Sample records for full launch schedule

  1. Tactical Satellite (TacSat) Feasibility Study: A Scenario Driven Approach

    DTIC Science & Technology

    2006-09-01

    Mobile User Objective System NAFCOM NASA /Air Force Cost Model NAVNETWARCOM Naval Network Warfare Command NGA National Geospatial Intelligence...by providing frequent imagery updates as they search for disaster survivors and trek into regions where all terrain has been destroyed and altered to...Kwajalein Atoll; Wallops Island; NASA . Assets will be located in adjacent to launch sites. 4) Launch schedule- Launch schedule will enable full

  2. The James Webb Space Telescope: Observatory Status and the Path to Launch

    NASA Technical Reports Server (NTRS)

    McElwain, Michael; Bowers, Chuck; Clampin, Mark; Niedner, Mal

    2016-01-01

    JWST will carry out transformative science from the very early universe and across cosmic time. JWST OTE and ISIM have been combined to form OTIS, which will commence environmental testing. The full JWST team has made tremendous progress since the last AT+I meeting in 2014.JWST on track following 2011 replan and remains on schedule to launch in October 2018.

  3. KSC00pp0540

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite arrives on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  4. KSC-00pp0540

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite arrives on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  5. Distribution of a Generic Mission Planning and Scheduling Toolkit for Astronomical Spacecraft

    NASA Technical Reports Server (NTRS)

    Kleiner, Steven C.

    1998-01-01

    This 2-year report describes the progress made to date on the project to package and distribute the planning and scheduling toolkit for the SWAS astronomical spacecraft. SWAS was scheduled to be launched on a Pegasus XL vehicle in fall 1995. Three separate failures in the launch vehicle have delayed the SWAS launch. The researchers have used this time to continue developing scheduling algorithms and GUI design. SWAS is expected to be launched this year.

  6. KSC-07pd1246

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the solar panels of the Dawn spacecraft are extended to their full extent. The panels will be tested and undergo black light inspection. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  7. Nickel-hydrogen CPV battery update

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1993-01-01

    The multicell common pressure vessel (CPV) nickel hydrogen battery manufactured by Johnson Controls Battery Group, Inc. has completed full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass-spectroscopy vessel leak detection. A first launch is scheduled for late in 1992 or early 1993 by the Naval Research Laboratory (NRL). Specifics of the launch date are not available at this time due to the classified nature of the program. Release of orbital data for the battery is anticipated following the launch.

  8. STS-84 Atlantis on Pad 39-A after RSS roll back

    NASA Technical Reports Server (NTRS)

    1997-01-01

    News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.

  9. KSC-00pp0541

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite is lifted up the gantry on pad 36A, Cape Canaveral Air Force Station. the Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  10. KSC00pp0541

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite is lifted up the gantry on pad 36A, Cape Canaveral Air Force Station. the Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  11. KSC-00pp0543

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite is about midway in its journey up the gantry on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  12. KSC00pp0543

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite is about midway in its journey up the gantry on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  13. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    NASA Technical Reports Server (NTRS)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  14. KSC-00pp0544

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite approaches the end of its journey up the gantry on pad 36A, Cape Canaveral Air Force Station, for mating with the Atlas IIA/Centaur rocket. The Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  15. KSC-00pp0542

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite is ready for mating with the lower stages of the Atlas IIA rocket on pad 36A, Cape Canaveral Air Force Station. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  16. KSC00pp0544

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite approaches the end of its journey up the gantry on pad 36A, Cape Canaveral Air Force Station, for mating with the Atlas IIA/Centaur rocket. The Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  17. KSC00pp0542

    NASA Image and Video Library

    2000-04-21

    The GOES-L satellite is ready for mating with the lower stages of the Atlas IIA rocket on pad 36A, Cape Canaveral Air Force Station. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  18. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  19. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  20. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  1. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  2. KSC-03pd0536

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  3. KSC-97PC947

    NASA Image and Video Library

    1997-06-28

    STS-94 Pilot Susan Leigh Still arrives at the Shuttle Landing Facility aboard a T-38 jet in preparation for the reflight of the Microgravity Science Laboratory-1 mission. Launch is scheduled for July 1, 1997, at 2:37 p.m. EDT. The laboratory was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  4. KSC-97PC946

    NASA Image and Video Library

    1997-06-28

    STS-94 Commander James D. Halsell, Jr., arrives at the Shuttle Landing Facility aboard a T-38 jet in preparation for the reflight of the Microgravity Science Laboratory-1 mission. Launch is scheduled for July 1, 1997, at 2:37 p.m. EDT. The laboratory was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  5. KSC00pp0545

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite, after being lifted up to the top of the gantry on pad 36A, Cape Canaveral Air Force Station, is ready for mating with the Atlas IIA/Centaur rocket. Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  6. KSC-00pp0545

    NASA Image and Video Library

    2000-04-23

    The GOES-L satellite, after being lifted up to the top of the gantry on pad 36A, Cape Canaveral Air Force Station, is ready for mating with the Atlas IIA/Centaur rocket. Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

  7. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  8. KSC-03pd0537

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC's Multi-Payload Processing Facility. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  9. Exosat/Delta - Demonstrated short-term backup launcher capability through international cooperation

    NASA Technical Reports Server (NTRS)

    Ganoung, J. K.; Altmann, G.; Eaton, P.; Kraft, J. D.

    1983-01-01

    The instrumentation, performance parameters, Delta launch implementation, and development program of the Exosat, launched in February 1983 are described. The X ray satellite was integrated into the Delta vehicle over a three month period, and will survey mainly previously observed X ray objects by directing its detectors at them just before they are occulted by the moon. The 120 kg science package, powered by 260 W of power from solar panels, include low- and medium-energy imaging devices. The spacecraft was originally intended for Ariane launch, but scheduling conflicts, plus the need for a polar-type orbit, dictated the use of the Western Space and Missile Center. Maintenance of Delta compatibility throughout the development of the Exosat facilitated the transfer of launch vehicles, as did full existing documentation of the spacecraft and familiarity between the ESA and NASA managers of the development and launch programs, respectively.

  10. STS-92 Mission Specialist McArthur has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist William S. McArthur Jr. uses a laptop computer while garbed in his full launch and entry suit. McArthur and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be McArthur's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  11. APOLLO SOYUZ TEST PROJECT [ASTP] SPACECRAFT FULL SCALE MODEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Model of docked Apollo and Soyuz spacecraft in the foreground and skylight in the Vehicle Assembly Building high bay frame the second stage of the Saturn 1B booster that will launch the United States ASTP mission as a crane raises it prior to its mating with the Saturn 1B first stage. Mating of the Saturn 1B first and second stages was completed this morning. The U. S. ASTP launch with mission commander Thomas Stafford, command module pilot Vance Brand and docking module pilot Donald Slayton is scheduled at 3:50 p.m. EDT July 15.

  12. STS-97 Mission Specialist Garneau with full launch and entry suit during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  13. 143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ROOM (120), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. KSC-87PC-0266

    NASA Image and Video Library

    1987-03-16

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station in Florida, the paylaod fairing of the Delta 182 launch vehicle is carefully moved into place as encapsulation procedures continue on the Palapa B2-P communications satellite at Launch Complex 17, Pad B. Palapa is scheduled for launch from Cape Canaveral for the government of Indonesia. Liftoff of Delta 182 and Palapa is scheduled for March 20. Photo Credit: NASA

  15. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  16. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  17. 14 CFR 1215.109 - Scheduling user service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...

  18. 14 CFR 1215.109 - Scheduling user service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...

  19. 14 CFR 1215.109 - Scheduling user service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scheduling user service. 1215.109 Section 1215.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY... highest priority: (i) Launch, reentry, landing of the STS Shuttle, or other NASA launches. (ii) NASA...

  20. 14 CFR 1214.109 - Scheduling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.109 Scheduling. (a) Establishment of a launch date. (1) NASA will assign a tentative launch date for a payload only after NASA's receipt, review and acceptance of a customer-submitted NASA Form 1628 requesting flight...

  1. 14 CFR 1214.109 - Scheduling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.109 Scheduling. (a) Establishment of a launch date. (1) NASA will assign a tentative launch date for a payload only after NASA's receipt, review and acceptance of a customer-submitted NASA Form 1628 requesting flight...

  2. 14 CFR 1214.109 - Scheduling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.109 Scheduling. (a) Establishment of a launch date. (1) NASA will assign a tentative launch date for a payload only after NASA's receipt, review and acceptance of a customer-submitted NASA Form 1628 requesting flight...

  3. 14 CFR 1214.109 - Scheduling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.109 Scheduling. (a) Establishment of a launch date. (1) NASA will assign a tentative launch date for a payload only after NASA's receipt, review and acceptance of a customer-submitted NASA Form 1628 requesting flight...

  4. 14 CFR § 1214.109 - Scheduling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.109 Scheduling. (a) Establishment of a launch date. (1) NASA will assign a tentative launch date for a payload only after NASA's receipt, review and acceptance of a customer-submitted NASA Form 1628 requesting flight...

  5. 14 CFR Appendix C to Part 1215 - Typical User Activity Timeline

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Time (approximate) Activity Project conceptualization (At least 3 years before launch; Ref. § 1215.108... Federal Communications Commission for license to communicate with TDRSS at least 18 months prior to launch... scheduling request to GSFC covering a weekly period. Receive schedule from GSFC based on principles of...

