Sample records for full core 3-d

  1. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  2. MPACT Standard Input User s Manual, Version 2.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin S.; Downar, Thomas; Fitzgerald, Andrew

    The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.

  3. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  4. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  5. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule

    PubMed Central

    Nigro, Ersilia; Colavita, Irene; Sarnataro, Daniela; Scudiero, Olga; Zambrano, Gerardo; Granata, Vincenzo; Daniele, Aurora; Carotenuto, Alfonso; Galdiero, Stefania; Folliero, Veronica; Galdiero, Massimiliano; Urbanowicz, Richard A.; Ball, Jonathan K.; Salvatore, Francesco; Pessi, Antonello

    2015-01-01

    Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated “γ-core motif”. We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human β-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se, since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents. PMID:26688341

  6. Core-Collapse Supernovae Explored by Multi-D Boltzmann Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Kohsuke; Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Matsufuru, Hideo; Imakura, Akira; Yamada, Shoichi

    We report the latest results of numerical simulations of core-collapse supernovae by solving multi-D neutrino-radiation hydrodynamics with Boltzmann equations. One of the longstanding issues of the explosion mechanism of supernovae has been uncertainty in the approximations of the neutrino transfer in multi-D such as the diffusion approximation and ray-by-ray method. The neutrino transfer is essential, together with 2D/3D hydrodynamical instabilities, to evaluate the neutrino heating behind the shock wave for successful explosions and to predict the neutrino burst signals. We tackled this difficult problem by utilizing our solver of the 6D Boltzmann equation for neutrinos in 3D space and 3D neutrino momentum space coupled with multi-D hydrodynamics adding special and general relativistic extensions. We have performed a set of 2D core-collapse simulations from 11M ⊙ and 15M ⊙ stars on K-computer in Japan by following long-term evolution over 400 ms after bounce to reveal the outcome from the full Boltzmann hydrodynamic simulations with a sophisticated equation of state with multi-nuclear species and updated rates for electron captures on nuclei.

  7. Multidimensional simulations of core-collapse supernovae with CHIMERA

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  8. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  9. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  10. Development of a Jet Noise Prediction Method for Installed Jet Configurations

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.

    2003-01-01

    This paper describes development of the Jet3D noise prediction method and its application to heated jets with complex three-dimensional flow fields and installation effects. Noise predictions were made for four separate flow bypass ratio five nozzle configurations tested in the NASA Langley Jet Noise Laboratory. These configurations consist of a round core and fan nozzle with and without pylon, and an eight chevron core nozzle and round fan nozzle with and without pylon. Predicted SPL data were in good agreement with experimental noise measurements up to 121 inlet angle, beyond which Jet3D under predicted low frequency levels. This is due to inherent limitations in the formulation of Lighthill's Acoustic Analogy used in Jet3D, and will be corrected in ongoing development. Jet3D did an excellent job predicting full scale EPNL for nonchevron configurations, and captured the effect of the pylon, correctly predicting a reduction in EPNL. EPNL predictions for chevron configurations were not in good agreement with measured data, likely due to the lower mixing and longer potential cores in the CFD simulations of these cases.

  11. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courau, T.; Plagne, L.; Ponicot, A.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less

  12. Linear Dichroism in Angle-Resolved Core-Level Photoemission Spectra Reflecting 4f Ground-State Symmetry of Strongly Correlated Cubic Pr Compounds

    NASA Astrophysics Data System (ADS)

    Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira

    2017-12-01

    We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.

  13. The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M ⊙

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik

    2018-03-01

    We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.

  14. W17_geowave “3D full waveform geophysical models”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene; Maceira, Monica; Roy, Corinna

    2018-02-12

    Performance of the MCMC inversion according to the number of cores for the computation. A) 64 cores. B) 480 cores. C) 816 cores. The true model is represented by the black line. Vsv is the wave speed of S waves polarized in the vertical plane, ξ is an anisotropy parameter. The Earth is highly anisotropics; the wavespeed of seismic waves depends on the polarization of the wave. Seismic inversion of the elastic structure is usually limited to isotropic information such as Vsv. Our research looked at the inversion of Earth anisotropy.

  15. Neutron flux and power in RTP core-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less

  16. Axion string dynamics I: 2+1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1more » dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.« less

  17. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    PubMed

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.

  18. Comparison of ENDF/B-VII.1 and JEFF-3.2 in VVER-1000 operational data calculation

    NASA Astrophysics Data System (ADS)

    Frybort, Jan

    2017-09-01

    Safe operation of a nuclear reactor requires an extensive calculational support. Operational data are determined by full-core calculations during the design phase of a fuel loading. Loading pattern and design of fuel assemblies are adjusted to meet safety requirements and optimize reactor operation. Nodal diffusion code ANDREA is used for this task in case of Czech VVER-1000 reactors. Nuclear data for this diffusion code are prepared regularly by lattice code HELIOS. These calculations are conducted in 2D on fuel assembly level. There is also possibility to calculate these macroscopic data by Monte-Carlo Serpent code. It can make use of alternative evaluated libraries. All calculations are affected by inherent uncertainties in nuclear data. It is useful to see results of full-core calculations based on two sets of diffusion data obtained by Serpent code calculations with ENDF/B-VII.1 and JEFF-3.2 nuclear data including also decay data library and fission yields data. The comparison is based directly on fuel assembly level macroscopic data and resulting operational data. This study illustrates effect of evaluated nuclear data library on full-core calculations of a large PWR reactor core. The level of difference which results exclusively from nuclear data selection can help to understand the level of inherent uncertainties of such full-core calculations.

  19. A monolithic RF transceiver for DC-OFDM UWB

    NASA Astrophysics Data System (ADS)

    Yunfeng, Chen; Wei, Li; Haipeng, Fu; Ting, Gao; Danfeng, Chen; Feng, Zhou; Deyun, Cai; Dan, Li; Yangyang, Niu; Hanchao, Zhou; Ning, Zhu; Ning, Li; Junyan, Ren

    2012-02-01

    This paper presents a first monolithic RF transceiver for DC-OFDM UWB applications. The proposed direct-conversion transceiver integrates all the building blocks including two receiver (Rx) cores, two transmitter (Tx) cores and a dual-carrier frequency synthesizer (DC-FS) as well as a 3-wire serial peripheral interface (SPI) to set the operating status of the transceiver. The ESD-protected chip is fabricated by a TSMC 0.13-μm RF CMOS process with a die size of 4.5 × 3.6 mm2. The measurement results show that the wideband Rx achieves an NF of 5-6.2 dB, a max gain of 76-84 dB with 64-dB variable gain, an in-/out-of-band IIP3 of -6/+4 dBm and an input loss S11 of < -10 in all bands. The Tx achieves an LOLRR/IMGRR of -34/-33 dBc, a typical OIP3 of +6 dBm and a maximum output power of -5 dBm. The DC-FS outputs two separate carriers simultaneously with an inter-band hopping time of < 1.2 ns. The full chip consumes a maximum current of 420 mA under a 1.2-V supply.

  20. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    PubMed

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bays; W. Skerjanc; M. Pope

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch averagemore » discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.« less

  2. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    PubMed

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  3. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.

    In this paper, large, spontaneous m/n = 1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional tomore » $$({\\rm d}p/{\\rm d}\\rho)/B_t^2$$ around q = 1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. In conclusion, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.« less

  4. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    DOE PAGES

    Wingen, A.; Wilcox, R. S.; Seal, S. K.; ...

    2018-01-15

    In this paper, large, spontaneous m/n = 1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional tomore » $$({\\rm d}p/{\\rm d}\\rho)/B_t^2$$ around q = 1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. In conclusion, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.« less

  5. Global and Regional 3D Tomography for Improved Seismic Event Location and Uncertainty in Explosion Monitoring

    NASA Astrophysics Data System (ADS)

    Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.

    2017-12-01

    The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.

  6. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    NASA Astrophysics Data System (ADS)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.; Unterberg, E. A.; Cianciosa, M. R.; Delgado-Aparicio, L. F.; Hirshman, S. P.; Lao, L. L.

    2018-03-01

    Large, spontaneous m/n  =  1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional to (dp/dρ)/B_t2 around q  =  1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. Finally, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.

  7. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.

  8. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-06-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.

  9. Structural and optical properties of ZnSe:Eu/ZnS quantum dots depending on interfacial residual europium

    NASA Astrophysics Data System (ADS)

    Park, Ji Young; Lee, Chan Gi; Seo, Han Wook; Jeong, Da-Woon; Kim, Min Young; Kim, Woo-Byoung; Kim, Bum Sung

    2018-01-01

    A multimodal emitter comprising of ZnSe:Eu/ZnS (core/shell) quantum dots (QDs) by adding a ZnS precursor in situ during synthesis. ZnSe/Eu2+/Eu3+/ZnS actives both core and core/shell. QDs prepared with the ZnS precursor displayed a luminescence intensity three times that of ZnSe QDs due to the passivation effect of the Shell. While the core QDs display the 450-550 nm emission of Eu2+ (4F65D1 → 4F7), the core/shell system showed no Eu2+ emission but only the sharp peaks in the red at 579, 592, 615, 651, and 700 nm due to the electronic transitions of 5D0 → 7Fn (n = 0-4) depending on leisurely decreased with increased reaction time. These results are in agreement with Eu 3d spectra of XPS analysis results. Microscopic analyses show that the core and core/shell QDs both have a zinc blende structure, and their respective sizes were about 3.19 and 3.44 nm. The lattice constant in the central portion of the core/shell QDs are around d111 = 3.13 Å, which is between the outside and inside ring patterns (d111 = 3.27 and 3.07 Å, respectively). This shows the effective over-capping of shell onto the core QDs. The core/shell structure may contain Eu2O3 bonding the over-coated ZnS surface on the Eu3+-doped ZnSe core.

  10. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less

  11. Packaging of HCV-RNA into lentiviral vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caval, Vincent; Piver, Eric; Service de Biochimie et Biologie Moleculaire, CHRU de Tours

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein andmore » HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.« less

  12. Extremely high energy hadron and gamma-ray families(3). Core structure of the halo of superfamily

    NASA Technical Reports Server (NTRS)

    Yamashita, S.; Ohsawa, A.; Chinellato, J. A.; Shibuya, E. H.

    1985-01-01

    The study of the core structure seen in the halo of Mini-Andromeda 3(M.A.3), which was observed in the Chacaltaya emulsion chamber, is presented. On the assumption that lateral distribution of darkness of the core is exponential type, i.e., D=D0exp(-R/r0), subtraction of D from halo darkness is performed until the cores are gone. The same quantity on cores obtained by this way are summarized. The analysis is preliminary and is going to be developed.

  13. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).

    PubMed

    Lau, Kai-Chung; Chang, Yih-Chung; Lam, Chow-Shing; Ng, C Y

    2009-12-31

    The ionization energy (IE) of FeC and the 0 K bond dissociation energies (D(0)) and the heats of formation at 0 K (DeltaH(o)(f0)) and 298 K (DeltaH(o)(f298)) for FeC and FeC(+) are predicted by the single-reference wave function based CCSDTQ(Full)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations. The zero-point vibrational energy (ZPVE) correction, the core-valence electronic corrections (up to CCSDT level), spin-orbit couplings, and relativistic effects (up to CCSDTQ level) are included in the calculations. The present calculations provide the correct symmetry predictions for the ground states of FeC and FeC(+) to be (3)Delta and (2)Delta, respectively. We have also examined the theoretical harmonic vibrational frequencies of FeC/FeC(+) at the ROHF-UCCSD(T) and UHF-UCCSD(T) levels. While the UHF-UCCSD(T) harmonic frequencies are in good agreement with the experimental measurements, the ROHF-UCCSD(T) yields significantly higher harmonic frequency predictions for FeC/FeC(+). The CCSDTQ(Full)/CBS IE(FeC) = 7.565 eV is found to compare favorably with the experimental IE value of 7.59318 +/- 0.00006 eV, suggesting that the single-reference-based coupled cluster theory is capable of providing reliable IE prediction for FeC, despite its multireference character. The CCSDTQ(Full)/CBS D(0)(Fe(+)-C) and D(0)(Fe-C) give the prediction of D(0)(Fe(+)-C) - D(0)(Fe-C) = 0.334 eV, which is consistent with the experimental determination of 0.3094 +/- 0.0001 eV. The D(0) calculations also support the experimental D(0)(Fe(+)-C) = 4.1 +/- 0.3 eV and D(0)(Fe-C) = 3.8 +/- 0.3 eV determined by the previous ion photodissociation study. The present calculations also provide the DeltaH(o)(f0)(DeltaH(o)(f298)) predictions for FeC/FeC(+). The analysis of the correction terms in these calculations shows that the core-valence and valence-valence electronic correlations beyond CCSD(T) wave function and the relativistic effects make significant contributions to the calculated thermochemical properties of FeC/FeC(+). For the experimental D(0) and DeltaH(o)(f0) values of FeC/FeC(+), which are not known to high precision, we recommend the CCSDTQ(Full)/CBS predictions [D(0)(Fe-C) = 3.778 eV, D(0)(Fe(+)-C) = 4.112 eV, DeltaH(o)(f0)(FeC) = 760.8 kJ/mol and DeltaH(o)(f0)(FeC(+)) = 1490.6 kJ/mol] based on the ZPVE corrections using the experimental vibrational frequencies of FeC and FeC(+).

  14. Hyper thin 3D edge measurement of honeycomb core structures based on the triangular camera-projector layout & phase-based stereo matching.

    PubMed

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen

    2016-03-07

    We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.

  15. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  16. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  17. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  18. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  19. Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  20. Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor

    DOE PAGES

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  1. 3D printed magnetic polymer composite transformers

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.

    2017-11-01

    The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.

  2. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  3. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores

    PubMed Central

    Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-01-01

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core. PMID:29257063

  4. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores.

    PubMed

    Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-12-19

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.

  5. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICSmore » (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.« less

  6. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  7. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†

    PubMed Central

    Nakagawa, Tetsuto; Shimada, Yoshimi; Pavlova, Nadejda V; Li, Su-Chen; Li, Yu-Teh

    2015-01-01

    We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S277PDDGKTW and S328TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo2-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5–6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans. PMID:26362869

  8. Polarization splitter in three-core photonic crystal fibers.

    PubMed

    Saitoh, Kunimasa; Sato, Y; Koshiba, M

    2004-08-23

    A novel design of polarization splitter in three-core photonic crystal fibers (PCFs) has been proposed. The three-core PCF consists of two given identical cores with two-fold symmetry separated by a core with high birefringence. The polarization splitter is based on the phenomenon of resonant tunneling. Numerical simulations with a full vectorial beam propagation method demonstrate that it is possible to obtain a 1.9-mm-long splitter with the extinction ratio better than -20 dB and a bandwidth of 37nm.

  9. Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.

  10. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    NASA Astrophysics Data System (ADS)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  11. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan

    2018-03-01

    This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.

  12. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    NASA Astrophysics Data System (ADS)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  13. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.

    PubMed

    Day, Robert W; Mankin, Max N; Lieber, Charles M

    2016-04-13

    One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.

  14. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  15. Equilibrium cycle pin by pin transport depletion calculations with DeCART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, B.; Downar, T.; Taiwo, T.

    As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux,more » isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)« less

  16. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    PubMed

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. 3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code

    NASA Astrophysics Data System (ADS)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod

    2017-10-01

    The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ < 0.5) fueling from neutral ionization sources is decreased by 40-60% with RMPs. This work was funded by the US Department of Energy under Grant DE-SC0012315.

  18. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  19. Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for Patient-Centred Therapy.

    PubMed

    Okwuosa, Tochukwu C; Pereira, Beatriz C; Arafat, Basel; Cieszynska, Milena; Isreb, Abdullah; Alhnan, Mohamed A

    2017-02-01

    Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.

  20. Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)

    DOE Data Explorer

    Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia

    2000-01-01

    Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.

  1. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE PAGES

    Sawada, Hiroshi; Sakagami, Hitoshi

    2017-09-22

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  2. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Hiroshi; Sakagami, Hitoshi

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  3. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expeditesmore » any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less

  4. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  5. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  6. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J.

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2 T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2∗, π-EPI is an ideal method for rapid 3D saturation imaging.

  7. Use of Vibratory Coring Samplers for Sediment Surveys.

    DTIC Science & Technology

    1981-07-01

    PAGE ( Man Data R,10#0d,REPORT~~EA INST".T0.P0E’RUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3...COR COARSE 3BRYOZOA S ND AND LARGE SUAND ANSHELS _ CALCAREOUS SANDSTONE ELTH SHELL b CALCAREOUS SANDSTONE PEBBLES SM AND SHELLSb CASTS AND ABUNDAT...GLAUCONITE FINE ANY LMESTOE WITH S SNELL CASTS AND ABUNDANT GLAUCONlITE 1o 4 15-2 5 206 CORE 34 CORE 3S CORE 36 0 D 48 WO 49 WD 26 jFINE SHELF FACIES

  8. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.

    PubMed

    Yang, Juntang; Wang, Rong; Liu, Binyan; Xue, Qizhen; Zhong, Mengyu; Zeng, Hao; Zhang, Huidong

    2015-09-01

    Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP > dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Using Quasi-3D OSIRIS simulations of LWFA to study generating high brightness electron beams using ionization and density downramp injection

    NASA Astrophysics Data System (ADS)

    Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo

    2016-10-01

    In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.

  10. Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Sumiyoshi, Kohsuke; Yamada, Shoichi; Takiwaki, Tomoya; Kuroda, Takami; Suwa, Yudai; Nagakura, Hiroki

    2012-08-01

    This is a status report on our endeavor to reveal the mechanism of core-collapse supernovae (CCSNe) by large-scale numerical simulations. Multi-dimensionality of the supernova engine, general relativistic magnetohydrodynamics, energy and lepton number transport by neutrinos emitted from the forming neutron star, as well as nuclear interactions there, are all believed to play crucial roles in repelling infalling matter and producing energetic explosions. These ingredients are non-linearly coupled with one another in the dynamics of core collapse, bounce, and shock expansion. Serious quantitative studies of CCSNe hence make extensive numerical computations mandatory. Since neutrinos are neither in thermal nor in chemical equilibrium in general, their distributions in the phase space should be computed. This is a six-dimensional (6D) neutrino transport problem and quite a challenge, even for those with access to the most advanced numerical resources such as the "K computer". To tackle this problem, we have embarked on efforts on multiple fronts. In particular, we report in this paper our recent progresses in the treatment of multidimensional (multi-D) radiation hydrodynamics. We are currently proceeding on two different paths to the ultimate goal. In one approach, we employ an approximate but highly efficient scheme for neutrino transport and treat 3D hydrodynamics and/or general relativity rigorously; some neutrino-driven explosions will be presented and quantitative comparisons will be made between 2D and 3D models. In the second approach, on the other hand, exact, but so far Newtonian, Boltzmann equations are solved in two and three spatial dimensions; we will show some example test simulations. We will also address the perspectives of exascale computations on the next generation supercomputers.

  11. Low-loss ultracompact optical power splitter using a multistep structure.

    PubMed

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  12. The Last Minutes of Oxygen Shell Burning in a Massive Star

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Viallet, Maxime; Heger, Alexander; Janka, Hans-Thomas

    2016-12-01

    We present the first 4π-three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M ⊙ supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ˜0.1 at collapse, and an ℓ = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M ⊙ to 0.56 M ⊙ due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12%-24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.

  13. Identification of a new hepatitis B virus recombinant D2/D3 in the city of São Paulo, Brazil.

    PubMed

    Santana, Luiz Claudio; Mantovani, Nathalia Pena; Ferreira, Maira Cicero; Arnold, Rafael; Duro, Rodrigo Lopes Sanz; Ferreira, Paulo Roberto Abrão; Hunter, James Richard; Leal, Élcio; Diaz, Ricardo Sobhie; Komninakis, Shirley Vasconcelos

    2017-02-01

    Two hundred forty million people are chronically infected with hepatitis B virus (HBV) worldwide. The rise of globalization has facilitated the emergence of novel HBV recombinants and genotypes. We evaluated HBV genotypes and recombinants, mutations associated with resistance to antivirals (AVs), progression of hepatic illness, and inefficient hepatitis B vaccination responses in chronically infected individuals in the city of São Paulo, Brazil. Forty-five full-length and 24 partial-length sequences were obtained. The genotype distribution was as follows: A (66.7%), D (15.9%), F (11.6%) and C (4.3%). We describe a new recombinant (D2/D3), confirmed through next-generation sequencing (NGS) and reconstruction of the quasispecies sequences in silico. Primary resistance and major vaccine escape mutations were not found. We did, however, find mutations in the S region that might may be related to HBV antigenicity changes, as well as Pre-S deletions. The precore/core mutations A1762T + G1764A (40.9%) were found mostly in genotypes A and D, and G1896A (29.55%) was more frequent in genotype D than in genotype A. The genotypic distribution reflects the history of Brazilian immigration. This is the first description of recombination between genotypes D2 and D3 in Brazil. It is also the first confirmation through NGS and reconstruction of the quasispecies in silico. However, little is known about the response to treatment of recombinants. This demonstrates the need for molecular epidemiology studies involving the analysis of full-length HBV sequences.

  14. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny

    PubMed Central

    Messmer, Marie; Pütz, Joern; Suzuki, Takeo; Suzuki, Tsutomu; Sauter, Claude; Sissler, Marie; Catherine, Florentz

    2009-01-01

    Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria. PMID:19767615

  15. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    PubMed

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  16. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  17. Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2003-10-01

    A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be investigated. Significant leakage perpendicular to the fault strike (in the case of a young fault), or cracks hydraulically linking the fault core to the damaged zone (for a mature fault) are probable mechanisms for keeping the faults strong and might play a significant role in modulating fault pore pressures. Therefore, fault-normal hydraulic properties of fault zones should be a future focus of field and numerical experiments.

  18. Tunable luminescent emission characterization of type-I and type-II systems in CdS-ZnSe core-shell nanoparticles: Raman and photoluminescence study.

    PubMed

    Ca, Nguyen Xuan; Lien, V T K; Nghia, N X; Chi, T T K; Phan, The-Long

    2015-11-06

    We used wet chemical methods to synthesize core-shell nanocrystalline samples CdS(d)/ZnSe N , where d = 3-6 nm and N = 1-5 are the size of CdS cores and the number of monolayers grown on the cores, respectively. By annealing typical CdS(d)/ZnSe N samples (with d = 3 and 6 nm and N = 2) at 300 °C for various times t an = 10-600 min, we created an intermediate layer composed of Zn1-x Cd x Se and Cd1-x Zn x S alloys with various thicknesses. The formation of core-shell structures and intermediate layers was monitored by Raman scattering and UV-vis absorption spectrometers. Careful photoluminescence studies revealed that the as-prepared CdS(d)/ZnSe N samples with d = 5 nm and N = 2-4, and the annealed samples CdS(3 nm)/ZnSe2 with t an ≤ 60 min and CdS(6 nm)/ZnSe2 with t an ≤ 180 min, show the emission characteristics of type-II systems. Meanwhile, the other samples show the emission characteristics of type-I systems. These results prove that the partial separation of photoexcited carriers between the core and shell is dependent strongly on the engineered core-shell nanostructures, meaning the sizes of the core, shell, and intermediate layers. With the tunable luminescence properties, CdS-ZnSe-based core-shell materials are considered as promising candidates for multiple-exciton generation and single-photon sources.

  19. Laboratory Measurements for H3+ Deuteration Reactions

    NASA Astrophysics Data System (ADS)

    Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf

    2018-06-01

    Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.

  20. Exploring the effect of nested capillaries on core-cladding mode resonances in hollow-core antiresonant fibers

    NASA Astrophysics Data System (ADS)

    Provino, Laurent; Taunay, Thierry

    2018-02-01

    Optimal suppression of higher-order modes (HOMs) in hollow-core antiresonant fibers comprising a single ring of thin-walled capillaries was previously studied, and can be achieved when the condition on the capillary-tocore diameter ratio is satisfied (d/D ≍ 0.68). Here we report on the conditions for maximizing the leakage losses of HOMs in hollow-core nested antiresonant node-less fibers, while preserving low confinement loss for the fundamental mode. Using an analytical model based on coupled capillary waveguides, as well as full-vector finite element modeling, we show that optimal d/D value leading to high leakage losses of HOMs, is strongly correlated to the size of nested capillaries. We also show that extremely high value of degree of HOM suppression (˜1200) at the resonant coupling is almost unchanged on a wide range of nested capillary diameter dN ested values. These results thus suggest the possibility of designing antiresonant fibers with nested elements, which show optimal guiding performances in terms of the HOM loss compared to that of the fundamental mode, for clearly defined paired values of the ratios dN ested/d and d/D. These can also tend towards a single-mode behavior only when the dimensionless parameter dN ested/d is less than 0.30, with identical wall thicknesses for all of the capillaries.

  1. VizieR Online Data Catalog: HCO+ and N2D+ dense cores in Perseus (Campbell+, 2016)

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-05-01

    Table 1 summarizes the 91 dense cores observed, with their Right Ascension and Declination pointing positions. Pointed observations of the Perseus cores were performed using the James Clerk Maxwell Telescope (JCMT). Targets were observed in the HCO+ (3-2) and N2D+ (3-2) rotational transitions in position-switching mode, with assumed rest frequencies of 267.557619GHz and 231.321665GHz, respectively. The spectral resolution was 30.5kHz, corresponding to a velocity resolution of 0.03km/s for HCO+ (3-2) and 0.04km/s for N2D+ (3-2). Observations were conducted between 2007 September and 2009 September. (3 data files).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan

    The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-tube,” narrowband, DSD2D solver,more » and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-­resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.The full level-­set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-­supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-­tube,” narrowband, DSD2D solver, and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-­set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.« less

  3. Velocity and Attenuation Structure of the Earth's Inner Core Boundary From Semi-Automatic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Jin, J.; Song, X.; Sun, D.; Helmberger, D. V.

    2013-12-01

    The structure of the Earth's inner core boundary (ICB) is complex. Hemispherical differences and local variations of velocity and attenuation structures, as well as the ICB topography have been reported in previous studies. We are using an automatic waveform modeling method to improve the resolution of the ICB structures. The full waveforms of triplicated PKP phases at distance ranges from 120 to 165 degrees are used to model the lowermost 200 km of the outer core and the uppermost 600km of the inner core. Given a 1D velocity and attenuation model, synthetic seismograms are generated by Generalized Ray Theory. We are also experimenting 2D synthetic methods (WKM, AXISEM, and 2D FD) for 2D models (in the mantle and the inner core). The source time function is determined by observed seismic data. We use neighborhood algorithm to search for a group of models that minimize the misfit between predictions and observations. Tests on synthetic data show the efficiency of this method in resolving detailed velocity and attenuation structures of the ICB simultaneously. We are analyzing seismic record sections at dense arrays along different paths and will report our modeling and inversion results in the meeting.

  4. Highly non-linear solid core photonic crystal fiber with one nano hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for themore » SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.« less

  5. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  6. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  7. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    NASA Astrophysics Data System (ADS)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  8. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  10. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    PubMed Central

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  11. Battling through the thermal boundary layer: Deep sampling in ODP Hole 1256D during IODP Expedition 335

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Teagle, D. A.; Blum, P.; IODP Expedition 335 Scientists

    2011-12-01

    IODP Expedition 335 "Superfast Spreading Rate Crust 4" returned to ODP Hole 1256D with the intent of deepening this reference penetration of intact ocean crust several hundred meters into cumulate gabbros. This was the fourth cruise of the superfast campaign to understand the formation of oceanic crust accreted at fast spreading ridges, by exploiting the inverse relationship between spreading rate and the depth to low velocity zones seismically imaged at active mid-ocean zones, thought to be magma chambers. Site 1256 is located on 15-million-year-old crust formed at the East Pacific Rise during an episode of superfast ocean spreading (>200 mm/yr full rate). Three earlier cruises to Hole 1256D have drilled through the sediments, lavas and dikes and 100 m into a complex dike-gabbro transition zone. The specific objectives of IODP Expedition 335 were to: (1) test models of magmatic accretion at fast spreading ocean ridges; (2) quantify the vigor of hydrothermal cooling of the lower crust; (3) establish the geological meaning of the seismic Layer 2-3 boundary at Site 1256; and (4) estimate the contribution of lower crustal gabbros to marine magnetic anomalies. It was anticipated that even a shortened IODP Expedition could deepen Hole 1256D a significant distance (300 m) into cumulate gabbros. Operations on IODP Expedition 335 proved challenging from the outset with almost three weeks spent re-opening and securing unstable sections of the Hole. When coring commenced, the destruction of a hard-formation C9 rotary coring bit at the bottom of the hole required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets returned large samples of a contact-metamorphic aureole between the sheeted dikes and a major heat source below. These large (up to 3.5 kg) irregular samples preserve magmatic, hydrothermal and structural relationships hitherto unseen because of the narrow diameter of drill core and previous poor core recovery. Including the ~60 m-thick zone of granoblastic dikes overlying the uppermost gabbro, the dike-gabbro transition zone at Site 1256 is over 170 m thick, of which more than 100 m are recrystallized granoblastic basalts. This zone records a dynamically evolving thermal boundary layer between the principally hydrothermal domain of the upper crust and a deeper zone of intrusive magmatism. The recovered samples document a sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting and retrogressive processes. Despite the operational challenges, we achieved a minor depth advance to 1522 m, but this was insufficient penetration to complete any of the primary objectives. However, Hole 1256D has been thoroughly cleared of junk and drill cuttings that have hampered operations during this and previous Expeditions. At the end of Expedition 335, we briefly resumed coring and stabilized problematic intervals with cement. Hole 1256D is open to its full depth and ready for further deepening in the near future.

  12. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  13. Regional Variations in the Earth's upper inner core

    NASA Astrophysics Data System (ADS)

    Stroujkova, A.; Cormier, V. F.

    2003-12-01

    Strong regional variations in seismic velocity and attenuation have been observed in the uppermost layer of the inner core. Different studies suggest hemispherical differences within this transitional layer, with eastern hemisphere faster than the western (e.g. Garcia, 2002; Wen and Niu, 2002). The scale and the depth dependence of the heterogeneities are still in debate. In order to systematically study smaller scale heterogeneities we selected a data set of PKIKP and PKiKP phases with epicentral distances between 120\\deg and 140\\deg. The upper layer of the inner core was divided into `bins' and the seismograms were gathered into these bins according to the ray turning points. After correcting for source, site and propagation effects we stacked traces with close epicentral distance within each bin to improve signal-to-noise ratio. Finally we performed full 3D modeling of the obtained waveforms.

  14. Tissue imaging using full field optical coherence microscopy with short multimode fiber probe

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2018-03-01

    In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.

  15. Distortion of Magnetic Fields in a Starless Core II: 3D Magnetic Field Structure of FeSt 1-457

    NASA Astrophysics Data System (ADS)

    Kandori, Ryo; Tamura, Motohide; Tomisaka, Kohji; Nakajima, Yasushi; Kusakabe, Nobuhiko; Kwon, Jungmi; Nagayama, Takahiro; Nagata, Tetsuya; Tatematsu, Ken'ichi

    2017-10-01

    Three-dimensional (3D) magnetic field information on molecular clouds and cores is important for revealing their kinematical stability (magnetic support) against gravity, which is fundamental for studying the initial conditions of star formation. In the present study, the 3D magnetic field structure of the dense starless core FeSt 1-457 is determined based on the near-infrared polarimetric observations of the dichroic polarization of background stars and simple 3D modeling. With an obtained angle of line-of-sight magnetic inclination axis {θ }{inc} of 45^\\circ +/- 10^\\circ and previously determined plane-of-sky magnetic field strength {B}{pol} of 23.8 ± 12.1 μ {{G}}, the total magnetic field strength for FeSt 1-457 is derived to be 33.7 ± 18.0 μ {{G}}. The critical mass of FeSt 1-457, evaluated using both magnetic and thermal/turbulent support is {M}{cr}=3.70+/- 0.92 {M}⊙ , which is identical to the observed core mass, {M}{core}=3.55+/- 0.75 {M}⊙ . We thus conclude that the stability of FeSt 1-457 is in a condition close to the critical state. Without infalling gas motion and no associated young stars, the core is regarded to be in the earliest stage of star formation, I.e., the stage just before the onset of dynamical collapse following the attainment of a supercritical condition. These properties could make FeSt 1-457 one of the best starless cores for future studies of the initial conditions of star formation.

  16. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  17. Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo

    2017-05-01

    Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.

  18. Fabrication and characterization of chalcogenide polarization-maintaining fibers based on extrusion

    NASA Astrophysics Data System (ADS)

    Jiang, Ling; Wang, Xunsi; Guo, Fangxia; Wu, Bo; Zhao, Zheming; Mi, Nan; Li, Xing; Dai, Shixun; Liu, Zijun; Nie, Qiuhua; Wang, Rongping

    2017-12-01

    The fabrication and characterization of IR chalcogenide polarization-maintaining (PM) step-index optical fibers with elliptical-core and 1-in-line-core have been reported for the first time. An improved isolated co-extrusion method was used to fabricate these core-shaped PM fibers. The elliptical core had a horizontal radius of a = 3.66 μm, vertical radius of b = 1.83 μm and the 1-in-line core of a = 4.83 μm, b = 1.42 μm, respectively. Single-mode PM beam spots were observed for the elliptical-core and 1-in-line-core fibers in the near-field energy distributions. The highest values of birefringence of the elliptical-core and 1-in-line-core fibers are 2.09 × 10-4 at 2.7 μm and 3.272 × 10-4 at 2.8 μm, respectively. The extinction ratios of -3.7 dB and -2 dB were achieved in fibers of 0.5 m long with elliptical-core and 1-in-line-core, respectively.

