction (1 - p) of the network. This type of attack reflects damages due to localized disasters, such as earthquakes, floods and war zones in real-world networks. We study, both analytically and by simulations the impact of localized attack on percolation properties of random networks with arbitrary degree distributions and discuss in detail random regular (RR) networks, Erdős-Rényi (ER) networks and scale-free (SF) networks. We extend and generalize our theoretical and simulation results of single isolated networks to networks formed of interdependent networks.

  3. Stealthy false data injection attacks using matrix recovery and independent component analysis in smart grid

    NASA Astrophysics Data System (ADS)

    JiWei, Tian; BuHong, Wang; FuTe, Shang; Shuaiqi, Liu

    2017-05-01

    Exact state estimation is vital important to maintain common operations of smart grids. Existing researches demonstrate that state estimation output could be compromised by malicious attacks. However, to construct the attack vectors, a usual presumption in most works is that the attacker has perfect information regarding the topology and so on even such information is difficult to acquire in practice. Recent research shows that Independent Component Analysis (ICA) can be used for inferring topology information which can be used to originate undetectable attacks and even to alter the price of electricity for the profits of attackers. However, we found that the above ICA-based blind attack tactics is merely feasible in the environment with Gaussian noises. If there are outliers (device malfunction and communication errors), the Bad Data Detector will easily detect the attack. Hence, we propose a robust ICA based blind attack strategy that one can use matrix recovery to circumvent the outlier problem and construct stealthy attack vectors. The proposed attack strategies are tested with IEEE representative 14-bus system. Simulations verify the feasibility of the proposed method.

  4. Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis

    PubMed Central

    Zhou, Wei; Wen, Junhao; Koh, Yun Sing; Xiong, Qingyu; Gao, Min; Dobbie, Gillian; Alam, Shafiq

    2015-01-01

    Recommender systems are highly vulnerable to shilling attacks, both by individuals and groups. Attackers who introduce biased ratings in order to affect recommendations, have been shown to negatively affect collaborative filtering (CF) algorithms. Previous research focuses only on the differences between genuine profiles and attack profiles, ignoring the group characteristics in attack profiles. In this paper, we study the use of statistical metrics to detect rating patterns of attackers and group characteristics in attack profiles. Another question is that most existing detecting methods are model specific. Two metrics, Rating Deviation from Mean Agreement (RDMA) and Degree of Similarity with Top Neighbors (DegSim), are used for analyzing rating patterns between malicious profiles and genuine profiles in attack models. Building upon this, we also propose and evaluate a detection structure called RD-TIA for detecting shilling attacks in recommender systems using a statistical approach. In order to detect more complicated attack models, we propose a novel metric called DegSim’ based on DegSim. The experimental results show that our detection model based on target item analysis is an effective approach for detecting shilling attacks. PMID:26222882

  5. TANDI: threat assessment of network data and information

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh Jay; Sudit, Moises

    2006-04-01

    Current practice for combating cyber attacks typically use Intrusion Detection Sensors (IDSs) to passively detect and block multi-stage attacks. This work leverages Level-2 fusion that correlates IDS alerts belonging to the same attacker, and proposes a threat assessment algorithm to predict potential future attacker actions. The algorithm, TANDI, reduces the problem complexity by separating the models of the attacker's capability and opportunity, and fuse the two to determine the attacker's intent. Unlike traditional Bayesian-based approaches, which require assigning a large number of edge probabilities, the proposed Level-3 fusion procedure uses only 4 parameters. TANDI has been implemented and tested with randomly created attack sequences. The results demonstrate that TANDI predicts future attack actions accurately as long as the attack is not part of a coordinated attack and contains no insider threats. In the presence of abnormal attack events, TANDI will alarm the network analyst for further analysis. The attempt to evaluate a threat assessment algorithm via simulation is the first in the literature, and shall open up a new avenue in the area of high level fusion.

  6. Early Results from SOLIS

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Giampapa, M.; Henney, C.; Keller, C.; Jones, H.