  6. 14 CFR Appendix C to Part 1215 - Typical User Activity Timeline

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Time (approximate) Activity Project conceptualization (At least 3 years before launch; Ref. § 1215.108... Federal Communications Commission for license to communicate with TDRSS at least 18 months prior to launch... scheduling request to GSFC covering a weekly period. Receive schedule from GSFC based on principles of...

  7. 14 CFR Appendix C to Part 1215 - Typical User Activity Timeline

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Time (approximate) Activity Project conceptualization (At least 3 years before launch; Ref. § 1215.108... Federal Communications Commission for license to communicate with TDRSS at least 18 months prior to launch... scheduling request to GSFC covering a weekly period. Receive schedule from GSFC based on principles of...

  8. 14 CFR Appendix C to Part 1215 - Typical User Activity Timeline

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Time (approximate) Activity Project conceptualization (At least 3 years before launch; Ref. § 1215.108... Federal Communications Commission for license to communicate with TDRSS at least 18 months prior to launch... scheduling request to GSFC covering a weekly period. Receive schedule from GSFC based on principles of...

  9. The Ames-Lockheed orbiter processing scheduling system

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Gargan, Robert

    1991-01-01

    A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.

  10. STS_135_Pad

    NASA Image and Video Library

    2011-06-02

    JSC2011-E-059493 (31 May 2011) --- The space shuttle Atlantis is seen in the background on Launch Pad 39A at NASA?s Kennedy Space Center in Florida on May 31, 2011. The crawler/transporter is seen slowly driving away from the launch pad after making its final scheduled delivery of a shuttle. The orbiter is scheduled to fly the final mission of the Space Shuttle Program, launching on July 8. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  11. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06949 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), talks with crew trainer Sharon Jones prior to simulating procedures for egressing from a troubled space shuttle. This training mockup is called the full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. Photo Credit: Joe McNally, National Geographic, for NASA

  12. TDRS-M Sign Photos: T-4 Days Until Launch

    NASA Image and Video Library

    2017-08-14

    A sign just inside the gate to NASA's Kennedy Space Center in Florida notes that in four days an Atlas V rocket is scheduled to launch the agency's Tracking and Data Relay Satellite (TDRS-M). Liftoff atop the Unite Launch Alliance Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017. TDRS-M will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories.

  13. Pitch Guidance Optimization for the Orion Abort Flight Tests

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque

    2010-01-01

    The National Aeronautics and Space Administration created the Constellation program to develop the next generation of manned space vehicles and launch vehicles. The Orion abort system is initiated in the event of an unsafe condition during launch. The system has a controller gains schedule that can be tuned to reduce the attitude errors between the simulated Orion abort trajectories and the guidance trajectory. A program was created that uses the method of steepest descent to tune the pitch gains schedule by an automated procedure. The gains schedule optimization was applied to three potential abort scenarios; each scenario tested using the optimized gains schedule resulted in reduced attitude errors when compared to the Orion production gains schedule.

  14. TDRS-M Atlas V 1st Stage Erection Launch Vehicle on Stand

    NASA Image and Video Library

    2017-07-12

    A United Launch Alliance Atlas V first stage is lifted at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  15. KSC-00pp0406

    NASA Image and Video Library

    2000-03-25

    Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  16. KSC-00pp0405

    NASA Image and Video Library

    2000-03-25

    Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  17. KSC00pp0406

    NASA Image and Video Library

    2000-03-25

    Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  18. KSC00pp0405

    NASA Image and Video Library

    2000-03-25

    Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  19. KSC00pp0408

    NASA Image and Video Library

    2000-03-25

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  20. KSC-00pp0408

    NASA Image and Video Library

    2000-03-25

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  1. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  2. KSC-05PD-1607

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Atlas V Spaceflight Operations Center, the launch team goes through a wet dress rehearsal for launch of the Mars Reconnaissance Orbiter (MRO), scheduled for Aug. 10. At right, in the foreground, is NASAs Public Information Officer George Diller, who is commentator for launches of NASA payloads on expendable launch vehicles. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A wet rehearsal includes pre-liftoff operations and fueling the rockets engine. The MRO was built by Lockheed Martin for NASA Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.

  3. Improved NOAA weather satellite scheduled for NASA launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A description of the GOES-E mission is presented and includes the instrumentation of the satellite, data acquisition, spacecraft description, and Delta Launch Vehicle description. The launch operations are presented and include major launch events, post-launch events, and a review of the Delta/GOES-E team.

  4. KSC-00pp0407

    NASA Image and Video Library

    2000-03-25

    Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  5. KSC00pp0407

    NASA Image and Video Library

    2000-03-25

    Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  6. Ambitious STS-7 mission to feature first landing at Kennedy

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Hess, M.; White, T.; Taylor, J.

    1982-01-01

    The STS-7 press briefing schedule, NASA select television schedule; launch preparations, countdown and liftoff; major countdown milestones; launch window; STS-7 flight sequence of events, landing timeline; STS-7 flight timeline; landing and post landing operations; flight objectives; Telesat's ANIK-C 2; PALAPA-B; STS-7 experiments; and spacecraft tracking and data network are presented.

  7. KSC-2013-2848

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2013-2847

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort motor has been prepared for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2013-2844

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2013-2845

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2013-2846

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-05PD-1605

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Atlas V Spaceflight Operations Center, the launch team goes through a wet dress rehearsal for launch of the Mars Reconnaissance Orbiter (MRO), scheduled for Aug. 10. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A wet rehearsal includes pre-liftoff operations and a fueling of the rockets engine. The MRO was built by Lockheed Martin for NASA Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.

  13. KSC-05PD-1606

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Atlas V Spaceflight Operations Center, the launch team goes through a wet dress rehearsal for launch of the Mars Reconnaissance Orbiter (MRO), scheduled for Aug. 10. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A wet rehearsal includes pre-liftoff operations and a fueling of the rockets engine. The MRO was built by Lockheed Martin for NASA Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.

  14. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  15. KSC-00pp1682

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane lifts the P6 integrated truss segment from a workstand to place it in the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  16. KSC-00pp1683

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane moves the P6 integrated truss segment to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  18. TDRS-M: Atlas V 2nd Stage Erection/Off-site Verticle Integration (OVI)

    NASA Image and Video Library

    2017-07-13

    A United Launch Alliance Atlas V Centaur upper stage arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. United Launch Alliance team members monitor the operation progress as the Centaur upper stage is lifted and mated to the Atlas V booster in the vertical position. The rocket is scheduled to help launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 in early August.

  19. Space X-3 Social Media Tour of KSC Facilities

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A group of news media and social media tweeters toured the Launch Abort System Facility and viewed the launch abort system for the Orion spacecraft at NASA's Kennedy Space Center in Florida. Speaking to the group is Scott Wilson, manager of Production Operations for the Orion Program. The group also toured the Launch Control Center and Vehicle Assembly Building, legacy facilities that are being upgraded by the Ground Systems Development and Operations Program at Kennedy to prepare for processing and launch of NASA's Space Launch System and Orion spacecraft. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  20. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  1. KSC-00pp0373

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  2. KSC00pp0373

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  3. KSC-00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  4. KSC00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  5. 117. Photocopy of drawing (1964 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; ABBREVIATIONS, SYMBOLS, AND SCHEDULES; SHEET M-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  7. KSC-06pd2023

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett is dressed in his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  8. KSC-06pd2021

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson dons his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  9. KSC-06pd2022

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett dons his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  10. KSC-06pd2024

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson is dressed in his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  11. KSC-2013-3797

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  12. KSC-2013-3798

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  13. GEOTAIL Spacecraft historical data report

    NASA Technical Reports Server (NTRS)

    Boersig, George R.; Kruse, Lawrence F.

    1993-01-01

    The purpose of this GEOTAIL Historical Report is to document ground processing operations information gathered on the GEOTAIL mission during processing activities at the Cape Canaveral Air Force Station (CCAFS). It is hoped that this report may aid management analysis, improve integration processing and forecasting of processing trends, and reduce real-time schedule changes. The GEOTAIL payload is the third Delta 2 Expendable Launch Vehicle (ELV) mission to document historical data. Comparisons of planned versus as-run schedule information are displayed. Information will generally fall into the following categories: (1) payload stay times (payload processing facility/hazardous processing facility/launch complex-17A); (2) payload processing times (planned, actual); (3) schedule delays; (4) integrated test times (experiments/launch vehicle); (5) unique customer support requirements; (6) modifications performed at facilities; (7) other appropriate information (Appendices A & B); and (8) lessons learned (reference Appendix C).

  14. Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

  15. STS-89 Commander Wilcutt poses the day before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Commander Terrence Wilcutt poses in front of the crew's family and friends at KSC's Launch Pad 39A the day before the scheduled launch of Space Shuttle Endeavour. Final preparations are under way toward liftoff on Jan. 22 on the eighth mission to dock with the Russian Space Station Mir. After docking, Mission Specialist Andrew Thomas, Ph.D., will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS-89 is scheduled for liftoff at 9:48 p.m. EST.

  16. KSC-2009-2935

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.