  19. Structure, Dynamics, and Deuterium Fractionation of Massive Pre-stellar Cores

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Kong, Shuo; Tan, Jonathan C.; Heitsch, Fabian; Caselli, Paola

    2016-12-01

    High levels of deuterium fraction in N2H+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ({D}{frac}{{{N}}2{{{H}}}+}\\equiv {{{N}}}2{{{D}}}+/{{{N}}}2{{{H}}}+≳ 0.1) is longer than the free-fall time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2H+ and N2D+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (≲ 0.01) and/or multiple free-fall times (≳ 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.

  20. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  1. THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Bernhard; Viallet, Maxime; Janka, Hans-Thomas

    We present the first  4 π– three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M {sub ⊙} supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ∼0.1 at collapse,more » and an ℓ  = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M {sub ⊙} to 0.56 M {sub ⊙} due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12% – 24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.« less

  2. Facile Synthesis of 1D/2D Core-Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Xu, Meilan; Zhao, Jiachang

    2018-07-01

    Herein, a novel core-shell heterojunction structure of molybdenum disulfide (MoS2) nanosheets coated antimony trisulfide (Sb2S3) nanorods (Sb2S3@MoS2) are designed and fabricated by a two-step hydrothermal method. The Sb2S3@MoS2 heterostructure consists of one-dimension (1D) Sb2S3 nanorods coated by two-dimension (2D) MoS2 nanosheets. When utilized as a photocatalyst under simulated sunlight, compared with pure Sb2S3 nanorods and MoS2 nanosheets, Sb2S3@MoS2 nanorods perform an enhanced photoactivity in degrading Rhodamine B (RhB) with a decomposition efficiency of 99%. The excellent photocatalytic property is attributed to the properly constructed heterojunction between Sb2S3 and MoS2, which can broaden the photoadsorption range. Furthermore, not only can the unique hybrid 1D/2D core-shell structures possess more reaction active sites, but also the compact interfaces between Sb2S3 and MoS2 provide rapid charge transfer channels for charge separation.

  3. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  4. Functional Fast Scan Cyclic Voltammetry Assay to Characterize Dopamine D2 and D3 Autoreceptors in the Mouse Striatum

    PubMed Central

    2010-01-01

    Dopamine D2 and D3 autoreceptors are located on presynaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate putamen and nucleus accumbens core and shell. The dopamine D2 agonists (−)-quinpirole hydrochloride and 5,6,7,8-tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate putamen and nucleus accumbens (core and shell) on the basis of their EC50 values and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (±)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in the caudate putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.1 μM lowered the uptake rate in caudate putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the preagonist dopamine release concentration. Finally, these results demonstrate a functional voltammetric assay that characterizes dopamine D2-like agonists as either D2- or D3-preferring agonists by taking advantage of the unique receptor density within the striatum. PMID:20567609

  5. Accelerating 3D Elastic Wave Equations on Knights Landing based Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Sourouri, Mohammed; Birger Raknes, Espen

    2017-04-01

    In advanced imaging methods like reverse-time migration (RTM) and full waveform inversion (FWI) the elastic wave equation (EWE) is numerically solved many times to create the seismic image or the elastic parameter model update. Thus, it is essential to optimize the solution time for solving the EWE as this will have a major impact on the total computational cost in running RTM or FWI. From a computational point of view applications implementing EWEs are associated with two major challenges. The first challenge is the amount of memory-bound computations involved, while the second challenge is the execution of such computations over very large datasets. So far, multi-core processors have not been able to tackle these two challenges, which eventually led to the adoption of accelerators such as Graphics Processing Units (GPUs). Compared to conventional CPUs, GPUs are densely populated with many floating-point units and fast memory, a type of architecture that has proven to map well to many scientific computations. Despite its architectural advantages, full-scale adoption of accelerators has yet to materialize. First, accelerators require a significant programming effort imposed by programming models such as CUDA or OpenCL. Second, accelerators come with a limited amount of memory, which also require explicit data transfers between the CPU and the accelerator over the slow PCI bus. The second generation of the Xeon Phi processor based on the Knights Landing (KNL) architecture, promises the computational capabilities of an accelerator but require the same programming effort as traditional multi-core processors. The high computational performance is realized through many integrated cores (number of cores and tiles and memory varies with the model) organized in tiles that are connected via a 2D mesh based interconnect. In contrary to accelerators, KNL is a self-hosted system, meaning explicit data transfers over the PCI bus are no longer required. However, like most accelerators, KNL sports a memory subsystem consisting of low-level caches and 16GB of high-bandwidth MCDRAM memory. For capacity computing, up to 400GB of conventional DDR4 memory is provided. Such a strict hierarchical memory layout means that data locality is imperative if the true potential of this product is to be harnessed. In this work, we study a series of optimizations specifically targeting KNL for our EWE based application to reduce the time-to-solution time for the following 3D model sizes in grid points: 1283, 2563 and 5123. We compare the results with an optimized version for multi-core CPUs running on a dual-socket Xeon E5 2680v3 system using OpenMP. Our initial naive implementation on the KNL is roughly 20% faster than the multi-core version, but by using only one thread per core and careful memory placement using the memkind library, we could achieve higher speedups. Additionally, by using the MCDRAM as cache for problem sizes that are smaller than 16 GB further performance improvements were unlocked. Depending on the problem size, our overall results indicate that the KNL based system is approximately 2.2x faster than the 24-core Xeon E5 2680v3 system, with only modest changes to the code.

  6. Tunable fiber laser based on the refractive index characteristic of MMI effects

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng

    2014-04-01

    A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 μm is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.

  7. Spatial development of transport structures in apple (Malus × domestica Borkh.) fruit

    PubMed Central

    Herremans, Els; Verboven, Pieter; Hertog, Maarten L. A. T. M.; Cantre, Dennis; van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Nicolaï, Bart M.

    2015-01-01

    The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus × domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of “Jonagold” apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9–12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit. PMID:26388883

  8. Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray XC-30 and XC-40 machines (tested up to 100,800 CPU cores) and should scale up to several million cores for large simulations. Non-local problems, particularly radiation hydrodynamics problems, are at the forefront of computational astrophysics and we will share our work with the community. Our research program brings a unified modeling strategy to the results of several disparate groups and thus will provide a unifying framework with which to assess the metal abundance of the stars and the chemical evolution of the galaxy. We will bring together 3-D hydrodynamical models, detailed radiative transfer, and astronomical abundance studies. We will also provide results of interest to the atomic physics and plasma physics communities. Our work will use data from NASA telescopes including the Hubble Space Telescope and the James Webb Space telescope. The ability to work with data from the UV to the far IR is crucial from validating our results. Our work will also extend the exascale computational capabilities, which is a national goal.

  9. Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin

    PubMed Central

    Laganowsky, A; Eisenberg, D

    2010-01-01

    In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta-stranded immunoglobulin-like domain, with its conserved C-terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C-terminal extensions in a non three-dimensional (3D) domain swapped, “closed” state. The extension is quasi-palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C-terminal extension of alpha crystallin proteins can be either 3D domain swapped or non-3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency. PMID:20669149

  10. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    PubMed

    Ramskill, N P; Bush, I; Sederman, A J; Mantle, M D; Benning, M; Anger, B C; Appel, M; Gladden, L F

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has been achieved using the CS-RARE approach enables dynamic transport processes pertinent to laboratory core floods to be investigated in 3D on a time-scale and with a spatial resolution that, until now, has not been possible. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Core exosome-independent roles for Rrp6 in cell cycle progression.

    PubMed

    Graham, Amy C; Kiss, Daniel L; Andrulis, Erik D

    2009-04-01

    Exosome complexes are 3' to 5' exoribonucleases composed of subunits that are critical for numerous distinct RNA metabolic (ribonucleometabolic) pathways. Several studies have implicated the exosome subunits Rrp6 and Dis3 in chromosome segregation and cell division but the functional relevance of these findings remains unclear. Here, we report that, in Drosophila melanogaster S2 tissue culture cells, dRrp6 is required for cell proliferation and error-free mitosis, but the core exosome subunit Rrp40 is not. Micorarray analysis of dRrp6-depleted cell reveals increased levels of cell cycle- and mitosis-related transcripts. Depletion of dRrp6 elicits a decrease in the frequency of mitotic cells and in the mitotic marker phospho-histone H3 (pH3), with a concomitant increase in defects in chromosome congression, separation, and segregation. Endogenous dRrp6 dynamically redistributes during mitosis, accumulating predominantly but not exclusively on the condensed chromosomes. In contrast, core subunits localize predominantly to MTs throughout cell division. Finally, dRrp6-depleted cells treated with microtubule poisons exhibit normal kinetochore recruitment of the spindle assembly checkpoint protein BubR1 without restoring pH3 levels, suggesting that these cells undergo premature chromosome condensation. Collectively, these data support the idea that dRrp6 has a core exosome-independent role in cell cycle and mitotic progression.

  12. Concordance of Gleason grading with three-dimensional ultrasound systematic biopsy and biopsy core pre-embedding.

    PubMed

    van der Aa, Anouk A M A; Mannaerts, Christophe K; van der Linden, Hans; Gayet, Maudy; Schrier, Bart Ph; Mischi, Massimo; Beerlage, Harrie P; Wijkstra, Hessel

    2018-02-01

    To determine the value of a three-dimensional (3D) greyscale transrectal ultrasound (TRUS)-guided prostate biopsy system and biopsy core pre-embedding method on concordance between Gleason scores of needle biopsies and radical prostatectomy (RP) specimens. Retrospective analysis of prostate biopsies and subsequent RP for PCa in the Jeroen Bosch Hospital, the Netherlands, from 2007 to 2016. Two cohorts were analysed: conventional 2D TRUS-guided biopsies and RP (2007-2013, n = 266) versus 3D TRUS-guided biopsies with pre-embedding (2013-2016, n = 129). The impact of 3D TRUS-guidance with pre-embedding on Gleason score (GS) concordance between biopsy and RP was evaluated using the κ-coefficient. Predictors of biopsy GS 6 upgrading were assessed using logistic regression models. Gleason concordance was comparable between the two cohorts with a κ = 0.44 for the 3D cohort, compared to κ = 0.42 for the 2D cohort. 3D TRUS-guidance with pre-embedding, did not significantly affect the risk of biopsy GS 6 upgrading in univariate and multivariate analysis. 3D TRUS-guidance with biopsy core pre-embedding did not improve Gleason concordance. Improved detection techniques are needed for recognition of low-grade disease upgrading.

  13. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  14. SU-E-J-167: Improvement of Time-Ordered Four Dimensional Cone-Beam CT; Image Mosaicing with Real and Virtual Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, M; Kida, S; Masutani, Y

    2014-06-01

    Purpose: In the previous study, we developed time-ordered fourdimensional (4D) cone-beam CT (CBCT) technique to visualize nonperiodic organ motion, such as peristaltic motion of gastrointestinal organs and adjacent area, using half-scan reconstruction method. One important obstacle was that truncation of projection was caused by asymmetric location of flat-panel detector (FPD) in order to cover whole abdomen or pelvis in one rotation. In this study, we propose image mosaicing to extend projection data to make possible to reconstruct full field-of-view (FOV) image using half-scan reconstruction. Methods: The projections of prostate cancer patients were acquired using the X-ray Volume Imaging system (XVI,more » version 4.5) on Synergy linear accelerator system (Elekta, UK). The XVI system has three options of FOV, S, M and L, and M FOV was chosen for pelvic CBCT acquisition, with a FPD panel 11.5 cm offset. The method to produce extended projections consists of three main steps: First, normal three-dimensional (3D) reconstruction which contains whole pelvis was implemented using real projections. Second, virtual projections were produced by reprojection process of the reconstructed 3D image. Third, real and virtual projections in each angle were combined into one extended mosaic projection. Then, 4D CBCT images were reconstructed using our inhouse reconstruction software based on Feldkamp, Davis and Kress algorithm. The angular range of each reconstruction phase in the 4D reconstruction was 180 degrees, and the range moved as time progressed. Results: Projection data were successfully extended without discontinuous boundary between real and virtual projections. Using mosaic projections, 4D CBCT image sets were reconstructed without artifacts caused by the truncation, and thus, whole pelvis was clearly visible. Conclusion: The present method provides extended projections which contain whole pelvis. The presented reconstruction method also enables time-ordered 4D CBCT reconstruction of organs with non-periodic motion with full FOV without projection-truncation artifacts. This work was partly supported by the JSPS Core-to-Core Program(No. 23003). This work was partly supported by JSPS KAKENHI 24234567.« less

  15. Electronic Structure of TlBa2CaCu2O(7-Delta)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-01-01

    The core levels of TlBa2CaCu2O(7-delta) (Tl-1212) epitaxial films have been measured with X-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E(sub F)) for the stoichiometric compound (delta = 0.5), while for 50% oxygen vacancies in the Tl-O layer (delta = 0.5) E(sub F) is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T(sub c), consistent with a shift of E(sub F) closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O(8 + delta)(Tl-2212) and HgBa2CaCu2O)6 + delta) (Hg- 1212). The similarity of the Cu 2p(sub 3/2) spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p(sub 3/2) signals exhibit differences which suggest that the replacement of T(sup 3+) with Hg(sup 2+) results in a decrease in the O 2p right arrow Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  16. A simplified DEM-CFD approach for pebble bed reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ji, W.

    In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculatedmore » with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)« less

  17. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  18. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.

  19. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  20. A Study of THT Cold Cores Population in the Star-Forming Region in Serpens

    NASA Astrophysics Data System (ADS)

    Fiorellino, Eleonora

    2017-11-01

    The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, G.; Liu, C.; Si, S.

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less

  2. Comparative analysis of 3D data accuracy of single tooth and full dental arch captured by different intraoral and laboratory digital impression systems.

    PubMed

    Ryakhovskiy, A N; Kostyukova, V V

    2016-01-01

    The aim of this study was to compare the accuracy of digital impressions taken by different intraoral and laboratory scanners. For this purpose a synthetic jaw model with prepared tooth was scanned using intraoral scanning systems: 3D Progress (MHT S.P.A., IT - MHT Optic Research AG, CH); True Definition (3M ESPE, USA); Trios (3Shape A/S, DNK); CEREC AC Bluecam, CEREC Omnicam (Sirona Dental System GmbH, DE); Planscan (Planmeca, FIN); and laboratory scanning systems: s600 ARTI (Zirkonzahn GmbH, IT); Imetric Iscan D104, CH); D900 (3Shape A/S, DNK); Zfx Evolution (Zfx GmbH, DE) (each n=10). Reference-scanning was done by ATOS Core (GOM mbH, DE). The resulting digital impressions were superimposed with the master-scan. The measured deviations by points (trueness) for intraoral scanners were: True Definition - 15.0±2.85 μm (single tooth) and 45.0±19.11 µm (full arch); Trios - 17.1±1.44 and 58.8±27.36 µm; CEREC AC Bluecam - 22.3±5.58 and 20.3±4.13 µm; CEREC Omnicam - 25.0±1.06 and 78.5±27.03 µm; 3D Progress - 26.4±5.75 and 213.5±47.44 µm; Planscan - 54.6±11.58 and 205.2±21.73 µm. For laboratory scanners: Imetric Iscan D104 - 10.2±0.87 μm (stamp) and 65.3±5.36 µm (full arch); Zfx Evolution - 12.8±0.83 and 66.4±2.80 µm; Zirkonzahn s600 ARTI - 15.1±1.36 and 65.9±1.33 µm; 3Shape D900 - 19.9±0.53 and 63.6±0.83 µm. Precision was: True Definition - 19.9±2.77 μm (single tooth) and 40.1±11.04 µm (full arch); Trios - 25.8±2.49 and 69.9±18.95 µm; CEREC AC Bluecam - 36.4±2.78 and 46.6±3.44 µm; CEREC Omnicam - 37.6±3.29 and 76.2±13.36 µm; 3D Progress - 76.9±11.04 and 102.2±8.06 µm; Planscan - 74.3±6.58 and 93.9±15.32 µm. For laboratory scanners: Imetric Iscan D104 - 11.7±4.39 μm (stamp) and 31.2±5.58 µm (full arch); Zfx Evolution - 8.4±0.49 and 24.8±3.98 µm; Zirkonzahn s600 ARTI - 13.4±6.74 and 20.7±4.34 µm; 3Shape D900 - 10.4±0.93 and 17.8±0.62 µm. Whole deviation of the dental arch was: 3D Progress - 98.0±5.70 µm; True Definition - 47.1±9.61 µm; Trios - 59.6±18.77 µm; Omnicam - 77.8±8.79 µm; Planscan - 107.9±1.58 µm; Bluecam - 46.8±1.22 µm; Imetric - 36.4±1.62 µm; Zfx Evolution - 29.5±0.58 µm; S600 ARTI - 35.0±1.04 µm; 3Shape D900 - 32.7±0.29 µm. The results indicate that digital impressions provide enough accuracy for clinical application.

  3. Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.

    2015-05-01

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )He 3 -reacted neutrons (DD beam-fusion neutrons) with the yield of 5 ×108 n /4 π sr . Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6 ×107 n /4 π sr , raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g /cm3 in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g /cm3 ); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  4. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  5. Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Urakawa, Satoru; Takubo, Yusaku; Kuwabara, Soma; Kishimoto, Shunpachi; Watanuki, Tetsu; Machida, Akihiko; Katayama, Yoshinori; Kondo, Tadashi

    2016-11-01

    Carbon is one of the possible light elements in the cores of the terrestrial planets. The P wave velocity (VP) and density (ρ) are important factors for estimating the chemical composition and physical properties of the core. We simultaneously measured the VP and ρ of Fe-3.5 wt % C up to 3.4 GPa and 1850 K by using ultrasonic pulse-echo method and X-ray absorption methods. The VP of liquid Fe-3.5 wt % C decreased linearly with increasing temperature at constant pressure. The addition of carbon decreased the VP of liquid Fe by about 2% at 3 GPa and 1700 K and decreased the Fe density by about 2% at 2 GPa and 1700 K. The bulk modulus of liquid Fe-C and its pressure (P) and temperature (T) effects were precisely determined from directly measured ρ and VP data to be K0,1700 K = 83.9 GPa, dKT/dP = 5.9(2), and dKT/dT = -0.063 GPa/K. The addition of carbon did not affect the isothermal bulk modulus (KT) of liquid Fe, but it decreased the dK/dT of liquid Fe. In the ρ-VP relationship, VP increases linearly with ρ and can be approximated as VP (m/s) = -6786(506) + 1537(71) × ρ (g/cm3), suggesting that Birch's law is valid for liquid Fe-C at the present P-T conditions. Our results imply that at the conditions of the lunar core, the elastic properties of an Fe-C core are more affected by temperature than those of Fe-S core.

  6. OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Young-S., Luis E.; Muruganandam, Paulsamy; Adhikari, Sadhan K.; Lončar, Vladimir; Vudragović, Dušan; Balaž, Antun

    2017-11-01

    We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross-Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions, optimized for use with GNU and Intel compilers. We use the split-step Crank-Nicolson algorithm for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful comments for the users. All input parameters are listed at the beginning of each program. Different output files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc. We also present speedup test results for new versions of the programs. Program files doi:http://dx.doi.org/10.17632/y8zk3jgn84.2 Licensing provisions: Apache License 2.0 Programming language: OpenMP GNU and Intel Fortran 90. Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable Fortran compiler installed. Number of processors used: All available CPU cores on the executing computer. Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid.204 (2016) 209. Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204 (2016) 209. Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-dependent nonlinear partial differential (GP) equation for a trapped Bose-Einstein condensate in one (1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered. Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent GP equation in space and time. The discretized equation is then solved by imaginary- or real-time propagation, employing adequately small space and time steps, to yield the solution of stationary and non-stationary problems, respectively. Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools [3] for solving the GP equation. These programs have been translated to the C programming language [4] and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have multi-core processors and some have motherboards with more than one physical computer processing unit (CPU), which may increase the number of available CPU cores on a single computer to several tens. The C programs have been adopted to be very fast on such multi-core modern computers using general-purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used for scientific computation and most of them use a single CPU core at a time in modern multi-core laptops, desktops, and workstations. Unless the Fortran programs are made aware and capable of making efficient use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously, we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs, optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which can significantly reduce the execution time. Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d, and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the execution time on multi-core processors. There are six different trap symmetries considered, resulting in six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs included in BEC-GP-OMP-FOR software package. All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy, etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce a new input parameter, which is designated by Number_of_Threads and defines the number of CPU cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for the background system's jobs. For example, on a machine with 20 CPU cores such that we used for testing, it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer. The Fortran source programs are located in the directory src, and can be compiled by the make command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The examples of produced output files can be found in the directory output, although some large density files are omitted, to save space. The programs calculate the values of actually used dimensionless nonlinearities from the physical input parameters, where the input parameters correspond to the identical nonlinearity values as in the previously published programs [1], so that the output files of the old and new programs can be directly compared. The output files are conveniently named such that their contents can be easily identified, following the naming convention introduced in Ref. [2]. For example, a file named -out.txt, where is a name of the individual program, represents the general output file containing input data, time and space steps, nonlinearity, energy and chemical potential, and was named fort.7 in the old Fortran version of programs [1]. A file named -den.txt is the output file with the condensate density, which had the names fort.3 and fort.4 in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other possible density outputs, such as the initial density, are commented out in the programs to have a simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation, and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time programs for the solution of a stationary problem, one can first solve the stationary problem using the imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader is advised to consult our previous publication where a complete description of the output files is given [2]. A readme.txt file, included in the root directory, explains the procedure to compile and run the programs. We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The parameters used for testing are given in sample input files, provided in the corresponding directory together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19 CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns "Intel speedup" and "GNU speedup" give the ratio of wall-clock execution times of runs on 1 and 19 CPU cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to be slightly faster. Note that during these tests we always ran only a single simulation on a workstation at a time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable than the ones that could be measured with two or more jobs running simultaneously. We also studied the speedup of the programs as a function of the number of CPU cores used. The performance of the Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d programs) for the maximal number of cores. This fully justifies the development of OpenMP programs, which enable much faster and more efficient solving of the GP equation. However, a slow saturation in the speedup with the further increase in the number of CPU cores is observed in all cases, as expected. The speedup tends to increase for programs in higher dimensions, as they become more complex and have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than those of 1d programs. Also, for a single program the speedup increases with the size of the spatial grid, i.e., with the number of spatial discretization points, since this increases the amount of calculations performed by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The speedup first increases rapidly with the number of discretization points and eventually saturates. Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25 MB cache, 2.3 GHz).

  7. Simple Procedure to Compute the Inductance of a Toroidal Ferrite Core from the Linear to the Saturation Regions

    PubMed Central

    Salas, Rosa Ana; Pleite, Jorge

    2013-01-01

    We propose a specific procedure to compute the inductance of a toroidal ferrite core as a function of the excitation current. The study includes the linear, intermediate and saturation regions. The procedure combines the use of Finite Element Analysis in 2D and experimental measurements. Through the two dimensional (2D) procedure we are able to achieve convergence, a reduction of computational cost and equivalent results to those computed by three dimensional (3D) simulations. The validation is carried out by comparing 2D, 3D and experimental results. PMID:28809283

  8. Detection of Interstellar Ortho-D2H+ with SOFIA

    NASA Astrophysics Data System (ADS)

    Harju, Jorma; Sipilä, Olli; Brünken, Sandra; Schlemmer, Stephan; Caselli, Paola; Juvela, Mika; Menten, Karl M.; Stutzki, Jürgen; Asvany, Oskar; Kamiński, Tomasz; Okada, Yoko; Higgins, Ronan

    2017-05-01

    We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 μm) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T < 18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of ˜5 × 105 yr for the core, with an uncertainty of ˜2 × 105 yr. The core material has probably been pre-processed for another 5 × 105 years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+para) fractional abundances of ˜10-9 in the outer envelope. This confirms the central role of {{{H}}}3+ in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also {{{D}}}3+ should be abundant in these conditions.

  9. Thermal Unfolding Simulations of Bacterial Flagellin: Insight into its Refolding Before Assembly

    PubMed Central

    Chng, Choon-Peng; Kitao, Akio

    2008-01-01

    Flagellin is the subunit of the bacterial filament, the micrometer-long propeller of a bacterial flagellum. The protein is believed to undergo unfolding for transport through the channel of the filament and to refold in a chamber at the end of the channel before being assembled into the growing filament. We report a thermal unfolding simulation study of S. typhimurium flagellin in aqueous solution as an attempt to gain atomic-level insight into the refolding process. Each molecule comprises two filament-core domains {D0, D1} and two hypervariable-region domains {D2, D3}. D2 can be separated into subdomains D2a and D2b. We observed a similar unfolding order of the domains as reported in experimental thermal denaturation. D2a and D3 exhibited high thermal stability and contained persistent three-stranded β-sheets in the denatured state which could serve as folding cores to guide refolding. A recent mutagenesis study on flagellin stability seems to suggest the importance of the folding cores. Using crude size estimates, our data suggests that the chamber might be large enough for either denatured hypervariable-region domains or filament-core domains, but not whole flagellin; this implicates a two-staged refolding process. PMID:18263660

  10. Planck Cold Clumps in the λ Orionis Complex. II. Environmental Effects on Core Formation

    NASA Astrophysics Data System (ADS)

    Yi, Hee-Weon; Lee, Jeong-Eun; Liu, Tie; Kim, Kee-Tae; Choi, Minho; Eden, David; Evans, Neal J., II; Di Francesco, James; Fuller, Gary; Hirano, N.; Juvela, Mika; Kang, Sung-ju; Kim, Gwanjeong; Koch, Patrick M.; Lee, Chang Won; Li, Di; Liu, H.-Y. B.; Liu, Hong-Li; Liu, Sheng-Yuan; Rawlings, Mark G.; Ristorcelli, I.; Sanhueza, Patrico; Soam, Archana; Tatematsu, Ken’ichi; Thompson, Mark; Toth, L. V.; Wang, Ke; White, Glenn J.; Wu, Yuefang; Yang, Yao-Lun; the JCMT Large Program “SCOPE” Collaboration; TRAO Key Science Program “TOP” Collaboration

    2018-06-01

    Based on the 850 μm dust continuum data from SCUBA-2 at James Clerk Maxwell Telescope (JCMT), we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the λ Orionis cloud to those of PGCCs in the Orion A and B clouds. The Orion A and B clouds are well-known active star-forming regions, while the λ Orionis cloud has a different environment as a consequence of the interaction with a prominent OB association and a giant H II region. PGCCs in the λ Orionis cloud have higher dust temperatures (T d = 16.13 ± 0.15 K) and lower values of dust emissivity spectral index (β = 1.65 ± 0.02) than PGCCs in the Orion A (T d = 13.79 ± 0.21 K, β = 2.07 ± 0.03) and Orion B (T d = 13.82 ± 0.19 K, β = 1.96 ± 0.02) clouds. We find 119 substructures within the 40 detected PGCCs and identify them as cores. Out of a total of 119 cores, 15 cores are discovered in the λ Orionis cloud, while 74 and 30 cores are found in the Orion A and B clouds, respectively. The cores in the λ Orionis cloud show much lower mean values of size R = 0.08 pc, column density N(H2) = (9.5 ± 1.2) × 1022 cm‑2, number density n(H2) = (2.9 ± 0.4) × 105 cm‑3, and mass M core = 1.0 ± 0.3 M ⊙ compared to the cores in the Orion A [R = 0.11 pc, N(H2) = (2.3 ± 0.3) × 1023 cm‑2, n(H2) = (3.8 ± 0.5) × 105 cm‑3, and M core = 2.4 ± 0.3 M ⊙] and Orion B [R = 0.16 pc, N(H2) = (3.8 ± 0.4) × 1023 cm‑2, n(H2) = (15.6 ± 1.8) × 105 cm‑3, and M core = 2.7 ± 0.3 M ⊙] clouds. These core properties in the λ Orionis cloud can be attributed to the photodissociation and external heating by the nearby H II region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results support the idea of negative stellar feedback on core formation.

  11. Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge

    DOE PAGES

    Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.; ...

    2017-05-18

    Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less

  12. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    PubMed

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  13. Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.

    Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less

  14. A Genetic Interaction between the Core and NS3 Proteins of Hepatitis C Virus Is Essential for Production of Infectious Virus▿†

    PubMed Central

    Jones, Daniel M.; Atoom, Ali M.; Zhang, Xiaozhen; Kottilil, Shyamasundaran; Russell, Rodney S.

    2011-01-01

    By analogy to other members of the Flaviviridae family, the hepatitis C virus (HCV) core protein is presumed to oligomerize to form the viral nucleocapsid, which encloses the single-stranded RNA genome. Core protein is directed to lipid droplets (LDs) by domain 2 (D2) of the protein, and this process is critical for virus production. Domain 1 (D1) of core is also important for infectious particle morphogenesis, although its precise contribution to this process is poorly understood. In this study, we mutated amino acids 64 to 75 within D1 of core and examined the ability of these mutants to produce infectious virus. We found that residues 64 to 66 are critical for generation of infectious progeny, whereas 67 to 75 were dispensable for this process. Further investigation of the defective 64 to 66 mutant (termed JFH1T-64–66) revealed it to be incapable of producing infectious intracellular virions, suggesting a fault during HCV assembly. Furthermore, isopycnic gradient analyses revealed that JFH1T-64–66 assembled dense intracellular species of core, presumably representing nucleocapsids. Thus, amino acids 64 to 66 are seemingly not involved in core oligomerization/nucleocapsid assembly. Passaging of JFH1T-64–66 led to the emergence of a single compensatory mutation (K1302R) within the helicase domain of NS3 that completely rescued its ability to produce infectious virus. Importantly, the same NS3 mutation abrogated virus production in the context of wild-type core protein. Together, our results suggest that residues 64 to 66 of core D1 form a highly specific interaction with the NS3 helicase that is essential for the generation of infectious HCV particles at a stage downstream of nucleocapsid assembly. PMID:21957313

  15. Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Paul, Bikash Kumar; Islam, Md. Shadidul; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-06-01

    A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10-10 dB/m, 3.28×10-11 dB/m, 1.21×10-6 dB/m, 4.79×10-10 dB/m, and 4.99×10-9 dB/m at the 1.33 μm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCF. The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like S O-band< S E-band < S S-band < S C-band < S L-band < S U-band. This research observation has much pellucidity which has remarkable impact on the field of optical fiber sensor.

  16. Fluctuations in clinical symptoms with changes in serum 25(OH) vitamin D levels in autistic children: Three cases report.

    PubMed

    Jia, Feiyong; Shan, Ling; Wang, Bing; Li, Honghua; Feng, Junyan; Xu, Zhida; Saad, Khaled

    2018-04-08

    Autism spectrum disorder (ASD) is a common neurodevelopmental disorder caused by complicated interactions between genetic and environmental factors. Clinical trials, including case reports, case-control studies, and a double-blinded randomized clinical study, have suggested that high-dose vitamin D3 regimens may ameliorate the core symptoms of ASD. Vitamin D3 supplementation was effective in about three-quarters of children with ASD. To further investigate the relationship between vitamin D and ASD symptoms in vitamin D-responsive autistic children, changes in symptoms were assessed in three children with ASD who were given vitamin D3 supplementation followed by a long interruption. The core symptoms of ASD were remarkably improved during the vitamin D3 supplementation period when serum 25-hydroxyvitamin D [25(OH)]D levels reached over 40.0 ng/mL. However, symptoms reappeared after the supplementation was stopped, when serum 25(OH)D levels fell below 30.0 ng/mL but were again improved with re-administration of vitamin D3 after the interruption, when serum 25(OH)D levels exceeded 40.0 ng/mL. Overall, these results showed that the core symptoms of ASD fluctuated in severity with changes in serum 25(OH)D levels in children, indicating that maintaining a responsive 25(OH)D level is important for treating ASD. Maintaining a serum 25(OH)D level between 40.0 and 100.0 ng/ml may be optimal for producing therapeutic effects in vitamin D-responsive individuals with ASD.

  17. Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole

    2017-03-01

    The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.

  18. GALFIT-CORSAIR: Implementing the Core-Sérsic Model Into GALFIT

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo

    2014-10-01

    We introduce GALFIT-CORSAIR: a publicly available, fully retro-compatible modification of the 2D fitting software GALFIT (v.3) which adds an implementation of the core-Sersic model. We demonstrate the software by fitting the images of NGC 5557 and NGC 5813, which have been previously identified as core-Sersic galaxies by their 1D radial light profiles. These two examples are representative of different dust obscuration conditions, and of bulge/disk decomposition. To perform the analysis, we obtained deep Hubble Legacy Archive (HLA) mosaics in the F555W filter (~V-band). We successfully reproduce the results of the previous 1D analysis, modulo the intrinsic differences between the 1D and the 2D fitting procedures. The code and the analysis procedure described here have been developed for the first coherent 2D analysis of a sample of core-Sersic galaxies, which will be presented in a forth-coming paper. As the 2D analysis provides better constraining on multi-component fitting, and is fully seeing-corrected, it will yield complementary constraints on the missing mass in depleted galaxy cores.

  19. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis.

    PubMed

    Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

  20. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  1. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  2. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  3. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well aslimbic corticostriatal connectivity.

    PubMed

    Barlow, Rebecca L; Gorges, Martin; Wearn, Alfie; Niessen, Heiko G; Kassubek, Jan; Dalley, Jeffrey W; Pekcec, Anton

    2018-03-15

    Low dopamine D2/3 receptor availability in the nucleus accumbens (NAcb) shell is associated with highly-impulsive behavior in rats, as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the NAcb is equally linked to intolerance for delayed rewards, a related form of impulsivity. We investigated the relationship between D2/3 receptor availability in the NAcb and impulsivity in a delay-discounting task (DDT) where animals must choose between immediate small-magnitude rewards and delayed larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high-, and low-impulsivity using in-vivo [18F]fallypride positron emission tomography (PET) and ex-vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. DDT impulsivity was inversely related to D2/3 receptor availability in the NAcb core but not the dorsal striatum with higher D2/3 binding in the NAcb shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high versus low impulsive rats. We conclude that DDT impulsivity is associated with low D2/3 receptor binding in the NAcb core. Thus two related forms of waiting impulsivity - premature responding and delay intolerance in a delay-of-reward task - implicate an involvement of D2/3 receptor availability in the NAcb shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction and other psychiatric disorders.