    2004-05-01

    SOLIS (Synoptic Optical Long-Term Investigations of the Sun) is a project that is replacing antiquated synoptic observing equipment at the National Solar Observatory. SOLIS consists of a suite of three instruments on an equatorial mount that will be installed on Kitt Peak in April 2004. The major SOLIS instrument is a vector spectromagnetograph (VSM) that maps magnetic fields across the full solar disk using a slit spectrograph and one arc sec pixels. Limited daily observations started at a temporary site in August, 2003 and include line-of-sight component magnetograms in the photosphere and chromosphere and, for the first time, full-disk vector magnetograms. At a medium scan speed ( ˜ 10 minutes for the full disk) noise is less than 1 Mx/cm2. This low noise, combined with negligible instrumental polarization and well resolved spectral line profiles, yields moderate resolution magnetograms of unprecedented quality. Observations show magnetic flux nearly everywhere in the photosphere from the disk center to the solar limb. Weak, intranetwork fields are now routinely observed and show a tendency to be of opposite polarity to the stronger surrounding fields. Diffuse fields surround decaying active regions and appear to be distinct from canopy fields. Vector magnetograms easily show the radial orientation of network fields, and the diffuse component surrounding decaying active regions. Near the disk center, the transverse magnetic fields of network elements change on a time scale of minutes. Detailed quantitative calibration of the observations is in progress. Good results have been obtained from the other SOLIS instruments: a full-disk filter imager at several narrow wavelengths and a double-pass grating spectrograph that provides high-accuracy line spectra of integrated sunlight. SOLIS data are freely available via the Internet and users are invited to submit observing time requests for special observations. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. Additional support for the development of SOLIS from NASA and ONR is gratefully acknowledged.

  7. Identifying and tracking attacks on networks: C3I displays and related technologies

    NASA Astrophysics Data System (ADS)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  8. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  9. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.

  10. Pre-attack signs and symptoms in cluster headache: Characteristics and time profile.

    PubMed

    Snoer, Agneta; Lund, Nunu; Beske, Rasmus; Jensen, Rigmor; Barloese, Mads

    2018-05-01

    Introduction In contrast to the premonitory phase of migraine, little is known about the pre-attack (prodromal) phase of a cluster headache. We aimed to describe the nature, prevalence, and duration of pre-attack symptoms in cluster headache. Methods Eighty patients with episodic cluster headache or chronic cluster headache, according to ICHD-3 beta criteria, were invited to participate. In this observational study, patients underwent a semi-structured interview where they were asked about the presence of 31 symptoms/signs in relation to a typical cluster headache attack. Symptoms included previously reported cluster headache pre-attack symptoms, premonitory migraine symptoms and accompanying symptoms of migraine and cluster headache. Results Pre-attack symptoms were reported by 83.3% of patients, with an average of 4.25 (SD 3.9) per patient. Local and painful symptoms, occurring with a median of 10 minutes before attack, were reported by 70%. Local and painless symptoms and signs, occurring with a median of 10 minutes before attack, were reported by 43.8% and general symptoms, occurring with a median of 20 minutes before attack, were reported by 62.5% of patients. Apart from a dull/aching sensation in the attack area being significantly ( p < 0.05) more frequent among men and episodic patients, compared with women and chronic patients respectively, no other differences in the prevalence of pre-attack symptoms were identified between groups. Conclusion Pre-attack symptoms are frequent in cluster headache. Since the origin of cluster headache attacks is still unresolved, studies of pre-attack symptoms could contribute to the understanding of cluster headache pathophysiology. Furthermore, identification and recognition of pre-attack symptoms could potentially allow earlier abortive treatment.

  11. Shark attack-related injuries: Epidemiology and implications for plastic surgeons.

    PubMed

    Ricci, Joseph A; Vargas, Christina R; Singhal, Dhruv; Lee, Bernard T

    2016-01-01

    The increased media attention to shark attacks has led to a heightened fear and public awareness. Although few sharks are considered dangerous, attacks on humans can result in large soft tissue defects necessitating the intervention of reconstructive surgeons. This study aims to evaluate and describe the characteristics of shark-related injuries in order to improve treatment. The Global Shark Accident File, maintained by the Shark Research Institute (Princeton, NJ, USA), is a compilation of all known worldwide shark attacks. Database records since the 1900s were reviewed to identify differences between fatal and nonfatal attacks, including: geography, injury pattern, shark species, and victim activity. Since the 1900s, there have been 5034 reported shark attacks, of which 1205 (22.7%) were fatal. Although the incidence of attacks per decade has increased, the percentage of fatalities has decreased. Characteristics of fatal attacks included swimming (p = 0.001), boating (p = 0.001), three or more bite sites (p = 0.03), limb loss (p = 0.001), or tiger shark attack (p = 0.002). The most common attacks were bites to the legs (41.8%) or arms (18.4%), with limb loss occurring in 7% of attacks. Geographically, the majority of attacks occurred in North America (36.7%) and Australia (26.5%). Most attacks in the USA occurred in Florida (49.1%) and California (13.6%). Although rare, shark attacks result in devastating injuries to patients. As these injuries often involve multiple sites and limb loss, this creates a significant challenge for reconstructive surgeons. Proper identification of the characteristics of the attack can aid in providing optimal care for those affected. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Hereditary Angioedema Attacks Resolve Faster and Are Shorter after Early Icatibant Treatment