  17. STS-129 Launch Count Down

    NASA Image and Video Library

    2009-11-16

    A launch countdown sign is seen along the road at NASA's Kennedy Space Center on Monday, Nov. 16, 2009, Cape Canaveral, FL. The space shuttle Atlantis is scheduled to launch at 2:28 p.m. EST Nov. 16. Photo Credit: (NASA/Bill Ingalls)

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Members of the weather team prepare reports for the Global Precipitation Measurement (GPM) Core Observatory Launch Readiness Review (LRR) with Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA), and NASA, on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The GPM spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager, left, participates in the GPM Launch Readiness Review (LRR) along with Chief officers from Mitsubishi Heavy Industries, Ltd., and the Japan Aerospace Exploration Agency (JAXA) on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  1. KSC-07pd1645

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lower the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  2. KSC-07pd1509

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station where it will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  3. KSC-07pd1636

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft has been wrapped with a protective cover before it is enclosed in a canister. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  4. KSC-07pd1646

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure the upper canister over the Dawn spacecraft. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  5. KSC-07pd1515

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second stage of the Delta II launch vehicle onto the first stage for mating. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd1644

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin lowering the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  7. KSC-2013-3816

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  8. KSC-2013-3814

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  9. KSC-2013-3818

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is backed by flatbed truck into a low bay at the facility. The low bay has been prepared for additional LAS processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  10. KSC-2013-3815

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  11. KSC-2013-3813

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  12. A Saturn launched X-ray astronomy experiment. Volume 1: S-027

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The S-027 X-Ray Astronomy Experiment originally proposed in early 1966, was developed to detect X-rays in the 2 keV to 10 keV range. Both a prototype unit and flight unit were constructed with the prototype unit also serving as the engineering model, the qualification test unit, and after refurbishment, as the back-up flight unit. Two Ground Support Equipment consoles were built to verify the experiment operation. A photograph of one experiment package with its Ground Support Equipment is shown. The S-027 experiment was scheduled for launch in 1968/69 and although both units were completed and tested to the extent that either would be ready for the scheduled launch, delays in the space program resulted in a launch date slip of several years. When the 1968/69 launch delay became official, provisions were made for storage of the two experiment packages at SCI Electronics in Huntsville, Alabama until a new launch date could be established.

  13. KSC00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  14. KSC00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  15. KSC-00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  16. KSC00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  17. KSC-00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  18. KSC-00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  19. TDRS-M Atlas V First and Second Stage Arrival

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  20. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster arrives at the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  1. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster is transported to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  2. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  3. KSC-06pd1906

    NASA Image and Video Library

    2006-08-24

    KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson is helped donning his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 4:30 p.m. Aug. 27. The crew will deliver and install the P3/P4 segment to the port side of the integrated truss system on the International Space Station. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. The mission is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  4. KSC-06pd1905

    NASA Image and Video Library

    2006-08-24

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett is helped donning his launch suit before flying the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 4:30 p.m. Aug. 27. The crew will deliver and install the P3/P4 segment to the port side of the integrated truss system on the International Space Station. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. The mission is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  5. Sunset at Vandenberg

    NASA Image and Video Library

    2015-01-21

    The sun sets behind Space Launch Complex 2, Vandenberg Air Force Base, California, where NASA Soil Moisture Active Passive SMAP mission satellite is being prepared for liftoff. Launch is scheduled for Jan. 29.

  6. KSC-2013-3796

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare to work on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  7. KSC-2013-3795

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician works on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  8. STS-90 Columbia RSS rollback

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  9. KSC-39b

    NASA Image and Video Library

    1998-04-15

    With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body

  10. KSC-98pc484

    NASA Image and Video Library

    1998-04-15

    KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body

  11. KSC-98pc483

    NASA Image and Video Library

    1998-04-15

    KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body

  12. KSC-97PC948

    NASA Image and Video Library

    1997-06-28

    STS-94 Commander James D. Halsell, Jr., speaks to the media at the Shuttle Landing Facility after the crew arrived at Kennedy Space Center in preparation for the reflight of the Microgravity Science Laboratory-1 mission. Launch is scheduled for July 1, 1997, at 2:37 p.m. EDT. From left to right, the crew members are Payload Specialists Gregory T. Linteris and Roger K. Crouch; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; Payload Commander Janice E. Voss; Pilot Susan Leigh Still and Commander James D. Halsell, Jr. One of the T-38 jets aboard which the crew arrived can be seen in the background. The laboratory was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  13. KSC-00pp1681

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, workers attach an overhead crane to lift the P6 integrated truss segment from a workstand and move it to the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  14. KSC-00pp1685

    NASA Image and Video Library

    2000-11-10

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  15. KSC-00pp1684

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  16. KSC-00pp1686

    NASA Image and Video Library

    2000-11-10

    Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. KSC-00pp1687

    NASA Image and Video Library

    2000-11-10

    The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  18. KSC-00pp1779

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Joseph Tanner signals thumbs up for launch as he dons his launch and entry suit. this is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  19. KSC-00pp1782

    NASA Image and Video Library

    2000-11-30

    STS-97 Pilot Michael Bloomfield signals thumbs up for launch after donning his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  20. KSC-00pp0144

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Under gray skies, the Rotating Service Structure rolls back into its protective position around Space Shuttle Endeavour on Launch Pad 39A. The launch of Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  1. KSC00pp0144

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Under gray skies, the Rotating Service Structure rolls back into its protective position around Space Shuttle Endeavour on Launch Pad 39A. The launch of Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  2. KSC00pp0142

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  3. KSC-00pp0142

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  4. Expedition 32 Soyuz Rocket Rollout

    NASA Image and Video Library

    2012-07-12

    A dragonfly lights on a tree branch near the launch pad after the Soyuz TMA-05M is rolled to its launch pad at the Baikonur Cosmodrome, Thursday, July 12, 2012 in Kazakhstan. The launch of the Soyuz rocket is scheduled for the morning of July 15 local time. Photo Credit: (NASA/Carla Cioffi)

  5. Expedition 19 Soyuz Rollout

    NASA Image and Video Library

    2009-03-23

    The Soyuz launch pad is seen about an hour before the Soyuz rocket is rolled out to the launch pad Tuesday, March 24, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  6. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4 missions ensuring benefits and enhancements during the system's design life.

  7. Building a Metric

    NASA Technical Reports Server (NTRS)

    Spencer, Shakira

    2007-01-01

    Launch Services Program is a Kennedy Space Center based program whose job it is to undertake all the necessary roles required to successfully launch Expendable Launch Vehicles. This project was designed to help Launch Services Program accurately report how successful they have been at launching missions on time or +/- 2 days from the scheduled launch date and also if they weren't successful, why. This information will be displayed in the form of a metric, which answers these questions in a clear and accurate way.

  8. The third stage of Lunar Prospector's Athena arrives at LC 46 at CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The third stage of the Lockheed Martin Athena launch vehicle arrives at Launch Complex 46 at Cape Canaveral Air Station before it is mated to the second stage. The protective covering for safe transportation is removed before the third stage is lifted on the launch pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.

  9. A panoramic view of the Space Station Processing Facility with Unity connecting module

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.

  10. STS-97 crew arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  11. A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  12. STS-89 M.S. Andrew Thomas, poses the day before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Andrew Thomas, Ph.D., poses at KSC's Launch Pad 39A wearing a miniature koala bear on the day before the scheduled launch of Space Shuttle Endeavour that will carry him up to the Russian Space Station Mir. Final preparations are under way toward liftoff on Jan. 22 on the eighth mission to dock with Mir. After docking, Dr. Thomas will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas, who was born and educated in South Australia, will live and work on Mir until June. STS-89 is scheduled for liftoff at 9:48 p.m. EST.

  13. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    At Port Canaveral in Florida, a United Launch Alliance Atlas V rocket booster is transported from the company's Mariner ship to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  14. JPL-20180504-INSIGHf-0001-NASA's First Mission to Study the Interior of Mars Awaits Launch

    NASA Image and Video Library

    2018-05-04

    Pre-launch video file. InSight's launch to Mars is scheduled for as early as May 5, 2018. Animations: Launch visibility. EDL. Instrument deployments. HP3. Detecting a marsquake. MarCO cubesats. Video: InSight being built at Lockheed Martin Space, Denver. Atlas V rocket and encapsulated InSight spacecraft. How the Atlas V performs this mission.

  15. KSC-00pp0143

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  16. KSC00pp0143

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  17. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  18. Advanced Communications Technology Satellite (ACTS) Experiments Program - A market-driven approach to government/industry cooperation

    NASA Astrophysics Data System (ADS)

    Olmstead, Dean A.; Schertler, Ronald R.; Randall, Laura A.

    1992-03-01

    The Advanced Communications Technology Satellite (ACTS), now under development and scheduled for launch in early 1993, is the current focus of NASA's commercial communications satellite program. The full power of the key technologies on ACTS can only be realized if industry assumes an active role in the conduct of experiments and demonstrations. This paper discusses the current market-driven rationale behind the ACTS Experiments Program activities aimed at getting industry involved - a rationale that addresses industry concerns and responds to industry inputs.

  19. KSC-05PD-1163

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the wheel well behind Atlantis right-hand main landing gear, workers attaches one end of a retract link. It replaces one in which a small crack was recently found. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  20. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  2. KSC-07pd1640

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move another segment of the lower canister onto the workstand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  3. KSC-07pd1643

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the partially enclosed Dawn spacecraft into another room to complete the canning. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  4. KSC-07pd1638

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  5. KSC-07pd1514

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft is lowered into the hole toward the Delta first stage below. The two stages will be mated. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd1641

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians place another segment of the canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  7. KSC-07pd1642

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians examine the lower canister they placed around the bottom of the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  8. KSC-07pd1512

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  9. KSC-07pd1637

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister toward the stand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  10. KSC-07pd1639

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  11. KSC-07pd1510

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  12. KSC00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  13. KSC-00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  14. KSC00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  15. KSC-00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  16. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim

    2006-01-01

    The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  18. Beginning the Journey to the Launch Pad

    NASA Image and Video Library

    2012-01-25

    NASA Nuclear Spectroscopic Telescope Array, or NuSTAR, mission is lowered into its shipping container at Orbital Sciences Corporation in Dulles, Va. It is scheduled to launch from Kwajalein Atoll in the Marshall Islands on March 14, 2012.