  4. Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. [Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin-Scott, H.M.; Cusack, F.; Costerton, J.W.

    1988-06-01

    Klebsiella pneumoniae, which was reduced in size (0.25 by 0.5 ..mu..m) by carbon deprivation, was injected into a series of sandstone cores and subjected to separate treatments. Scanning electron microscopy of 400-mD cores showed these small starved cells in nearly every core section. The cells were a mixture of small rods and cocci with little or no biofilm production. Continuous or dose stimulation with sodium citrate allowed the cells to grow throughout the sandstone and completely plug the length of the core. The resuscitated cells were larger than the starved cells (up to 1.7 ..mu..m) and were encased in glycocalyx.more » Scanning electron microscopic results of resuscitation in situ with half-strength brain heart infusion broth showed that a shallow skin plug of cells formed at the core inlet and that fewer cells were located in the lower sections. Starved cells also penetrated 200-mD cores and were successfully resuscitated in situ with sodium citrate, so that the entire core was plugged. Nutrient resuscitation of injected starved cells to produce full-size cells which grow and block the rock pores may be successfully applied to selective plugging and may effectively increase oil recovery.« less

  5. Orientation-dependent surface core-level shifts and chemical shifts on clean and H 2S-covered GaAs

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Finster, J.; Kuhr, H. J.

    1987-08-01

    Photoelectron spectra of the As 3d and Ga 3d core levels were studied in situ on a cylindrically shaped GaAs single crystal for the six inequivalent orientations (001), (113), (111), (110), (11¯1) and (11¯3). On the clean surface, prepared by molecular beam epitaxy (MBE), surface core levels are shifted by 0.25 to 0.55 eV towards smaller binding energy (BE) for As 3d and -0.25 to -0.35 eV towards higher BE for Ga, depending on orientation. Additional As causes As 3d contributions shifted between -0.45 and -0.7 eV towards higher BE. The position and intensity of them is influenced by H 2S adsorption. At 150 K, H 2S adsorbs preferentially on As sites. As chemical shifts appear at -0.6 to -0.9 eV towards higher BE. Simultaneously, As accumulation occurs on all orientations with the exception of (110). High temperature adsorption (550 K, 720 K) influences mainly the Ga 3d peaks. Two peaks shifted by about -0.45 and -0.8 eV towards higher Be were found which are attributed to Ga atoms with one or two sulfur ligands, respectively. At 720 K, also As depletion is observed. The compatibility of surface core-level positions and intensities with recent structural models for the (111) and (11¯1) surfaces is discussed.

  6. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzina, Bojan; Kunerth, Dennis

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensionalmore » Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all existing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.« less

  7. Three-dimensional discrete element method simulation of core disking

    NASA Astrophysics Data System (ADS)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  8. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  9. Sequence Elements Upstream of the Core Promoter Are Necessary for Full Transcription of the Capsule Gene Operon in Streptococcus pneumoniae Strain D39

    PubMed Central

    Wen, Zhensong; Sertil, Odeniel; Cheng, Yongxin; Zhang, Shanshan; Liu, Xue; Wang, Wen-Ching

    2015-01-01

    Streptococcus pneumoniae is a major bacterial pathogen in humans. Its polysaccharide capsule is a key virulence factor that promotes bacterial evasion of human phagocytic killing. While S. pneumoniae produces at least 94 antigenically different types of capsule, the genes for biosynthesis of almost all capsular types are arranged in the same locus. The transcription of the capsular polysaccharide (cps) locus is not well understood. This study determined the transcriptional features of the cps locus in the type 2 virulent strain D39. The initial analysis revealed that the cps genes are cotranscribed from a major transcription start site at the −25 nucleotide (G) upstream of cps2A, the first gene in the locus. Using unmarked chromosomal truncations and a luciferase-based transcriptional reporter, we showed that the full transcription of the cps genes not only depends on the core promoter immediately upstream of cps2A, but also requires additional elements upstream of the core promoter, particularly a 59-bp sequence immediately upstream of the core promoter. Unmarked deletions of these promoter elements in the D39 genome also led to significant reduction in CPS production and virulence in mice. Lastly, common cps gene (cps2ABCD) mutants did not show significant abnormality in cps transcription, although they produced significantly less CPS, indicating that the CpsABCD proteins are involved in the encapsulation of S. pneumoniae in a posttranscriptional manner. This study has yielded important information on the transcriptional characteristics of the cps locus in S. pneumoniae. PMID:25733517

  10. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  11. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  12. A search for interstellar CH3D: Limits to the methane abundance in Orion-KL

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Apponi, A. J.

    1995-01-01

    A search has been performed for interstellar CH3D via its J(K) = 1(0) - 0(0) transition at 230 GHz and its J(K) = 2(0) - l(0) and J(K) = 2(1) - 1(1) lines at 465 GHz using the NRAO 12 m and CSO 10 m telescopes towards Orion-KL. This search was done in conjunction with laboratory measurements of all three transitions of CH3D using mm/sub-mm direct absorption spectroscopy. The molecule was not detected down to a 3 sigma level of T(A) less than 0.05 K towards Orion, which suggests an upper limit to the CH3D column density of N less than 6 x 10(exp 18)/sq cm in the hot core region and a fractional abundance (with respect to H2) of less than 6 x 10(exp -6). These measurements suggest that the methane abundance in the Orion hot core is f less than 6 x 10-4, assuming D/H approximately 0.01. Such findings are in agreement with recent hot core chemical models, which suggest CH4/H2 approximately 10(exp -4).

  13. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a

  14. The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

    NASA Astrophysics Data System (ADS)

    Kazeroni, R.; Krueger, B. K.; Guilet, J.; Foglizzo, T.

    2017-12-01

    A toy model is used to study the non-linear conditions for the development of neutrino-driven convection in the post-shock region of core-collapse supernovae. Our numerical simulations show that a buoyant non-linear perturbation is able to trigger self-sustained convection only in cases where convection is not linearly stabilized by advection. Several arguments proposed to interpret the impact of the dimensionality on global core-collapse supernova simulations are discussed in the light of our model. The influence of the numerical resolution is also addressed. In 3D a strong mixing to small scales induces an increase of the neutrino heating efficiency in a runaway process. This phenomenon is absent in 2D and this may indicate that the tridimensional nature of the hydrodynamics could foster explosions.

  15. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  16. 78 FR 50259 - Derivatives Clearing Organizations and International Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Principle D (Risk Management) and regulation 39.13; Core Principle G (Default Rules and Procedures) and...: Risk Management Core Principle D requires a DCO to ensure that it possesses the ability to manage the...: Principle 2 (Governance); Principle 3 (Framework for the comprehensive management of risks); Principle 4...

  17. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  18. In-situ observation of bubble trapping in polar firn

    NASA Astrophysics Data System (ADS)

    Florian Schaller, Christoph; Freitag, Johannes; Sowers, Todd; Vinther, Bo; Weinhart, Alexander; Eisen, Olaf

    2017-04-01

    The air trapped in polar ice cores is not a direct record of past atmospheric composition but is strongly influenced by the process of firnification as bubbles are only sealed at a certain point, when the respective horizontal layer reaches a so called "critical" porosity. In order to investigate this process, we performed high-resolution (approximately 25 μm) 3D-XCT measurements of the complete lock-in zone for two polar ice cores representing opposite extremes of the temperature and accumulation rate range: B53, close to Dome Fuji, East Antarctica and RECAP_S2, Renland, Greenland. For every 1m core segment, we scanned a minimum number of five sections of approximately 3.5cm height of the full core diameter with a focus on homogenous layers. This allows us to non-destructively deduce detailed profiles of open and closed porosity on a solid statistical basis. For each of the cores individually, we find that the trapping of bubbles in a single layer is solely determined by its total porosity and thereby independent of depth. We can confirm the existence of a distinct Schwander-type relation of closed and total porosity. Even though the two cores deviate from each other significantly in critical porosity, 0.0907 for B53 compared to 0.1025 for RECAP_S2, we observe many similarities. We hypothesize, that the determining factors of bubble trapping are the average size and variability of pore space structures. This could potentially allow the reconstruction of past close-off porosities from the remaining pore structures in deep ice, e.g. from bubble number densities.

  19. Real-Time 3D Fluoroscopy-Guided Large Core Needle Biopsy of Renal Masses: A Critical Early Evaluation According to the IDEAL Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.

    2012-06-15

    Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downar, Thomas

    This report summarizes the current status of VERA-CS Verification and Validation for PWR Core Follow operation and proposes a multi-phase plan for continuing VERA-CS V&V in FY17 and FY18. The proposed plan recognizes the hierarchical nature of a multi-physics code system such as VERA-CS and the importance of first achieving an acceptable level of V&V on each of the single physics codes before focusing on the V&V of the coupled physics solution. The report summarizes the V&V of each of the single physics codes systems currently used for core follow analysis (ie MPACT, CTF, Multigroup Cross Section Generation, and BISONmore » / Fuel Temperature Tables) and proposes specific actions to achieve a uniformly acceptable level of V&V in FY17. The report also recognizes the ongoing development of other codes important for PWR Core Follow (e.g. TIAMAT, MAMBA3D) and proposes Phase II (FY18) VERA-CS V&V activities in which those codes will also reach an acceptable level of V&V. The report then summarizes the current status of VERA-CS multi-physics V&V for PWR Core Follow and the ongoing PWR Core Follow V&V activities for FY17. An automated procedure and output data format is proposed for standardizing the output for core follow calculations and automatically generating tables and figures for the VERA-CS Latex file. A set of acceptance metrics is also proposed for the evaluation and assessment of core follow results that would be used within the script to automatically flag any results which require further analysis or more detailed explanation prior to being added to the VERA-CS validation base. After the Automation Scripts have been completed and tested using BEAVRS, the VERA-CS plan proposes the Watts Bar cycle depletion cases should be performed with the new cross section library and be included in the first draft of the new VERA-CS manual for release at the end of PoR15. Also, within the constraints imposed by the proprietary nature of plant data, as many as possible of the FY17 AMA Plant Core Follow cases should also be included in the VERA-CS manual at the end of PoR15. After completion of the ongoing development of TIAMAT for fully coupled, full core calculations with VERA-CS / BISON 1.5D, and after the completion of the refactoring of MAMBA3D for CIPS analysis in FY17, selected cases from the VERA-CS validation based should be performed, beginning with the legacy cases of Watts Bar and BEAVRS in PoR16. Finally, as potential Phase III future work some additional considerations are identified for extending the VERA-CS V&V to other reactor types such as the BWR.« less

  1. A Full Virial Analysis of the Prestellar Cores in the Ophiuchus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pattle, Kate; Ward-Thompson, Derek

    We use SCUBA-2, HARP C18O J= 3 -> 2, Herschel and IRAM N2H+ J= 1 -> 0 observations of the Ophiuchus molecular cloud to identify and characterise the properties of the starless cores in the region. The SCUBA-2, HARP and Herschel data were taken as part of the JCMT and Herschel Gould Belt Surveys. We determine masses and temperatures and perform a full virial analysis on our cores, and find that our cores are all either bound or virialised, with gravitational energy and external pressure energy on average of similar importance in confining the cores. There is wide variation from region to region, with cores in the region influenced by B stars (Oph A) being substantially gravitationally bound, and cores in the most quiescent region (Oph C) being pressure-confined. We observe dissipation of turbulence in all our cores, and find that this dissipation is more effective in regions which do not contain outflow-driving protostars. Full details of this analysis are presented by Pattle et al. (2015).

  2. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code systemmore » ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)« less

  3. Sediment DIN fluxes and preferential recycling of benthic microalgal nitrogen in a shallow macrotidal estuary

    USGS Publications Warehouse

    Tobias, C.; Giblin, A.; McClelland, J.; Tucker, J.; Peterson, B.

    2003-01-01

    Sediment-water fluxes of NH4+, NO3-, dissolved inorganic carbon, and O2 were measured in cores collected from the upper Rowley River estuary, Massachusetts, and used to calculate rates of organic nitrogen (N) mineralization, nitrification, and coupled and direct denitrification (DNF). The cores contained 15N label in benthic microalgae (BMA) and in NO3- in the overlying water as a result of an ongoing whole-estuary 15NO 3- enrichment study (NISOTREX II). The tracer allowed for estimation of gross NO3- regeneration in sediments and the contribution of BMA derived N to total mineralization. The mean mineralization rate between sites was 16.0 ?? 2.0 mmol N m-2 d-1. Approximately 13 to 56% of the mineralized N was nitrified at rates ranging from 1.8 to 10.1 mmol N m-2 d-1. Total denitrification was dominated by direct DNF (3.6 mmol N m-2 d -1) furthest upstream, where NO3- concentrations were highest. Coupled DNF was most important (8.0 mmol N m -2 d-1) in the sediments with high nitrification and low water column NO3-. A gross NO3- flux from sediments to water of 0.9 to 2.1 mmol N m-2 d-1 was estimated from the isotope dilution of ??15NO 3- in the overlying water of the cores. The isotope dilution seen in the cores was also detected as a deviation from conservative ??15NO3- mixing along estuarine transects. Incorporation of this NO3- regeneration into the DNF calculations effectively increased the estimate of direct DNF by up to 50% and decreased the coupled DNF estimate by up to 220%. Increasing ?? 15NH4+ in the water of the cores indicated that the 15N-labelled BMA were preferentially mineralized over bulk sediment organic N. Additional 15N enrichments in the sediment bacterial biomarker diaminopimelic acid showed a link among 15N-labeled BMA, active bacteria, and 15NH 4+released to the overlying water. Based on ?? 15NH4+ enrichments in the cores, BMA accounted for approximately 50 to 100% of the N mineralized. An isotopic enrichment of ??15NH4+ above background in the estuary was observed at a magnitude consistent with the core-based rates of BMA mineralization. These results provide further evidence that BMA are not unidirectional sinks for water column-dissolved organic nitrogen, but instead act to turn over N between sediments and estuarine water on the scale of days.

  4. Photoemission and Auger-electron spectroscopic study of the Chevrel-phase compound FexMo6S8

    NASA Astrophysics Data System (ADS)

    Fujimori, A.; Sekita, M.; Wada, H.

    1986-05-01

    The electronic structure of the Chevrel-phase compound FexMo6S8 has been studied by photoemission and Auger-electron spectroscopy. Core-level shifts suggest a large charge transfer from the Fe atoms to the Mo6S8 clusters and a small Mo-to-S charge transfer within the cluster. Line-shape asymmetry in the core levels indicates that the density of states (DOS) at the Fermi level has a finite S 3p component as well as the dominant Mo 3d character. Satellite structure and exchange splitting in the Fe core levels point to weak Fe 3d-S 3p hybridization in spite of the short Fe-S distances comparable to that in FeS. The x-ray and ultraviolet valence-band photoemission spectra and the Mo 4d partial DOS obtained by deconvoluting the Mo M4,5VV Auger spectrum are compared with existing band-structure calculations, and the Mo 4d-S 3p bonding character, the structure of the Mo 4d-derived conduction band etc., are discussed. In particular, it is shown that the conduction-band structure is sensitive to the noncubic distortion of the crystal through changes in the intercluster Mo 4d-S 3p hybridization. A pronounced final-state effect is found in the Mo M4,5N2,3V Auger spectrum and is attributed to strong 4p-4d intershell coupling.

  5. Progress in the Development of a Global Quasi-3-D Multiscale Modeling Framework

    NASA Astrophysics Data System (ADS)

    Jung, J.; Konor, C. S.; Randall, D. A.

    2017-12-01

    The Quasi-3-D Multiscale Modeling Framework (Q3D MMF) is a second-generation MMF, which has following advances over the first-generation MMF: 1) The cloud-resolving models (CRMs) that replace conventional parameterizations are not confined to the large-scale dynamical-core grid cells, and are seamlessly connected to each other, 2) The CRMs sense the three-dimensional large- and cloud-scale environment, 3) Two perpendicular sets of CRM channels are used, and 4) The CRMs can resolve the steep surface topography along the channel direction. The basic design of the Q3D MMF has been developed and successfully tested in a limited-area modeling framework. Currently, global versions of the Q3D MMF are being developed for both weather and climate applications. The dynamical cores governing the large-scale circulation in the global Q3D MMF are selected from two cube-based global atmospheric models. The CRM used in the model is the 3-D nonhydrostatic anelastic Vector-Vorticity Model (VVM), which has been tested with the limited-area version for its suitability for this framework. As a first step of the development, the VVM has been reconstructed on the cubed-sphere grid so that it can be applied to global channel domains and also easily fitted to the large-scale dynamical cores. We have successfully tested the new VVM by advecting a bell-shaped passive tracer and simulating the evolutions of waves resulted from idealized barotropic and baroclinic instabilities. For improvement of the model, we also modified the tracer advection scheme to yield positive-definite results and plan to implement a new physics package that includes a double-moment microphysics and an aerosol physics. The interface for coupling the large-scale dynamical core and the VVM is under development. In this presentation, we shall describe the recent progress in the development and show some test results.

  6. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.

    PubMed

    Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim

    2011-01-01

    Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.

  7. Event Display for the Visualization of CMS Events

    NASA Astrophysics Data System (ADS)

    Bauerdick, L. A. T.; Eulisse, G.; Jones, C. D.; Kovalskyi, D.; McCauley, T.; Mrak Tadel, A.; Muelmenstaedt, J.; Osborne, I.; Tadel, M.; Tu, Y.; Yagil, A.

    2011-12-01

    During the last year the CMS experiment engaged in consolidation of its existing event display programs. The core of the new system is based on the Fireworks event display program which was by-design directly integrated with the CMS Event Data Model (EDM) and the light version of the software framework (FWLite). The Event Visualization Environment (EVE) of the ROOT framework is used to manage a consistent set of 3D and 2D views, selection, user-feedback and user-interaction with the graphics windows; several EVE components were developed by CMS in collaboration with the ROOT project. In event display operation simple plugins are registered into the system to perform conversion from EDM collections into their visual representations which are then managed by the application. Full event navigation and filtering as well as collection-level filtering is supported. The same data-extraction principle can also be applied when Fireworks will eventually operate as a service within the full software framework.

  8. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 3; 8-ply Out-of-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.

  9. 20 CFR 669.350 - How are core services delivered to MSFW's?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false How are core services delivered to MSFW's... Farmworker Jobs Program Customers and Available Program Services § 669.350 How are core services delivered to MSFW's? (a) The full range of core services are available to MSFW's, as well as other individuals, at...

  10. 20 CFR 669.350 - How are core services delivered to MSFW's?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How are core services delivered to MSFW's... Farmworker Jobs Program Customers and Available Program Services § 669.350 How are core services delivered to MSFW's? (a) The full range of core services are available to MSFW's, as well as other individuals, at...

  11. 20 CFR 669.340 - What core services are available to eligible MSFW's?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What core services are available to eligible... Farmworker Jobs Program Customers and Available Program Services § 669.340 What core services are available to eligible MSFW's? The core services identified in WIA section 134(d)(2) are available to eligible...

  12. 20 CFR 669.340 - What core services are available to eligible MSFW's?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What core services are available to eligible... Farmworker Jobs Program Customers and Available Program Services § 669.340 What core services are available to eligible MSFW's? The core services identified in WIA section 134(d)(2) are available to eligible...

  13. Short communication: Little change takes place in Camembert-type cheese water activities throughout ripening in terms of relative humidity and salt.

    PubMed

    Leclercq-Perlat, M-N; Hélias, A; Corrieu, G

    2013-01-01

    Water activity (a(w)) affects the growth and activity of ripening microorganisms. Moreover, it is generally accepted that a(w) depends on relative humidity (RH) and salt content; these 3 variables were usually measured on a given day in a cheese without the microorganism layer and without accounting for a distinction between the rind, the underrind, and the core. However, a(w) dynamics have never been thoroughly studied throughout cheese ripening. Experimental Camembert cheeses were ripened under controlled and aseptic conditions (temperature, gaseous atmosphere, and RH) for 14 d. In this study, only RH was varied. Samples were taken from the cheese (microorganism layer)-air interface, the rind, and the core. The aw of the cheese-air interface did not change over ripening when RH varied between 91 and 92% or between 97 and 98%. However, on d 5, we observed a small but significant increase in a(w), which coincided with the beginning of growth of Penicillium camemberti mycelia. After d 3, no significant differences were found between the a(w) of the cheese-air interface, the rind, and the core. From d 0 to 3, cheese rind a(w) increased from 0.94 to 0.97, which was probably due to the diffusion of salt from the rind to the core: NaCl content in the rind decreased from 3.7 to 1.6% and NaCl content in the core increased from 0.0 to 1.6%. Nevertheless, aw did not significantly vary in the core, raising questions about the real effect of salt on a(w).

  14. Confinement properties of tokamak plasmas with extended regions of low magnetic shear

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.

    2017-10-01

    Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.

  15. Electron spectroscopic determinations of M and N core-hole lifetimes for the elements Nb-Te (Z=41-52)

    NASA Astrophysics Data System (ADS)

    Mårtensson, Nils; Nyholm, Ralf

    1981-12-01

    Photoelectron spectroscopy has been used to determine M and N core-level widths for the elements Nb-Te (Z=41-52). The analysis is based on direct comparisons of the lifetime contributions to different core levels. Absolute determinations are made for the narrow 3d levels. In the metals Nb-Rh (Z=41-45) an M4M5N45 Coster-Kronig decay channel is observed through a broadening of the 3d32 core-electron lines. The rate of this Coster-Kronig process is found to have its maximum for Ru and Rh. For Pd a much reduced, but still significant, broadening of the 3d32 level is detected. This observation is discussed in terms of itinerant versus quasiatomic contributions to the Coster-Kronig process. For Z>=47 (Ag) the Coster-Kronig channel is closed. For Nb-Rh the M4M5N45 process can be used for absolute determinations of the 3d linewidths. In this connection also the properties of the M45N45N45 Auger process are discussed. The accuracy of the present method makes it possible to investigate small differences between the 3p12 and 3p32 level widths. For several elements the unusual result is obtained that the 3p32 level is broader than the 3p12 level. This finding is in good agreement with theoretical predictions. The 4s and 4p spectra of the currently investigated elements are strongly influenced by configuration-interaction (CI) effects. However, the 4s line shapes are found to be quite normal for all the 5th-period elements. For Z<=45 (Rh) the 4p12 level is found to be broadened due to N2N3N45 super-Coster-Kronig processes. For Z<=46 (Pd) the shape of the 4p32 core-electron lines can reasonably well be reproduced by broadened 3d52 line profiles. For Z>=47 (Ag) this can, however, not be achieved. This marks a transition into a region of Z values where CI effects become particularly important. The accuracy of the present method for determining core-level widths can be judged from a comparison between our analysis of the 4p levels and x-ray studies of the Mζ transition. The results indicate that core-level widths can be determined with an accuracy of about 0.2 eV even for fairly broad and asymmetric electron lines.

  16. Isotopic (δ18O, δD and deuterium excess) records from the TALDICE ice core (East Antarctica) (Invited)

    NASA Astrophysics Data System (ADS)

    Stenni, B.; Buiron, D.; Masson-Delmotte, V.; Bonazza, M.; Braida, M.; Chappellaz, J.; Frezzotti, M.; Falourd, S.; Minster, B.; Selmo, E.

    2010-12-01

    Paleotemperature reconstructions from Antarctic ice cores rely mainly on δD and δ18O records and the main key factors controlling the observed distribution of δD and δ18O in Antarctic surface snow are mainly related to the condensation temperature of the precipitation and the origin of moisture. The deuterium excess, d = δD - 8*δ18O, contains information about climate conditions prevailing in the source regions of precipitation and can be used as an integrated tracer of past hydrological cycle changes. In the framework of the TALos Dome Ice CorE (TALDICE) project, a deep ice core (1620 m) has been drilled at Talos Dome, a peripheral dome of East Antarctica facing the Ross Sea, about 550 km north of Taylor Dome and 1100 km East from the EPICA Dome C drilling site. The TALDICE coring site (159°11'E 72°49'S; 2315 m; T -41°C; www.taldice.org) is located near the dome summit and is characterised by an annual snow accumulation rate of 80 mm water equivalent. Backtrajectory analyses suggest that Talos Dome is mainly influenced by air masses arriving both from the Pacific (Ross Sea) and Indian Ocean sectors. A preliminary dating based on an ice flow model and an inverse method suggests for the upper 1580 m an age of about 300,000 years BP. The full TALDICE δ18O record obtained from the bag samples as well as δD and deuterium excess data are presented here. The δ18O and δD measurements were carried out in Italy and France on a continuous basis of 1 m. These new records will be compared to the ones obtained from the EDC ice core as well as with other East Antarctic ice core records. In particular, we will focus on the whole isotopic profiles, in good agreement with other inland deep ice cores, and on the last deglaciation, showing climatic changes at Talos Dome in phase with the Antarctic plateau and suggesting that the bipolar see saw with Greenland temperature is also valid for this new coastal site facing the Ross Sea sector.

  17. Fallon, Nevada FORGE Gravity and Magnetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Doug; Witter, Jeff; Carpenter, Thomas

    This package contains principal facts for new gravity data collected September - November 2017 in support of the Fallon FORGE project. Also included are rock core density and magnetic susceptibility data for key core intervals, used in modeling 2D and 3D gravity inversions. Individual metadata summaries are provided as .pdf within each attached archive.

  18. Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding.

    PubMed

    Wu, Shiting; Zou, Mingchu; Li, Zhencheng; Chen, Daqin; Zhang, Hui; Yuan, Yongjun; Pei, Yongmao; Cao, Anyuan

    2018-06-01

    Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene-hybridized CuNW (CuNW@G) core-shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core-shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core-shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core-shell aerogels. The flexible core-shell-structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Estimating a Preference-Based Index from the Clinical Outcomes in Routine Evaluation–Outcome Measure (CORE-OM)

    PubMed Central

    Brazier, John E.; Rowen, Donna; Barkham, Michael

    2013-01-01

    Background. The Clinical Outcomes in Routine Evaluation–Outcome Measure (CORE-OM) is used to evaluate the effectiveness of psychological therapies in people with common mental disorders. The objective of this study was to estimate a preference-based index for this population using CORE-6D, a health state classification system derived from the CORE-OM consisting of a 5-item emotional component and a physical item, and to demonstrate a novel method for generating states that are not orthogonal. Methods. Rasch analysis was used to identify 11 emotional health states from CORE-6D that were frequently observed in the study population and are, thus, plausible (in contrast, conventional statistical design might generate implausible states). Combined with the 3 response levels of the physical item of CORE-6D, they generate 33 plausible health states, 18 of which were selected for valuation. A valuation survey of 220 members of the public in South Yorkshire, United Kingdom, was undertaken using the time tradeoff (TTO) method. Regression analysis was subsequently used to predict values for all possible states described by CORE-6D. Results. A number of multivariate regression models were built to predict values for the 33 health states of CORE-6D, using the Rasch logit value of the emotional state and the response level of the physical item as independent variables. A cubic model with high predictive value (adjusted R2 = 0.990) was selected to predict TTO values for all 729 CORE-6D health states. Conclusion. The CORE-6D preference-based index will enable the assessment of cost-effectiveness of interventions for people with common mental disorders using existing and prospective CORE-OM data sets. The new method for generating states may be useful for other instruments with highly correlated dimensions. PMID:23178639

  20. Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers.

    PubMed

    Théberge, Francis; Thiré, Nicolas; Daigle, Jean-François; Mathieu, Pierre; Schmidt, Bruno E; Messaddeq, Younès; Vallée, Réal; Légaré, François

    2014-11-15

    We report on infrared supercontinuum (SC) generation through laser filamentation and subsequent nonlinear propagation in a step-index As2S3 fiber. The 100 μm core and high-purity As2S3 fiber used exhibit zero-dispersion wavelength around 4.5 μm, a mid-infrared background loss of 0.2  dB/m, and a maximum loss of only 0.55  dB/m at the S-H absorption peak around 4.05 μm. When pumping with ultrashort laser pulses slightly above the S-H absorption band, broadband infrared supercontinua were generated with a 20 dB spectral flatness spanning from 1.5 up to 7 μm. The efficiency and spectral shape of the SC produced by ultrashort pulses in large-core As2S3 fiber are mainly determined by its dispersion, the S-H contaminant absorption, and the mid-infrared nonlinear absorption.

  1. Statistical error propagation in ab initio no-core full configuration calculations of light nuclei

    DOE PAGES

    Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.; ...

    2015-12-28

    We propagate the statistical uncertainty of experimental N N scattering data into the binding energy of 3H and 4He. Here, we also study the sensitivity of the magnetic moment and proton radius of the 3 H to changes in the N N interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Δ E stat (3H) = 0.015 MeV and Δ E stat ( 4He) = 0.055 MeV .

  2. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    PubMed

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  3. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores

    NASA Astrophysics Data System (ADS)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.

    1998-09-01

    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn <~ 109 cm-3, a result that is contrary to the ``canonical'' value of k = 1/2 found in previous static equilibrium chemistry calculations and often used to study the effect of ambipolar diffusion in interstellar clouds. For typical cloud and grain parameters, reduction of the abundance of grains results in k > 1/2 during the core formation epoch (densities <~105 cm-3). As a consequence, observations of the degree of ionization in cores could be used, in principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  4. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  5. Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors

    NASA Astrophysics Data System (ADS)

    Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K. Andre; Jang, Ho Seong

    2016-05-01

    Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered. Electronic supplementary information (ESI) available: XRD patterns, PL and PLE spectra, SEM and HR-TEM images, PL decay times, photographs showing the transparent nanophosphor solutions and their dual-mode luminescence, and additional EDX data. See DOI: 10.1039/c5nr05722a

  6. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples.

    PubMed

    Sheng, Le; Jin, Yulong; He, Yonghuan; Huang, Yanyan; Yan, Liushui; Zhao, Rui

    2017-11-01

    Superparamagnetic core-shell molecularly imprinted polymer nanoparticles (MIPs) were prepared via surface initiated reversible-addition fragmentation chain transfer (si-RAFT) polymerization for the selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) in real samples. The construction of uniform core-shell structure with a 50nm MIP layer was successfully accomplished, which favored mass transfer and resulted in fast recognition kinetics. The static equilibrium experiments revealed the satisfied adsorption capacity and imprinting efficiency of Fe 3 O 4 @MIP. Moreover, the Fe 3 O 4 @MIP exhibited high selectivity and affinity towards 2,4-D over structural analogues. The prepared Fe 3 O 4 @MIP nanoparticles were used for the selective enrichment of 2,4-D in tap water and Chinese cabbage samples. Combined with RP-HPLC, the recoveries of 2,4-D were calculated from 93.1% to 103.3% with RSD of 1.7-5.4% (n = 3) in Chinese cabbage samples. This work provides a versatile approach for fabricating well-constructed core-shell MIP nanoparticles for rapid enrichment and highly selective separation of target molecules in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. Finally, the role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed.« less

  8. The tectono-thermal evolution of the Waterbury dome, western Connecticut, based on U-Pb and 40Ar/39Ar ages

    USGS Publications Warehouse

    Dietsch, Craig; Kunk, Michael J.; Aleinikoff, John; Sutter, John F.

    2010-01-01

    Level 3 nappes were emplaced over the Waterbury dome along an Acadian décollement synchronous with the formation of a D3 thrust duplex in the dome. The décollement truncates the Ky + Kfs-in (migmatite) isograd in the dome core and a St-in isograd in level 3 nappes, indicating that peak metamorphic conditions in the dome core and nappe cover rocks formed in different places at different times. Metamorphic overgrowths on zircon from the felsic orthogneiss in the Waterbury dome have an age of 387 ± 5 Ma. Rocks of all levels and the décollement are folded by D4 folds that have a strongly developed, regional crenulation cleavage and D5 folds. The Waterbury dome was formed by thrust duplexing followed by fold interference during the Acadian orogeny. The 40Ar/39Ar ages of amphibole, muscovite, biotite, and K-feldspar from above and below the décollement are ca. 378 Ma, 355 Ma, 360 Ma (above) and 340 (below), and 288 Ma, respectively. Any kilometer-scale vertical movements between dome and nappe rocks were over by ca. 378 Ma. Core and cover rocks of the Waterbury dome record synchronous, post-Acadian cooling.

  9. Integration of Well & Core Data of Carbonate Reservoirs with Surface Seismic in Garraf Oil Field, Southern Iraq

    NASA Astrophysics Data System (ADS)

    Mhuder, J. J.; Muhlhl, A. A.; Basra Geologiests

    2013-05-01

    The Garraf Field is situated in Southern Iraq in Nasiriya area, is located in Mesopotamian basin. The carbonate facies are dominant in main reservoirs in Garraf field (Mishrif and Yammama Formations) which is Cretaceous in age. The structure of the reservoir in this field are low relief gentle anticlinal structure aligned in NW to SE direction, and No fault were observed and interpreted in 3D seismic section. 3D seismic survey by Iraqi Oil Exploration Company No 2 was successfully conducted on the Garraf field at 2008-2009 using recording system SERCEL 408UL and Vibrators Nomad 65. Bin size: 25*25, Fold: 36, SP Interval: 50m, Lines Interval: 300m, 3 wells were drilled Ga (1, 2, 3) and it used for seismic to well tie in Petrel. Data analysis was conducted for each reservoirs for Lithological and sedimentological studies were based on core and well data .The study showed That the Mishrif Formation deposited in a broad carbonate platform with shallowing upward regressive succession and The depositional environment is extending from outer marine to shallow middle-inner shelf settings with restricted lagoons as supported by the present of Miliolid fossils. The fragmented rudist biostromes accumulated in the middle shelf. No rudist reef is presence in the studied cores. While the Major sequences are micritic limestone of lagoonal and oolitic/peloidal grainstone sandy shoal separated by mudstone of Yamama formation. Sedimentation feature are seen on seismic attributes and it is help for understanding of sedimentation environment and suitable structure interpretation. There is good relationship between Acustic Impedance and porosity, Acustic Impedance reflects porosity or facies change of carbonate rather than fluid content. Data input used for 3D Modeling include 3D seismic and AI data, petrophysical analysis, core and thin section description. 3D structure modeling were created base on the geophysical data interpretation and Al analysis. Data analysis for Al data were run as secondary input for 3D properties modeling.