    PubMed Central

    Maurer, Marcus; Kaplan, Allen; Investigators, on behalf of I. O. S.

    2013-01-01

    Background Attacks of hereditary angioedema (HAE) are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. Objective To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. Methods The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009–February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. Results Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥1 hour (6.1 hours versus 16.8 hours [p<0.001]). Similar significant effects were observed for <2 hours versus ≥2 hours (7.2 hours versus 20.2 hours [p<0.001]) and <5 hours versus ≥5 hours (8.0 hours versus 23.5 hours [p<0.001]). Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]). Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. Conclusion Early blockade of the bradykinin B2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution. PMID:23390491

  13. Adaptive optimisation-offline cyber attack on remote state estimator

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Dong, Jiuxiang

    2017-10-01

    Security issues of cyber-physical systems have received increasing attentions in recent years. In this paper, deception attacks on the remote state estimator equipped with the chi-squared failure detector are considered, and it is assumed that the attacker can monitor and modify all the sensor data. A novel adaptive optimisation-offline cyber attack strategy is proposed, where using the current and previous sensor data, the attack can yield the largest estimation error covariance while ensuring to be undetected by the chi-squared monitor. From the attacker's perspective, the attack is better than the existing linear deception attacks to degrade the system performance. Finally, some numerical examples are provided to demonstrate theoretical results.

  14. Public knowledge of heart attack symptoms in Beijing residents.

    PubMed

    Zhang, Qing-Tan; Hu, Da-Yi; Yang, Jin-Gang; Zhang, Shou-Yan; Zhang, Xin-Quan; Liu, Shu-Shan

    2007-09-20

    Definitive treatment for heart attack is early reperfusion with either angioplasty or thrombolytic therapy, and the benefit is strictly time-dependent. Patient outcomes are improved with either therapy when initiated as soon as possible. Recognition of heart attack symptoms is logically tied to taking action to receive prompt emergency care. Inadequate knowledge of heart attack symptoms may prolong delay. The purpose of this study was to document knowledge about heart attack symptoms in Beijing residents and to identify the characteristics associated with increased knowledge of heart attack. A structured survey was conducted in 18 communities in Beijing from March 1 through June 10 in 2006. Addresses and participants were selected randomly following a stratification. The survey was designed to collect knowledge of heart attack symptoms from sampled adults in each community. A total of 4627 respondents completed the questionnaires correctly, and 50.29% of them were female. Totally 64.15% of the respondents reported chest pain or discomfort (common symptoms) as a symptom of heart attack; 75.38% reported at least one of the following eight symptoms as a symptom of heart attack: back pain, shortness of breath, arm pain or numbness, nausea or vomiting, neck, jaw or shoulder pain, epigastric pain, sweating, weakness (less common symptoms); 20.36% correctly reported four or more heart attack symptoms, only 7.4% knew all the correct heart attack symptoms, and 28.94% knew about reperfusion therapy for heart attack; 31.7% reported to call 120 or 999 while having a heart attack themselves; however 89.6% reported to call 120 or 999 when someone else is suffering from a heart attack. Very old persons and those with health insurance coverage, high education level, high household income, longer living in Beijing and previous experience with heart disease had greater knowledge of heart attack symptoms. Public knowledge of common heart attack symptoms as well as less common heart attack symptoms is deficient in Beijing residents. But their knowledge of calling emergency medical services when someone is having a heart attack is relatively adequate. Public health efforts are needed to increase the recognition of the major heart attack symptoms in both the general public and groups at high risk for an acute cardiac event, especially in socioeconomically disadvantaged subgroups, including persons with low education level, low household income, and no health insurance coverage.