  19. KSC-2013-3366

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-3367

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician repairs a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-3372

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician cleans a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  2. KSC-06pd1689

    NASA Image and Video Library

    2006-08-01

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B, the second stage segment is lifted away from the Delta II rocket below. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann

  3. KSC-06pd1692

    NASA Image and Video Library

    2006-08-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second stage segment of the Delta II rocket is lowered from the mobile service tower. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann

  4. KSC-06pd1694

    NASA Image and Video Library

    2006-08-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers remove the protective covers from the engine nozzle on the second stage segment removed from the Delta II rocket. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann

  5. KSC-06pd1693

    NASA Image and Video Library

    2006-08-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second stage segment of the Delta II rocket is lowered from the mobile service tower. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann

  6. Experiences in Delta mission planning

    NASA Technical Reports Server (NTRS)

    Kork, J.

    1981-01-01

    The Delta launch vehicle has experienced 153 successful launches since 1960 and 40 more are scheduled. Relying on up-to-date technology and proven flight hardware, the Delta vehicle has been used for low to high circular and geosynchronous transfer orbits, high elliptic probes, and lunar and planetary missions. A history of Delta launches and configuration modifications is presented, noting a 92-95% success rate and its cost effective role in reimbursable missions. Elements of mission planning such as feasibility studies (1-3 yrs), spacecraft restraints manuals, reference trajectories, preliminary mission analysis, detailed test objectives, range/safety studies, guided nominal trajectory, and mission specific studies are discussed. Trajectory shaping determines vehicle and spacecraft restraints, optimizes the trajectory, and maximizes the payload capabilities. Improvements in the Delta vehicle have boosted payloads from 100 to 2890 lbs., improving the price per pound ratio, as costs have risen, only by a factor of three. Current launch schedules extend well into 1985.

  7. KSC-2013-3365

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  8. The third stage of Lunar Prospector's Athena is placed atop the second stage at LC 46 at CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The third stage of the Lockheed Martin Athena launch vehicle is placed atop the vehicle's second stage at Launch Complex 46 at Cape Canaveral Air Station. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.

  9. The third stage of Lunar Prospector's Athena is lifted at LC 46 at CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The third stage of the Lockheed Martin Athena launch vehicle is lifted at Launch Complex 46 at Cape Canaveral Air Station before mating to the second stage already on the pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18- month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early- January 1998.

  10. The Launch Processing System for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  11. KSC-07pd1219

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  12. KSC-07pd1218

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  13. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  14. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. SpaceX/Dragon CRS-12 What's on Board Science Briefing

    NASA Image and Video Library

    2017-08-13

    The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  16. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  17. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  18. STS-119 Launch Skyline

    NASA Image and Video Library

    2009-03-15

    STS119-S-025 (15 March 2009) --- The setting sun paints the clouds over NASA's Kennedy Space Center in Florida before the launch of Space Shuttle Discovery on the STS-119 mission. Liftoff is scheduled for 7:43 p.m. (EDT) on March 15, 2009.

  19. STS-97 P6 truss moves to a payload transport canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.

  20. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. KSC-06pd1081

    NASA Image and Video Library

    2006-06-15

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Stephanie Wilson signals all is well after donning her launch and entry suit in preparation for the simulated countdown she and other crew members will undertake. The crew is taking part in Terminal Countdown Demonstration Test activities, including the dress rehearsal for launch. Mission STS-121 is scheduled to be launched July 1. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd1511

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. At right can be seen the solid rocket boosters surrounding Delta's first stage. The second stage will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  3. KSC-07pd1513

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside the tower and mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  4. KSC-00pp1738

    NASA Image and Video Library

    2000-11-14

    The doors of the payload transport canister are open wide in the payload changeout room on Launch Pad 39B. Revealed is the P6 integrated truss segment, which will fly on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  5. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  6. KSC01kodi066

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- The PICSat and Starshine 3 (back) payloads wait for their launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  7. KSC01KODI040

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is raised off a truck at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  8. KSC01kodi063

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- The PCSat payload waits for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  9. KSC01kodi059

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  10. KSC01kodi064

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- Technicians prepare the PICSat payload for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  11. KSC01KODI055

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A convoy of trucks transports the stages of an Athena launch vehicle and supporting launch equipment to the pad at Kodiak Island, Alaska, as preparations to launch the Kodiak Star continue. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  12. STS-122 flight controllers in WFCR during launch

    NASA Image and Video Library

    2008-02-07

    JSC2008-E-010344 (7 Feb. 2008) --- Flight directors Norm Knight (left), Bryan Lunney and Richard Jones monitor data at their consoles in the space shuttle flight control room of Johnson Space Center's Mission Control Center (MCC) during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis' scheduled STS-122 launch. Liftoff occurred at 2:45 p.m. (EST) on Feb. 7, 2008 from launch pad 39A at Kennedy Space Center.

  13. KSC-07pd1212

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, the first stage of the Delta II rocket that will launch the Dawn spacecraft is ready to be transferred to a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  14. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  16. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  17. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

  18. KSC-01pp1549

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- At the Launch Service Structure, Kodiak Launch Complex (KLC), the fairing is lowered over the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  19. KSC01KODI057

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Athena I launch vehicle for flight at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  20. Nano-Electric Field TechnologY (NEFTY)

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M.

    2000-01-01

    The NEFTY SR&T grant was focused on the development of novel electric field boom systems for sounding rocket applications. A "yo-yo"-type boom that unwraps from a rotating and damped axel was analyzed through a simulation with Prof. Psiaki of Mechanical and Aerospace Engineering at Cornell University. The basic parameters of the analysis were evaluated and validated on a spinning platform prototyping system developed at Cornell University. The full "yo-yo"-type boom system is being developing for the SIERRA sounding rocket flight scheduled for a January 2002 launch. The principal results from this study were published.

  1. KSC-05PD-1090

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Orbiter Atlantis in NASAs Orbiter Processing Facility, bay 1, a retract link assembly (upper and lower white rods) is on the left-hand main landing gear. Last week a small crack was found on the right-hand assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  2. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06946 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). This training mockup is called The full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crew members for procedures to follow in egressing a troubled shuttle on the ground. Photo Credit: Joe McNally, National Geographic, for NASA

  3. KSC-05PD-1164

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the wheel well behind Atlantis right-hand main landing gear, workers (left) install a new retract link (at right is a reflection). The link replaces one in which a small crack was recently found. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  4. KSC-05PD-1161

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, workers prepare a replacement retract link for installation on orbiter Atlantis right-hand main landing gear. A small crack was found recently on the retract link assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  5. KSC-05PD-1160

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, workers prepare a replacement retract link for installation on orbiter Atlantis right-hand main landing gear. A small crack was found recently on the retract link assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  6. KSC-06pd2847

    NASA Image and Video Library

    2006-12-18

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., a worker attaches a high pressure line on the THEMIS spacecraft in preparation for fueling, which is scheduled for Jan. 3-5. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  7. KSC-03pd1364

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin raising an overhead crane that will be used to lift the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle will be moved to a rotation table for a spin stabilization test. v Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  8. KSC-06pd2849

    NASA Image and Video Library

    2006-12-18

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., a worker attaches a high pressure line on the THEMIS spacecraft in preparation for fueling, which is scheduled for Jan. 3-5. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  9. KSC-07pd1227

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar A&O at Cape Canaveral Air Force Station, the Delta II second stage for the Dawn spacecraft is ready for transfer to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  10. KSC-07pd1321

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the 1st stage of the Delta II rocket awaits solid rocket booster attachment. The rocket is the launch vehicle for the Dawn spacecraft, scheduled to launch June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  11. Firing Room 2 in Launch Control Center at KSC during Apollo 9 countdown test

    NASA Image and Video Library

    1969-02-23

    S69-25880 (23 Feb. 1969) --- Overall view of Firing Room 2 in the Launch Control Center, Launch Complex 39, Kennedy Space Center, during an Apollo 9 Countdown Demonstration Test. Astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart were participating in a training exercise in preparation for their scheduled 10-day Earth-orbital space mission.

  12. KSC-97PC1238

    NASA Image and Video Library

    1997-08-13

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA

  13. KSC-97PC1240

    NASA Image and Video Library

    1997-08-13

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA

  14. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  16. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  17. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, after being removed from the solid rocket booster (SRB), the forward assembly is lowered toward a transporter below in the transfer aisle. The destacking is part of time and cycle activities. The SRB was part of the stack on Atlantis originally scheduled for a March 1, 2003, launch on mission STS-114. The SRBs and external tank were demated in February 2003. The mission is now scheduled to occur no earlier than Sept. 12, 2004, on Atlantis.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, after being removed from the solid rocket booster (SRB), the forward assembly is lowered toward a transporter below in the transfer aisle. The destacking is part of time and cycle activities. The SRB was part of the stack on Atlantis originally scheduled for a March 1, 2003, launch on mission STS-114. The SRBs and external tank were demated in February 2003. The mission is now scheduled to occur no earlier than Sept. 12, 2004, on Atlantis.