  10. Influence of different post core materials on the color of Empress 2 full ceramic crowns.

    PubMed

    Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan

    2006-10-20

    For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.

  11. Molecular tectonics: hierarchical organization of heterobimetallic coordination networks into heterotrimetallic core-shell crystals.

    PubMed

    Zhang, Fan; Adolf, Cyril R R; Zigon, Nicolas; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2017-03-23

    Combinations of a neutral Pt(ii) organometallic tecton bearing two triphenylphosphine and two 3-ethynylpyridyl coordinating moieties in trans positions with MX 2 complexes (M = Co(ii) and X = Cl - or Br - and M = Zn(ii) and X = Cl - ) lead to the formation of isostructural 1D heterobimetallic coordination compounds. By 3D epitaxial growth processes, using coordination bonding, heterotrimetallic core-shell crystals are generated by the growth of crystalline layers on seed crystals.

  12. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Mayhue, L.; Huria, H.

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less

  13. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  14. Edge gyrokinetic theory and continuum simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Dorr, M. R.; Hittinger, J. A.; Bodi, K.; Candy, J.; Cohen, B. I.; Cohen, R. H.; Colella, P.; Kerbel, G. D.; Krasheninnikov, S.; Nevins, W. M.; Qin, H.; Rognlien, T. D.; Snyder, P. B.; Umansky, M. V.

    2007-08-01

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.

  15. A novel flow-perfusion bioreactor supports 3D dynamic cell culture.

    PubMed

    Sailon, Alexander M; Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Allen, Robert J; Warren, Stephen M

    2009-01-01

    Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. By day 8, static scaffolds had a periphery cell density of 67% +/- 5.0%, while in the core it was 0.3% +/- 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% +/- 8.3% and core density of 76% +/- 3.1% at day 8. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  16. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated withmore » different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1. • Core protein increases the expression of smad7 in hepatocytes. • Core protein inhibits HepG2 cells apoptosis induced by cisplatin.« less

  17. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  18. Prognostic importance of Gleason 7 disease among patients treated with external beam radiation therapy for prostate cancer: results of a detailed biopsy core analysis.

    PubMed

    Spratt, Daniel E; Zumsteg, Zach; Ghadjar, Pirus; Pangasa, Misha; Pei, Xin; Fine, Samson W; Yamada, Yoshiya; Kollmeier, Marisa; Zelefsky, Michael J

    2013-04-01

    To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6 years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Prognostic Importance of Gleason 7 Disease Among Patients Treated With External Beam Radiation Therapy for Prostate Cancer: Results of a Detailed Biopsy Core Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spratt, Daniel E.; Zumsteg, Zach; Ghadjar, Pirus

    2013-04-01

    Purpose: To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). Methods and Materials: From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6more » years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). Results: The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Conclusions: Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used.« less

  20. Influence of Mercury

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Aurnou, J. M.; Aubert, J.

    2009-04-01

    Due to the absence of an atmosphere and proximity to the Sun, Mercury's surface temperature varies laterally by several 100s K, even when averaged over long time periods. The dominant variation in time-averaged surface T occurs from pole to equator (~225 K) [1]. The resonant relationship between Mercury's orbit and rotation results in a smaller longitudinal variation (~100 K) [1]. Here we demonstrate, using models of mantle convection in a 3-D spherical shell, that this stationary lateral variation in surface temperature has a small but significant influence on mantle convection and on the lateral variation of heat flux across the core-mantle boundary (CMB). We evaluate the possible observational signature of this laterally-varying convection in terms of boundary topography, stress distribution, gravity and moment of inertia tensor. We furthermore test whether the lateral variation in CMB flux is capable of driving a thermal wind dynamo, i.e., weak dynamo action with no internally-driven core convective motions. For Mercury's mantle we assume a dry olivine rheology including both diffusion creep and disclocation creep with rheological parameters such as activation energy and volume taken from the synthesis of [2]. We assume decaying radiogenic heat sources with the same concentration as in the bulk silicate Earth, and a parameterised model of core cooling. The models are run for 4.5 Ga from a relatively hot initial state with random initial perturbations. We use the code StagYY, which uses a finite-volume discretization on a spherical yin-yang grid and a multigrid solver [3]. Results in spherical axisymmetric geometry, compare a case with constant surface temperature to one with a latitude-dependent surface temperature. The system forms about 3 convection cells from pole to equator. Although the results look similar to first order, in the latitude-dependent case the convection is noticably more sluggish and colder towards the pole. In CMB flux, both cases display large oscillations due to convection cells. A pole-to-equator trend is superimposed on this for the case with laterally-varying surface temperature. Although the amplitude of this long-wavelength variation is smaller than that of the within-cell variation, its long-wavelength nature might be effective in driving thermal winds in the core. Results in a full 3-D spherical shell indicate that convection adopts a cellular structure with a polygonal network of downwellings and plume-like upwellings, as is usually obtained for stagnant lid convection, for example, in the recent 3-D spherical Mercury models of [4]. This is in notable contrast to the models of [5], in which linear upwellings were obtained. This difference could be because the initial perturbations used by [5] used a small number of low-order spherical harmonics, i.e., a long-wavelength pattern with particular symmetries, whereas our initial perturbations are random white noise. The origin of this difference requires further investigation. The pattern of CMB heat flux shows a strong l=2, m=0 pattern, again with superimposed small-scale variations due to convection cells. The surface geoid displays an very dominant (2,0) pattern, which would be a strong diagnostic of this behaviour. These models are being further analysed for boundary topography and stress distribution. Models of planetary dynamos have traditionally depended upon the concept that secular cooling and internal radioactive decay are responsible for genererating convective fluid motions within the core [e.g. 6]. Some models, of Earth's dynamo in particular, also include thermal winds --shear flows driven by heat flux variations along the core-mantle boundary -- that modify the dynamo process [e.g. 7]. We have now shown, following the work of [8], that thermal winds themselves are capable of driving dynamo action in planetary cores (Fig. 4). In fully self-consistent, three-dimensional models, we find that thermal wind dynamos do not require a net heat flux to emanate from the core and can operate even when the core fluid is neutrally stratified. In these models, the dynamo is powered externally by thermal energy stored in the mantle. This dynamo mechanism can occur on planetary bodies, such as Mercury, which are likely to have weak net heat fluxes from their cores but possess significant core-mantle boundary heat flux variations (Figures 1 - 3). We plan to use the pattern of CMB heat flux from the mantle models as a boundary condition for core models, in order to determine the feasibility of thermal wind dynamo action occurring in Mercury's core. References [1] Aharonson, O., et al. (2004) EPSL, 218, 261-268. [2] Karato, S. and Wu, P. (1993) Sci., 260, 771-778. [3] Tackley, P. J. (2008) PEPI, doi: 10.1016/j.pepi.2008.08.005.. [4] Breuer, D. et al. (2007) Sp. Sci. Rev., 132, 229-260. [5] King, S. D. (2008) Nature Geoscience, 1, 229-232. [5] Heimpel, M. H. et al. (2005) EPSL, 236, 542-557. [7] Willis, A., et al. (2007) PEPI, 165, 83-92. [8] Sarson, G., (2003) PRSL A, 459, 1241-1259. [9] Aubert, J., et al. (2008) GJI, 172, 945-956.

  1. Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.

    2014-10-01

    The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.

  2. Core-level photoemission investigation of atomic-fluorine adsorption on GaAs(110)

    NASA Astrophysics Data System (ADS)

    McLean, A. B.; Terminello, L. J.; McFeely, F. R.

    1989-12-01

    The adsorption of atomic F on the cleaved GaAs(110) surface has been studied with use of high-resolution core-level photoelectron spectroscopy by exposing the GaAs(110) surfaces to XeF2, which adsorbs dissociatively, leaving atomic F behind. This surface reaction produces two chemically shifted components in the Ga 3d core-level emission which are attributed to an interfacial monofluoride and a stable trifluoride reaction product, respectively. The As 3d core level develops only one chemically shifted component and from its exposure-dependent behavior it is attributed to an interfacial monofluoride. Least-squares analysis of the core-level line shapes revealed that (i) the F bonds to both the anion and the cation , (ii) the GaF3 component (characteristic of strong interfacial reaction) and the surface core-level shifted component (characteristic of a well ordered, atomically clean surface) are present together over a relatively large range of XeF2 exposures, and (iii) it is the initial disruption of the GaAs(110) surface that is the rate-limiting step in this surface reaction. These results are compared with similar studies of Cl and O adsorption on GaAs(110).

  3. Basin-forming impacts on Mars and the coupled thermal evolution of the interior

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Roberts, J. H.

    2015-12-01

    The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantle. Stratification of the core occurs very quickly compared to mantle dynamics, and we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.

  4. Thermodynamic properties of arsenic compounds and the heat of formation of the As atom from high level electronic structure calculations.

    PubMed

    Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A

    2011-12-29

    Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. © 2011 American Chemical Society

  5. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  6. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935

  7. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  8. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  9. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.

    PubMed

    Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A

    2012-06-01

    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.

  10. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  11. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C Core-Shell Nanosheets for Improved Microwave Absorption.

    PubMed

    Liu, Yun; Fu, Yiwei; Liu, Lin; Li, Wei; Guan, Jianguo; Tong, Guoxiu

    2018-05-16

    This paper demonstrates a facile and low-cost carbothermal reduction preparation of monodisperse Fe 3 O 4 /C core-shell nanosheets (NSs) for greatly improved microwave absorption. In this protocol, the redox reaction between sheet-like hematite (α-Fe 2 O 3 ) precursors and acetone under inert atmosphere and elevated temperature generates Fe 3 O 4 /C core-shell NSs with the morphology inheriting from α-Fe 2 O 3 . Thus, Fe 3 O 4 /C core-shell NSs of different sizes ( a) and Fe 3 O 4 /C core-shell nanopolyhedrons are obtained by using different precursors. Benefited from the high crystallinity of the Fe 3 O 4 core and the thin carbon layer, the resultant NSs exhibit high specific saturation magnetization larger than 82.51 emu·g -1 . Simultaneously, the coercivity enhances with the increase of a, suggesting a strong shape anisotropy effect. Furthermore, because of the anisotropy structure and the complementary behavior between Fe 3 O 4 and C, the as-obtained Fe 3 O 4 /C core-shell NSs exhibit strong natural magnetic resonance at a high frequency, enhanced interfacial polarization, and improved impedance matching, ensuring the enhancement of the microwave absorption. The 250 nm NSs-paraffin composites exhibit reflection loss (RL) lower than -20 dB (corresponding to 99% absorption) in a large frequency ( f) range of 2.08-16.40 GHz with a minimum RL of -43.95 dB at f = 3.92 GHz when the thickness is tuned from 7.0 to 1.4 mm, indicating that the Fe 3 O 4 /C core-shell NSs are a good candidate to manufacture high-performance microwave absorbers. Moreover, the as-developed carbothermal reduction method could be applied for the fabrication of other composites based on ferrites and carbon.

  12. Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus.

    PubMed

    Gómez-Miranda, Begoña; Prieto, Alicia; Leal, Juan Antonio; Ahrazem, Oussama; Jiménez-Barbero, Jesús; Bernabé, Manuel

    2004-01-01

    The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [--> 3)-beta-D-Gal f -(1 --> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [--> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The mannan cores have also been investigated, and are constituted by a (1 --> 6)-alpha-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 --> 2) linked alpha-mannopyranoses. Copyright 2004 Kluwer Academic Publishers

  13. Continuum Edge Gyrokinetic Theory and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Xiong, Z; Dorr, M R

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regimemore » with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.« less

  14. Optical and Photothermal Behaviors of Colloidal and Self-Assembled Magnetic-Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    This dissertation is based on numerous efforts in exploring the capabilties of numerical simulation for investigating novel optical phenomena in different colloidal plasmonic systems. The dissertation includes five chapters. Chapter 1 contains a general introduction to the fundamentals of plasmonic behaviors in colloidal clusters and bottom-up self-assembly methods for manufacturing colloidal clusters which include magnetic based and DNA-assisted pathways. Chapter 2 presents a systematic comparison of optical and thermodynamic properties of near-infrared colloidal nanoparticles, including SiO2 Au core-shell, Au nanocage and Au nanorod, and an example of the nanobubble-based photothermal therapy application. In Chapter 3, a optical phenomenon named Fano resonance is demonstrated in a colloidal heptamer design which consists of seven Fe 3O4 Au core-shell nanoparticles. The incorporation of the magnetic core enables a magnetic-assisted self-assembly process which will be discussed after the photonic analysis. In Chapter 4, the optical behaviors in a 1D magnetic-plasmonic chain are explored. A demonstration of the magnetic-based self-assembly of this 1D chain is given. Chapter 5 is focused on the study of the chiral optical responses in a helical nanoscale system which follows a 3D helical arrangement of Fe3O4 Au core-shell nanoparticles.

  15. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  16. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.

  17. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of 1s core correlation on properties and energy separations are analyzed using full configuration-interaction (FCI) calculations. The Be1S - 1P, the C 3P - 5S,m and CH(+) 1Sigma(+) - 1Pi separations, and CH(+) spectroscopic constants, dipole moment, and 1Sigma(+) - 1Pi transition dipole moment have been studied. The results of the FCI calculations are compared to those obtained using approximate methods.

  18. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What core services must be provided to adults....150 What core services must be provided to adults and dislocated workers? (a) At a minimum, all of the core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in each local area...

  19. Automatic Quantification of X-ray Computed Tomography Images of Cores: Method and Application to Shimokita Cores (Northeast Coast of Honshu, Japan)

    NASA Astrophysics Data System (ADS)

    Gaillot, P.

    2007-12-01

    X-ray computed tomography (CT) of rock core provides nondestructive cross-sectional or three-dimensional core representations from the attenuation of electromagnetic radiation. Attenuation depends on the density and the atomic constituents of the rock material that is scanned. Since it has the potential to non-invasively measure phase distribution and species concentration, X-ray CT offers significant advantages to characterize both heterogeneous and apparently homogeneous lithologies. In particular, once empirically calibrated into 3D density images, this scanning technique is useful in the observation of density variation. In this paper, I present a procedure from which information contained in the 3D images can be quantitatively extracted and turned into very-high resolution core logs and core image logs including (1) the radial and angular distributions of density values, (2) the histogram of distribution of the density and its related statistical parameters (average, 10- 25- 50, 75 and 90 percentiles, and width at half maximum), and (3) the volume, the average density and the mass contribution of three core fractions defined by two user-defined density thresholds (voids and vugs < 1.01 g/cc ≤ damaged core material < 1.25 g/cc < non-damaged core material). In turn, these quantitative outputs (1) allow the recognition of bedding and sedimentary features, as well as natural and coring-induced fractures, (2) provide a high-resolution bulk density core log, and (3) provide quantitative estimates of core voids and core damaged zones that can further be used to characterize core quality and core disturbance, and apply, where appropriate, volume correction on core physical properties (gamma-ray attenuation density, magnetic susceptibility, natural gamma radiation, non-contact electrical resistivity, P-wave velocity) acquired via Multi- Sensors Core loggers (MSCL). The procedure is illustrated on core data (XR-CT images, continuous MSCL physical properties and discrete Moisture and Density measurements) from the Hole C9001C drilled off-shore Shimokita (northeast coast of Honshu, Japan) during the shake-down cruise (08-11/2006) of the scientific drilling vessel, Chikyu.

  20. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  1. The nature of the pressure-induced metallization of FeO and its implications to the core-mantle boundary

    USGS Publications Warehouse

    Sherman, David M.

    1989-01-01

    The pressure and temperature-induced metallization of FeO discovered by Knittle et al (1986) is here argued to result from a Mott transition associated with increased Fe(3d)-Fe(3d) orbital overlap at high pressures. Consequently, it is here argued that a lower mantle containing only these phases should be electrically insulating. Finally, the formation of itinerant d-electrons in FeO may be a necessary, if not sufficient, condition for the apparent alloying of FeO with Fe. Such alloying may allow oxygen to be incorporated into the outer core. -from Author

  2. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  3. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less

  4. Imaging The Shallow Velocity Structure Of The Hikurangi Megathrust Using Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Gray, M.; Bell, R. E.; Morgan, J. V.

    2017-12-01

    The Hikurangi margin, offshore North Island, New Zealand, exhibits a number of different slip behaviours, including shallow slow slip events (SSEs) (<2km to 15 km). There is also a strong contrast in geodetic coupling along the margin. While reflection data provides an image of the structure, no information about physical properties is provided. Full-waveform inversion (FWI) is an imaging technique which incorporates the full seismic wavelet rather than just the first arrivals, as in traditional tomography. By propagating synthetic seismic waves through a velocity model and comparing the synthetic wavelets to the field data, we update the velocity model until the real and synthetic wavelets match. In this way, we can resolve high-resolution physical property variations which influence the seismic wavefield. In our study, FWI was used to resolve the P-wave velocity structure at the Hikurangi megathrust up to 2km. This method enables investigation of how upper-plate structure may influence plate boundary slip behaviour. In 2005, a seismic survey was carried out over the Hikurangi megathrust. The data was acquired from a 12km streamer, allowing FWI analysis up to 2km below the seabed. The results show low velocity zones correlating to faults interpreted from reflection seismic imaging. We believe these low velocity zones, particularly near the frontal thrust resolve faulting in the area, and present these faults as possible fluid conduits. As the dataset was not collected specifically for FWI, the results show promise in resolving more information at depth. As such, both a 3D seismic survey and two drilling expeditions have been approved for the period November 2017 - May 2018. The seismic survey will be carried out with parameters optimal for FWI, allow imaging of the fault boundary, which is not possible with the current 2D data. The cores will provide direct geological evidence which can be used in conjunction with velocity models to discern lithology and structure. The current result identifies the existence of overpressure and aids in drilling safety when collecting these cores. In conjunction with the new IODP cores, the FWI model will improve understanding of properties of the shallow structure of the megathrust.

  5. Fiber-based three-dimensional multi-mode interference device as efficient power divider and vector curvature sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin

    2018-03-01

    Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.

  6. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  7. Re-refinement of the spliceosomal U4 snRNP core-domain structure

    PubMed Central

    Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541

  8. The core structure of ginsenan PA, a phagocytosis-activating polysaccharide from the root of Panax ginseng.

    PubMed

    Tomoda, M; Hirabayashi, K; Shimizu, N; Gonda, R; Ohara, N

    1994-09-01

    Controlled Smith degradation and limited hydrolysis of ginsenan PA, the main phagocytosis-activating polysaccharide isolated from the root of Panax ginseng C. A. Meyer, were performed. The reticuloendothelial system-potentiating and anti-complementary activities of the degradation products were investigated. Methylation analysis of the primary and secondary Smith degradation products indicated that the core structural features of ginsenan PA include a backbone chain mainly composed of beta-1,3-linked D-galactose. Almost half of the galactose units in the backbone carry side-chains composed of beta-1,6-linked D-galactosyl residues at position 6. Further 3,6-branching of D-galactose units was observed in a part of the side-chains. alpha-L-Arabinose units are connected mainly to the core galactose moieties via position 6. Removal of most of the arabinose units had a considerable effect on immunological activity.

  9. The Status of Multi-Dimensional Core-Collapse Supernova Models

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2016-09-01

    Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

  10. TREAT Modeling and Simulation Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  11. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  12. Lamination effects on a 3D model of the magnetic core of power transformers

    NASA Astrophysics Data System (ADS)

    Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan

    2017-12-01

    In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.

  13. Salt influence on surface microorganisms and ripening of soft ewe cheese.

    PubMed

    Tabla, Rafael; Gómez, Antonia; Rebollo, José E; Roa, Isidro

    2015-05-01

    The effect of different brining treatments on salt uptake and diffusion during the first 30 d of ripening was determined in soft ewe cheese. Additionally, salt influence on surface microorganisms and physicochemical parameters was evaluated. Cheeses were placed into different brine solutions (14, 18 and 24°Bé) at 5 and 10 °C for 1, 2 or 3 h. Samples from rind, outer core and inner core were analysed at 0, 7, 15 and 30 d. Complete salt diffusion from rind to the inner core took about 15 d. The resulting salt gradient favoured the development of a pH gradient from the surface to the inner core. Salt concentration also had a significant effect on the growth of surface microorganisms (mesophiles, pseudomonads and halotolerants). However, mould and yeasts were not affected throughout ripening by the salt levels achieved. Brine salting by immersion for 3 h at 10 °C in 24°B brine was found to be the most suitable treatment to control pseudomonads in cheese rind, as spoilage microorganism.

  14. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less

  15. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Peter R., E-mail: pmarti46@uwo.ca; Cool, Derek W.; Romagnoli, Cesare

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiologymore » resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using spherical tumor shapes as opposed to no shape assumption. However, an assumption of spherical tumor shape for RMSE = 3.5 mm led to a mean overestimation of tumor sampling probabilities of 3%, implying that assuming spherical tumor shape may be reasonable for many prostate tumors. The authors also determined that a biopsy system would need to have a RMS needle delivery error of no more than 1.6 mm in order to sample 95% of tumors with one core. The authors’ experiments also indicated that the effect of axial-direction error on the measured tumor burden was mitigated by the 18 mm core length at 3.5 mm RMSE. Conclusions: For biopsy systems with RMSE ≥ 3.5 mm, more than one biopsy core must be taken from the majority of tumors to achieveP ≥ 95%. These observations support the authors’ perspective that some tumors of clinically significant sizes may require more than one biopsy attempt in order to be sampled during the first biopsy session. This motivates the authors’ ongoing development of an approach to optimize biopsy plans with the aim of achieving a desired probability of obtaining a sample from each tumor, while minimizing the number of biopsies. Optimized planning of within-tumor targets for MRI-3D TRUS fusion biopsy could support earlier diagnosis of prostate cancer while it remains localized to the gland and curable.« less

  16. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  17. Exchange biased Co3O4 nanowires: A new insight into its magnetic core-shell nature

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jose, A.; Thanveer, T.; Anantharaman, M. R.

    2017-06-01

    We investigated interfacial exchange coupling effect in nano casted Co3O4 nanowires. Magnetometry measurements indicated that the magnetic response of the wires has two contributions. First one from the core of the wire which has characteristics of a 2D-DAFF(two-dimensional diluted antiferromagnet in a field). The second one is from uncompensated surface spins which get magnetically ordered towards the field direction once field cooled below 25 K. Below 25 K, the net magnetization of the core of the wire gets exchange coupled with the uncompensated surface spins giving rise to exchange bias effect. The unique 2D-DAFF/spin-glass core/shell heterostructure showed a pronounced training effect in the first field cycling itself. The magnitude of exchange bias field showed a maximum at intermediate cooling fields and for the higher cooling field, exchange bias got reduced.

  18. The 3D Death of a Massive Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21

  19. Neutronics calculation of RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  20. Distortions in 2p4d Partial Fluorescence yield for 4d elements

    NASA Astrophysics Data System (ADS)

    Price, Alexander; de Groot, Frank; Datta, Trinanjan

    2014-03-01

    X-ray absorption spectroscopy (XAS) is a standard tool to determine the electronic structure of molecules and materials. CTM4XAS and CTM4RIXS are semi-empirical programs to analyze transition metal L - and M - edge transitions by evaluating the effects of crystal field and charge transfer parameters on the atomic multiplets. We compute and compare the XAS and the fluorescence yield (FY) XAS, of the 3d and 4d transition metal ions. In the case of 2p edges of 3d elements Auger decay dominates and sets the time scale. The 2p3d X -ray emission spectra (XES) accounts for approximately 80% of the radiative decay. The 2p3d partial FY is distorted and because it dominates the FY, the total FY is also distorted. For the 4d elements the 2p4d XES decay is approximately 10% of 2p3d XES decay, implying that (the energy-constant) core-core XES and Auger channels dominate the decay. The computed 2p4d partial FY -XAS spectra are different from the 2p XAS. Although 2p4d partial FY is distorted, the total FY is not because it is dominated by 2p3d XES. We also find that the 2p3s and 2p4s XES channels contribute less than 1% and can be neglected. Cottrell Research Corporation.

  1. Constraints on high-energy neutrino emission from SN 2008D

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Ben Zvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hül, J. P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K. H.; Kappes A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-03-01

    SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to ~100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.

  2. Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Miller, Eric; Bautz, Mark; Lowenstein, Mike; Randall, Scott W.; Smith, Randall K.

    2016-01-01

    We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2sigma-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (approx. 2sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(sup 2)(2theta) = 6.1 x 10(exp -11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.

  3. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  4. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    Kornreich, Philip

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.

  5. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less

  6. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  7. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less

  8. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

  9. Coherent network analysis of gravitational waves from three-dimensional core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2015-12-01

    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis for the detection, reconstruction, and source localization of the gravitational-wave (GW) signals. We use the RIDGE pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from the rotating core collapse, bounce, and subsequent ringdown of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and nonaxisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near the rotating core bounce, the horizon distance extends up to ˜18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the nonaxisymmetric instabilities. The horizon distances extend maximally up to ˜40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best-studied GW signals due to rotating core collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. In particular, the quasiperiodic signals due to the nonaxisymmetric instabilities and the detectability deserves further investigation to elucidate the inner workings of the rapidly rotating CCSNe.

  10. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.

  11. Single Event Effects (SEE) Testing of Embedded DSP Cores within Microsemi RTAX4000D Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Perez, Christopher E.; Berg, Melanie D.; Friendlich, Mark R.

    2011-01-01

    Motivation for this work is: (1) Accurately characterize digital signal processor (DSP) core single-event effect (SEE) behavior (2) Test DSP cores across a large frequency range and across various input conditions (3) Isolate SEE analysis to DSP cores alone (4) Interpret SEE analysis in terms of single-event upsets (SEUs) and single-event transients (SETs) (5) Provide flight missions with accurate estimate of DSP core error rates and error signatures.

  12. The effectiveness of rehabilitation on pain-free farming in agriculture workers with low back pain in India.

    PubMed

    Ganesh, Shankar; Chhabra, Deepak; Kumari, Nitika

    2016-10-17

    Studies have shown that farming is associated with many agricultural workers experiencing low back pain (LBP). The rehabilitation of these workers should facilitate their functioning, activities and level of participation in an adequate way. The objectives of this study were to identify the health components associated with LBP and to evaluate the effectiveness of the interventions in returning agricultural workers with LBP to their vocation using the International Classification of Function (ICF) -based tools. Thirty-one full time agricultural workers from 3 different Indian states were prospectively assessed using the ICF core set for LBP. ICF core sets permitted analysis of limitations of function from both the participant and rehabilitation team's perspectives. Each ICF category was rated using an ICF qualifier. The components identified were linked to the ICF categorical profile and assessment sheet. The clinicians identified the global, service program and cycle goals based on ICF. The participants' functioning was followed over a 4-month period. After intervention, the participants were able to undergo their routine activities without increases in pain. However, on returning to active farming, participants noted few improvements in the components d410 (changing basic body position), d415 (maintaining body position), d430 (lifting and carrying objects), d465 (moving around using equipment), d850 (remunerative employment) and d859 (work and employment, other specified and unspecified). The results of the study conclude that the current interventions for LBP are not effective in returning agriculture workers with LBP in India to pain-free farming. There is an urgent need to individualize the health needs of agriculture workers.

  13. ZPPR-20 phase D : a cylindrical assembly of polyethylene moderated U metal reflected by beryllium oxide and polyethylene.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R.; Grimm, K.; McKnight, R.

    The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration.more » Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a rhenium baffle which would act as a neutron curtain in the event of water immersion. A fission gas plenum and coolant inlet plenum were located axially forward of the core. Some material substitutions had to be made in mocking up the SP-100 design. The ZPPR-20 critical assemblies were fueled by 93% enriched uranium metal because uranium nitride, which was the SP-100 fuel type, was not available. ZPPR Assembly 20D was designed to simulate a water immersion accident. The water was simulated by polyethylene (CH{sub 2}), which contains a similar amount of hydrogen and has a similar density. A very accurate transformation to a simplified model is needed to make any of the ZPPR assemblies a practical criticality-safety benchmark. There is simply too much geometric detail in an exact model of a ZPPR assembly, particularly as complicated an assembly as ZPPR-20D. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertainty far beyond that of the original experiment. Such a transformation will be described in a later section. First, Assembly 20D was modeled in full detail--every plate, drawer, matrix tube, and air gap was modeled explicitly. Then the regionwise compositions and volumes from this model were converted to an RZ model. ZPPR Assembly 20D has been determined to be an acceptable criticality-safety benchmark experiment.« less

  14. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    NASA Astrophysics Data System (ADS)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  15. Theoretical study of LiK and LiK+ in adiabatic representation

    NASA Astrophysics Data System (ADS)

    Al-dossary, Omar M.; Khelifi, Neji

    2014-01-01

    The potential energy curves have been calculated for the electronic states of the molecule LiK within the range 3 to 300 a.u., of the internuclear distance R. Using an ab initio method, through a semiempirical spin-orbit pseudo-potential for the Li (1 s 2) and K (1 s 22 s 22 p 63 s 23 p 6) cores and core valence correlation correction added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The core valence effects including core-polarization and core-valence correlation are taken into account by using an l-dependent core-polarization potential. The molecular orbitals have been derived from self-consistent field (SCF) calculation. The spectroscopic constants, dipole moments and vibrational levels of the lowest electronic states of the LiK molecule dissociating into K (4 s, 4 p, 5 s, 3 d, and 5 p) + Li (2 s, 2 p, 3 s, and 3 p) in 1, 3Σ, 1, 3Π, and 1, 3Δ symmetries. Adiabatic results are also reported for 2Σ, 2Π, and 2Δ electronic states of the molecular ion LiK+ dissociating into Li (2 s, 2 p, 3 s, and 3 p) + K+ and Li+ + K (4 s, 4 p, 5 s, 3 d, and 5 p). The comparison of the present results with those available in the literature shows a very good agreement in spectroscopic constants of some lowest states of the LiK and LiK+ molecules, especially with the available theoretical works. The existence of numerous avoided crossing between electronic states of 2Σ and 2Π symmetries is related to the charge transfer process between the two ionic systems Li+K and LiK+.

  16. Seismic waveform sensitivity to global boundary topography

    NASA Astrophysics Data System (ADS)

    Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico

    2012-09-01

    We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.

  17. A discrete Cu cluster and a 3D MnII-CuII framework based on assembly of Mn2Cu4 clusters: synthesis, structure and magnetic properties.

    PubMed

    Chakraborty, Anindita; Escuer, Albert; Ribas, Joan; Maji, Tapas Kumar

    2016-10-04

    The synthesis, single-crystal structure characterization and detailed magnetic study of a homometallic hexanuclear Cu II cluster [Cu 6 (μ 3 -OH) 2 (ppk) 6 (H 2 O) 2 (NO 3 ) 4 ] (1) and a three-dimensional (3D) compound [{MnCu 2 (dpkO 2 H) 2 (dpkO 2 )N 3 }·(NO 3 )·H 2 O] n (2) (ppk = phenyl-2-pyridyl ketoxime; dpk = di-2-pyridyl ketone) consisting of heterometallic Mn II -Cu II hexanuclear cores as secondary building units are reported in this paper. In compound 1, two symmetry-related Cu 3 triangles consisting of a hydroxido-bridged trinuclear unit, [Cu 3 (μ 3 -OH)(ppk) 3 (H 2 O)(NO 3 )] + , are assembled through nitrate bridging giving rise to the homometallic Cu 6 cluster. Compound 2 contains heterometallic {MnCu} cores, which are further connected to each other through an azido bridging ligand in all the crystallographic directions, resulting in a 3D metal-organic framework. Construction of such a heterometallic 3D framework from {MnCu} units is until now, unknown. Magnetic studies of both 1 and 2 were performed in detail and both compounds show dominant antiferromagnetic interaction in the respective clusters. Compound 1 reveals significant spin frustration and anti-symmetric exchange interaction in the trinuclear cores, with a significantly high value of J av (-655 cm -1 ). Furthermore, compound 2 exhibits a dominant antiferromagnetic interaction, which is also supported by an extensive magneto-structural correlation which considers the different magnetic pathways.

  18. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  19. Hydrophobic core malleability of a de novo designed three-helix bundle protein.

    PubMed

    Walsh, S T; Sukharev, V I; Betz, S F; Vekshin, N L; DeGrado, W F

    2001-01-12

    De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. Copyright 2001 Academic Press.

  20. Core rotational dynamics and geological events

    PubMed

    Greff-Lefftz; Legros

    1999-11-26

    A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.

  1. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    PubMed

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.

  3. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, P. T.; Shadid, J. N.; Hu, J. J.

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  4. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE PAGES

    Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...

    2017-11-06

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  5. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries

    PubMed Central

    Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun

    2017-01-01

    The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649

  6. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries.

    PubMed

    Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun

    2017-03-14

    The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet.

  7. Substrate effect on the growth of Sn thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suvankar; Menon, Krishnakumar S. R.

    2018-05-01

    Growth of tin (Sn) on Ag(001), Ag(111) and W(110) substrate has been studied at elevated temperatures (473 K) using x-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED). For Sn growth on silver substrates, it is noticed that both Sn 3d and Ag 3d core-level spectra shift in the higher binding energy direction due to the formation of surface alloy with the substrate. In both cases, surface alloy finally transforms into bulk alloy finally reaching bulk Sn value. For Sn growth on W(110) only Sn 3d core-level spectra shift in the higher binding energy direction due to surface core-level effect whereas no shift for tungsten core-level was noticed confirming no alloy formation. Sn is incorporated into the surface of substrate silver layer by removing every alternate or every third silver atoms to relieve the surface tensile stress as confirmed by LEED. On the other hand, tungsten being hard, Sn forms an overlayer structure by sitting in different energetically available positions rather than forming an alloy as energetically also it is not possible. Sn forms alloy with soft substrate silver and form overlayer films with tungsten. These studies are important in understanding the growth mechanism of Sn films on metal substrates.