  15. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  16. An Approach for Assessing Consequences of Potential Supply Chain and Insider Contributed Cyber Attacks on Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Tsong L.

    The Stuxnet attack at the Natanz facility is an example of a targeted and successful cyber attack on a nuclear facility. Snowden's release of National Security Agency documents demonstrated the consequences of the insider threat. More recently, the United States tried to attack North Korea but failed, South Korea was attempting to attack North Korea, and both applied Stuxnet-like approaches. These sophisticated targeted attacks differ from web-site hacking events that are reported almost daily in the news mainly because targeted attacks require detailed design and operation information of the systems attacked and/or are often carried out by insiders. For instance,more » in order to minimize disruption of facilities around the world, Stuxnet remained idle until it recognized the specific configuration of the Natanz facility, demonstrating that the attackers possessed extremely detailed information about the facility. Such targeted cyber attacks could become a national-level military weapon and be used in coercion of hostile countries.« less

  17. Improving the Rainbow Attack by Reusing Colours

    NASA Astrophysics Data System (ADS)

    Ågren, Martin; Johansson, Thomas; Hell, Martin

    Hashing or encrypting a key or a password is a vital part in most network security protocols. The most practical generic attack on such schemes is a time memory trade-off attack. Such an attack inverts any one-way function using a trade-off between memory and execution time. Existing techniques include the Hellman attack and the rainbow attack, where the latter uses different reduction functions ("colours") within a table.

  18. Areas of Polar Coronal Holes from 1996 Through 2010

    NASA Technical Reports Server (NTRS)

    Webber, Hess S. A.; Karna, N.; Pesnell, W. D.; Kirk, M. S.

    2014-01-01

    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.

  19. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  20. The Coast Artillery Journal. Volume 80, Number 5, September-October 1937

    DTIC Science & Technology

    1937-10-01

    nights, numerous fires, hospitals full. Wireless destroyed last night. Situation extremely critical." Later, at 12:10 P.M., the same day,the Governor...Niagara frontier and Toronto, then called York. Lieutenant Colonel Backus of the "Albany draggons" was in charge of a small detachment and a hospital at...Central Powers launched bom - bardment attacks in each other’s rear areas, particularly on munitions plants, regulating stations, ammunition depots

  1. The Monitoring, Detection, Isolation and Assessment of Information Warfare Attacks Through Multi-Level, Multi-Scale System Modeling and Model Based Technology

    DTIC Science & Technology

    2004-01-01

    login identity to the one under which the system call is executed, the parameters of the system call execution - file names including full path...Anomaly detection COAST-EIMDT Distributed on target hosts EMERALD Distributed on target hosts and security servers Signature recognition Anomaly...uses a centralized architecture, and employs an anomaly detection technique for intrusion detection. The EMERALD project [80] proposes a

  2. STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)

    DTIC Science & Technology

    2017-03-01

    STAR operation in the presence of 1 kW EIRP power , independently of the choice of transmitter in use. The paper reports on the status of the SPEAR...prototype will be presented. To the authors’ knowledge , the measured results from the prototype already demonstrate state-of-the-art STAR performance...self-generated high power interferers. SPEAR is an innovative approach to the full duplex challenge that meets the high demands of military systems

  3. Development and application of a technique for reducing airframe finite element models for dynamics analysis

    NASA Technical Reports Server (NTRS)

    Hashemi-Kia, Mostafa; Toossi, Mostafa

    1990-01-01

    A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.

  4. Material electronic quality specifications for polycrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-06-01

    As the use of polycrystalline silicon wafers has expanded in the photovoltaic industry, the need grows for monitoring and qualification techniques for as-grown material that can be used to optimize crystal growth and help predict solar cell performance. Particular needs are for obtaining quantitative measures over full wafer areas of the effects of lifetime limiting defects and of the lifetime upgrading taking place during solar cell processing. We review here the approaches being pursued in programs under way to develop material quality specifications for thin Edge-defined Film-fed Growth (EFG) polycrystalline silicon as-grown wafers. These studies involve collaborations between Mobil Solar, and NREL and university-based laboratories.

  5. The 1984 solar oscillation program of the Mt. Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.

    1986-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  6. The 1984 solar oscillation program of the Mount Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.

    1985-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  7. The scientific challenges to forecasting and nowcasting the solar origins of space weather (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Title, A. M.