  18. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, after being removed from the solid rocket booster (SRB), the forward assembly is lowered from high above the transfer aisle. The destacking is part of time and cycle activities. The SRB was part of the stack on Atlantis originally scheduled for a March 1, 2003, launch on mission STS-114. The SRBs and external tank were demated in February 2003. The mission is now scheduled to occur no earlier than Sept. 12, 2004, on Atlantis.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, after being removed from the solid rocket booster (SRB), the forward assembly is lowered from high above the transfer aisle. The destacking is part of time and cycle activities. The SRB was part of the stack on Atlantis originally scheduled for a March 1, 2003, launch on mission STS-114. The SRBs and external tank were demated in February 2003. The mission is now scheduled to occur no earlier than Sept. 12, 2004, on Atlantis.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  3. STS-71 astronauts and cosmonauts listen to briefing during training session

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A number of Russian cosmonauts and an American astronaut listen to a briefing on launch and landing emergency situations during a training session in the Systems Integration Facility at JSC. Scheduled to launch aboard the Space Shuttle Atlantis with the S

  4. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  5. KSC-01pp1169

    NASA Image and Video Library

    2001-06-18

    KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers lower a canister over the Microwave Anisotropy Probe (MAP) before transporting to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30.

  6. KSC-06pd2078

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Pilot Christopher Ferguson dons his launch and re-entry suit before heading to the launch pad. Ferguson is making his first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  7. KSC-06pd2079

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Commander Brent Jett dons his launch and re-entry suit before heading to the launch pad. Jett is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  8. KSC-06pd2076

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad. Tanner is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  9. InSight Atlas V LVOS

    NASA Image and Video Library

    2015-12-15

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  10. KSC-2009-2252

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-2251

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-2255

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-2254

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  14. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  15. KSC-2009-2253

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  16. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  17. View of Apollo 15 space vehicle leaving VAB to Pad A, Launch Complex 39

    NASA Image and Video Library

    1971-05-11

    S71-33786 (11 May 1971) --- The 363-feet tall Apollo (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle which leaves the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA) and is scheduled to lift off on July 26, 1971. The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronaut Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.

  18. KSC-2009-4839

    NASA Image and Video Library

    2009-08-24

    CAPE CANAVERAL, Fla. – Xenon lights over Launch Pad 39A at NASA's Kennedy Space Center in Florida compete with the lightning strike seen to the left. Space shuttle Discovery is on the pad waiting for a scheduled liftoff on the STS-128 mission. Launch was scrubbed due to the weather conditions that violated the limitations for liftoff. Another launch attempt was scheduled for 1:10 a.m. Aug. 26. Discovery's 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission is the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Photo credit: NASA/Ben Cooper

  19. KSC01kodi079

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - A transporter moves the encapsulated Kodiak Star spacecraft into position in the Launch Service Structure, Kodiak Launch Complex (KLC), for final stacking for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  20. KSC-01pp1547

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- In the Launch Service Structure, Kodiak Launch Complex (KLC), workers check the fairing that is to be placed around the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  1. KSC-01pp1548

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- Inside the Launch Service Structure, Kodiak Launch Complex (KLC), workers watch as the fairing (background) is lifted before encapsulating the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  2. KSC01kodi076

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the fairing is lowered over the Kodiak Star spacecraft in preparation for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  3. KSC01kodi074

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the Kodiak Star spacecraft is ready for encapsulation in the fairing, as preparation for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  4. KSC01kodi058

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle, while the payload fairing awaits processing, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  5. KSC01kodi080

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - The Launch Service Structure, Kodiak Launch Complex (KLC), on Kodiak Island is viewed from a distance. Kodiak Star, the first launch to take place from KLC, is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  6. KSC01KODI045

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians inspect and secure Castor 120, the first stage of the Athena 1 launch vehicle, on the launch mount at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  7. Spaceport Performance Measures

    NASA Technical Reports Server (NTRS)

    Finger, G. Wayne

    2010-01-01

    Spaceports have traditionally been characterized by performance measures associated with their site characteristics. Measures such as "Latitude" (proximity to the equator), "Azimuth" (range of available launch azimuths) and "Weather" (days of favorable weather) are commonly used to characterize a particular spaceport. However, other spaceport performance measures may now be of greater value. These measures can provide insight into areas of operational differences between competing spaceports and identify areas for improving the performance of spaceports. This paper suggests Figures of Merit (FOMs) for spaceport "Capacity" (number of potential launch opportunities per year and / or potential mass' to low earth orbit (LEO) per year); "Throughput" (actual mass to orbit per year compared to capacity); "Productivity" (labor effort hours per unit mass to orbit); "Energy Efficiency" (joules expended at spaceport per unit mass to orbit); "Carbon Footprint" tons CO2 per unit mass to orbit). Additional FOMS are investigated with regards to those areas of special interest to commercial launch operators, such as "Assignment Schedule" (days required for a binding assignment of a launch site from the spaceport); "Approval Schedule" (days to complete a range safety assessment leading to an approval or disapproval of a launch vehicle); "Affordability" (cost for a spaceport to assess a new launch vehicle); "Launch Affordability" (fixed range costs per launch); "Reconfigure Time" (hours to reconfigure the range from one vehicle's launch ready configuration to another vehicle's configuration); "Turn,Around Time" (minimum range hours required between launches of an identical type launch vehicle). Available or notional data is analyzed for the KSC/CCAFS area and other spaceports. Observations regarding progress over the past few decades are made. Areas where improvement are needed or indicated are suggested.

  8. Shuttle derived vehicle analysis solid booster unmanned launch vehicle concept definition study, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technical effort associated with the selection and definition of the recommended SRB-X concept is documented. Included are discussions concerning the trades leading to the selected concept, the analysis that established the concept's basic subsystem characteristics, selected configuration description and performance capabilities, launch site operations and facility needs, development schedule, cost characteristics, risk assessment, and a cursory comparison with other launch systems.

  9. KSC-03pd0992

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  10. KSC-03pd0991

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  11. KSC-03pd0993

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - Workers prepare the Galaxy Evolution Explorer (GALEX) spacecraft for re-mate with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  12. KSC-07pd1216

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, a worker guides a transporter into place to receive the Delta II first stage. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  13. KSC-11415f07

    NASA Image and Video Library

    1997-09-21

    The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project

  14. KSC-11415f06

    NASA Image and Video Library

    1997-09-21

    The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project

  15. KSC-02pd1890

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, atop the Mobile Launcher Platform, approaches the top of Launch Pad 39A where it will undergo preparations for launch. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1975-07-01

    SA-210 Apollo-Soyuz Test Project (ASTP) awaits the launch scheduled on July 15, 1975 on the launch pad at the Kennedy Space Center, the ASTP mission with astronauts Thomas Stafford, Vance Brand, and Donald "Deke" Slayton. The Saturn IB, developed under the direction of the Marshall Space Flight Center (MSFC), launched five manned Earth-orbital missions between 1968 and 1975: Apollo 7, Skylab 2, Skylab 3, Skylab 4, and the Apollo-Soyuz Test Project .

  17. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  18. KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  19. The NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Provost, D.; Rose, R.; Scherrer, J.; Atlas, R. M.; Chang, P.; Clarizia, M. P.; Garrison, J. L.; Gleason, S.; Katzberg, S. J.; Jelenak, Z.; Johnson, J. T.; Majumdar, S.; O'Brien, A.; Posselt, D. J.; Ridley, A. J.; Said, F.; Soisuvarn, S.; Zavorotny, V. U.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is scheduled for launch in November 2016 to study the surface wind structure in and near the inner core of tropical cyclones. CYGNSS consists of a constellation of eight observatories carried into orbit on a single launch vehicle. Each observatory carries a 4-channel bistatic radar receiver tuned to receive GPS navigation signals scattered from the ocean surface. The eight satellites are spaced approximately twelve minutes apart in a common circular, low inclination orbit plane to provide frequent temporal sampling in the tropics. The 35deg orbit inclination results in coverage of the full globe between 38deg N and 38deg S latitude with a median(mean) revisit time of 3(7) hours The 32 CYGNSS radars operate in L-Band at a wavelength of 19 cm. This allows for adequate penetration to enable surface wind observations under all levels of precipitation, including those encountered in the inner core and eyewall of tropical cyclones. The combination of operation unaffected by heavy precipitation together with high temporal resolution throughout the life cycle of storms is expected to support significant improvements in the forecast skill of storm track and intensity, as well as better situational awareness of the extent and structure of storms in near real time. A summary of the properties of the CYGNSS science data products will be presented, together with an update on the results of ongoing Observation System Simulation Experiments performed by members of the CYGNSS science team over the past four years, in particular addressing the expected impact on storm track and intensity forecast skill. With launch scheduled for the month prior to AGU, the on orbit status of the constellation will also be presented.