  8. Viscosity stratification and the aspect ratio of convection rolls

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2005-11-01

    To clarify a mechanism by which earth's low--viscosity layer may increase the wavelength of mantle convection cells, we analyse the clockwise isothermal cellular motion driven by a uniform shear stress of magnitude τ applied at each end of a rectangle of height 2D and length L. The viscosity μ is a given piecewise-constant function of depth; within a low--viscosity channel of thickness d located at the top of the layer, μ=mμ1; elsewhere, within the `core', μ=μ1. We show that in the double limit d/D->0, m->0, this two--layer flow is equivalent to one in single layer of viscosity μ1 with a new boundary condition at its top representing the interaction of the channel and core flows. Let x=x*/L, y=y*/D and ψ= μ1ψ*/ τD^2. Then the stream function ψ for the core motion satisfies the b.v.p. ψyyyy+2 2̂ψxxyy+ 4̂ψxxxx=0; at |x|=1 , ψ=0, α^2ψxx=-1; at y=0 , ψ=0=ψyy; at y=1, ψyy- 2̂ψxx=0 , and ψyyy+3 2̂ψyxx= 3ɛψ. Here α=D/L and ɛ=mD^3/d^3. We find that for ɛ->0, the motion has two horizontal scales, namely D and L1= D/&1/2 ̂D. If the rectangle length L˜L1, fluid sinks at one end and rises at the other; those end flows occur on the scale D, and are connected by a long--wave flow on the scale L1. The cellular motion is closed within the low--viscosity layer. We have extended this method to treat convection rolls in a fluid of infinite Prandtl number. Our predicted heat flows agree well with those found in numerical simulations by Lenardic, Richards & Busse et al (2005) (J. Geophys. Res., to appear).

  9. Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F

    2012-03-07

    Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society

  10. Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide.

    PubMed

    Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano

    2015-02-11

    The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core.

    PubMed

    Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena

    2011-10-15

    A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Position-controlled MOVPE growth and electro-optical characterization of core-shell InGaN/GaN microrod LEDs

    NASA Astrophysics Data System (ADS)

    Schimpke, Tilman; Lugauer, H.-J.; Avramescu, A.; Varghese, T.; Koller, A.; Hartmann, J.; Ledig, J.; Waag, A.; Strassburg, M.

    2016-03-01

    Today's InGaN-based white LEDs still suffer from a significant efficiency reduction at elevated current densities, the so-called "Droop". Core-shell microrods, with quantum wells (QWs) covering their entire surface, enable a tremendous increase in active area scaling with the rod's aspect ratio. Enlarging the active area on a given footprint area is a viable and cost effective route to mitigate the droop by effectively reducing the local current density. Microrods were grown in a large volume metal-organic vapor phase epitaxy (MOVPE) reactor on GaN-on-sapphire substrates with a thin, patterned SiO2 mask for position control. Out of the mask openings, pencil-shaped n-doped GaN microrod cores were grown under conditions favoring 3D growth. In a second growth step, these cores are covered with a shell containing a quantum well and a p-n junction to form LED structures. The emission from the QWs on the different facets was studied using resonant temperature-dependent photoluminescence (PL) and cathodoluminescence (CL) measurements. The crystal quality of the structures was investigated by transmission electron microscopy (TEM) showing the absence of extended defects like threading dislocations in the 3D core. In order to fabricate LED chips, dedicated processes were developed to accommodate for the special requirements of the 3D geometry. The electrical and optical properties of ensembles of tens of thousands microrods connected in parallel are discussed.

  13. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    PubMed

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on four GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 min to 14 s. We regard this as an important step toward gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for EIT, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the adjoint method.

  14. Thermal stratification potential in rocket engine coolant channels

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.

    1992-01-01

    The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.

  15. Decorin is a Zn(2+) Metalloprotein

    NASA Technical Reports Server (NTRS)

    Yang, Vivian W.-C.; LaBrenz, Steven R.; Rosenberg, Lawrence C.; McQuillan, David; Hoeoek, Magnus

    1998-01-01

    Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. We here demonstrate that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells, has a high affinity for Zn(2+). Binding of Zn(2+) to decorin is demonstrated by Zn(2+) chelating chromatography and equilibrium dialyses. The Zn(2+) binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in the spacing reminiscent of a Zn finger. A recombinant 41 amino acid long peptide representing the N-terminal domain of decorin has full Zn(2+) binding activity and binds two Zn(2+) ions with an average K(D) of 3 x 10(exp -7) M. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn(2+) binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, did not bind Zn(2+) with high affinity.

  16. A novel ultra-broadband single polarization single mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Linghong; Zheng, Yi; Hou, Lantian; Zheng, Kai; Peng, Jiying; Zhao, Xingtao

    2017-08-01

    The concept of employing a central hole infiltrated with nematic liquid crystal (NLC) and two additional air holes in the core region is exploited to obtain an ultra-broadband single polarization single mode photonic crystal fiber (SPSM-PCF). The effects of structural parameters on the SPSM operation are studied using the full-vectorial finite element method. Numerical results show that the proposed structure can attain the SPSM operation bandwidth of 1610 nm (from 1.51 to 3.12 μm) with confinement loss lower than 0.01 dB/km. The SPSM operation range can also be widely tuned to shorter wavelengths by adjusting the structure parameters. And meanwhile, a broad dispersion-flattened SPSM PCF is also obtained around the communication wavelength. Moreover, the dual-core SPSM PCF has also been investigated, enabling potential applications in the wavelength splitter of 1.31 and 1.55 μm bands at a short fiber length of 1.629 mm with SPSM operation.

  17. A study of tensile test on open-cell aluminum foam sandwich

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  18. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R.; Ringer, Simon P.

    2009-02-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO2 layers onto the ITO or ITO/TiO2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO2 core-shell nanowires or pristine TiO2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  20. Characterization of the coating and tablet core roughness by means of 3D optical coherence tomography.

    PubMed

    Markl, Daniel; Wahl, Patrick; Pichler, Heinz; Sacher, Stephan; Khinast, Johannes G

    2018-01-30

    This study demonstrates the use of optical coherence tomography (OCT) to simultaneously characterize the roughness of the tablet core and coating of pharmaceutical tablets. OCT is a high resolution non-destructive and contactless imaging methodology to characterize structural properties of solid dosage forms. Besides measuring the coating thickness, it also facilitates the analysis of the tablet core and coating roughness. An automated data evaluation algorithm extracts information about coating thickness, as well as tablet core and coating roughness. Samples removed periodically from a pan coating process were investigated, on the basis of thickness and profile maps of the tablet core and coating computed from about 480,000 depth measurements (i.e., 3D data) per sample. This data enables the calculation of the root mean square deviation, the skewness and the kurtosis of the assessed profiles. Analyzing these roughness parameters revealed that, for the given coating formulation, small valleys in the tablet core are filled with coating, whereas coarse features of the tablet core are still visible on the final film-coated tablet. Moreover, the impact of the tablet core roughness on the coating thickness is analyzed by correlating the tablet core profile and the coating thickness map. The presented measurement method and processing could be in the future transferred to in-line OCT measurements, to investigate core and coating roughness during the production of film-coated tablets. Copyright © 2017. Published by Elsevier B.V.

  1. Convergence studies of deterministic methods for LWR explicit reflector methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canepa, S.; Hursin, M.; Ferroukhi, H.

    2013-07-01

    The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on verymore » different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)« less

  2. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription.

    PubMed

    Chen, Yanmeng; Hu, Jie; Cai, Xuefei; Huang, Yao; Zhou, Xing; Tu, Zeng; Hu, Jieli; Tavis, John E; Tang, Ni; Huang, Ailong; Hu, Yuan

    2018-01-01

    Hepatitis B virus is a partially double-stranded DNA virus that replicates by reverse transcription, which occurs within viral core particles in the cytoplasm. The cytidine deaminase APOBEC3B is a cellular restriction factor for HBV. Recently, it was reported that APOBEC3B can edit HBV cccDNA in the nucleus, causing its degradation. However, whether and how it can edit HBV core-associated DNAs during reverse transcription is unclear. Our studies to address this question revealed the following: First, silencing endogenous APOBEC3B in an HBV infection system lead to upregulation of HBV replication. Second, APOBEC3B can inhibit replication of HBV isolates from genotypes (gt) A, B, C, and D as determined by employing transfection of plasmids expressing isolates from four different HBV genotypes. For HBV inhibition, APOBEC3B-mediated inhibition of replication primarily depends on the C-terminal active site of APOBEC3B. In addition, employing the HBV RNaseH-deficient D702A mutant and a polymerase-deficient YMHA mutant, we demonstrated that APOBEC3B can edit both the HBV minus- and plus-strand DNAs, but not the pregenomic RNA in core particles. Furthermore, we found by co-immunoprecipitation assays that APOBEC3B can interact with HBV core protein in an RNA-dependent manner. Our results provide evidence that APOBEC3B can interact with HBV core protein and edit HBV DNAs during reverse transcription. These data suggest that APOBEC3B exerts multifaceted antiviral effects against HBV. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Alpan, F. A.; Fischer, G.A.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less

  4. STAR FORMATION AND FEEDBACK: A MOLECULAR OUTFLOW–PRESTELLAR CORE INTERACTION IN L1689N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lis, D. C.; Pagani, L.; Wootten, H. A.

    2016-08-20

    We present Herschel ,{sup 11} ALMA Compact Array (ACA), and Caltech Submillimeter Observatory observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar-type protostar IRAS 16293-2422. This source is characterized by some of the highest deuteration levels observed in the interstellar medium. The change in the NH{sub 2}D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas characterized by narrow line widths is seen in the NE part of the core,more » while broader, more disturbed line profiles are seen in the W/SW part. Strong N{sub 2}D{sup +} and ND{sub 3} emission is detected with ACA extending S/SW from the peak of the single-dish NH{sub 2}D emission. The ACA data also reveal the presence a compact dust continuum source with a mean size of ∼1100 au, a central density of (1–2) × 10{sup 7} cm{sup −3}, and a mass of 0.2–0.4 M {sub ⊙}. The dust emission peak is displaced ∼5″ to the south with respect to the N{sub 2}D{sup +} and ND{sub 3} emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.« less

  5. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  6. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  7. Analytical model for a laminated shape memory alloy beam with piezoelectric layers

    NASA Astrophysics Data System (ADS)

    Viet, N. V.; Zaki, W.; Umer, R.

    2018-03-01

    We propose an analytical model for a laminated beam consisting of a superelastic shape memory alloy (SMA) core layer bonded to two piezoelectric layers on its top and bottom surfaces. The model accounts for forward and reverse phase transformation between austenite and martensite during a full isothermal loading-unloading cycle starting a full austenite in the SMA layer. In particular, the laminated composite beam has a rectangular cross section and is fixed at one end while the other end is subjected to a concentrated transverse force acting at the tip. The moment-curvature relation is analytically derived. The generated electric displacement output from the piezoelectric layers is then determined using the linear piezoelectric theory. The results are compared to 3D simulations using finite element analysis (FEA). The comparison shows good agreement in terms of electric displacement, in general, throughout the loading cycle.

  8. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  9. Universal scaling relations in scale-free structure formation

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-07-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM ∝ M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters, and even dark matter haloes. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power-law tail of dA/dln Σ ∝ Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D ∝ R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM haloes) tend to a ρ ∝ R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation, and detailed `full physics' hydrodynamical simulations. We find that these power laws are good first-order descriptions in all cases.

  10. Universal Scaling Relations in Scale-Free Structure Formation

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  11. The N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD

    PubMed Central

    Dickenson, Nicholas E.; Arizmendi, Olivia; Patil, Mrinalini K.; Toth, Ronald T.; Middaugh, C. Russell; Picking, William D.; Picking, Wendy L.

    2014-01-01

    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri, providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is comprised of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g. deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. While the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study due to the hydrophobic nature of the IpaB and IpaC translocator proteins. Here we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11–27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation. PMID:24236510

  12. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  13. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2012-12-01

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  14. Unusual enhancement of effective magnetic anisotropy with decreasing particle size in maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S.

    2017-05-01

    In magnetic nanoparticles (NPs), the observed increase in the effective magnetic anisotropy Keff with the decrease in particle size D is often interpreted, sometimes unsuccessfully, using the equation Keff = Kb + (6KS/D), where Kb is the bulk-like anisotropy of the core spins and KS is the anisotropy of spins in the surface layer. Here, we test the validity of this relation in γ-Fe2O3 NPs for sizes D from 15 nm to 2.5 nm. The samples include oleic acid-coated NPs with D = 2.5, 3.4, 6.3, and 7.0 nm investigated here, with results on 14 other sizes taken from literature. Keff is determined from the analysis of the frequency dependence of the blocking temperature TB after considering the effects of interparticle interactions on TB. For the γ-Fe2O3 NPs with D < 5 nm, an unusual enhancement of Keff with decreasing D, well above the magnitudes predicted by the above equation, is observed. Instead the variation of Keff vs. D is best described by an extension of the above equation by including Ksh term from spins in a shell of thickness d. Based on this core-shell-surface layer model, the data are fit to the equation Keff = Kb + (6KS/D) + Ksh{[1-(2d/D)]-3-1} with Kb = 1.9 × 105 ergs/cm3, KS = 0.035 ergs/cm2, and Ksh = 1.057 × 104 ergs/cm3 as the contribution of spins in the shell of thickness d = 1.1 nm. Significance of this result is discussed.

  15. Seismic inversion for incoming sedimentary sequence in the Nankai Trough margin off Kumano Basin, southwest Japan

    NASA Astrophysics Data System (ADS)

    Naito, K.; Park, J.

    2012-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its possible implications for the Nankai seismogenic behavior.

  16. View planetary differentiation process through high-resolution 3D imaging

    NASA Astrophysics Data System (ADS)

    Fei, Y.

    2011-12-01

    Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.

  17. Higher-order symmetry energy and neutron star core-crust transition with Gogny forces

    NASA Astrophysics Data System (ADS)

    Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Rios, A.

    2017-12-01

    Background: An accurate determination of the core-crust transition is necessary in the modeling of neutron stars for astrophysical purposes. The transition is intimately related to the isospin dependence of the nuclear force at low baryon densities. Purpose: To study the symmetry energy and the core-crust transition in neutron stars using the finite-range Gogny nuclear interaction and to examine the deduced crustal thickness and crustal moment of inertia. Methods: The second-, fourth-, and sixth-order coefficients of the Taylor expansion of the energy per particle in powers of the isospin asymmetry are analyzed for Gogny forces. These coefficients provide information about the departure of the symmetry energy from the widely used parabolic law. The neutron star core-crust transition is evaluated by looking at the onset of thermodynamical instability of the liquid core. The calculation is performed with the exact Gogny equation of state (EoS) (i.e., the Gogny EoS with the full isospin dependence) for the β -equilibrated matter of the core, and also with the Taylor expansion of the Gogny EoS in order to assess the influence of isospin expansions on locating the inner edge of neutron star crusts. Results: The properties of the core-crust transition derived from the exact EoS differ from the predictions of the Taylor expansion even when the expansion is carried through sixth order in the isospin asymmetry. Gogny forces, using the exact EoS, predict the ranges 0.094 fm-3≲ρt≲0.118 fm-3 for the transition density and 0.339 MeVfm-3≲Pt≲0.665 MeVfm-3 for the transition pressure. The transition densities show an anticorrelation with the slope parameter L of the symmetry energy. The transition pressures are not found to correlate with L . Neutron stars obtained with Gogny forces have maximum masses below 1.74 M⊙ and relatively small moments of inertia. The crustal mass and moment of inertia are evaluated and comparisons are made with the constraints from observed glitches in pulsars. Conclusions: The finite-range exchange contribution of the nuclear force, and its associated nontrivial isospin dependence, is key in determining the core-crust transition properties. Finite-order isospin expansions do not reproduce the core-crust transition results of the exact EoS. The predictions of the Gogny D1M force for the stellar crust are overall in broad agreement with those obtained using the Skyrme-Lyon EoS.

  18. Pile noise experiment in MINERVE reactor to estimate kinetic parameters using various data processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslot, Benoit; Gruel, Adrien; Pepino, Alexandra

    2015-07-01

    MINERVE is a two-zone pool type zero power reactor operated by CEA (Cadarache, France). Kinetic parameters of the core (prompt neutron decay constant, delayed neutron fraction, generation time) have been recently measured using various pile noise experimental techniques, namely Feynman-α, Rossi-α and Cohn-α. Results are discussed and compared to each other's. The measurement campaign has been conducted in the framework of a tri-partite collaboration between CEA, SCK.CEN and PSI. Results presented in this paper were obtained thanks to a time-stamping acquisition system developed by CEA. PSI performed simultaneous measurements which are presented in a companion paper. Signals come from twomore » high efficiency fission chambers located in the graphite reflector next to the core driver zone. Experiments were conducted at critical state with a reactor power of 0.2 W. The core integral fission rate is obtained from a calibrated miniature fission chamber located at the center of the core. Other results obtained in two sub-critical configurations will be presented elsewhere. Best estimate delayed neutron fraction comes from the Cohn-α method: 747 ± 15 pcm (1σ). In this case, the prompt decay constant is 79 ± 0.5 s{sup -1} and the generation time is 94.5 ± 0.7 μs. Other methods give consistent results within the confidence intervals. Experimental results are compared to calculated values obtained from a full 3D core modeling with the CEA-developed Monte Carlo code TRIPOLI4.9 associated with its continuous energy JEFF3.1.1-based library. A very good agreement is observed for the calculated delayed neutron fraction (748.7 ± 0.4 pcm at 1σ), that is a difference of -0.3% with the experiment. On the contrary, a 10% discrepancy is observed for the calculated generation time (104.4 ± 0.1 μs at 1σ). (authors)« less

  19. Multidimensional neutrino-transport simulations of the core-collapse supernova central engine

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2017-01-01

    Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.

  20. Functional organization of the Sm core in the crystal structure of human U1 snRNP.

    PubMed

    Weber, Gert; Trowitzsch, Simon; Kastner, Berthold; Lührmann, Reinhard; Wahl, Markus C

    2010-12-15

    U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5'-splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the Sm site RNA using their Sm1 and Sm2 motifs. Proteins D1 and D2 guide the snRNA into and out of the Sm ring, and proteins F and E mediate a direct interaction between the Sm site termini. Terminal extensions of proteins D1, D2 and B/B', and extended internal loops in D2 and B/B' support a four-way RNA junction and a 3'-terminal stem-loop on opposite sides of the Sm core RNP, respectively. On a higher organizational level, the core RNP presents multiple attachment sites for the U1-specific 70K protein. The intricate, multi-layered interplay of proteins and RNA rationalizes the hierarchical assembly of U snRNPs in vitro and in vivo.

  1. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2011-11-01

    The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.

  2. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less

  3. Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-02-01

    Aims:To measure the supernova (SN) rates at intermediate redshift we performed a search, the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. Methods: We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of 43 000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. Results: The type Ia SN rate, at mean redshift z=0.3, is 0.22+0.10 +0.16-0.08 -0.14 h702 SNu, while the CC SN rate, at z=0.21, is 0.82+0.31 +0.30-0.24 -0.26 h702 SNu. The quoted errors are the statistical and systematic uncertainties. Conclusions: With respect to the local value, the CC SN rate at z=0.2 is higher by a factor of 2, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2{-}3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe than SNe Ia. We have exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations. We conclude that in order to constrain the mass range of CC SN progenitors and SN Ia progenitor models it is necessary to reduce the uncertainties in the cosmic SFH. In addition it is important to apply a consistent dust extinction correction both to SF and to CC SN rate and to measure the SN Ia rate in star forming and in passively evolving galaxies over a wide redshift range. Based on observations collected at the European Southern Observatory, using the 2.2 m MPG/ESO telescope on the La Silla (ESO Programmes 62.H-0833, 63.H-0322, 64.H-0390, 67.D-0422, 68.D-0273, 69.D-0453, 72.D-0670, 72.D-0745, 73.D-0670, 74.A-9008, 75.D-0662) and using Very Large Telescope on the Cerro Paranal (ESO Programme 74.D-0714). Table [see full textsee full textsee full text], Figs. [see full textsee full textsee full text]-[see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  4. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence

    PubMed Central

    Connolly, James P. R.; Gabrielsen, Mads; Goldstone, Robert J.; Grinter, Rhys; Wang, Dai; Cogdell, Richard J.; Walker, Daniel; Smith, David G. E.; Roe, Andrew J.

    2016-01-01

    The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to “sense” levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host. PMID:26727373

  5. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  6. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  7. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-03

    Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Searching for the light-element candidate of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, Y.; Vocadlo, L.; Brodholt, J. P.; Wood, I. G.

    2016-12-01

    The mismatch between the seismic observations of the Earth's inner core and observations from mineral physics (Vočadlo, 2007; Vočadlo et al., 2009; Belonoshko et al., 2007; Martorell et al., 2013) questions the basic structure of the core and also makes it more difficult to understand its other complex characteristics. The premelting elastic softening predicted in hcp Fe under inner core conditions gives a match with seismic wave velocities, but clearly the density is too high (Martorell et al., 2013); in addition, the origin of such premelting softening is not clear. Using ab-initio based simulation techniques, we have studied the structures and elastic properties of Fe alloys and compounds with C and Si that are strongly relevant to the inner core. The densities and elastic constants were obtained up to melting under inner core pressures. The premelting elastic softening observed in hcp Fe was also observed in materials like Fe7C3, and was found to be correlated with the partial weakening of the bonding network, but the density of Fe7C3 is too low to match that of the inner core. However, the density and elastic properties from calculations on the Fe-Si-C ternary alloy were found to be very close to the seismic observations of the core, suggesting that it may, finally, be possible to report a core composition which is fully matched with seismology. Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., Johansson, B., (2007). Science 316 (5831), 1603-1605. Vočadlo, L., (2007). Earth. Planet. Sci. Lett., 254 (1), 227-232. Vočadlo, L., Brodholt, J., Dobson, D.P., Knight, K., Marshall, W., Price, G.D., Wood, I.G. (2002). Earth. Planet. Sci. Lett., 203 (1) 567-575. Vočadlo, L., Dobson, D. P., Wood, I. G., (2009). Earth. Planet. Sci. Lett., 288 (3), 534-538. Martorell, B., Vočadlo, L., Brodholt, J., Wood, I. G., (2013b). Science 342 (6157), 466-468.

  9. Poisson noise removal with pyramidal multi-scale transforms

    NASA Astrophysics Data System (ADS)

    Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.

    2013-09-01

    In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.

  10. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  11. Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors.

    PubMed

    Chen, Gao-Feng; Su, Yu-Zhi; Kuang, Pan-Yong; Liu, Zhao-Qing; Chen, Dao-Yi; Wu, Xu; Li, Nan; Qiao, Shi-Zhang

    2015-03-16

    Three-dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high-performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D-Ni-core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as-prepared material exhibits a high specific capacitance (726 F g(-1) at a charge/discharge rate of 1 A g(-1)), good rate capability (a decay of 33% in Csp with charge/discharge rates increasing from 1 to 20 A g(-1)), and high cycle stability (only a small decrease of 4.2% in Csp after 1000 cycles at a scan rate of 100 mV s(-1)). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as-prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg(-1)) and superior long-term cycle ability (only 4.4% and 18.6% loss in Csp after 2000 and 5000 cycles, respectively). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Large Scale EOF Analysis of Climate Data

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  13. Fast 3D Surface Extraction 2 pages (including abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer; Patchett, John M.; Ahrens, James P.

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTONmore » OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.« less

  14. Pathology in a tube step 2: simple rapid fabrication of curved circular cross section millifluidic channels for biopsy preparation/3D imaging towards pancreatic cancer detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Das, Ronnie; Burfeind, Chris W.; Lim, Saniel D.; Patle, Shubham; Seibel, Eric J.

    2018-02-01

    3D pathology is intrinsically dependent on 3D microscopy, or the whole tissue imaging of patient tissue biopsies (TBs). Consequently, unsectioned needle specimens must be processed whole: a procedure which cannot necessarily be accomplished through manual methods, or by retasking automated pathology machines. Thus "millifluidic" devices (for millimeter-scale biopsies) are an ideal solution for tissue handling/preparation. TBs are large, messy and a solid-liquid mixture; they vary in material, geometry and structure based on the organ biopsied, the clinician skill and the needle type used. As a result, traditional microfluidic devices are insufficient to handle such mm-sized samples and their associated fabrication techniques are impractical and costly with respect to time/efficiency. Our research group has devised a simple, rapid fabrication process for millifluidic devices using jointed skeletal molds composed of machined, reusable metal rods, segmented rods and stranded wire as structural cores; these cores are surrounded by Teflon outer housing. We can therefore produce curving, circular-cross-section (CCCS) millifluidic channels in rapid fashion that cannot normally be achieved by microfabrication, micro-/CNC-machining, or 3D printing. The approach has several advantages. CLINICAL: round channels interface coring needles. PROCESSING: CCCS channels permit multi-layer device designs for additional (processing, monitoring, testing) stages. REUSABILITY: for a biopsy/needle diameter, molding (interchangeable) components may be produced one-time then reused for other designs. RAPID: structural cores can be quickly removed due to Teflon®'s ultra-low friction; housing may be released with ethanol; PDMS volumes cure faster since metal skeleton molds conduct additional heat from within the curing elastomer.

  15. Hydrogen isotope exchanges between water and methanol in interstellar ices

    NASA Astrophysics Data System (ADS)

    Faure, A.; Faure, M.; Theulé, P.; Quirico, E.; Schmitt, B.

    2015-12-01

    The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorporated using laboratory data. The [CH2DOH]/[CH3OD] ratio is found to scale inversely with the D/H ratio of water, owing to the H/D exchange equilibrium between the hydroxyl (-OH) functional groups of methanol and water. Our model is able to reproduce the observed [CH2DOH]/[CH3OD] ratios provided that the primitive fractionation of water ice [HDO]/[H2O] is ~2% in IRAS 16293-2422 and ~0.6% in Orion KL. We conclude that the molecular D/H ratios measured in hot cores may not be representative of the original mantles because molecules with exchangeable deuterium atoms can equilibrate with water ice during the warm-up phase.

  16. All-electron GW quasiparticle band structures of group 14 nitride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Iek-Heng; Cheng, Hai-Ping, E-mail: cheng@qtp.ufl.edu; Kozhevnikov, Anton

    We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γmore » point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.« less

  17. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    PubMed

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  18. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI formore » performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)« less

  19. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    PubMed

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparing a novel automatic 3D method for LGE-CMR quantification of scar size with established methods.

    PubMed

    Woie, Leik; Måløy, Frode; Eftestøl, Trygve; Engan, Kjersti; Edvardsen, Thor; Kvaløy, Jan Terje; Ørn, Stein

    2014-02-01

    Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35-50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (-2.8 ± 2.3 %) and core size (-3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = -0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods.

  1. Astrochemical Properties of Planck Cold Clumps

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Liu, Tie; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Lu'o'ng, Quang; Hirota, Tomoya; Liu, Sheng-Yuan; Hirano, Naomi; Choi, Minho; Kang, Miju; Thompson, Mark A.; Fuller, Gary; Wu, Yuefang; Li, Di; Di Francesco, James; Kim, Kee-Tae; Wang, Ke; Ristorcelli, Isabelle; Juvela, Mika; Shinnaga, Hiroko; Cunningham, Maria; Saito, Masao; Lee, Jeong-Eun; Tóth, L. Viktor; He, Jinhua; Sakai, Takeshi; Kim, Jungha; JCMT Large Program "SCOPE" Collaboration; TRAO Key Science Program "TOP" Collaboration

    2017-02-01

    We observed 13 Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N2H+ distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC3N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N2H+ emission. The CCS emission, which is known to be abundant in starless molecular cloud cores, is often very clumpy in the observed targets. We made deep single-pointing observations in DNC, HN13C, N2D+, and cyclic-C3H2 toward nine clumps. The detection rate of N2D+ is 50%. Furthermore, we observed the NH3 emission toward 15 Planck cold clumps to estimate the kinetic temperature, and confirmed that most targets are cold (≲20 K). In two of the starless clumps we observed, the CCS emission is distributed as it surrounds the N2H+ core (chemically evolved gas), which resembles the case of L1544, a prestellar core showing collapse. In addition, we detected both DNC and N2D+. These two clumps are most likely on the verge of star formation. We introduce the chemical evolution factor (CEF) for starless cores to describe the chemical evolutionary stage, and analyze the observed Planck cold clumps.

  2. A Deuterium NMR Study of Bent-Core Liquid Crystals. 1; Synthesis and Characterization of Deuterium-Labeled Oxadiazole-Containing Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, ([4,4'(1,3,4-oxadiazole-2,5-diyl-d4)] di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and ([4,4'(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog [4,4(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.

  3. An 800-Year Record of Sediment-Derived, Instrumentally-Calibrated Foraminiferal Mg/Ca SST Estimates From the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Black, D. E.; Abahazi, M. A.; Thunell, R. C.; Tappa, E. J.

    2005-12-01

    Most geochemical paleoclimate proxies are calibrated to different climate variables using laboratory culture, surface sediment, or sediment trap experiments. The varved, high-deposition rate sediments of the Cariaco Basin (Venezuela) provide the nearly unique opportunity to compare and calibrate paleoceanographic proxy data directly against true oceanic historical instrumental climate records. Here we present one of the first sediment-derived foraminiferal-Mg/Ca to SST calibrations spanning A. D. 1870-1990. The record of Mg/Ca-estimated tropical North Atlantic SSTs is then extended back to approximately A. D. 1200. Box core PL07-73 BC, recovered from the northeastern slope of Cariaco Basin, was sampled at consecutive 1 mm increments and processed for foraminiferal population, stable isotope, and Mg/Ca (by ICP-AES) analyses. The age model for this core was established by correlating faunal population records from PL07-73 to a nearby very well-dated Cariaco Basin box core, PL07-71 BC. The resulting age model yields consecutive sample intervals of one to two years. Mg/Ca ratios measured on Globigerina bulloides in samples deposited between A. D. 1870 and 1990 were calibrated to monthly SSTs from the Met Office Hadley Centre's SST data set for the Cariaco Basin grid square. Annual correlations between G. bulloides Mg/Ca and instrumental SST were highest (r=0.6, p<.0001, n=120) for the months of March, April, and May, the time when sediment trap studies indicate G. bulloides is most abundant in the basin. The full-length Mg/Ca-estimated SST record is characterized by decadal- and centennial-scale variability. The tropical western North Atlantic does not appear to have experienced a pronounced Medieval Warm Period relative to the complete record. However, strong Little Ice Age cooling of as much as 3 ° C occurred between A. D. 1525 and 1625. Spring SSTs gradually rose between A. D. 1650 and 1900 followed by a 2.5 ° C warming over the 20th century.

  4. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber.

    PubMed

    Ito, Hideyuki; Yamaguchi, Koji; Kim, Tae-Hoon; Khennouf, Seddik; Gharzouli, Kamel; Yoshida, Takashi

    2002-03-01

    Three new hydrolyzable tannins, cocciferins D(1) (1), D(2) (2), and T(1) (4), were isolated from the leaves of Quercus coccifera. Cocciferin D(2) (2) and two additional new tannins, cocciferins D(3) (3) and T(2) (5), were also obtained from the leaves of Quercus suber. Their oligomeric structures were elucidated on the basis of spectroscopic methods and chemical evidence. Compounds 2, 3, and 5 were rare oligomers possessing glucose cores with both open-chain and pyranose forms.

  5. 32 CFR 169.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... performance by DoD personnel. Core Logistics. Those functions identified as core logistics activities pursuant... 10 that are necessary to maintain a logistics capability (including personnel, equipment, and...; and labor surplus area set-asides and awards made under Pub. L. 85-536, section 8(a) and Pub. L. 95...

  6. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    NASA Astrophysics Data System (ADS)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  7. Low-loss multimode interference couplers for terahertz waves

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  8. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less

  9. IGA-ADS: Isogeometric analysis FEM using ADS solver

    NASA Astrophysics Data System (ADS)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  10. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on 4 GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 minutes to 14 seconds. We regard this as an important step towards gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for Electrical Impedance Tomography, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the Adjoint Method. PMID:23010857

  11. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    NASA Astrophysics Data System (ADS)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to the 3D multicomponent field survey data. Main features of the geological models, especially boundaries of main ore bodies were comparable in both data sets. This shows that the 3D geophysical model based on local geology and limited core samples is in fair agreement with the lithologic units confirmed from the field seismic survey data.

  12. Tank 241-B-108, cores 172 and 173 analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L., Fluoro Daniel Hanford

    1997-03-04

    The Data Summary Table (Table 3) included in this report compiles analytical results in compliance with all applicable DQOS. Liquid subsamples that were prepared for analysis by an acid adjustment of the direct subsample are indicated by a `D` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a fusion digest are indicated by an `F` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a water digest are indicated by a I.wl. or an `I` in the A column of Table 3. Due to poormore » precision and accuracy in original analysis of both Lower Half Segment 2 of Core 173 and the core composite of Core 173, fusion and water digests were performed for a second time. Precision and accuracy improved with the repreparation of Core 173 Composite. Analyses with the repreparation of Lower Half Segment 2 of Core 173 did not show improvement and suggest sample heterogeneity. Results from both preparations are included in Table 3.« less

  13. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    PubMed

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  14. Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver

    NASA Astrophysics Data System (ADS)

    Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo

    2017-06-01

    We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3-D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so-called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3-D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10, 30 and 40 per cent of their full-rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O(N2) for the full-rank solver to O(Nm) with m = 1.4-1.6. The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3-D controlled-source electromagnetic Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.

  15. Modeling and Theory of RF Antenna Systems on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team

    2017-10-01

    The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  16. 1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries.