    2013-12-01

    With the full-sphere continuous coverage of the Sun achieved by combining SDO and STEREO imagery comes the realization that solar activity is a manifestation of local processes that respond to long-range if not global influences. Numerical experiments provide insights into these couplings, as well as into the intricacies of destabilizations of field emerging into pre-existing configurations and evolving within the context of their dynamic surroundings. With these capabilities grows an understanding of the difficulties in forecasting of the solar origins of space weather: we need assimilative global non-potential field models, but our observational resources are too limited to meet that need.

  8. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Landis, G. A.

    1981-01-01

    Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.

  9. Analytical Characterization of Internet Security Attacks

    ERIC Educational Resources Information Center

    Sellke, Sarah H.

    2010-01-01

    Internet security attacks have drawn significant attention due to their enormously adverse impact. These attacks includes Malware (Viruses, Worms, Trojan Horse), Denial of Service, Packet Sniffer, and Password Attacks. There is an increasing need to provide adequate defense mechanisms against these attacks. My thesis proposal deals with analytical…

  10. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    PubMed

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  11. A Solar Wind Source Tracking Concept for Inner Heliosphere Constellations of Spacecraft

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Li, Yan; Arge, C. N.; Hoeksema, Todd; Zhao, Xuepu

    2003-09-01

    During the next decade, a number of spacecraft carrying in-situ particles and fields instruments, including the twin STEREO spacecraft, ACE, WIND, and possibly Triana, will be monitoring the solar wind in the inner heliosphere. At the same time, several suitably instrumented planetary missions, including Nozomi, Mars Express, and Messenger will be in either their cruise or orbital phases which expose them at times to interplanetary conditions and/or regions affected by the solar wind interaction. In addition to the mutual support role for the individual missions that can be gained from this coincidence, this set provides an opportunity for evaluating the challenges and tools for a future targeted heliospheric constellation mission. In the past few years the capability of estimating the solar sources of the local solar wind has improved, in part due to the ability to monitor the full-disk magnetic field of the Sun on an almost continuous basis. We illustrate a concept for a model and web-based display that routinely updates the estimated sources of the solar wind arriving at inner heliospheric spacecraft.

  12. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  13. Sifting Through SDO's AIA Cosmic Ray Hits to Find Treasure

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Thompson, B. J.; Viall, N. M.; Young, P. R.

    2017-12-01

    The Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO AIA) has revolutionized solar imaging with its high temporal and spatial resolution, unprecedented spatial and temporal coverage, and seven EUV channels. Automated algorithms routinely clean these images to remove cosmic ray intensity spikes as a part of its preprocessing algorithm. We take a novel approach to survey the entire set of AIA "spike" data to identify and group compact brightenings across the entire SDO mission. The AIA team applies a de-spiking algorithm to remove magnetospheric particle impacts on the CCD cameras, but it has been found that compact, intense solar brightenings are often removed as well. We use the spike database to mine the data and form statistics on compact solar brightenings without having to process large volumes of full-disk AIA data. There are approximately 3 trillion "spiked pixels" removed from images over the mission to date. We estimate that 0.001% of those are of solar origin and removed by mistake, giving us a pre-segmented dataset of 30 million events. We explore the implications of these statistics and the physical qualities of the "spikes" of solar origin.

  14. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene; Wagner, William J. (Technical Monitor)

    2003-01-01

    This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.

  15. LighSail Students Testing - ELaNa XI

    NASA Image and Video Library

    2014-09-23

    Students Alex Diaz and Riki Munakata of California Polytechnic State University testing the LightSail CubeSat. LightSail is a citizen-funded technology demonstration mission sponsored by the Planetary Society using solar propulsion for CubeSats. The spacecraft is designed to “sail” on the energy of solar photons striking the thin, reflective sail material. The first LightSail mission is designed to test the spacecraft’s critical systems, including the sequence to autonomously deploy a Mylar solar sail with an area of 32 square meters (344 square feet). The Planetary Society is planning a second, full solar sailing demonstration flight for 2016. Light is made of packets of energy called photons. While photons have no mass, they have energy and momentum. Solar sails use this momentum as a method of propulsion, creating flight by light. LightSail’s solar sail is packaged into a three-unit CubeSat about the size of a loaf of bread. Launched by NASA’s CubeSat Launch Initiative on the ELaNa XI mission as an auxiliary payload aboard the U.S. Air Force X-37B space plane mission on May 20, 2015.