  20. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  1. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  2. KSC-06pd1422

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) and Center Director Jim Kennedy congratulate the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett

  3. KSC-06pd1421

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) congratulates the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. At far right is Center Director Jim Kennedy. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett

  4. KSC01KODI046

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians install Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  5. KSC01kodi062

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload, while the payload fairing of the Athena 1 launch vehicle awaits servicing at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program

  6. KSC01KODI043

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is lowered into place at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  7. KSC01KODI039

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Trucks transporting Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, arrive at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  8. KSC01KODI042

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is lifted into a vertical position at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  9. KSC01KODI041

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians inspect Castor 120, the first stage of the Athena 1 launch vehicle, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  10. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  12. KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  13. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  14. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  15. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  16. Expedition 27 Preflight

    NASA Image and Video Library

    2011-03-11

    At the Kremlin Wall in Moscow March 11, 2011, Russian cosmonaut Andrey Borisenko lays flowers in honor of fallen icons as part of the ceremonial activities leading to the scheduled launch of Expedition 27 to the International Space Station, scheduled for March 30 (Kazakhstan time) in the Soyuz TMA-21 spacecraft. Photo credit: NASA/Mark Polansky

  17. Expedition 27 Preflight

    NASA Image and Video Library

    2011-03-11

    At the Kremlin Wall in Moscow March 11, 2011, Russian cosmonaut Alexander Samokutyaev lays flowers in honor of fallen icons as part of the ceremonial activities leading to the scheduled launch of Expedition 27 to the International Space Station, scheduled for March 30 (Kazakhstan time) in the Soyuz TMA-21 spacecraft. Photo credit: NASA/Mark Polansky

  18. Expedition 27 Preflight

    NASA Image and Video Library

    2011-03-11

    At the Kremlin Wall in Moscow March 11, 2011, NASA astronaut Ron Garan lays flowers in honor of fallen icons as part of the ceremonial activities leading to the scheduled launch of Expedition 27 to the International Space Station, scheduled for March 30 (Kazakhstan time) in the Soyuz TMA-21 spacecraft. Photo credit: NASA/Mark Polansky

  19. KSC-06pd2036

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Commander Brent Jett leaves the Shuttle Training Aircraft after a practice session of landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd2027

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett settles in the cockpit of the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  1. KSC-06pd2028

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett studies the controls in the cockpit of the Shuttle Training Aircraft before a practice session of landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  2. KSC-06pd2026

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Pilot Christopher Ferguson boards the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  3. KSC-06pd2035

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Pilot Christopher Ferguson disembarks from the Shuttle Training Aircraft after a practice session of landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  4. KSC-06pd2029

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson settles in the cockpit of the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  5. KSC-06pd2025

    NASA Image and Video Library

    2006-09-04

    KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Commander Brent Jett boards the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  6. KSC-02pd0103

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  7. KSC-02pd0102

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  8. KSC-02pd0101

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  9. KSC-03pd0620

    NASA Image and Video Library

    2003-03-07

    KENNEDY SPACE CENTER, FLA. -- -- At Building AE, the Space Infrared Telescope Facility (SIRTF) is prepared for testing. SIRTF is scheduled for launch aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  10. KSC-01pp1170

    NASA Image and Video Library

    2001-06-18

    KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers adjust the canister as it is lowered over the Microwave Anisotropy Probe (MAP). The spacecraft will be transported to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30

  11. A Near-Term, High-Confidence Heavy Lift Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Rothschild, William J.; Talay, Theodore A.

    2009-01-01

    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  12. KSC-03pd1373

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  13. KSC-03pd1372

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  14. KSC-03pd1366

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin moving the aeroshell enclosing Mars Exploration Rover 2 and lander to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  15. STS-91 Commander Charles Precourt participates in CEIT at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Commander Charles Precourt peers through an airlock like the one that will be aboard the orbiter Discovery when it docks with the Russian Space Station Mir on the ninth and final scheduled Mir docking in late May/early June. Precourt is in KSC's Orbiter Processing Facility Bay 2 for the STS-91 Crew Equipment Interface Test, or CEIT, during which the crew have an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. The STS-91 crew are scheduled to launch aboard the Shuttle Discovery from KSC's Launch Pad 39A on May 28 at 8:05 EDT.

  16. STS-79 Rolls over from OPF to VAB

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A vantage point high atop the Vehicle Assembly Building (VAB) shrinks the size and scale of the orbiter Atlantis as it is rolled from the Orbiter Processing Facility to the VAB. During the five working days it spends inside the huge building, Atlantis will be mated to the external tank/twin solid rocket booster assembly, and then rolled out to Launch Pad 39A. Here, the SPACEHAB Double Module will be installed in the orbiter's payload bay and final launch preparations will get underway. Atlantis is scheduled for liftoff on Mission STS-79 , the fourth docking with the Russian Space Station Mir, scheduled for July 31.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  18. KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  1. KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  4. KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  5. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  6. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  8. KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  9. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  10. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  11. KSC-97DC1283

    NASA Image and Video Library

    1997-08-19

    Workers make final checks as the second part of the bi-sector payload fairing for the Advanced Composition Explorer (ACE) is closed around the spacecraft at Launch Complex 17A, Cape Canaveral Air Station. ACE will be launched on a Boeing Delta II expendable launch vehicle. The spacecraft will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. This will be the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff is scheduled Aug. 24

  12. Lightning around the Apollo 15 stack prior to launch

    NASA Image and Video Library

    1971-07-25

    S89-41564 (25 July 1971) --- Lightning streaks through the sky around the Apollo 15 stack of hardware prior to the Apollo 15 launch. The huge 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is scheduled to launch from Pad A, Launch Complex 39, at 9:34:00:79 p.m. (EDT) on July 26, 1971. The prime crewmembers for the Apollo 15 mission are astronauts David R. Scott, commander; James B. Irwin, lunar module pilot; and Alfred M. Worden, command module pilot.

  13. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.

  14. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  15. KSC01kodi071

    NASA Image and Video Library

    2001-08-08

    KODIAK ISLAND, Alaska -- Technicians transport the Sapphire payload at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  16. KSC-2009-1385

    NASA Image and Video Library

    2008-12-04

    VANDENBERG AIR FORCE BASE, Calif. – On Space Launch Complex 2 at Vandenberg Air Force Base in California, a solid rocket booster is lifted alongside the Delta II rocket for installation. The booster is being prepared for the launch of the NOAA-N Prime satellite. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA/Joe Davila, VAFB

  17. M-V launch vehicle

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroki; Kawaguchi, Jun'ichiro

    1995-01-01

    M-V is the next generation satellite launcher of the Institute of Space and Astronautical Science (IS AS) expected to be a work horse for Japanese scientific missions beyond late 1990s. It is a three staged, solid propellant rocket with 2ton class launch capability into LEO. Its development is underway toward the revised first launch date in 1996. This paper describes the back ground and the design philosophy of M-V along with vehicle characteristics featuring new technology to be introduced. Also given are the development status and the launch schedule.

  18. NASA Social and Media Briefing on Next Mars Mission

    NASA Image and Video Library

    2018-05-03

    News media and social media participants gathered at Vandenberg Air Force Base in Central California Thursday, May 3 to hear from NASA and its partners about the agency’s mission to study the interior of the Red Planet. NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) is scheduled to launch May 5 on a United Launch Alliance Atlas V rocket, from Space Launch Complex 3 at Vandenberg.

  19. KSC-97PC1801

    NASA Image and Video Library

    1997-12-16

    The access tower around the Athena II rocket for the Lunar Prospector spacecraft, to be launched for NASA by Lockheed Martin, was rolled back today at Launch Complex 46 at Cape Canaveral Air Station for final prelaunch preparations. The small robotic spacecraft is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is currently scheduled for Jan. 5, 1998 at 8:31 p.m

  20. KSC-97PC1800

    NASA Image and Video Library

    1997-12-16

    The access tower around the Athena II rocket for the Lunar Prospector spacecraft, to be launched for NASA by Lockheed Martin, was rolled back today at Launch Complex 46 at Cape Canaveral Air Station for final prelaunch preparations. The small robotic spacecraft is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is currently scheduled for Jan. 5, 1998 at 8:31 p.m

  1. KSC-03pd1000

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .

  2. KSC-03pd0995

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers push the Galaxy Evolution Explorer (GALEX) spacecraft toward the Pegasus XL launch vehicle for a second mating. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  3. KSC-03pd0994

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - The Pegasus XL launch vehicle is ready for a re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  4. KSC-03pd0998

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  5. KSC-03pd0996

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  6. KSC-03pd0997

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  7. KSC-03pd0999

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  8. ARES I-X Launch Prep

    NASA Image and Video Library

    2009-10-26

    NASA's Ares I-X rocket is seen on launch pad 39b at the Kennedy Space Center in Cape Canaveral, Fla., Tuesday, Oct. 27, 2009 shortly after NASA scrubbed the launch attempt due to weather. The flight test of Ares I-X, now scheduled for Wednesday, Oct. 28, 2009, will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)

  9. KSC-07pd1217

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- With the transporter in place inside Hangar M on Cape Canaveral Air Force Station, the suspended Delta II first stage can be placed on it. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  10. KSC-03PD-1000

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .

  11. NASA, John F. Kennedy Space Center environmental impact statement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The probable total impact of the John F. Kennedy Space Center (KSC) operations on the environment is discussed in terms of launch operations emissions and environmental quality. A schedule of planned launches through 1973 is included with a description of the systems for eliminating harmful emissions during launch operations. The effects of KSC on wild life and environmental quality are discussed along with the irreversible and irretrievable commitments of natural resources.

  12. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    In the Kennedy Space Center’s Press Site auditorium, members of social media listen to a briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  13. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  14. KSC01kodi078

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - Inside the Launch Service Structure, Kodiak Launch Complex (KLC), the final stage of the Athena I launch vehicle, with the Kodiak Star spacecraft, is maneuvered into place. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  15. Mercury Capsule Construction at the NASA Lewis Research Center

    NASA Image and Video Library

    1959-08-21

    A NASA mechanic secures the afterbody to a Mercury capsule in the hangar at the Lewis Research Center. The capsule was one of two built at Lewis for the “Big Joe” launches scheduled for September 1959. The initial phase of Project Mercury consisted of a series of unmanned launches using the Air Force’s Redstone and Atlas boosters and the Langley-designed Little Joe boosters. The first Atlas launch, referred to as “Big Joe”, was a single attempt early in Project Mercury to use a full-scale Atlas booster to simulate the reentry of a mock-up Mercury capsule without actually placing it in orbit. The overall design of Big Joe had been completed by December 1958, and soon thereafter project manager Aleck Bond assigned NASA Lewis the task of designing the electronic instrumentation and automatic stabilization system. Lewis also constructed the capsule’s lower section, which contained a pressurized area with the electronics and two nitrogen tanks for the retrorockets. Lewis technicians were responsible for assembling the entire capsule: the General Electric heatshield, NASA Langley afterbody and recovery canister, and Lewis electronics and control systems. On June 9, 1959, the capsule was loaded on an air force transport aircraft and flown to Cape Canaveral. A team of 45 test operations personnel from Lewis followed the capsule to Florida and spent the ensuing months preparing it for launch. The launch took place in the early morning hours of September 9, 1959.