    PubMed

    Gao, Ping; Zhang, Lingzi; Sun, Lin; Huang, Tianguang; Tan, Jing; Zhang, Jian; Zhou, Zhongxia; Zhao, Tong; Menéndez-Arias, Luis; Pannecouque, Christophe; Clercq, Erik De; Zhan, Peng; Liu, Xinyong

    2017-10-15

    A small library containing 3-hydroxyquinazoline-2,4(1H,3H)-dione and 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one scaffolds was obtained via the copper(I)-catalyzed azidealkyne cycloaddition (CuAAC) reaction and evaluated for their anti-HIV activity in MT-4 cells. Among the synthesized compounds, several 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one derivatives showed remarkable anti-HIV potency with EC 50 values ranging from 0.92 to 26.85µM. The most active one, IIA-2, also showed remarkable and selective potency against HIV type 1 integrase (IN). To the best of our knowledge, this is the first report showing that 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones are selective HIV IN inhibitors. Preliminary structure-activity relationship (SAR) studies suggested that the divalent metal ion chelators and the nature and position of substituents around the core are important for antiviral potency. Molecular modeling has been used to predict the binding site of the pyrido[2,3-d]pyrimidin-2(1H)-one core in HIV type 1 IN and suggestions are made for improvement of its inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.

    PubMed

    Bragin, E Yu; Shtratnikova, V Yu; Dovbnya, D V; Schelkunov, M I; Pekov, Yu A; Malakho, S G; Egorova, O V; Ivashina, T V; Sokolov, S L; Ashapkin, V V; Donova, M V

    2013-11-01

    A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application. Copyright © 2013. Published by Elsevier Ltd.

  18. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing.

    PubMed

    Zhao, Guifang; Liu, Feilin; Lan, Shaowei; Li, Pengdong; Wang, Li; Kou, Junna; Qi, Xiaojuan; Fan, Ruirui; Hao, Deshun; Wu, Chunling; Bai, Tingting; Li, Yulin; Liu, Jin Yu

    2015-03-19

    Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.

  19. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  20. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    PubMed Central

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2017-01-01

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not been well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. We also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology. PMID:28776025

  1. Origin of the Lyme Dome and implications for the timing of multiple Alleghanian deformational and intrusive events in southern Connecticut

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.; Wintsch, R.P.

    2007-01-01

    Geologic mapping, structural analysis, and geochronology in the area of the Lyme dome, southern Connecticut provides constraints on the origin of the rocks in the core of the dome, the absolute timing of the principal deformational and thermal events attributed to Alleghanian orogenesis, and the processes that generated the dome. Detrital zircon geochronology in combination with ages on intrusive rocks brackets the deposition of quartzite in the core of the dome sometime between ca. 925 and 620 Ma. Granite and granodiorite intruded the Neoproteorozic metasedimentary rocks in the core of the dome at ca. 620 to 610 Ma. Four major early Permian events associated with the Alleghanian orogeny affected the rocks in the Lyme dome area. Syn-tectonic migmatization and widespread penetrative deformation (D1, ca. 300 - 290 Ma) included emplacement of alaskite at 290 ?? 4 Ma during regional foliation development and aluminosilicate-orthoclase metamorphic conditions. Rocks of the Avalon terrane may have wedged between Gander cover rocks and Gander basement in the core of the Lyme during D1. Limited structural evidence for diapiric uplift of the Lyme dome indicates that diapirism started late in D1 and was completed by D2 (ca. 290 - 280 Ma) when horizontal WNW contractional stresses dominated over vertical stresses. Second sillimanite metamorphism continued and syn-tectonic D2 granite pegmatite (288 ?? 4 Ma) and the Joshua Rock Granite Gniess (284 ?? 3 Ma) intruded at this time. North-northwest extension during D3 (ca. 280 - 275 Ma) led to granitic pegmatite intrusion along S3 cleavage planes and in extensional zones in boudin necks during hydraulic failure and decompression melting. Intrusion of a Westerly Granite dike at 275 ?? 4 Ma suggests that D3 extension was active, and perhaps concluding, by ca. 275 Ma. Late randomly oriented but gently dipping pegmatite dikes record a final stage of intrusion during D4 (ca. 275 - 260 Ma), and a switch from NNW extension to vertical unloading and exhumation. Monazite and metamorphic zircon rim ages record this event at ca. 259 Ma. The evolution of the Lyme dome involved D1 mylonitization, intrusion, and migmatization during north-directed contraction, limited late D1 diapirism, D2 migmatization during WNW contraction with associated flexural flow and fold interference, D3 NNW horizontal extension and decompression melting, and final D4 vertical extension and rapid exhumation. Late regional uplift, extension, and normal faulting at higher crustal levels may have been caused by diapiric rise of the lower crust, below the structural level of the Lyme dome. The rocks record no evidence of Acadian metamorphism or deformation, suggesting that the Gander zone here was not tectonically juxtaposed with Avalon until the Alleghanian orogeny.

  2. Synthesis and Antiplasmodial Evaluation of Analogues Based on the Tricyclic Core of Thiaplakortones A-D.

    PubMed

    Schwartz, Brett D; Coster, Mark J; Skinner-Adams, Tina S; Andrews, Katherine T; White, Jonathan M; Davis, Rohan A

    2015-09-15

    Six regioisomers associated with the tricyclic core of thiaplakortones A-D have been synthesized. Reaction of 1H-indole-4,7-dione and 1-tosyl-1H-indole-4,7-dione with 2-aminoethanesulfinic acid afforded a regioisomeric series, which was subsequently deprotected and oxidized to yield the tricyclic core scaffolds present in the thiaplakortones. All compounds were fully characterized using NMR and MS data. A single crystal X-ray structure was obtained on one of the N-tosyl derivatives. All compounds were screened for in vitro antiplasmodial activity against chloroquine-sensitive (3D7) and multidrug-resistant (Dd2) Plasmodium falciparum parasite lines. Several analogues displayed potent inhibition of P. falciparum growth (IC50 < 500 nM) but only moderate selectivity for P. falciparum versus human neonatal foreskin fibroblast cells.

  3. MRI Measurements and Granular Dynamics Simulation of Segregation of Granular Mixture

    NASA Technical Reports Server (NTRS)

    Nakagawa, M.; Moss, Jamie L.; Altobelli, Stephen A.

    1999-01-01

    A counter intuitive axial segregation phenomenon in a rotating horizontal cylinder has recently captured attention of many researchers in different disciplines. There is a growing consensus that the interplay between the particle dynamics and the evolution of the internal structure during the segregation process must be carefully investigated. Magnetic resonance imaging (MRI) has been used to non-invasively obtain much needed dynamic/static information such as velocity and concentration profiles, and it has proven to be capable of depicting the evolution of segregation processes. Segregation in a rotating cylinder involves two processes: the first is to transport small particles in the radial direction to form a radial core, and the second is to transform the radial core into axially segregated bands. Percolation and/or "stopping" have been proposed as mechanisms for the radial segregation. As to mechanisms for axial band formation, much less is known. The difference in the dynamic angle of repose has been proposed to segregate different components in the axial direction. Recently, Hill and Kakalios have reported that particles mix or demix depending upon the competition between diffusion and preferential drift whose order can be determined by the dynamic angle of repose through the adjustment of the rotation rate. We claim that the dynamic angle of repose could be one of the causes, however, it fails to offer reasonable explanations for certain aspects of the axial migration. For example, we always observe that the radial segregation precedes the axial segregation and small particles migrate in the radial direction to form an axially extended radial core. It then transforms into axially segregated bands. By definition, the effects of the dynamic angle of repose are restricted near the free surface where the flowing layer is present. However, during the process of transforming from the radially segregated core to axially segregated bands, small particles located in the deep core region, which is untouched by the flowing layer, also completely disappear. Usually, the dynamics angle of repose are uniquely defined for individual species to characterize particle properties, and the dynamic angle of repose thus defined provides little information for the dynamic angle of repose of the mixture since the concentration ratio and the internal packing structure do not remain the same during the segregation processes. Under microgravity environment, the dynamics angle of repose argument does not hold since there is simply no flowing layer to influence/determine the preferred directions of segregation. We have thus designed an experiment so that the effects of the dynamic angle of repose can be minimized by filling the cylinder almost completely full. Small particles still formed a radial core and also migrated to form axial bands. As ground based experiments we have designed and conducted both 2D and 3D segregation experiments. The 2D experiments are performed using a thin cylinder (the gap between two end caps is about 5 mm) filled with different combinations of particles. The 3D experiments are conducted with a long cylinder of its length and diameter of 27cm and 7cm, respectively. Results of 2D experiments indicate that different mechanisms govern particle motion in regions near and far from the axis of rotation. Results of 3D experiments indicate that a series of collapses of microstructures of particle packing (micro-collapses) may be responsible for the creation of voids for small particles to migrate through in the axial direction. We have successfully eliminated the dynamic angle of repose as a cause for segregation, however, by almost completely filling the cylinder with the particles, we have lost an opportunity to investigate a possibility of particle "mobility" being a cause for segregation which requires a flowing surface but not the difference in the angle of repose. This is currently being investigated.

  4. Inner-shell photoionization and core-hole decay of Xe and XeF2.

    PubMed

    Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  5. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  6. Inner-shell photoionization and core-hole decay of Xe and XeF 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Stephen H.; Wehlitz, Ralf; Picón, Antonio

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d5/2, Xe 3d3/2, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-statemore » distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F+ and F2+ ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe+ and F+ ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less

  7. New Dimensions in Microarchitecture Harnessing 3D Integration Technologies (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-06

    Quad Core Bandwidth and Latency Boundaries General Purpose Processor Loads Latency limited Ba nd w id th li m ite dProcessor load trade -off between I...delay No= number of ckts at 1V do= ckt delay at 1V From “3D Intergration ” Special Topic Sessionl W. Haensch, ISSCC ‘07, 2/07 11 DARPA MTS March 6, 2007

  8. Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan

    2016-09-01

    Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.

  9. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  10. Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel

    NASA Astrophysics Data System (ADS)

    Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik

    2017-11-01

    We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.

  11. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crerar, Shane J.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca; Grosvenor, Andrew P.

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative tomore » Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support assignment of anionic Sb atoms. Black-Right-Pointing-Pointer Fitted valence band spectra show shifts in the 4f band as RE is changed.« less

  12. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing.

    PubMed

    Goyanes, Alvaro; Fina, Fabrizio; Martorana, Annalisa; Sedough, Daniel; Gaisford, Simon; Basit, Abdul W

    2017-07-15

    The aim of this study was to manufacture 3D printed tablets (printlets) from enteric polymers by single filament fused deposition modeling (FDM) 3D printing (3DP). Hot melt extrusion was used to generate paracetamol-loaded filaments from three different grades of the pharmaceutical excipient hypromellose acetate succinate (HPMCAS), grades LG, MG and HG. One-step 3DP was used to process these filaments into enteric printlets incorporating up to 50% drug loading with two different infill percentages (20 and 100%). X-ray Micro Computed Tomography (Micro-CT) analysis revealed that printlets with 20% infill had cavities in the core compared to 100% infill, and that the density of the 50% drug loading printlets was higher than the equivalent formulations loaded with 5% drug. In biorelevant bicarbonate dissolution media, drug release from the printlets was dependent on the polymer composition, drug loading and the internal structure of the formulations. All HPMCAS-based printlets showed delayed drug release properties, and in the intestinal conditions, drug release was faster from the printlets prepared with polymers with a lower pH-threshold: HPMCAS LG > HPMCAS MG > HPMCAS HG. These results confirm that FDM 3D printing makes it possible not only to manufacture delayed release printlets without the need for an outer enteric coating, but it is also feasible to adapt the release profile in response to the personal characteristics of the patient, realizing the full potential of additive manufacturing in the development of personalised dose medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Association of Vitamin D Status in Lower Extremity Muscle Strains and Core Muscle Injuries at the National Football League Combine.

    PubMed

    Rebolledo, Brian J; Bernard, Johnathan A; Werner, Brian C; Finlay, Andrea K; Nwachukwu, Benedict U; Dare, David M; Warren, Russell F; Rodeo, Scott A

    2018-04-01

    To evaluate the association between serum vitamin D level and the prevalence of lower extremity muscle strains and core muscle injuries in elite level athletes at the National Football League (NFL) combine. During the 2015 NFL combine, all athletes with available serum vitamin D levels were included for study. Baseline data were collected, including age, race, body mass index, position, injury history specific to lower extremity muscle strain or core muscle injury, and Functional Movement Screen scores. Serum 25-hydroxyvitamin D was collected and defined as normal (≥32 ng/mL), insufficient (20-31 ng/mL), and deficient (<20 ng/mL). Univariate regression analysis was used to examine the association of vitamin D level and injury history. Subsequent multivariate regression analysis was used to examine this relation with adjustment for collected baseline data variables. The study population included 214 athletes, including 78% African American athletes and 51% skilled position players. Inadequate vitamin D was present in 59%, including 10% with deficient levels. Lower extremity muscle strain or core muscle injury was present in 50% of athletes, which was associated with lower vitamin D levels (P = .03). Athletes with a positive injury history also showed significantly lower vitamin D levels as compared with uninjured athletes (P = .03). African American/black race (P < .001) and injury history (P < .001) was associated with lower vitamin D. Vitamin D groups showed no differences in age (P = .9), body mass index (P = .9), or Functional Movement Screen testing (P = .2). Univariate analysis of inadequate vitamin D levels showed a 1.86 higher odds of lower extremity strain or core muscle injury (P = .03), and 3.61 higher odds of hamstring injury (P < .001). Multivariate analysis did not reach an independent association of low vitamin D with injury history (P = .07). Inadequate vitamin D levels are a widespread finding in athletes at the NFL combine. Players with a history of lower extremity muscle strain and core muscle injury had a higher prevalence of inadequate vitamin D. Level IV, retrospective study-case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 3: Ground tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.

  15. The PASADO core processing strategy — A proposed new protocol for sediment core treatment in multidisciplinary lake drilling projects

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Christian; Gebhardt, Catalina; Hahn, Annette; Kliem, Pierre; Zolitschka, Bernd

    2011-07-01

    Using the ICDP (International Continental Scientific Drilling Program) deep lake drilling expedition no. 5022 as an example, we describe core processing and sampling procedures as well as new tools developed for subsampling. A manual core splitter is presented that is (1) mobile, (2) able to cut plastic core liners lengthwise without producing swarf of liner material and (3) consists of off-the-shelf components. In order to improve the sampling of sediment cores, a new device, the core sampling assembly (CSA), was developed that meets the following targets: (1) the partitioning of the sediment into discs of equal thickness is fast and precise, (2) disturbed sediment at the inner surface of the liner is discarded during this sampling process, (3) usage of the available sediment is optimised, (4) subsamples are volumetric and oriented, and (5) identical subsamples are taken. The CSA can be applied to D-shaped split sediment cores of any diameter and consists of a divider and a D-shaped scoop. The sampling plan applied for ICDP expedition 5022 is illustrated and may be used as a guideline for planning the efficient partitioning of sediment amongst different lake research groups involved in multidisciplinary projects. For every subsample, the use of quality flags is suggested (1) to document the sample condition, (2) to give a first sediment classification and (3) to guarantee a precise adjustment of logging and scanning data with data determined on individual samples. Based on this, we propose a protocol that might be applied across lake drilling projects in order to facilitate planning and documentation of sampling campaigns and to ensure a better comparability of results.

  16. Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying

    PubMed Central

    2017-01-01

    We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow. PMID:28901145

  17. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions.

    PubMed

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Application of Adjoint Method and Spectral-Element Method to Tomographic Inversion of Regional Seismological Structure Beneath Japanese Islands

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.

    2014-12-01

    Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.

  19. Performance Evaluation of an Intel Haswell- and Ivy Bridge-Based Supercomputer Using Scientific and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John

    2016-01-01

    We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.

  20. Construction, classification and parametrization of complex Hadamard matrices

    NASA Astrophysics Data System (ADS)

    Szöllősi, Ferenc

    To improve the design of nuclear systems, high-fidelity neutron fluxes are required. Leadership-class machines provide platforms on which very large problems can be solved. Computing such fluxes efficiently requires numerical methods with good convergence properties and algorithms that can scale to hundreds of thousands of cores. Many 3-D deterministic transport codes are decomposable in space and angle only, limiting them to tens of thousands of cores. Most codes rely on methods such as Gauss Seidel for fixed source problems and power iteration for eigenvalue problems, which can be slow to converge for challenging problems like those with highly scattering materials or high dominance ratios. Three methods have been added to the 3-D SN transport code Denovo that are designed to improve convergence and enable the full use of cutting-edge computers. The first is a multigroup Krylov solver that converges more quickly than Gauss Seidel and parallelizes the code in energy such that Denovo can use hundreds of thousand of cores effectively. The second is Rayleigh quotient iteration (RQI), an old method applied in a new context. This eigenvalue solver finds the dominant eigenvalue in a mathematically optimal way and should converge in fewer iterations than power iteration. RQI creates energy-block-dense equations that the new Krylov solver treats efficiently. However, RQI can have convergence problems because it creates poorly conditioned systems. This can be overcome with preconditioning. The third method is a multigrid-in-energy preconditioner. The preconditioner takes advantage of the new energy decomposition because the grids are in energy rather than space or angle. The preconditioner greatly reduces iteration count for many problem types and scales well in energy. It also allows RQI to be successful for problems it could not solve otherwise. The methods added to Denovo accomplish the goals of this work. They converge in fewer iterations than traditional methods and enable the use of hundreds of thousands of cores. Each method can be used individually, with the multigroup Krylov solver and multigrid-in-energy preconditioner being particularly successful on their own. The largest benefit, though, comes from using these methods in concert.

  1. X-ray and extreme ultraviolet spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Victor, B. S.; Allen, S. L.; Beiersdorfer, P.; Magee, E. W.

    2017-06-01

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from 10-71 dot A. The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31-174 dot A. Three groups of tungsten lines were identified with XEUS: W38+-W45+ from 47-63 dot A, W27+-W35+ from 45-55 dot A, and W28+-W33+ from 16-30 dot A. Emission lines from tungsten charge states W28+, W43+, W44+, and W45+ are identified and the line amplitude is presented versus time. Peak emission of W43+-W45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te<=1.3 keV. One group of tungsten lines, W40+-W45+, between 120-140 dot A, was identified with LoWEUS. W43+-W45+ lines measured with LoWEUS track the sawtooth cycle. Sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.

  2. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    PubMed

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  3. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    PubMed

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  4. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  5. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    NASA Astrophysics Data System (ADS)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  6. Building bridges from process R&D: from a customer-supplier relationship to full partnership.

    PubMed

    Federsel

    2000-08-01

    A new and forward-looking way of running process R&D is introduced that integrates this core business in an efficient manner into the network of activities in different disciplines, which constitute the arena for the development of pharmaceutical products. The interfaces with surrounding areas are discussed in addition to the novel organizational principles implemented in process R&D and the workflow emanating from this. Furthermore, the Tollgate model used to keep track of the progress in a project and the pre-study concept are presented in detail. Finally, the main differences between operating modes in the past and in the future are highlighted.

  7. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  8. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  9. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  10. Direct heating of a laser-imploded core using ultraintense laser LFEX

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Ishii, K.; Hanayama, R.; Nishimura, Y.; Okihara, S.; Nakayama, S.; Sekine, T.; Takagi, M.; Watari, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Hioki, T.; Motohiro, T.; Azuma, H.; Sunahara, A.; Sentoku, Y.; Arikawa, Y.; Abe, Y.; Miura, E.; Ozaki, T.

    2017-07-01

    A CD shell was preimploded by two counter-propagating green beams from the GEKKO laser system GXII (based at the Institute of Laser Engineering, Osaka University), forming a dense core. The core was predominantly heated by energetic ions driven by the laser for fast-ignition-fusion experiment, an extremely energetic ultrashort pulse laser, that is illuminated perpendicularly to the GXII axis. Consequently, we observed the D(d, n)3 He-reacted neutrons (DD beam-fusion neutrons) at a yield of 5× {{10}8} n/4π sr. The beam-fusion neutrons verified that the ions directly collided with the core plasma. Whereas the hot electrons heated the whole core volume, the energetic ions deposited their energies locally in the core. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with a yield of 6× {{10}7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. The shell-implosion dynamics (including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions) can be explained by the one-dimensional hydrocode STAR 1D. Meanwhile, the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions were well-predicted by the two-dimensional collisional particle-in-cell code. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high-gain fusion.

  11. A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Yoong, Voo Nyuk

    2015-12-28

    We propose a simple structure of photonic crystal fibers (PCFs) with high birefringence and low confinement loss based on one rectangular centric ring of smaller circular air holes (CAHs) in the fiber core, and three rings of larger CAHs in the fiber cladding. This simple geometry (using all CAHs with two different air hole sizes) is capable of achieving a flexible control of the birefringence, B = 5.501 × 10{sup −3}, and ultra-low confinement loss, 7.30 × 10{sup −5 }dB/km, at an excitation wavelength of λ = 1550 nm. The birefringence value is ∼5.0 times greater than that obtained for conventional CAH PCF. This simple structure has the added advantagemore » from the view point of easy fabrication, robustness, and cost. A full-vector finite element method combined with anisotropic perfectly matched layers was used to analyze the various fiber structures. We have analyzed four cases of CAH PCFs, focusing on the core asymmetry design as opposed to the conventional approach of CAHs or elliptical air holes on the cladding and core. The robustness against manufacturing inaccuracies of the proposed structure has also been further investigated in this work.« less

  12. The Dynamics of Massive Starless Cores with ALMA

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco

    2013-12-01

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (~100 M ⊙) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N2H+ in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N2D+ (3-2) line at 2.''3 resolution. We find six N2D+ cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number mA ~ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ~60 M ⊙, our results suggest that moderately enhanced magnetic fields (so that mA ~= 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  13. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  14. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02600a

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16more » mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.« less

  16. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly.

    PubMed

    Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena

    2017-01-01

    To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.

  17. H2D(+) observations give an age of at least one million years for a cloud core forming Sun-like stars.

    PubMed

    Brünken, Sandra; Sipilä, Olli; Chambers, Edward T; Harju, Jorma; Caselli, Paola; Asvany, Oskar; Honingh, Cornelia E; Kamiński, Tomasz; Menten, Karl M; Stutzki, Jürgen; Schlemmer, Stephan

    2014-12-11

    The age of dense interstellar cloud cores, where stars and planets form, is a crucial parameter in star formation and difficult to measure. Some models predict rapid collapse, whereas others predict timescales of more than one million years (ref. 3). One possible approach to determining the age is through chemical changes as cloud contraction occurs, in particular through indirect measurements of the ratio of the two spin isomers (ortho/para) of molecular hydrogen, H2, which decreases monotonically with age. This has been done for the dense cloud core L183, for which the deuterium fractionation of diazenylium (N2H(+)) was used as a chemical clock to infer that the core has contracted rapidly (on a timescale of less than 700,000 years). Among astronomically observable molecules, the spin isomers of the deuterated trihydrogen cation, ortho-H2D(+) and para-H2D(+), have the most direct chemical connections to H2 (refs 8, 9, 10, 11, 12) and their abundance ratio provides a chemical clock that is sensitive to greater cloud core ages. So far this ratio has not been determined because para-H2D(+) is very difficult to observe. The detection of its rotational ground-state line has only now become possible thanks to accurate measurements of its transition frequency in the laboratory, and recent progress in instrumentation technology. Here we report observations of ortho- and para-H2D(+) emission and absorption, respectively, from the dense cloud core hosting IRAS 16293-2422 A/B, a group of nascent solar-type stars (with ages of less than 100,000 years). Using the ortho/para ratio in conjunction with chemical models, we find that the dense core has been chemically processed for at least one million years. The apparent discrepancy with the earlier N2H(+) work arises because that chemical clock turns off sooner than the H2D(+) clock, but both results imply that star-forming dense cores have ages of about one million years, rather than 100,000 years.

  18. Time management in radiation oncology: evaluation of time, attendance of medical staff, and resources during radiotherapy for prostate cancer: the DEGRO-QUIRO trial.

    PubMed

    Keilholz, L; Willner, J; Thiel, H-J; Zamboglou, N; Sack, H; Popp, W

    2014-01-01

    In order to evaluate resource requirements, the German Society of Radiation Oncology (DEGRO) recorded the times needed for core procedures in the radio-oncological treatment of various cancer types within the scope of its QUIRO trial. The present study investigated the personnel and infrastructural resources required in radiotherapy of prostate cancer. The investigation was carried out in the setting of definitive radiotherapy of prostate cancer patients between July and October 2008 at two radiotherapy centers, both with well-trained staff and modern technical facilities at their disposal. Personnel attendance times and room occupancy times required for core procedures (modules) were each measured prospectively by two independently trained observers using time measurements differentiated on the basis of professional group (physician, physicist, and technician), 3D conformal (3D-cRT), and intensity-modulated radiotherapy (IMRT). Total time requirements of 983 min for 3D-cRT and 1485 min for step-and-shoot IMRT were measured for the technician (in terms of professional group) in all modules recorded and over the entire course of radiotherapy for prostate cancer (72-76 Gy). Times needed for the medical specialist/physician were 255 min (3D-cRT) and 271 min (IMRT), times of the physicist were 181 min (3D-cRT) and 213 min (IMRT). The difference in time was significant, although variations in time spans occurred primarily as a result of various problems during patient treatment. This investigation has permitted, for the first time, a realistic estimation of average personnel and infrastructural requirements for core procedures in quality-assured definitive radiotherapy of prostate cancer. The increased time needed for IMRT applies to the step-and-shoot procedure with verification measurements for each irradiation planning.

  19. Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells.

    PubMed

    Yamamoto, Mioko; Kawashima, Nobuyuki; Takashino, Nami; Koizumi, Yu; Takimoto, Koyo; Suzuki, Noriyuki; Saito, Masahiro; Suda, Hideaki

    2014-03-01

    Three-dimensional (3D) spheroid culture is a method for creating 3D aggregations of cells and their extracellular matrix without a scaffold mimicking the actual tissues. The aim of this study was to evaluate the effects of 3D spheroid culture on the phenotype of immortalized mouse dental papilla cells (MDPs) that have the ability to differentiate into odontoblasts. We cultured MDPs for 1, 3, 7, and 14 days in 96-well low-attachment culture plates for 3D spheroid culture or flat-bottomed plates for two-dimensional (2D) monolayer culture. Cell proliferation and apoptosis were detected by immunohistochemical staining of Ki67 and cleaved caspase-3, respectively. Hypoxia was measured by the hypoxia probe LOX-1. Odonto/osteoblastic differentiation marker gene expression was evaluated by quantitative PCR. We also determined mineralized nodule formation, alkaline phosphatase (ALP) activity, and dentine matrix protein-1 (DMP1) expression. Vinculin and integrin signalling-related proteins were detected immunohistochemically. Odonto/osteoblastic marker gene expression and mineralized nodule formation were significantly up-regulated in 3D spheroid-cultured MDPs compared with those in 2D monolayer-cultured MDPs (p<0.05). Histologically, 3D spheroid colonies consisted of two compartments: a cell-dense peripheral zone and cell-sparse core zone. Proliferating cells with high ALP activity and DMP1 expression were found mainly in the peripheral zone that also showed strong expression of vinculin and integrin signalling-related proteins. In contrast, apoptotic and hypoxic cells were detected in the core zone. 3D spheroid culture promotes odonto/osteoblastic differentiation of MDPs, which may be mediated by integrin signalling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation

    NASA Astrophysics Data System (ADS)

    Sommariva, C.; Nardon, E.; Beyer, P.; Hoelzl, M.; Huijsmans, G. T. A.; van Vugt, D.; Contributors, JET

    2018-01-01

    In order to contribute to the understanding of runaway electron generation mechanisms during tokamak disruptions, a test particle tracker is introduced in the JOREK 3D non-linear MHD code, able to compute both full and guiding center relativistic orbits. Tests of the module show good conservation of the invariants of motion and consistency between full orbit and guiding center solutions. A first application is presented where test electron confinement properties are investigated in a massive gas injection-triggered disruption simulation in JET-like geometry. It is found that electron populations initialised before the thermal quench (TQ) are typically not fully deconfined in spite of the global stochasticity of the magnetic field during the TQ. The fraction of ‘survivors’ decreases from a few tens down to a few tenths of percent as the electron energy varies from 1 keV to 10 MeV. The underlying mechanism for electron ‘survival’ is the prompt reformation of closed magnetic surfaces at the plasma core and, to a smaller extent, the subsequent reappearance of a magnetic surface at the edge. It is also found that electrons are less deconfined at 10 MeV than at 1 MeV, which appears consistent with a phase averaging effect due to orbit shifts at high energy.

  1. Callipeltosides A, B and C: Total Syntheses and Structural Confirmation

    PubMed Central

    Frost, James R; Pearson, Colin M; Snaddon, Thomas N; Booth, Richard A; Turner, Richard M; Gold, Johan; Shaw, David M; Gaunt, Matthew J; Ley, Steven V

    2015-01-01

    Since their isolation almost 20 years ago, the callipeltosides have been of long standing interest to the synthetic community owing to their unique structural features and inherent biological activity. Herein we present our full research effort that has led to the synthesis of these molecules. Key aspects of our final strategy include 1) synthesis of the C1–C9 pyran core (5) using an AuCl3-catalysed cyclisation; 2) formation of C10–C22 vinyl iodide (55) by sequential bidirectional Stille reactions and 3) diastereoselective union of these advanced fragments by means of an alkenylzinc addition (d.r.=91:9 at C9). The common callipeltoside aglycon (4) was completed in a further five steps. Following this, all three sugar fragments were appended to provide the entire callipeltoside family. In addition to this, D-configured callipeltose B was synthesised and appended to the callipeltoside aglycon. The 1H NMR spectrum of this molecule was found to be significantly different to the natural isolate, further supporting our assignment of callipeltoside B (2). PMID:26230615

  2. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine.

    PubMed

    Mizutani, Jun; Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu

    2008-05-01

    Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results.

  3. Defining the minimum size of a hydrophobic cluster in two-stranded α-helical coiled-coils: Effects on protein stability

    PubMed Central

    Lu, Stephen M.; Hodges, Robert S.

    2004-01-01

    The α-helical coiled-coil motif is characterized by a heptad repeat pattern (abcdefg)n in which residues a and d form the hydrophobic core. Long coiled-coils (e.g., tropomyosin, 284 residues per polypeptide chain) typically do not have a continuous hydrophobic core of stabilizing residues, but rather one that consists of alternating clusters of stabilizing and destabilizing residues. We have arbitrarily defined a cluster as a minimum of three consecutive stabilizing or destabilizing residues in the hydrophobic core. We report here on a series of two-stranded, disulfide-bridged parallel α-helical coiled-coils that contain a central cassette of three consecutive hydrophobic core positions (d, a, and d) with a destabilizing cluster of three consecutive Ala residues in the hydrophobic core on each side of the cassette. The effect of adding one to three stabilizing hydrophobes in these positions (Leu or Ile; denoted as •) was investigated. Alanine residues (denoted as ○) are used to represent destabilizing residues. The peptide with three Ala residues in the d a d cassette positions (○○○) was among the least stable coiled-coil (Tm = 39.3°C and Urea1/2 = 1.9 M). Surprisingly, the addition of one stabilizing hydrophobe (Leu) to the cassette or two stabilizing hydrophobes (Leu), still interspersed by an Ala in the cassette (•○•), also did not lead to any gain in stability. However, peptides with two adjacent hydrophobes in the cassette (••○)(○••) did show a gain in stability of 0.9 kcal/mole over the peptide with two interspersed hydrophobes (•○•). Because the latter three peptides have the same inherent hydrophobicity, the juxtaposition of stabilizing hydrophobes leads to a synergistic effect, and thus a clustering effect. The addition of a third stabilizing hydrophobe to the cassette (•••) resulted in a further synergistic gain in stability of 1.7 kcal/mole (Tm = 54.1°C and Urea1/2 = 3.3M). Therefore, the role of hydrophobicity in the hydrophobic core of coiled-coils is extremely context dependent and clustering is an important aspect of protein folding and stability. PMID:14978309

  4. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  5. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking.

    PubMed

    Chanu, A; Aboussouan, E; Tamaz, S; Martel, S

    2006-01-01

    Software architecture for the navigation of a ferromagnetic untethered device in a 1D and 2D phantom environment is briefly described. Navigation is achieved using the real-time capabilities of a Siemens 1.5 T Avanto MRI system coupled with a dedicated software environment and a specially developed 3D tracking pulse sequence. Real-time control of the magnetic core is executed through the implementation of a simple PID controller. 1D and 2D experimental results are presented.

  6. Identity Activities

    DTIC Science & Technology

    2016-08-03

    individual or organization knows or says about another individual         Core personal Addresses Employment Educational Military Service...rhythm; handwriting ; type/keyboard pattern; posture/bearing; gait/limp; gestures). Appendix D D-8 JDN X-XX (3) Financial Transactions. Any

  7. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance.

    PubMed

    Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long

    2018-01-31

    A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.

  8. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  9. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    PubMed

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.