  16. Photovoltaic array for Martian surface power

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  17. Protection of Polymers from the Space Environment by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Lindholm, Ned F.; Zhang, Jianming; Minton, Timothy K.; O'Patchen, Jennifer; George, Steven M.; Groner, Markus D.

    2009-01-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. For example, oxygen atoms can etch and oxidize these materials. Photons may act either alone or in combination with oxygen atoms to degrade polymers and paints and thus limit their usefulness. Colors fade under the intense vacuum ultraviolet (VUV) solar radiation. Ions can lead to the build-up of static charge on polymers. Atomic layer deposition (ALD) techniques can provide coatings that could mitigate many challenges for polymers in space. ALD is a gas-phase technique based on two sequential, self-limiting surface reactions, and it can deposit very uniform, conformal, and pinhole-free films with atomic layer control. We have studied the efficacy of various ALD coatings to protect Kapton® polyimide, FEP Teflon®, and poly(methyl methacrylate) films from atomic-oxygen and VUV attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-breakdown source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings applied to polyimide and FEP Teflon® films protected the underlying substrates from O-atom attack, and ZnO coatings protected the poly(methyl methacrylate) substrate from VUV-induced damage.

  18. Panic anxiety, under the weather?

    NASA Astrophysics Data System (ADS)

    Bulbena, A.; Pailhez, G.; Aceña, R.; Cunillera, J.; Rius, A.; Garcia-Ribera, C.; Gutiérrez, J.; Rojo, C.

    2005-03-01

    The relationship between weather conditions and psychiatric disorders has been a continuous subject of speculation due to contradictory findings. This study attempts to further clarify this relationship by focussing on specific conditions such as panic attacks and non-panic anxiety in relation to specific meteorological variables. All psychiatric emergencies attended at a general hospital in Barcelona (Spain) during 2002 with anxiety as main complaint were classified as panic or non-panic anxiety according to strict independent and retrospective criteria. Both groups were assessed and compared with meteorological data (wind speed and direction, daily rainfall, temperature, humidity and solar radiation). Seasons and weekend days were also included as independent variables. Non-parametric statistics were used throughout since most variables do not follow a normal distribution. Logistic regression models were applied to predict days with and without the clinical condition. Episodes of panic were three times more common with the poniente wind (hot wind), twice less often with rainfall, and one and a half times more common in autumn than in other seasons. These three trends (hot wind, rainfall and autumn) were accumulative for panic episodes in a logistic regression formula. Significant reduction of episodes on weekends was found only for non-panic episodes. Panic attacks, unlike other anxiety episodes, in a psychiatric emergency department in Barcelona seem to show significant meteorotropism. Assessing specific disorders instead of overall emergencies or other variables of a more general quality could shed new light on the relationship between weather conditions and behaviour.

  19. The anatomy of a shark attack: a case report and review of the literature.

    PubMed

    Caldicott, D G; Mahajani, R; Kuhn, M

    2001-07-01

    Shark attacks are rare but are associated with a high morbidity and significant mortality. We report the case of a patient's survival from a shark attack and their subsequent emergency medical and surgical management. Using data from the International Shark Attack File, we review the worldwide distribution and incidence of shark attack. A review of the world literature examines the features which make shark attacks unique pathological processes. We offer suggestions for strategies of management of shark attack, and techniques for avoiding adverse outcomes in human encounters with these endangered creatures.

  20. Distinguishing attack and second-preimage attack on encrypted message authentication codes (EMAC)

    NASA Astrophysics Data System (ADS)

    Ariwibowo, Sigit; Windarta, Susila

    2016-02-01

    In this paper we show that distinguisher on CBC-MAC can be applied to Encrypted Message Authentication Code (EMAC) scheme. EMAC scheme in general is vulnerable to distinguishing attack and second preimage attack. Distinguishing attack simulation on AES-EMAC using 225 message modifications, no collision have been found. According to second preimage attack simulation on AES-EMAC no collision found between EMAC value of S1 and S2, i.e. no second preimage found for messages that have been tested. Based on distinguishing attack simulation on truncated AES-EMAC we found collision in every message therefore we cannot distinguish truncated AES-EMAC with random function. Second-preimage attack is successfully performed on truncated AES-EMAC.

Top