  16. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew pauses for a photo after emergency egress training at the pad, which included driving the M-113 armored personnel carrier behind them. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  17. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  18. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin takes his turn driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  19. KSC-2013-2918

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Scott Wilson, manager of Orion Production Operations at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  20. TDRS-M Atlas V Booster and Centaur Stages Arrival, Offload, and Transport (Booster) to ASOC

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster and centaur upper stage bounded for Cape Canaveral Air Force Station. The centaur upper stage is transported from the company's Mariner ship to the Delta Operations Center. The booster stage is transported to the Atlas Spaceflight Operations Center. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  1. KSC-2013-2923

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-2922

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  3. KSC-20170816-MH-GEB01_0002-TDRS_M_Launch_Vehicle_Roll_H265-3161082

    NASA Image and Video Library

    2017-08-16

    A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send NASA's Tracking and Data Relay Satellite, TDRS-M to orbit. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  4. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  5. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the first part of the fairing is place around the Space Infrared Telescope Facility (SIRTF). The fairing protects the spacecraft during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  6. KSC01KODI051

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- Technicians lower the fueled Orbit Adjust Model (OAM), which navigates payloads into the correct orbit, onto Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  7. KSC01kodi075

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the Kodiak Star spacecraft is ready for encapsulation in the fairing seen at right, above. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  8. KSC01KODI050

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- The fueled Orbit Adjust Model (OAM), which navigates payloads into the correct orbit, is installed onto Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  9. Orion Leaves from the VAB

    NASA Image and Video Library

    2014-11-11

    At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  10. Managing Small Spacecraft Projects: Less is Not Easier

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn

    2012-01-01

    Managing small, low cost missions (class C or D) is not necessarily easier than managing a full flagship mission. Yet, small missions are typically considered easier to manage and used as a training ground for developing the next generation of project managers. While limited resources can be a problem for small missions, in reality most of the issues inherent in managing small projects are not the direct result of limited resources. Instead, problems encountered by managers of small spacecraft missions often derive from 1) the perception that managing small projects is easier if something is easier it needs less rigor and formality in execution, 2) the perception that limited resources necessitate or validate omitting standard management practices, 3) less stringent or unclear guidelines or policies for small projects, and 4) stakeholder expectations that are not consistent with the size and nature of the project. For example, the size of a project is sometimes used to justify not building a full, detailed integrated master schedule. However, while a small schedule slip may not be a problem for a large mission, it can indicate a serious problem for a small mission with a short development phase, highlighting the importance of the schedule for early identification of potential issues. Likewise, stakeholders may accept a higher risk posture early in the definition of a low-cost mission, but as launch approaches this acceptance may change. This presentation discusses these common misconceptions about managing small, low cost missions, the problems that can result, and possible solutions.

  11. Strategies for Validation Testing of Ground Systems

    NASA Technical Reports Server (NTRS)

    Annis, Tammy; Sowards, Stephanie

    2009-01-01

    In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)

  12. Current status of the laser guide star adaptive optics system for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Hayano, Yutaka; Takami, Hideki; Guyon, Olivier; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Watanabe, Makoto; Murakami, Naoshi; Minowa, Yosuke; Ito, Meguru; Colley, Stephen; Eldred, Michael; Golota, Taras; Dinkins, Matthew; Kashikawa, Nobunari; Iye, Masanori

    2008-07-01

    The current status and recent results, since last SPIE conference at Orlando in 2006, for the laser guide star adaptive optics system for Subaru Telescope is presented. We had a first light using natural guide star and succeed to launch the sodium laser beam in October 2006. The achieved Strehl ratio on the 10th magnitude star was around 0.5 at K band. We confirmed that the full-width-half-maximum of the stellar point spread function is smaller than 0.1 arcsec even at the 0.9 micrometer wavelehgth. The size of the artificial guide star by the laser beam tuned at the wavelength of 589 nm was estimated to be 10 arcsec. The obtained blurred artificial guide star is caused by the wavefront error on the laser launching telescope. After the first light and first launch, we found that we need to modify and to fix the components, which are temporarily finished. Also components, which were postponed to fabricate after the first light, are required to build newly. All components used by the natural guide star adaptive optics system are finalized recently and we are ready to go on the sky. Next engineering observation is scheduled in August, 2008.

  13. KSC-2014-3929

    NASA Image and Video Library

    2014-09-11

    SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  14. KSC-2014-3932

    NASA Image and Video Library

    2014-09-11

    SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  15. KSC-2014-3930

    NASA Image and Video Library

    2014-09-11

    SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  16. STS-97 crew gathers for a snack before suiting up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew are ready to enjoy a snack in the crew quarters, Operations and Checkout Building, before beginning to suit up for launch. Seated from left are Mission Specialists Marc Garneau and Carlos Noriega, Commander Brent Jett, Mission Specialist Joseph Tanner and Pilot Michael Bloomfield. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST.

  17. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  18. KSC-05PD-1092

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Orbiter Atlantis in NASAs Orbiter Processing Facility, bay 1, Scott Minnick, lead inspector for micro inspection team, inspects the area where the retract link assembly would be installed on the right-hand main landing gear. Last week a small crack was found on the right-hand assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.

  19. Full Service

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    NASA is moving ahead with the sole-source procurement of a Canadian robot to service the Hubble Space Telescope, gaining confidence the International Space Station (ISS) technology can perform all of the tasks shuttle-launched astronauts were scheduled to do before the Columbia accident changed everything. The U.S. agency is negotiating with MD Robotics, a MacDonald Dettwiler unit located in Brampton, Ontario, for a version of the Special Purpose Dexterous Manipulator (SPDM) the company developed for the ISS. The SPDM would be the business end of a throwaway module designed to replace batteries and gyroscopes, pull old instruments and install new ones before plunging to a targeted reentry over the Pacific.

  20. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06937 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  1. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06938 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  2. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States has already made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program technical accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  3. KSC-2009-1498

    NASA Image and Video Library

    2009-01-26

    VANDENBERG AIR FORCE BASE, Calif. -- The avionics are mated to stage 2 of the Taurus XL launch vehicle for the Orbiting Carbon Observatory at Vandenberg Air Force Base in California. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is scheduled for Feb. 23. Photo credit: NASA/VAFB

  4. Astronaut Joseph Tanner checks gloves during during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Joseph R. Tanner, mission specialist, checks his gloves during a rehearsal for the launch and entry phases of the scheduled November 1994 flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  5. Expedition 19 Soyuz Rollout

    NASA Image and Video Library

    2009-03-23

    A Russian security member and his dog check the railroad tracks ahead of the Soyuz rocket roll out to the launch pad Tuesday, March 24, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  6. 14 CFR Appendix B to Subpart 1214... - Occupancy Fee Schedule

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... flight one year or less, but more than six months before launch, the user shall reimburse NASA an... shared flight six months or less before launch, the user shall reimburse NASA an occupancy fee of 90% of...

  7. 14 CFR Appendix B to Subpart 1214... - Occupancy Fee Schedule

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... flight one year or less, but more than six months before launch, the user shall reimburse NASA an... shared flight six months or less before launch, the user shall reimburse NASA an occupancy fee of 90% of...

  8. 14 CFR Appendix B to Subpart 1214... - Occupancy Fee Schedule

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... flight one year or less, but more than six months before launch, the user shall reimburse NASA an... shared flight six months or less before launch, the user shall reimburse NASA an occupancy fee of 90% of...

  9. 14 CFR Appendix B to Subpart 1214... - Occupancy Fee Schedule

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... flight one year or less, but more than six months before launch, the user shall reimburse NASA an... shared flight six months or less before launch, the user shall reimburse NASA an occupancy fee of 90% of...

  10. KSC-07pd1243

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  11. KSC-07pd1242

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  12. APOLLO 4 SATURN V LAUNCH VEHICLE MATING INSIDE VEHICLE ASSEMBLY BUILDING [VAB

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The S II stage of the Apollo/Saturn 501 launch vehicle is being mated to the first stage at the Vehicle Assembly Building [VAB] in preparation for the National Aeronautics and Space Administration's first Saturn V mission. The mission will be unmanned and is scheduled early this year.