  10. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model

    PubMed Central

    Flagel, Shelly B.; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M.; Thompson, Robert C.; Watson, Stanley J.; Akil, Huda

    2016-01-01

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with “temperament,” including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor. PMID:27114539

  11. MXP(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction.

    PubMed

    Zhao, Wentong; Lu, Xiaoqing; Selvaraj, Manickam; Wei, Wei; Jiang, Zhifeng; Ullah, Nabi; Liu, Jie; Xie, Jimin

    2018-05-24

    Low-cost electrocatalysts play an important role in the hydrogen evolution reaction (HER). Particularly, transition metal phosphides (TMPs) are widely applied in the development of HER electrocatalysts. To improve the poor electrochemical reaction kinetics of HER, we introduce a facile way to synthesize carbon core-shell materials containing cobalt phosphide nanoparticles embedded in different graphene aerogels (GAs) (CoP@C-NPs/GA-x (x = 5, 10 and 20)) using seaweed biomass as precursors. The synthesized CoP@C-NPs/GA-5 exhibits efficient catalytic activity with small overpotentials of 120 and 225 mV at current densities of 10 mA cm-2, along with the low Tafel slopes of 57 and 66 mV dec-1, for HER in acidic and alkaline electrolytes, respectively. Compared with carbon aerogel (CA) containing cobalt phosphide nanoparticles (CoP-NPs@CA), the stability of CoP@C-NPs/GA-5 coated with carbon-shells (∼0.8 nm) was significantly improved in acidic electrolytes. We also prepared carbon core-shell materials containing nickel phosphide nanoparticles embedded in GA (Ni2P@C-NPs/GA) to further expand this synthetic route. The graphene-Ni2P@C aerogel shows a similar morphology and better catalytic activity for HER in acidic and alkaline electrolytes. In this work, the robust three-dimensional (3D) GA matrix with abundant open pores and large surface area provides unblocked channels for electrolyte contact and electronic transfer and enables very close contact between the catalyst and electrolyte. The MxP@C core-shell structure prevents the inactivation of MxP NPs during HER processes, and the thin graphene oxide (GO) layers and 3D CA together build up a 3D conductive matrix, which not only adjusts the volume expansion of MxP NPs as well as preventing their aggregation, but also provides a 3D conductive pathway for rapid charge transfer processes. The present synthetic strategy for phosphides via in situ phosphorization with 3D GA can be extended to other novel high-performance catalysts. The simple synthesis and efficient catalytic activity of MXP@C-NPs/GA indicate good application prospects in HER.

  12. The timing and duration of the Last Interglacial Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Yuan, D.; Cheng, H.; Edwards, R.; Kelly, M.; Qing, J.; Lin, Y.; Zhang, M.

    2002-12-01

    An accurate estimate for the timing and duration of regional and global climate change associated with the Last Interglacial is important for elucidating climate change mechanisms. We present a 230Th-dated δ18O record of 2 stalagmites (D3 and D4) from Dongge Cave, southern China (25°N, 109°E, an area affected by East Asian and Indian Monsoons), which record Asian Monsoon history over 3 periods, 160-110 ka, 65-43 ka and 15.5 ka - present. The stalagmites have different precipitation environments and water flow paths as indicated by different growth histories, growth rates and δ234U values. D3 grew faster between 123-118 ka (12 vs. 0.4 cm/ka), but D4 grew faster between 138-126 ka (3.4 vs. 0.7 cm/ka). The mean initial δ234U value of D3 is -272 (range of -261 to -287). D4 values are higher (mean = -78, range of -27 to -160). Despite these differences, both have similar large δ18O variations for the interval over which both were active (148 to 113 ka), suggesting that water-rock interactions and kinetic fractionation did not affect δ18O values significantly. Dongge Cave stalagmites exhibit features similar to the Younger Dryas (YD) and the Bolling/Allerod as recorded in Greenland ice cores (GISP, 1997) and stalagmites from Hulu Cave, eastern China (Wang et al., 2001). The Dongge YD lies between 12640 +/-140 and 11550 +/-80 years BP, synchronous with Greenland and Hulu Cave YD analogues. Similar to Hulu Cave, light Dongge Cave δ18O excursions correspond to heavy isotopic excursions in Greenland, consistent with a positive correlation between the intensity of the Asian summer monsoon and Greenland temperature. The most prominent feature in the Dongge record is a peak that approximates a square wave and is contemporaneous with at least portions of the Last Interglacial sea level high. Dongge Termination II is a large, abrupt negative shift in δ18O (>3 per mil). The mid-point is at 129.3 +/-0.9 ka, based on direct dating of D4. D3 gives an age indistinguishable from this value. If D4 growth rate is linear over the transition, as implied by long term stable growth rates (from 144 to 124 ka), the transition takes less than 500 y, with most of it taking less than 200 y. The Dongge Last Interglacial also ends with an abrupt δ18O shift (about 4 per mil). The midpoint is at 119.6 +/-0.6 ka based on direct dating of D3. D4 gives an age indistinguishable from this value. Assuming linear growth, the main portion of the transition took less than 700 y. Combining the onset and end ages of the Dongge Last Interglacial, the duration is 9.7 +/-1.1 ka, from 129.3 +/-0.9 ka to 119.6 +/-0.6 ka, remarkably similar to some estimates of full Last Interglacial sea levels. The timing is broadly consistent with orbital forcing of the Monsoon, although the abrupt shifts require the involvement of other mechanisms (e.g. changes in circulation). Dongge Termination II lags Devils Hole Termination II, some fraction of sea level Termination II, and likely Vostok temperature, Vostok CO2, and eastern Pacific sea surface temperature. However, there is some evidence that it coincides within error with the final rise in sea level to full Last Interglacial elevations. It may well be that Monsoon Termination II is an orbitally-forced event at the end of a sequence of events not directly caused by orbital forcing. As such it may mark the inception of full interglacial conditions world-wide. Orbital forcing may be necessary for full interglacial conditions, but not for many of the shifts toward interglacial conditions observed to prior to Dongge Termination II.

  13. Calculating Path-Dependent Travel Time Prediction Variance and Covariance for the SALSA3D Global Tomographic P-Velocity Model with a Distributed Parallel Multi-Core Computer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.

    2011-12-01

    Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Monte Carlo modelling of TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  15. Non-linear dynamics of compound sawteeth in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J.-H., E-mail: jae-heon.ahn@polytechnique.edu; Garbet, X.; Sabot, R.

    2016-05-15

    Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as themore » q = 1 radius and diamagnetic stabilization.« less

  16. Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Ding, Guodong; Mahmood, Asif; Tang, Ailing; Chen, Fan; Zhou, Erjun

    2018-01-01

    Three new diketopyrrolopyrrole based compounds with Acceptor-Donor-Acceptor-Donor-Acceptor (A-D-A-D-A) skeletons were designed and synthesized through varying the electron-deficient core from diphenylquinoxaline (DP-Qx), thieno[3,4-c]pyrrole-4,6-dione (DP-TPD) to 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline (DP-TQx). We have calculated and studied the effect of central acceptor units on electronic, optical and non-optical properties. As well as, we have predicted the charge transport properties. Results indicate that change of central acceptor unit remarkably affects the molecular electronic, optical and non-optical properties. And the molecular band gap and UV/vis adsorption spectra are significantly changed. It should be noted that Compound 3 with 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline as core show superior non-optical properties as compare to other compounds. Our study here indicate that inserting the strong electron-deficient moieties improves intramolecular charge transfer (ICT) and charge transport properties dramatically.

  17. Computational molecular spectroscopy of X ˜ 2 Π NCS: Electronic properties and ro-vibrationally averaged structure

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-04-01

    For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.

  18. A 3-D morphometric analysis of erosional features in a contourite drift from offshore SE Brazil

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.

    2010-12-01

    A contourite drift from offshore Brazil is mapped in detail and investigated using state-of-the-art 3-D seismic data. The aim was to review the relevance of erosional features in contourite drifts accumulated on continental slopes. Topographically confined by growing salt diapirs, the mapped contourite ridge is limited by two erosional features, a contourite moat and a turbidite channel, showing multiple slide scars on it flanks. Associated with the latter features are thick accumulations of high-amplitude strata, probably comprising sandy/silty sediment of Miocene to Holocene age. The erosional unconformities are mostly observed in a region averaging 3.75km away from the axes of a channel and a moat, whose deposits interfinger with continuous strata in central parts of the contourite drift. The multiple unconformities observed are mostly related to slide scars and local erosion on the flanks of the drift. This work demonstrates that the existence of widespread unconformities within contourite drifts on continental slopes: (1) may not be as prominent as often documented, (2) are often diachronic and interfinger with correlative hiatuses or aggraded strata in axial regions of contourite drifts. Although less widespread than regional, or ocean-scale unconformities, these diachronous features result in significant hiatuses within contourite drifts and are, therefore, potentially mappable as relevant (regional-scale) unconformities on 2-D/3-D seismic data. Thus, without a full 3-D morphometric analysis of contourite drifts, significant errors may occur when estimating major changes in the dynamics of principal geostrophic currents based on single-site core data, or on direct correlations between stratigraphic surfaces of distinct contourite bodies.

  19. Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.

    PubMed

    Pence, Matthew G; Choi, Jeong-Yun; Egli, Martin; Guengerich, F Peter

    2010-12-24

    O(6)-methylguanine (O(6)-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase ι core enzyme was determined for nucleoside triphosphate incorporation opposite O(6)-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol ι, which showed that dTTP incorporation occurs with high efficiency opposite O(6)-methylG. Misincorporation of dTTP opposite O(6)-methylG occurred with ∼6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol ι with O(6)-methylG as the template base and incoming dCTP or dTTP were solved and showed that O(6)-methylG is rotated into the syn conformation in the pol ι active site and that dTTP misincorporation by pol ι is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O(6)-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O(6)-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O(6) atoms of O(6)-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O(6)-methylG by human pol ι, in contrast to the mispairing modes observed previously for O(6)-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.

  20. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores

    NASA Astrophysics Data System (ADS)

    Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo

    2018-04-01

    Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.

  1. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  2. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  3. Astrochemical Properties of Planck Cold Clumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatematsu, Ken’ichi; Sanhueza, Patricio; Nguyễn Lu’o’ng, Quang

    We observed 13 Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N{sub 2}H{sup +} distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC{sub 3}N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N{sub 2}H{sup +} emission. The CCS emission, which is known to be abundant in starless molecular cloud cores, is often very clumpy in the observed targets. We made deep single-pointing observations in DNC, HN{sup 13}C, N{sub 2}D{sup +}, and cyclic-C{sub 3}H{sub 2}more » toward nine clumps. The detection rate of N{sub 2}D{sup +} is 50%. Furthermore, we observed the NH{sub 3} emission toward 15 Planck cold clumps to estimate the kinetic temperature, and confirmed that most targets are cold (≲20 K). In two of the starless clumps we observed, the CCS emission is distributed as it surrounds the N{sub 2}H{sup +} core (chemically evolved gas), which resembles the case of L1544, a prestellar core showing collapse. In addition, we detected both DNC and N{sub 2}D{sup +}. These two clumps are most likely on the verge of star formation. We introduce the chemical evolution factor (CEF) for starless cores to describe the chemical evolutionary stage, and analyze the observed Planck cold clumps.« less

  4. Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT.

    PubMed

    Maruyama, Yutaka; Yoshida, Norio; Tadano, Hiroto; Takahashi, Daisuke; Sato, Mitsuhisa; Hirata, Fumio

    2014-07-05

    A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems. Copyright © 2014 Wiley Periodicals, Inc.

  5. VERA and VERA-EDU 3.5 Release Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieger, Matt; Salko, Robert K.; Kochunas, Brendan M.

    The Virtual Environment for Reactor Applications components included in this distribution include selected computational tools and supporting infrastructure that solve neutronics, thermal-hydraulics, fuel performance, and coupled neutronics-thermal hydraulics problems. The infrastructure components provide a simplified common user input capability and provide for the physics integration with data transfer and coupled-physics iterative solution algorithms. Neutronics analysis can be performed for 2D lattices, 2D core and 3D core problems for pressurized water reactor geometries that can be used to calculate criticality and fission rate distributions by pin for input fuel compositions. MPACT uses the Method of Characteristics transport approach for 2D problems.more » For 3D problems, MPACT uses the 2D/1D method which uses 2D MOC in a radial plane and diffusion or SPn in the axial direction. MPACT includes integrated cross section capabilities that provide problem-specific cross sections generated using the subgroup methodology. The code can be executed both 2D and 3D problems in parallel to reduce overall run time. A thermal-hydraulics capability is provided with CTF (an updated version of COBRA-TF) that allows thermal-hydraulics analyses for single and multiple assemblies using the simplified VERA common input. This distribution also includes coupled neutronics/thermal-hydraulics capabilities to allow calculations using MPACT coupled with CTF. The VERA fuel rod performance component BISON calculates, on a 2D or 3D basis, fuel rod temperature, fuel rod internal pressure, free gas volume, clad integrity and fuel rod waterside diameter. These capabilities allow simulation of power cycling, fuel conditioning and deconditioning, high burnup performance, power uprate scoping studies, and accident performance. Input/Output capabilities include the VERA Common Input (VERAIn) script which converts the ASCII common input file to the intermediate XML used to drive all of the physics codes in the VERA Core Simulator (VERA-CS). VERA component codes either input the VERA XML format directly, or provide a preprocessor which can convert the XML into native input. VERAView is an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The python-based software is easy to install and intuitive to use, and provides instantaneous 2D and 3D images, 1D plots, and alpha-numeric data from VERA multi-physics simulations. Testing within CASL has focused primarily on Westinghouse four-loop reactor geometries and conditions with example problems included in the distribution.« less

  6. Noncore RAG1 regions promote Vβ rearrangements and αβ T cell development by overcoming inherent inefficiency of Vβ recombination signal sequences.

    PubMed

    Horowitz, Julie E; Bassing, Craig H

    2014-02-15

    The RAG proteins are comprised of core endonuclease domains and noncore regions that modulate endonuclease activity. Mutation or deletion of noncore RAG regions in humans causes immunodeficiency and altered TCR repertoire, and mice expressing core but not full-length Rag1 (Rag1(C/C)) or Rag2 (Rag2(C/C)) exhibit lymphopenia, reflecting impaired V(D)J recombination and lymphocyte development. Rag1(C/C) mice display reduced D-to-J and V-to-DJ rearrangements of TCRβ and IgH loci, whereas Rag2(C/C) mice show decreased V-to-DJ rearrangements and altered Vβ/VH repertoire. Because Vβs/VHs only recombine to DJ complexes, the Rag1(C/C) phenotype could reflect roles for noncore RAG1 regions in promoting recombination during only the D-to-J step or during both steps. In this study, we demonstrate that a preassembled TCRβ gene, but not a preassembled DβJβ complex or the prosurvival BCL2 protein, completely rescues αβ T cell development in Rag1(C/C) mice. We find that Rag1(C/C) mice exhibit altered Vβ utilization in Vβ-to-DJβ rearrangements, increased usage of 3'Jα gene segments in Vα-to-Jα rearrangements, and abnormal changes in Vβ repertoire during αβ TCR selection. Inefficient Vβ/VH recombination signal sequences (RSSs) have been hypothesized to cause impaired V-to-DJ recombination on the background of a defective recombinase as in core-Rag mice. We show that replacement of the Vβ14 RSS with a more efficient RSS increases Vβ14 recombination and rescues αβ T cell development in Rag1(C/C) mice. Our data indicate that noncore RAG1 regions establish a diverse TCR repertoire by overcoming Vβ RSS inefficiency to promote Vβ recombination and αβ T cell development, and by modulating TCRβ and TCRα gene segment utilization.

  7. Reconciling the Census of Forming Stars in Gould's Belt

    NASA Astrophysics Data System (ADS)

    Gutermath, Robert

    We seek funding to construct a set of new, publicly available, value-enhanced data products for the 37 deg2 of archival Spitzer IRAC 3-8 micron and MIPS 24 micron imaging from the Spitzer Legacy surveys From Molecular Cores to Planet-forming Disks (PI Evans) and the subsequent Gould's Belt: Star Formation in the Solar Neighborhood (PI Allen; c2d/GB hereafter). These surveys comprise our canonical view of low-mass star formation, encompassing most of the nearest (<400pc) molecular clouds other than Taurus. From the proposed c2d/GB reprocessing, we will produce and deliver the following products to the Infrared Science Archive (IRSA) at IPAC for community access: - Artifact-mitigated, astrometrically-refined Spitzer mosaics at 3.6, 4.5, 5.8, 8.0, and 24 microns for all 18 clouds in c2d/GB; - Complete, band-merged, point source catalogs in all five Spitzer bands considered, combined with 2MASS and WISE photometry where available, and a census of young stellar objects (YSOs) with excess infrared emission that are selected via the Gutermuth et al. (2009; G09) YSO identification and classification techniques from the full catalogs; - Point source completeness decay data cubes at 30'' resolution for all Spitzer mosaics, and midIR luminosity completeness images built from the five-band completeness cubes for a wide range of mid-IR spectral energy distribution (SED) shapes. Our overarching goal is to provide a precise observational product that contains the means to test ever more detailed simulations of star formation and guide and supplement future observations of nearby star-forming regions and clouds at all wavelengths. A complete, internally consistent census of all YSOs exhibiting excess infrared emission and a detailed mapping of the limits of non-detections by YSO evolutionary stage for all molecular clouds and star-forming complexes observed by Spitzer within 2 kpc will have incredible value for both goals. With a full YSO census and a clearer understanding of how to interpret any lack of YSOs spatially within a wide range of clouds, we will address three fundamental lines of inquiry across a wide range of local star-forming environments: - What is the protostellar phase lifetime? How does it correlate with the star formation efficiency of molecular gas? - What is the shape of the protostellar luminosity function? Does it vary with molecular gas properties? - Which dense pre-stellar gas cores are starless ? More specifically, what YSO luminosity limits can we exclude in starless cores with the Spitzer surveys? Most of the c2d/GB cloud surveys have been analyzed and published by the original teams, and they have now largely dispersed (two of this proposal's investigators were members of one or both surveys). In parallel, the G09 techniques that were developed for a survey of 36 nearby starforming clusters and groups were adopted for a wide array of YSO surveys of more distant starforming molecular clouds (400-2000pc). These are observed similarly to the c2d/GB surveys, and thus the G09 techniques are readily applicable to the nearest clouds. Indeed, the c2d/GB YSO census overlaps with several clusters in the original G09 clusters survey, and substantial inconsistencies have been found between the corresponding YSO catalogs. Attempts to conduct broad comparisons and interpretation among c2d/GB and G09-family catalogs have been clearly limited by method-dependent differences. Reconciliation of these discrepancies is essential to establish a consistent census of YSOs and enable further scientific progress on these topics.

  8. ALMA Observations of the IRDC Clump G34.43+00.24 MM3: Complex Organic and Deuterated Molecules

    NASA Astrophysics Data System (ADS)

    Sakai, Takeshi; Yanagida, Takahiro; Furuya, Kenji; Aikawa, Yuri; Sanhueza, Patricio; Sakai, Nami; Hirota, Tomoya; Jackson, James M.; Yamamoto, Satoshi

    2018-04-01

    We have observed complex organic molecules (COMs) and deuterated species toward a hot core/corino (HC) associated with the infrared dark cloud clump G34.43+00.24 MM3 with the Atacama Large Millimeter/submillimeter Array. We have detected six normal-COMs (CH3OH, CH3CHO, CH3CH2CN, CH3OCH3, HCOOCH3, and NH2CHO), one deuterated-COM (CH2DCN), and two deuterated fundamental molecules (D2CO and DNC) toward G34.43+00.24 MM3 HC. None of these lines, except for CH3OH, are detected toward the shocked regions in our data, which suggests that COMs do not originate in shocks. The abundance of the COMs relative to CH3OH in G34.43+00.24 MM3 HC is found to be similar to those in high-mass hot cores, rather than those in hot corinos in low-mass star-forming regions. This result suggests that the physical conditions of the warm-up phase of G34.43+00.24 MM3 HC are similar to those of high-mass sources. On the other hand, the D2CO abundance relative to CH3OH in G34.43+00.24 MM3 HC is higher than that of other hot cores, and seems to be comparable to that of hot corinos. The relatively high D2CO/CH3OH ratio of G34.43+00.24 MM3 HC implies a long cold starless phase of G34.43+00.24 MM3 HC.

  9. Case study of 3D fingerprints applications

    PubMed Central

    Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui

    2017-01-01

    Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition. PMID:28399141

  10. Case study of 3D fingerprints applications.

    PubMed

    Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui

    2017-01-01

    Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.

  11. SCEC Earthquake System Science Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.

    2008-12-01

    The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.

  12. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light.

    PubMed

    Ho, Ming-Yang; Gan, Fei; Shen, Gaozhong; Bryant, Donald A

    2017-02-01

    Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.

  13. Number of positive preoperative biopsy cores is a predictor of positive surgical margins (PSM) in small prostates after robot-assisted radical prostatectomy (RARP).

    PubMed

    Tuliao, Patrick H; Koo, Kyo C; Komninos, Christos; Chang, Chien H; Choi, Young D; Chung, Byung H; Hong, Sung J; Rha, Koon H

    2015-12-01

    To determine the impact of prostate size on positive surgical margin (PSM) rates after robot-assisted radical prostatectomy (RARP) and the preoperative factors associated with PSM. In all, 1229 men underwent RARP by a single surgeon, from 2005 to August of 2013. Excluded were patients who had transurethral resection of the prostate, neoadjuvant therapy, clinically advanced cancer, and the first 200 performed cases (to reduce the effect of learning curve). Included were 815 patients who were then divided into three prostate size groups: <31 g (group 1), 31-45 g (group 2), >45 g (group 3). Multivariate analysis determined predictors of PSM and biochemical recurrence (BCR). Console time and blood loss increased with increasing prostate size. There were more high-grade tumours in group 1 (group 1 vs group 2 and group 3, 33.9% vs 25.1% and 25.6%, P = 0.003 and P = 0.005). PSM rates were higher in prostates of <45 g with preoperative PSA levels of >20 ng/dL, Gleason score ≥7, T3 tumour, and ≥3 positive biopsy cores. In group 1, preoperative stage T3 [odds ratio (OR) 3.94, P = 0.020] and ≥3 positive biopsy cores (OR 2.52, P = 0.043) were predictive of PSM, while a PSA level of >20 ng/dL predicted the occurrence of BCR (OR 5.34, P = 0.021). No preoperative factors predicted PSM or BCR for groups 2 and 3. A preoperative biopsy with ≥3 positive cores in men with small prostates predicts PSM after RARP. In small prostates with PSM, a PSA level of >20 ng/dL is a predictor of BCR. These factors should guide the choice of therapy and indicate the need for closer postoperative follow-up. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  14. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2.

    PubMed

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Szutkowski, Kosma; Mrówczyńska, Lucyna; Kaźmierczak, Zuzanna; Grzyb, Tomasz; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2016-11-01

    The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam

    2013-10-01

    Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.

  16. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  17. Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts

    ERIC Educational Resources Information Center

    Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…

  18. Automated Creation of Labeled Pointcloud Datasets in Support of Machine-Learning Based Perception

    DTIC Science & Technology

    2017-12-01

    computationally intensive 3D vector math and took more than ten seconds to segment a single LIDAR frame from the HDL-32e with the Dell XPS15 9650’s Intel...Core i7 CPU. Depth Clustering avoids the computationally intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead

  19. Identifying Affordances of 3D Printed Tangible Models for Understanding Core Biological Concepts

    ERIC Educational Resources Information Center

    Davenport, Jodi L.; Silberglitt, Matt; Boxerman, Jonathan; Olson, Arthur

    2014-01-01

    3D models derived from actual molecular structures have the potential to transform student learning in biology. We share findings related to our research questions: 1) what types of interactions with a protein folding kit promote specific learning objectives?, and 2) what features of the instructional environment (e.g., peer interactions, teacher…

  20. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  1. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    PubMed

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  2. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    NASA Astrophysics Data System (ADS)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  3. Surface Deformation Caused by Pressure Changes in the Fluid Core

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.; Herring, Thomas A.

    1995-01-01

    Pressure load Love numbers are presented for the mantle deformation induced by the variation of the pressure field at the core mantle boundary (CNB). We find that the CMB geostrophic pressure fields, derived from 'frozen-flux' core surface flow estimates at epochs 1965 and 1975, produce a relative radial velocity (RRV) field in the range of 3mm/decade with uplift near the equator and subsidence near the poles. The contribution of this mechanism to the change in the length of day (l.o.d) is small --- about 2.3 x 10(exp -2) ms/decade. The contribution to the time variation of the ellipticity coefficient is more important --- -1.3 x 10(exp -11)/yr.

  4. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.

    PubMed

    Ishigure, Takaaki; Nitta, Yosuke

    2010-06-21

    We successfully fabricate a polymer optical waveguide with multiple graded-index (GI) cores directly on a substrate utilizing the soft-lithography method. A UV-curable polymer (TPIR-202) supplied from Tokyo Ohka Kogyo Co., Ltd. is used, and the GI cores are formed during the curing process of the core region, which is similar to the preform process we previously reported. We experimentally confirm that near parabolic refractive index profiles are formed in the parallel cores (more than 50 channels) with 40 microm x 40 microm size at 250-microm pitch. Although the loss is still as high as 0.1 approximately 0.3 dB/cm at 850 nm, which is mainly due to scattering loss inherent to the polymer matrix, the scattering loss attributed to the waveguide's structural irregularity could be sufficiently reduced by a graded refractive index profile. For comparison, we fabricate step-index (SI)-core waveguides with the same materials by means of the same process. Then, we evaluate the inter-channel crosstalk in the SI- and GI-core waveguides under almost the same conditions. It is noteworthy that remarkable crosstalk reduction (5 dB and beyond) is confirmed in the GI-core waveguides, since the propagating modes in GI-cores are tightly confined near the core center and less optical power is found near the core cladding boundary. This significant improvement in the inter-channel crosstalk allows the GI-core waveguides to be utilized for extra high-density on-board optical interconnections.

  5. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.

  6. Structural and spectral studies of sunspots. [umbral core modelling

    NASA Technical Reports Server (NTRS)

    Wyller, A. A.

    1974-01-01

    Observations of umbral cores, both by multicolor photometry and by narrow band photometry in the vicinity of the sodium D lines, are described, and evidence is given which supports the validity of many umbral models, each of which describes different aspects of the observed umbral cores. Theoretical studies carried on at the observatory include the following: (1) Zeeman profiles of the sodium D sub 2 line and other lines; (2) turbulent heat conduction, sound waves, and the missing flux in sunspots; (3) chromospheric heating above spots by Alfven waves; (4) magnetic convection in the sun and solar neutrinos; (5) models of starspots on flare stars; (5) starspots on the primaries of contact binary systems; and (6) implications of starspots on red dwarfs.

  7. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionizationmore » show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less

  8. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S; Larsen, S; Wagoner, J

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D)more » finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications. In FY03 specifically, a large and complex simulation experiment was conducted that tested the full modeling-based approach to geological characterization using E2D, the K-L statistical methodology, and matched field processing applied to tunnel detection with surface seismic sensors. The simulation validated the full methodology and the need for geological heterogeneity to be accounted for in the overall approach. The Lake Lynn site area was geologically modeled using the code Earthvision to produce a 32 million node 3D model grid for E3D. Model linking issues were resolved and a number of full 3D model runs were accomplished using shot locations that matched the data. E3D-generated wavefield movies showed the reflection signal would be too small to be observed in the data due to trapped and attenuated energy in the weathered layer. An analysis of the few sensors coupled to bedrock did not improve the reflection signal strength sufficiently because the shots, though buried, were within the surface layer and hence attenuated. Ability to model a complex 3D geological structure and calculate synthetic seismograms that are in good agreement with actual data (especially for surface waves and below the complex weathered layer) was demonstrated. We conclude that E3D is a powerful tool for assessing the conditions under which a tunnel could be detected in a specific geological setting. Finally, the Lake Lynn tunnel explosion data were analyzed using standard array processing techniques. The results showed that single detonations could be detected and located but simultaneous detonations would require a strategic placement of arrays.« less

  10. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  11. The GBT 3mm Survey of Infall and Fragmentation of Dense Cores in Taurus

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Goldsmith, Paul; Shirley, Yancy L.; Church, Sara; Frayer, David

    2018-01-01

    We present preliminary results of the infall and fragmentation survey toward a complete population of prestellar cores in Taurus that was carried out with the 16-element W-band focal plane array receiver (Argus) on the 100m Green Bank Telescope. The survey is designed take advantage of the 8.5” angular resolution and high sensitivity of Argus on the GBT to trace infall motions in HCN 1-0 & HCO+ 1-0 and find any evidence of fragmentation in N2H+ & NH2D within prestellar cores ranging in size from 0.05 pc to 0.0075 pc (1500 AU), which is a typical size scale of individual planetary systems. The scientific goal is to estimate the fraction of infall candidates from a complete population of prestellar cores and to understand internal velocity structure during the final gravitational collapse before forming stars. The survey started in the winter of 2016 and is to continue to the end of January 2018. So far, we observed 23 prestellar cores out of 65 targets in HCN 1-0 and HCO+ 1-0. We have so far found only two prestellar cores (L1495A-N, L1521D) out of 23 observed that show infall signatures, which is a fraction of infalling cores less than half of that reported by the previous surveys toward the bright, dense cores in various molecular clouds (Lee et al. 2004; Sohn et al. 2007). We also found that L1495A-N has a highly asymmetric infall motion which does not fit to a conventional model of dense core collapse, while L1521D has a slow infall motion similar to L1544.

  12. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, A.D.; Emerson, S.; Nelson, B.K.

    The authors present results of an investigation of uranium/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell calida) foraminifera show that the U/Ca ratio of cleaned calcite tests is proportional to the concentration of uranium in solution. After correcting results for the presence of initial calcite, the apparent distribution coefficient D = (U/Ca[sub calcite])/(U/Ca)[sub solution] = 10.6more » [+-] 0.3 (x10[sup [minus]3]) for A. lobifera and D = 7.9 [+-] 0.1 (x10[sup [minus]3]) for G. calida. U/Ca ratios in planktonic foraminifera from core tops collected above 3900 m in the equatorial Atlantic and above 2100 m in the Pacific Ocean show no significant difference among the species analyzed. D estimated form core top samples ranges from 7.6 [+-] 0.4 (x10[sup [minus]3]) for O. universa to 8.4 [+-] 0.5 (x10[sup [minus]3]) for G. ruber. In benthic species C. wuellerstorfi, D = 7.0 [+-] 0.8 (x10[sup [minus]3]). U/Ca and Mg/Ca in G. tumida and G. sacculifer from core tops taken near and below the regional lysocline decrease with water depth. Smaller decreases in U/Ca and Mg/Ca with depth were observed in C. wuellerstorfi. In the planktonic species, the authors believe that U/CA and Mg/Ca are lower in the more dissolution-resistant fraction of calcite, leading to lower U/Ca in more highly dissolved samples.« less

  13. Valence charge fluctuations in YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ from core-level spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzarotti, A.; De Crescenzi, M.; Motta, N.

    1988-10-01

    From x-ray photoemission and Auger measurements of the Cu 2p and O 1s core levels of YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ as a function of the oxygen concentration delta, the average copper charge is determined. Evidence is found of dynamic charge fluctuations on the oxygen sublattice giving rise to a greater concentration of trivalent copper at the Cu(1) sites with respect to that determined by the analysis of neutron-diffraction data. On the basis of our experimental results, we introduce a molecular cluster description for the Cu states. The lowest final-states configurations of Cu/sup 2+/ and Cu/sup 3+/ are c3d/sup 10/Lmore » and c3d/sup 10/L/sup 2/, respectively, where c and L denote core holes on copper and oxygen atoms. Oxygen holes have high mobility and a Hubbard correlation energy less than 2 eV, a signature of their delocalization. The effect of temperature on the spectra is minor. Surface degradation modifies the relative intensity of the structures, particularly those of the O spectrum.« less

  14. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Gurung, Rit Bahadur; Sohng, Jae Kyung

    2016-09-01

    Escherichia coli BL21 (DE3) was engineered by blocking glucose-1-phosphate utilizing glucose phosphate isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf) and uridylyltransferase (galU) genes to produce pool of four different rare dTDP-sugars. The cytosolic pool of dTDP-l-rhamnose, dTDP-d-viosamine, dTDP-4-amino 4,6-dideoxy-d-galactose, and dTDP-3-amino 3,6-dideoxy-d-galactose was generated by overexpressing respective dTDP-sugars biosynthesis genes from various microbial sources. A flexible glycosyltransferase YjiC, from Bacillus licheniformis DSM 13 was also overexpressed to transfer sugar moieties to 3-hydroxyl group of 3-hydroxyflavone, a core unit of flavonoids. Among four rare dTDP-sugars generated in cytosol of engineered strains, YjiC solely transferred l-rhamnose from dTDP-l-rhamnose and tuned to rhamnosyltransferase. Copyright © 2016. Published by Elsevier Inc.

  15. Stratification of earth's outermost core inferred from SmKS array data

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi; Matsuzawa, Takanori

    2015-12-01

    S mKS arrivals recorded by large-scale broadband seismometer arrays are analyzed to investigate the depth profile of P wave speed ( V p ) in the outermost core. The V p structure of the upper 700 km of the outer core has been determined using S mKS waves of Fiji-Tonga events recorded at stations in Europe. According to a recent outer core model (KHOMC), the V p value is 0.45 % slower at the core mantle boundary (CMB) than produced by the Preliminary Reference Earth Model (PREM), and the slow anomaly gradually diminishes to insignificant values at ˜300 km below the CMB. In this study, after verifying these KHOMC features, we show that the differential travel times measured for S mKS waves that are recorded by other large-scale arrays sampling laterally different regions are well matched by KHOMC. We also show that KHOMC precisely fits the observed relative slowness values between S2KS, S3KS, and S4KS (S mKS waves with m= 2, 3, and 4). Based on these observations, we conclude that S mKS predominantly reflect the outer core structure. Then we evaluate biases of secondary importance which may be caused by mantle heterogeneity. The KHOMC V p profile can be characterized by a significant difference in the radial V p gradient between the shallower 300 km and the deeper part of the upper 700 km of the core. The shallower part has a V p gradient of -0.0018 s -1, which is steeper by 0.0001 s -1 when compared to the deeper core presented by PREM. The steeper V p gradient anomaly of the uppermost core corresponds to a radial variation in the pressure derivative of the bulk modulus, K '= d K/ d P. The K ' value is 3.7, which is larger by about 0.2 than that of the deeper core. The radial variation in K ' is too large to have a purely thermal origin, according to recent ab initio calculations on liquid iron alloys, and thus requires a thick and compositionally stratified layering at the outermost outer core.

  16. 3D Printed Programmable Release Capsules.

    PubMed

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.

  17. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  18. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.

    PubMed

    Moumene, Missoum; Geisler, Fred H

    2007-08-01

    Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.

  19. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less

  20. 17 CFR Appendix B to Part 37 - Guidance on Compliance With Core Principles

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., resources and authority to detect and deter abuses by effectively and affirmatively enforcing its rules... privileges but having no, or only nominal equity, in the facility and non-member market participants or, in... transparent to the member or market participant. Core Principle 3 of section 5a(d) of the Act: MONITORING OF...

  1. Verification and recovery of thick deposits of massive gas hydrate from chimney structures, eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.; Kakuwa, Y.; Snyder, G. T.; Tanahashi, M.; Yanagimoto, Y.; Morita, S.

    2016-12-01

    The initial scientific research that was carried out between 2004 and 2013 has provided us with invaluable evidence that gas hydrates occur widely on and below the sea floor down to approximately 30 mbsf within gas chimney structures in Japan Sea (Matsumoto, 2005; 2009). In 2013, METI (Ministry of Economy, Trade and Industry) launched a 3-year exploration project to assess the resource potential of shallow gas hydrates in Japan Sea. During the course of the project, Meiji University and AIST conducted: sea-going geophysical surveys with AUV, and high resolution 3D seismic and CSEM. These were followed by LWD and coring down to BSR depths, and coupled with a number of analyses and experiments. Regional mapping by MBES and SBP has confirmed 1742 gas chimneys in an area of 64,000km2 along the eastern margin of Japan Sea and around Hokkaido. Multiple LWD operations have revealed anomalous profiles such as extremely low natural gamma ray, high velocity Vp, and high resistivity Ro down to BSR depths, providing a strong indication that thick and massive gas hydrates exist throughout gas chimneys above the BSR. In several cases, conventional coring using 6-m long core liners recovered nearly 6 m long massive gas hydrates in several horizons adjacent to the anomalous LWD sites.The PCTB pressure coring system (Geotek Ltd) successfully cored 2-m long intervals of undisturbed, pressurized hydrate-bearing cores, providing valuable information about the in-situ occurrence and textural relations of hydrate and surrounding sediments. Full dissociation and slow degassing experiments of pressurized cores were conducted using onboard PCATS (Pressure core analysis and transfer system) to measure the amount of gases from hydrates. The mean volume fraction of gas hydrates in well-developed gas chimney structures is estimated to be 30 to 86 vol.% based on coupled PCATS and chloride anomaly profiles. Such an unusually high accumulation of gas hydrates in gas chimneys is assumed to have been caused by high TOC accumulation in rifted basins, followed by enhanced thermal maturation by high heat flow of young Japan Sea and, the subsequent migration of deep seated thermogenic gases as a consequence of the tectonic inversion some million years ago. This study was conducted under the commission from AIST as a part of the methane hydrate project of METI.

  2. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  3. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE PAGES

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.; ...

    2017-06-14

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  4. Centralised 3D printing in the NHS: a radiological review.

    PubMed

    Eley, K A

    2017-04-01

    In recent years, three-dimensional (3D) printing has seen an explosion of interest fuelled by improvements in technology and associated reduction in costs. The literature is replete with novel medical applications of custom anatomical models, prostheses, and surgical guides. Although the fundamental core of 3D printing lies in image manipulation, the driving force in many National Health Service (NHS) trusts has come from individual surgical specialties with 3D printers independently run and confined to respective departments. In this review of 3D printing, experience of establishing a new centralised 3D-printing service within an NHS hospital trust is reported, focusing on the requirements and challenges of such an endeavour. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark D.; Mausolff, Zander; Weems, Zach

    2016-08-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less

  6. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  7. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE PAGES

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; ...

    2017-07-21

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  8. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  9. The comparison of numerical models of a sandwich panel in the context of the core deformations at the supports

    NASA Astrophysics Data System (ADS)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2018-01-01

    The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.

  10. Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.

    PubMed

    Kim, Hwi; Hahn, Joonku; Lee, Byoungho

    2009-04-13

    Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.

  11. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO 3 thin films

    DOE PAGES

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; ...

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001) p-oriented BiFeO 3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  12. The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence

    PubMed Central

    Izquierdo, Luis; Coderch, Núria; Piqué, Nuria; Bedini, Emiliano; Michela Corsaro, Maria; Merino, Susana; Fresno, Sandra; Tomás, Juan M.; Regué, Miguel

    2003-01-01

    To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to α-l-glycero-d-manno-heptopyranose II (l,d-HeppII) at the O-3 position of an α-d-galactopyranosyluronic acid (α-d-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae. PMID:14645282

  13. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor ofmore » ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.« less

  14. Loofah-like gel network formed by the self-assembly of a 3D radially symmetrical organic-inorganic hybrid gelator.

    PubMed

    Tang, Guodong; Chen, Si; Ye, Feng; Xu, Xiaopeng; Fang, Jing; Wang, Xu

    2014-07-11

    We report a unique loofah-like gel network that is supported by the sectional type hexagonal columnar assembly of flexuous furcate fibers, which are constructed by plane-to-plane stacking of a novel 3D radially symmetrical gelator with POSS as the core and L-lysine as the arm.

  15. Exploring Cultural Heritage Resources in a 3d Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.

    2012-06-01

    Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.

  16. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  17. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  18. Diagnostic performance and safety of a three-dimensional 14-core systematic biopsy method.

    PubMed

    Takeshita, Hideki; Kawakami, Satoru; Numao, Noboru; Sakura, Mizuaki; Tatokoro, Manabu; Yamamoto, Shinya; Kijima, Toshiki; Komai, Yoshinobu; Saito, Kazutaka; Koga, Fumitaka; Fujii, Yasuhisa; Fukui, Iwao; Kihara, Kazunori

    2015-03-01

    To investigate the diagnostic performance and safety of a three-dimensional 14-core biopsy (3D14PBx) method, which is a combination of the transrectal six-core and transperineal eight-core biopsy methods. Between December 2005 and August 2010, 1103 men underwent 3D14PBx at our institutions and were analysed prospectively. Biopsy criteria included a PSA level of 2.5-20 ng/mL or abnormal digital rectal examination (DRE) findings, or both. The primary endpoint of the study was diagnostic performance and the secondary endpoint was safety. We applied recursive partitioning to the entire study cohort to delineate the unique contribution of each sampling site to overall and clinically significant cancer detection. Prostate cancer was detected in 503 of the 1103 patients (45.6%). Age, family history of prostate cancer, DRE, PSA, percentage of free PSA and prostate volume were associated with the positive biopsy results significantly and independently. Of the 503 cancers detected, 39 (7.8%) were clinically locally advanced (≥cT3a), 348 (69%) had a biopsy Gleason score (GS) of ≥7, and 463 (92%) met the definition of biopsy-based significant cancer. Recursive partitioning analysis showed that each sampling site contributed uniquely to both the overall and the biopsy-based significant cancer detection rate of the 3D14PBx method. The overall cancer-positive rate of each sampling site ranged from 14.5% in the transrectal far lateral base to 22.8% in the transrectal far lateral apex. As of August 2010, 210 patients (42%) had undergone radical prostatectomy, of whom 55 (26%) were found to have pathologically non-organ-confined disease, 174 (83%) had prostatectomy GS ≥7 and 185 (88%) met the definition of prostatectomy-based significant cancer. This is the first prospective analysis of the diagnostic performance of an extended biopsy method, which is a simplified version of the somewhat redundant super-extended three-dimensional 26-core biopsy. As expected, each sampling site uniquely contributed not only to overall cancer detection, but also to significant cancer detection. 3D14PBx is a feasible systematic biopsy method in men with PSA <20 ng/mL. © 2014 The Authors. BJU International © 2014 BJU International.

  19. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    PubMed

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.

  20. Catalytic performance of M@Ni (M = Fe, Ru, Ir) core-shell nanoparticles towards ammonia decomposition for CO x -free hydrogen production

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhou, Junwei; Chen, Shuangjing; Zhang, Hui

    2018-06-01

    To reduce the use of precious metals and maintain the catalytic activity for NH3 decomposition reaction, it is an effective way to construct bimetallic nanoparticles with special structures. In this paper, by using density functional theory methods, we investigated NH3 decomposition reaction on three types of core-shell nanoparticles M@Ni (M = Fe, Ru, Ir) with 13 core M atoms and 42 shell Ni atoms. The size of these three particles is about 1 nm. Benefit from alloying with Ru in this nanocluster, Ru@Ni core-shell nanoparticles exhibit catalytic activity comparable to that of single metal Ru, based on the analysis of the adsorption energy and potential energy diagram of NH3 decomposition, as well as N2 desorption processes. However, as for Fe@Ni and Ir@Ni core-shell nanoparticles, their catalytic activities are still unsatisfactory compared to the active metal Ru. In addition, in order to further explain the synergistic effect of bimetallic core-shell nanoparticles, the partial density of states were also calculated. The results show that d-band electrons provided by the core metal are the main factors affecting the entire catalytic process.

  1. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.

  2. Simulation des fuites neutroniques a l'aide d'un modele B1 heterogene pour des reacteurs a neutrons rapides et a eau legere

    NASA Astrophysics Data System (ADS)

    Faure, Bastien

    The neutronic calculation of a reactor's core is usually done in two steps. After solving the neutron transport equation over an elementary domain of the core, a set of parameters, namely macroscopic cross sections and potentially diffusion coefficients, are defined in order to perform a full core calculation. In the first step, the cell or assembly is calculated using the "fundamental mode theory", the pattern being inserted in an infinite lattice of periodic structures. This simple representation allows a precise modeling for the geometry and the energy variable and can be treated within transport theory with minimalist approximations. However, it supposes that the reactor's core can be treated as a periodic lattice of elementary domains, which is already a big hypothesis, and cannot, at first sight, take into account neutron leakage between two different zones and out of the core. The leakage models propose to correct the transport equation with an additional leakage term in order to represent this phenomenon. For historical reasons, numerical methods for solving the transport equation being limited by computer's features (processor speeds and memory sizes), the leakage term is, in most cases, modeled by a homogeneous and isotropic probability within a "homogeneous leakage model". Driven by technological innovation in the computer science field, "heterogeneous leakage models" have been developed and implemented in several neutron transport calculation codes. This work focuses on a study of some of those models, including the TIBERE model from the DRAGON-3 code developed at Ecole Polytechnique de Montreal, as well as the heterogeneous model from the APOLLO-3 code developed at Commissariat a l'Energie Atomique et aux energies alternatives. The research based on sodium cooled fast reactors and light water reactors has allowed us to demonstrate the interest of those models compared to a homogeneous leakage model. In particular, it has been shown that a heterogeneous model has a significant impact on the calculation of the out of core leakage rate that permits a better estimation of the transport equation eigenvalue Keff . The neutron streaming between two zones of different compositions was also proven to be better calculated.

  3. Conformation of glycomimetics in the free and protein-bound state: structural and binding features of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man.

    PubMed

    Mikkelsen, Lise Munch; Hernáiz, María José; Martín-Pastor, M; Skrydstrup, Troels; Jiménez-Barbero, Jesús

    2002-12-18

    The conformational properties of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man in solution have been carefully analyzed by a combination of NMR spectroscopy and time-averaged restrained molecular dynamics. It has been found that both the alpha-1,3- and the alpha-1,6-glycosidic linkages show a major conformational averaging. Unusual Phi ca. 60 degrees orientations for both Phi torsion angles are found. Moreover, a major conformational distinction between the natural compound and the glycomimetic affects to the behavior of the omega(16) torsion angle around the alpha-1 --> 6-linkage. Despite this increased flexibility, the C-glycosyl analogue is recognized by three mannose binding lectins, as shown by NMR (line broadening, TR-NOE, and STD) and surface plasmon resonance (SPR) methods. Moreover, a process of conformational selection takes place, so that these lectins probably bind the glycomimetic similarly to the way they recognize the natural analogue. Depending upon the architecture and extension of the binding site of the lectin, loss or gain of binding affinity with respect to the natural analogue is found.

  4. IODP Expedition 335: Deep Sampling in ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the

    2012-04-01

    Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011

  5. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical information can be used to infer temporal changes in parental magma compositions. Secondary sulfide mineralization and epidote-rich hydrothermal alteration zones in sheeted dikes and gabbros are clearly highlighted on element maps of S, Fe, Ca, Al, and Zn.

  6. MICROWAVE SPECTROSCOPY OF THE CALCIUM 4snf→4s(n+1)d, 4sng, 4snh, 4sni, AND 4snk TRANSITIONS

    NASA Astrophysics Data System (ADS)

    Nunkaew, Jirakan; Gallagher, Tom

    2015-06-01

    We use a delayed field ionization technique to observe the microwave transitions of calcium Rydberg states, from the 4snf states to the 4s(n+1)d, 4sng, 4snh, 4sni, and 4snk states for 18≤ n≤23. We analyze the observed intervals between the ℓ and (ℓ+1), ℓ≥5, states of the same n to determine the Ca^+ 4s dipole and quadrupole polarizabilities. We show that the adiabatic core polarization model is not adequate to extract the Ca^+ 4s dipole and quadrupole polarizabilities and a non adiabatic treatment is required. We use the non adiabatic core polarization model to determine the ionic dipole and quadrupole polarizabilities to be α_d=76.9(3);a_0^3 and α_q=206(9);a_0^5, respectively.

  7. Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Yu, L.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.; Paz-Soldan, C.; Turnbull, A. D.; Classen, I. G. J.; the DIII-D Team

    2013-09-01

    High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma.

  8. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  9. To development of analytical theory of rotational motion of the Moon

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.; Navarro, J. F.

    2009-04-01

    Resume. In the work the analytical theory of forced librations of the Moon considered as a celestial body with a liquid core and rigid non-spherical mantle is developed. For the basic variables: Andoyer, Poincare and Eulerian angles, and also for various dynamic characteristics of the Moon the tables for amplitudes, periods and phases of perturbations of the first order have been constructed. Resonant periods of free librations have been estimated. The influence of a liquid core results in decreasing of the period of free librations in longitude approximately on 0.316 day, and in change of the period of free pole wobble of the Moon on 25.8 days. In the first approximation the liquid core does not render influence on the value of Cassini's inclination and on the period of precession of the angular momentum vector. However it causes an additional "quasi-diurnal" librations with period about 27.165 days. In comparison with model of rigid non-spherical of the Moon the presence of a liquid core should result in increase of amplitudes of the Moon librations in longitude on 0.06 %. 1 Development of analytical theory of rotational motion of the Moon with liquid core and rigid mantle. The work has been realized in following stages. 1. Canonical equations of rotation of the Moon with liquid core and elastic mantle in Andoyer and Poincare variables have been constructed. Developments of second harmonic of force function of the Moon in pointed variables have been obtained for accurate trigonometric presentation of perturbations of the Moon orbital motion. 2. Two approaches (two methods) of construction of analytical theory have been developed. These approaches use different principles for eliminating of singularities for axial rotation of the Moon. One is based on direct application of Andoyer variables by changing of notations of moments of inertia [1]. Second is based on application of Poincare elements. For comparison both approaches are developed. 3. The main equation for determination of Cassini's inclination and its solution has been obtained in the case of accurate orbit of the Moon. An dynamical explanation of Cassini's laws has been done for model of the Moon with liquid core [2]. 4. Compact formulae for perturbations of the first (and second) order have been constructed for general used variables and for different kinematical and dynamical characteristics of the Moon (23 variables and characteristics: Andoyer-Poincare variables, classical variables, components of angular velocity and angular momentums of the Moon and its core). 5. Analytical formulae for 4 periods of free librations of the Moon have been constructed: for librations in longitude, in pole wobble, for free precession, and "quasi-diurnal" librations, caused by the liquid core. 6. The dynamical effects in the Moon rotation, caused by secular orbital perturbations of the Earth and Sun, have been studied. 2 Structure perturbations of the first order and their tabulation. For example, perturbations (periodic and of mixed type) in inclination ?and in node h of angular momentum of the Moon are determined by formulae: ? = ?0 + ‘ ???(1) cosθv, h = ? + ‘ ¥?¥h?(1) sinθ?. Here ?0 = 1033′50" is the Cassini's inclination of the Moon; ??(1), h?(1)are constant coefficients; θv = v1lM + v2lS + v3F + v4D, ? = (v1,v2,v3,v4)Tare combinations of known classical arguments of the Moon orbital theory; v1,v2,v3 and v4 are integer. 3 Influence of the liquid core and its ellipticity ɛ on amplitudes of the Moon forced and free librations. An influence of the liquid core and its ellipticity is determined by positive correction to amplitudes of librations for model of the rigid Moon. If the amplitudes of librations of rigid Moon we note as 1, so the corresponding amplitudes of librations of the Moon with the liquid core will be characterized by parameter 1 + L, where correction for liquid core is determined by formula L = Cc(1- ɛ2)•C ? Cc•C = 0.5996 × 10-3, where Cand Ccis the polar moments of inertia of the Moon and its core;ɛ = (a2 - b2)• (a2 + b2)? (a - b)•a is an ellipticity of equatorial ellipse of core cavity with semi-axes a and b. So all amplitudes of librations in longitude due to the liquid core are increased on 0.06%. A small effect of ellipticity has more smaller order. Here as example we present formula for perturbations of the first order of the Moon in longitude: (1) 21-+-L λ = 6n0 I C22Ã- ‘ ‘ D (1) (? )- D(-1) (? ) Ã- (- 1)?5-?1.?2.?3+2.?4.?5--0----?1.?2.?3-2.?4.?25-0-sin(v1lM + v2lS + v3F + v4D ) ¥?¥>0 ?5 (v1nM + v2nS + v3nF + v4nD) I = C•(mr2) is the dimensionless moment of inertia of the Moon (m and rare it's the mass and mean radius). Kinoshita's inclination functions D?1.?2.?3.?4.?5(±1)(? 0) are determined by known formulae through the value of Cassini's angle? = 1033′50". v1nM + v2nS + v3nF + v4nD = ˙θv1,v2,v3,v4 are derivatives with respect to the time of corresponding linear combinations of classical arguments of lunar orbit theory; nM,nS,nF and nD are velocities of changes of these arguments; C22 is the selenopotential coefficient; n02 = fm⊕•a3, a is an unperturbed value of semi-axis major of lunar orbit, fis a gravitational constant. The perturbations of the first order for others variables and considered dynamical characteristics have the structure similar to the formula for ˜λ(1). In given table 1 we present amplitudes of forced librations in longitude of intermediate Andoyer plane λ?1,?2,?3,?4 (in arc seconds) and perturbations of angular velocity of the Moon axial rotation ??1,?2,?3,?4 (in units10-4nF). T?1,?2,?3,?4are periods of corresponding perturbations. Table 1. Main perturbations in the Moon librations in longitude. ?1 ?2 ?3 ?4 T?1,?2,?3,?4 λ?1,?2,?3,?4 0 1 0 0 365.26 81"02 1 0 0 0 27.555 -15"65 1 -1 0 -1 -3232.9 9"85 2 0 0 -2 205.89 9"69 1 0 0 -2 31.81 4"15 1 0 0 -1 411.78 -2"98 2 0 -2 0 -1095.2 -1"86 2 -1 0 -2 471.89 0"74 0 0 0 2 14.77 -0"61 The results of tabulations of amplitudes of perturbations in the Moon rotation give good agreement with earlier constructed theories for its rigid model. Barkin's work partially was financially accepted by Spanish grants, Japanese-Russian grant N-07-02-91212 and by RFBR grant N 08-02-00367. References [1] Barkin, Yu. (1987) An Analytical Theory of the Lunar Rotational Motion. In: Figure and Dynamics of the Earth, Moon and Planets/ Proceedings of the Int. Symp. (Prague, Czechoslovakia, Sept. 15-20, 1986)/ Monogr. Ser. of UGTK, Prague. pp. 657-677. [2] Ferrandiz, J., Barkin, Yu. (2003) New approach to development of Moon rotation theory. Procced. of Inter. Conf. "Astrometry, Geodynamics and Solar System Dynamics". Journees 2003 (Sept. 22-25, 2003, St. Peters., Russia). IPA RAS, 199-200.

  10. A Case Study in Astronomical 3D Printing: The Mysterious η Carinae

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.

    2017-05-01

    Three-dimensional (3D) printing moves beyond interactive 3D graphics and provides an excellent tool for both visual and tactile learners, since 3D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3D graphics are also alleviated by 3D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3D printing (1) to visualize and understand the η Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3D print full-color models of η Car’s colliding stellar winds. We also demonstrate how 3D printing has helped us communicate our improved understanding of the detailed structure of η Car’s Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are full-color 3D printable files of both a red-blue Homunculus model and the η Car colliding stellar winds at orbital phase 1.045. 3D printing could prove to be vital to how astronomer’s reach out and share their work with each other, the public, and new audiences.

  11. Full wave simulations of helicon wave losses in the scrape-off-layer of the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Lau, Cornwall; Jaeger, Fred; Berry, Lee; Bertelli, Nicola; Pinsker, Robert

    2017-10-01

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D. Previous modeling using the hot plasma, full wave code AORSA, has shown good agreement with the ray tracing code GENRAY for helicon wave propagation and absorption in the core plasma. AORSA, and a new, reduced finite-element-model show discrepancies between ray tracing and full wave occur in the scrape-off-layer (SOL), especially at high densities. The reduced model is much faster than AORSA, and reproduces most of the important features of the AORSA model. The reduced model also allows for larger parametric scans and for the easy use of arbitrary tokamak geometry. Results of the full wave codes, AORSA and COMSOL, will be shown for helicon wave losses in the SOL are shown for a large range of parameters, such as SOL density profiles, n||, radial and vertical locations of the antenna, and different tokamak vessel geometries. This work was supported by DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-04ER54698.

  12. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  13. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-27

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  14. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraud-Carrier, M., E-mail: mgeecee@byu.edu; Hill, C.; Decker, T.

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored formore » optical absorption. Maximum absorption peak depths of 9% were measured.« less

  15. Core formation in the early solar system through percolation: 4-D in-situ visualization of melt migration

    NASA Astrophysics Data System (ADS)

    Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.

    2015-12-01

    Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate constraints on melt migration velocities via this combined mechanism and will propose a model by which results can be scaled to core formation in the early solar system. References[1] Shi et al. Nature GeoSc. 6, 971 (2013).[2] Bruhn et al. Nature 403, 883 (2000).[3] Kohlstedt & Holtzman Ann. Rev. Earth. Planet. Sci. 37, 561 (2009).

  16. Numerical optimization of three-dimensional coils for NSTX-U

    DOE PAGES

    Lazerson, S. A.; Park, J. -K.; Logan, N.; ...

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less

  17. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh K., E-mail: ashuvishen@gmail.com, E-mail: aksingh@bose.res.in; Mandal, Kalyan

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector,more » which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.« less

  18. Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, M.C.; Christensen, E.R.; Karls, J.F.

    Four sediment cores were collected from the lower Fox River, Wisconsin, USA, to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) using a chemical mass balance model. The cores, which were obtained in 1995 from areas close to Green Bay, Wisconsin, USA, had total PAH concentrations between 19.3 and 0.34 ppm. To determine historical trends of PAH inputs, {sup 210}Pb and {sup 137}Cs dating was used, and elemental carbon particle analysis was done to characterize particles from the combustion of coal, wood, and petroleum. Source fingerprints were taken from the literature. Their results indicate that coke oven emissions, highway dust,more » coal gasification, and wood burning are likely sources of PAHs in the lower Fox River. Coke oven emissions are in the range of 40 to 90% of total PAHs, and this fraction decreases from 1930 to 1990, except in core Fox River-A (FR-A). The overall highway dust (HWY) contribution is between 10 and 75%, and this fraction increases from 1930 to present, except in core FR-A. The wood burning (WB) contribution is less than 7% in cores FR-B, FR-C, and FR-D. In core FR-A, a maximum ({approximately}23%) is found around 1960. The contribution of wood burning has changed from less than 6% in 1950 to between 3 and 10% in 1995. Evidence of aerobic biodegradation or photolysis in the sediment of phenanthrene, with a half-life of approximately 0.5 years has been found at the site of core FR-D, which is the shallowest (1.1 m) of the four core sites.« less

  19. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  20. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

    PubMed Central

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-01-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608

  1. A New Approach for Sustainable Energy Systems due to the Excitation of Inner-core Electrons on Zinc Atoms Induced by Surface-ion-recombination

    NASA Astrophysics Data System (ADS)

    Hamasaki, Mitsugi; Obara, Masumi; Yamaguchi, Mitsuomi; Kuwayama, Masahiro; Obara, Kozo

    2011-12-01

    The crisis of Nuclear power plants due to the March 11, 2011 Tsunami in Japan suggests an increased need for sustainable science and technology in our society. The authors propose a new physical approach with surface-ion-recombination (SIR) due to the inner-core excitation of zinc atom [Ne]3s23p63d104s2 that brings no magnetic moment. Condensed material indicated the energy dependence of X-ray diffraction intensity, in which exists strong diffuse scattering intensities at 10 eV, 90 eV, 100 eV and 230 eV. These energies are strictly corresponding to zinc of electron systems (3s,3p,3d and these combination). Our approach may have the potential of techniques for future nanotechnology, especially for hydrogen storage systems.

  2. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.

    2017-06-20

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A withmore » the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.« less

  3. FEM analysis of an single stator dual PM rotors axial synchronous machine

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2017-01-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.

  4. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  5. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygenmore » and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high-content screen for the identification of compounds that target cells in dormant tumor spheroid regions. • Metabolite profiling by NMR spectroscopy on 3D tumor spheroids. • Identification of respiratory chain inhibitors to specifically induce cell death in inner tumor spheroid regions. • Respiratory chain inhibitors enhance cytostatic based therapy in vitro.« less

  7. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  8. Field analysis & eddy current losses calculation in five-phase tubular actuator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Tomczuk, Bronislaw

    2017-12-01

    Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally

  9. A finite element study of teeth restored with post and core: Effect of design, material, and ferrule.

    PubMed

    Upadhyaya, Viram; Bhargava, Akshay; Parkash, Hari; Chittaranjan, B; Kumar, Vivek

    2016-01-01

    Different postdesigns and materials are available; however, no consensus exists regarding superiority for stress distribution. The aim of this study was to evaluate the effect of design and material of post with or without ferrule on stress distribution using finite element analysis. A total of 12 three-dimensional (3D) axisymmetric models of postretained central incisors were made: Six with ferrule design and six without it. Three of these six models had tapered posts, and three had parallel posts. The materials tested were titanium post with a composite resin core, nickel chromium cast post and core, and fiber reinforced composite (FRC) post with a composite resin core. The stress analysis was done using ANSYS software. The load of 100 N at an angle of 45΀ was applied 2 mm cervical to incisal edge on the palatal surface and results were analyzed using 3D von Mises criteria. The highest amount of stress was in the cervical region. Overall, the stress in the tapered postsystem was more than the parallel one. FRC post and composite resin core recorded minimal stresses within the post but the stresses transmitted to cervical dentin were more as compared to other systems. Minimal stresses in cervical dentine were observed where the remaining coronal dentin was strengthen by ferrule. A rigid material with high modulus of elasticity for post and core system creates most uniform stress distribution pattern. Ferrule provides uniform distribution of stresses and decreases the cervical stresses.

  10. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  11. Effect of resonant magnetic perturbations on three dimensional equilibria in the Madison Symmetric Torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Munaretto, S.; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S.

    2016-05-01

    The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude br/B ˜ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.

  12. Enhanced intersystem crossing in core-twisted aromatics.

    PubMed

    Nagarajan, Kalaivanan; Mallia, Ajith R; Muraleedharan, Keerthi; Hariharan, Mahesh

    2017-03-01

    We describe the design, bottom-up synthesis and X-ray single crystal structure of systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric congestion at the cove region creates a nonplanar geometry that induces a significant yield of triplet excited states in the electron-poor core-twisted aromatics 1c and 2d . A systematic increase in the number of twisted regions in 1c and 2d results in a concomitant enhancement in the rate and yield of intersystem crossing, monitored using femtosecond and nanosecond transient absorption spectroscopy. Time-resolved absorption spectroscopic measurements display enhanced triplet quantum yields ( Φ T = 10 ± 1% for 1c and Φ T = 30 ± 2% for 2d ) in the twisted aromatics when compared to a negligible Φ T (<1%) in the planar analog 3c . Twist-induced spin-orbit coupling via activated out-of-plane C-H/C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vibrations can facilitate the formation of triplet excited states in twisted aromatics 1c and 2d , in contrast to the negligible intersystem crossing in the planar analog 3c . The ease of synthesis, high solubility, access to triplet excited states and strong electron affinity make such imide functionalized core-twisted aromatics desirable materials for organic electronics such as solar cells.

  13. Synthesis of Tricyclo[4,3,1,0(1,5)]decane Core of Plumisclerin A Using Pauson-Khand Annulation and SmI2-Mediated Radical Cyclization.

    PubMed

    Chen, Ji-Peng; He, Wei; Yang, Zhen-Yu; Yao, Zhu-Jun

    2015-07-17

    An efficient synthesis of the tricyclo[4,3,1,0(1, 5)]decane core (B/C/D rings) of plumisclerin A, a unique cytotoxic marine diterpenoid, is described. A Pauson-Khand reaction and a SmI2-mediated radical 1,4-conjugate addition successfully served as key reactions for construction of the fully functionalized 5,6-fused rings and the highly strained cyclobutanol moiety with correct relative stereochemistries, respectively.

  14. Usefulness and capability of three-dimensional, full high-definition movies for surgical education.

    PubMed

    Takano, M; Kasahara, K; Sugahara, K; Watanabe, A; Yoshida, S; Shibahara, T

    2017-12-01

    Because of changing surgical procedures in the fields of oral and maxillofacial surgery, new methods for surgical education are needed and could include recent advances in digital technology. Many doctors have attempted to use digital technology as educational tools for surgical training, and movies have played an important role in these attempts. We have been using a 3D full high-definition (full-HD) camcorder to record movies of intra-oral surgeries. The subjects were medical students and doctors receiving surgical training who did not have actual surgical experience ( n  = 67). Participants watched an 8-min, 2D movie of orthognathic surgery and subsequently watched the 3D version. After watching the 3D movie, participants were asked to complete a questionnaire. A lot of participants (84%) felt a 3D movie excellent or good and answered that the advantages of a 3D movie were their appearance of solidity or realism. Almost all participants (99%) answered that 3D movies were quite useful or useful for medical practice. Three-dimensional full-HD movies have the potential to improve the quality of medical education and clinical practice in oral and maxillofacial surgery.

  15. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  16. Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser

    NASA Astrophysics Data System (ADS)

    Christen, M.

    2016-06-01

    Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.

  17. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure.

    PubMed

    Bao, Yunhe; White, Cindy L; Luger, Karolin

    2006-08-25

    Poly(dA.dT) DNA sequence elements are thought to promote transcription by either excluding nucleosomes or by altering their structural or dynamic properties. Here, the stability and structure of a defined nucleosome core particle containing a 16 base-pair poly(dA.dT) element (A16 NCP) was investigated. The A16 NCP requires a significantly higher temperature for histone octamer sliding in vitro compared to comparable nucleosomes that do not contain a poly(dA.dT) element. Fluorescence resonance energy transfer showed that the interactions between the nucleosomal DNA ends and the histone octamer were destabilized in A16 NCP. The crystal structure of A16 NCP was determined to a resolution of 3.2 A. The overall structure was maintained except for local deviations in DNA conformation. These results are consistent with previous in vivo and in vitro observations that poly(dA.dT) elements cause only modest changes in DNA accessibility and modest increases in steady-state transcription levels.

  18. The Conflicting Forces Driving Future Avionics Acquisition (Les Arguments Contradictoires pour les Futurs Achats d’Equipements d’Avionique)

    DTIC Science & Technology

    1991-09-01

    Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics

  19. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  20. Variability in Objective Refraction for Persons with Down Syndrome.

    PubMed

    Marsack, Jason D; Ravikumar, Ayeswarya; Benoit, Julia S; Anderson, Heather A

    2017-05-01

    Down syndrome (DS) is associated with ocular and cognitive sequelae, which both have the potential to influence clinical measures of refractive error. This study compares variability of autorefraction among subjects with and without DS. Grand Seiko autorefraction was performed on 139 subjects with DS (age: 8-55, mean: 25 ± 9 yrs) and 138 controls (age: 7-59, mean: 25 ± 10 yrs). Subjects with three refraction measures per eye (DS: 113, control: 136) were included for analysis. Each refraction was converted to power vector notation (M, J0, J45) and a difference in each component (ΔM, ΔJ0, ΔJ45) was calculated for each refraction pairing. From these quantities, average dioptric strength ((Equation is included in full-text article.): square root of the sum of the squares of M, J0, and J45) and average dioptric difference ((Equation is included in full-text article.): square root of the sum of the squares of ΔM, ΔJ0, and ΔJ45) were calculated. The DS group exhibited a greater median (Equation is included in full-text article.)(1Q: 1.38D M: 2.38D 3Q: 3.41D) than control eyes (1Q: 0.47D M: 0.96D 3Q: 2.75D) (P < .001). Likewise, the DS group exhibited a greater median (Equation is included in full-text article.)in refraction (1Q: 0.27D M: 0.42D 3Q: 0.78D) than control eyes (1Q: 0.11D M: 0.15D 3Q: 0.23D) (P < .001) with 97.1% of control eyes exhibiting (Equation is included in full-text article.)≤0.50D, compared to 59.3% of DS eyes. An effect of (Equation is included in full-text article.)on (Equation is included in full-text article.)was not detected (P = .3009) nor was a significant interaction between (Equation is included in full-text article.)and group detected (P = .49). In the current study, comparing three autorefraction readings, median total dioptric difference with autorefraction in DS was 2.8 times the levels observed in controls, indicating greater potential uncertainty in objective measures of refraction for this population. The analysis demonstrates that J45 is highly contributory to the observed variability.

Top