  13. KSC-2012-5684

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- Scott Smith, NASA nutritionist at NASA's Johnson Space Center, explains one method of urine collection on the space station during a mission science briefing in Kennedy Space Center's Press Site auditorium in Florida. The briefing provided media with an overview of the experiments and payloads scheduled for launch on NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  14. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations, or GSDO, Program completed its preliminary design review which allows development of the ground systems to proceed to detailed design. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  15. KSC-06pd2077

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Steven MacLean dons his launch and re-entry suit before heading to the launch pad. MacLean is with the Canadian Space Agency. MacLean is making his second shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  16. KSC-06pd2082

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper is helped with her launch and re-entry suit before heading to the launch pad. Stefanyshyn-Piper is making her first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  17. Orion EFT-1 Wet Dress Rehearsal

    NASA Image and Video Library

    2014-11-05

    In the Hangar A&E control room, displays are seen during a dress rehearsal for the launch of the United Launch Alliance Delta IV Heavy rocket for the upcoming Orion Flight Test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  18. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  19. Orbital ATK CRS-7 "What's on Board" Science Briefing

    NASA Image and Video Library

    2017-04-17

    NASA Social participants attend a "What's on Board" science briefing at the agency's Kennedy Space Center in Florida. Joe Fust, mission integrator for United Launch Alliance, gives an overview of the Atlas V rocket that will launch the Orbital ATK Cygnus pressurized cargo module to the International Space Station. The briefing is for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the space station. Orbital ATK's Cygnus module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.

  20. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  1. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  2. The Delta Launch Vehicle Model 2914 Series

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1973-01-01

    The newest Delta launch vehicle configuration, Model 2914 is described for potential users together with recent flight results. A functional description of the vehicle, its performance, flight profile, flight environment, injection accuracy, spacecraft integration requirements, user organizational interfaces, launch operations, costs and reimbursable users payment plan are provided. The versatile, relatively low cost Delta has a flight demonstrated reliability record of 92 percent that has been established in 96 launches over twelve years while concurrently undergoing ten major upratings to keep pace with the ever increasing performance and reliability requirements of its users. At least 40 more launches are scheduled over the next three years from the Eastern and Western Test Ranges.

  3. KSC-2009-3742

    NASA Image and Video Library

    2009-06-17

    CAPE CANAVERAL, Fla. – On Launch Complex-41 on Cape Canaveral Air Force Station in Florida, NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, and launch gantry roll out to the launch pad. They are atop their launch vehicle, the Atlas V/Centaur rocket. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA, CRATER, Mini-RF and LROC. Launch is scheduled for 5:22 p.m. EDT June 18 . Photo credit: NASA/Jack Pfaller

  4. KSC01KODI035

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A special platform connects the barge with a ramp to allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  5. KSC01KODI036

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A boat moves a ramp into place that will allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  6. SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Conger, R. E.; Chakroborty, S. P.; Wertz, J. R.

    2002-01-01

    The Scorpius vehicle family extends from one and two stage sub-orbital vehicles for target and science applications to small, medium and heavy lift orbital vehicles. These new liquid fueled vehicles have LEO and GTO capabilities. Microcosm and the Scorpius Space Launch Company (SSLC) are well into the development of this all-new generation of expendable launch vehicles to support commercial and government missions. This paper presents the projected performance of the family of vehicles, status of the development program and projected launch service prices. The paper will discuss the new low cost ablative engines and low cost pressure-fed LOX/Jet-A propulsion systems. Schedules, payload volumes, dispensers, attach fittings, and planned dual manifest capabilities will be presented. The unique configuration of the wide base first stage allows fairings that may extend beyond the current 4-meters. The Scorpius family is designed to facilitate encapsulated payloads and launch-on-demand. The implications of these new operational procedures will be addressed, including the techniques that will be used to drive down the cost of access to space while improving reliability. The Scorpius family of low cost vehicles addresses the full range of payloads from 700 lbs. in the Sprite Mini-Lift to over 50,000 lbs. to LEO in the Heavy-Lift, and over 18,000 lbs. to GTO. Two sub-orbital vehicles have been developed and successfully launched, with the latest vehicle (SR-XM) launched in March of 2001 from White Sands Missile Range. Development of the family of vehicles commenced in 1993 under contracts with the Air Force Research Laboratory Space Vehicle Directorate after a number of years of independent studies and system engineering. The Sprite Mini-Lift Small Expendable Launch Vehicle (SELV) that utilizes the SR-XM technologies is planned for an initial launch in mid 2005 with larger, scaled-up vehicles to follow.

  7. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmosphericmore » dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.« less

  8. KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  9. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  10. OA-7 Post-Encapsulation

    NASA Image and Video Library

    2017-03-10

    The Orbital ATK Cygnus spacecraft was encapsulted in its payload fairings inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 24, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station.

  11. OA-7 Cargo Module Loading

    NASA Image and Video Library

    2017-02-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  12. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-30

    The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)

  13. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-30

    The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by the train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 321, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit: (NASA/Carla Cioffi)

  14. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080463 (14 May 2010) --- Brent Jett, director, flight crew operations, is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  15. KSC01pp0308

    NASA Image and Video Library

    2001-02-13

    STS-102 Commander James Wetherbee drives the M-113 armored carrier that the crew could use to exit the pad if an emergency ever occurred prior to launch. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8

  16. KSC-07pd1214

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  17. KSC-07pd1213

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  18. KSC-06pd1744

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  19. STS-70 Commander Terence 'Tom' Henricks suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Commander Terence 'Tom' Henricks is donning his launch/entry suit in the Operations and Checkout Building with help from a suit technician. Henricks, who is about to make his third trip into space, and four crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  20. The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  1. KSC-06pd0258

    NASA Image and Video Library

    2005-12-27

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences Building 1555 at Vandenberg Air Force Base in California, workers move the aft skirt toward the Pegasus XL launch vehicle for mating. The Pegasus will launch the Space Technology 5 spacecraft later this month. ST5 contains three micro-satellites that will be positioned in a "string of pearls" constellation to perform simultaneous multi-point measurements of the Earth's magnetic field using highly sensitive magnetometers. The scheduled launch date is Feb. 28.

  2. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  4. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane lifts a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  5. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  6. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  7. KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  8. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  9. KSC00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  10. KSC-00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  11. KSC-00pp1780

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Marc Garneau, who is with the Canadian Space Agency, waves after donning his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  12. KSC-00pp1781

    NASA Image and Video Library

    2000-11-30

    With the help of a suit technician, STS-97 Commander Brent Jett dons his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  13. KSC00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  14. KSC-00pp1783

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Carlos Noriega appears relaxed as he dons his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  15. KSC-00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  16. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

  17. NASA scheduling technologies

    NASA Technical Reports Server (NTRS)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  18. Design for an 8 Meter Monolithic UV/OIR Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.

    2009-01-01

    ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.

  19. KSC-03pd1365

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility position an overhead crane over the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle will be moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  20. KSC-00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  1. KSC-00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  2. KSC00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  3. KSC00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  4. SPACEHAB is lowered by crane in the SSPF into the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  5. KSC01kodi049

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, awaits the installation of the Orbit Adjust Model (OAM), which navigates the payloads into the correct orbit, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  6. 7. PHOTOCOPY OF DRAWING (UNDATED PLAN AND SCHEDULE DRAWING BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY OF DRAWING (UNDATED PLAN AND SCHEDULE DRAWING BY THE DEPARTMENT OF THE AIR FORCE, SPACE AND MISSILE TEST CENTER) MATERIAL SPECIFICATIONS AND GENERAL NOTES FOR INTERIOR FINISHING FOR BUILDING 762-A, SHEET A4 - Vandenberg Air Force Base, Space Launch Complex 3, Technical Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. STS-112 Pilot Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Pilot Pamela Melroy finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  8. STS-112 M.S. Magnus suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus finishes suiting up before launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  9. KSC-03PD-1030

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) is lifted into position for installation of the fairing. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch aboard a Delta II rocket.

  10. KSC-2009-5882

    NASA Image and Video Library

    2009-10-21

    VANDENBERG AIR FORCE BASE, Calif. - At Space Launch Complex 2 at Vandenberg Air Force Base in California, workers receive the first of three solid rocket boosters for the United Launch Alliance Delta II rocket for launch of NASA's Wide-field Infrared Survey Explorer, or WISE, at the pad. WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled for Dec. 7. For additional information, visit http://wise.ssl.berkeley.edu. Photo credit: NASA/VAFB

  11. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    The Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  12. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  13. KSC01kodi072

    NASA Image and Video Library

    2001-08-08

    KODIAK ISLAND, Alaska -- The Sapphire payload is moved into position next to the Starshine 3 payload at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  14. KSC01kodi053

    NASA Image and Video Library

    2001-07-19

    KODIAK ISLAND, Alaska -- A technician performs final testing on Starshine 3 at the Naval Research Laboratory in Washington, D.C., to prepare for the launch of the Kodiak Star at Kodiak Island, Alaska. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  15. KSC01kodi054

    NASA Image and Video Library

    2001-07-19

    KODIAK ISLAND, Alaska -- A technician performs final testing on Starshine 3 at the Naval Research Laboratory in Washington, D.C., to prepare for the launch of the Kodiak Star at Kodiak Island, Alaska. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  16. First geosynchronous weather satellite prepared for launch

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Synchronous Meteorological Satellite (SMS), which is scheduled for launch 16 May 1974 is described along with the data transmission system. The Carrier Balloon System is discussed. The primary type of data to be obtained in conjunction with SMS and Nimbus F are meteorological, oceanographic, seismic, and tsunami information. The Space Environment Monitoring System is also described.

  17. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  18. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  19. ARES I-X Launch Prep

    NASA Image and Video Library

    2009-10-25

    NASA's Ares I-X rocket is seen on launch pad 39b at the Kennedy Space Center in Cape Canaveral, Fla., Monday, Oct. 26, 2009. The flight test of Ares I-X, scheduled for Tuesday, Oct. 27, 2009, will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I.

  20. KSC-07pd1248

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  1. KSC-07pd1249

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  2. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  3. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    Social Media participants gathered at NASA’s Kennedy Space Center Sunday, April 15 to hear from NASA and its partners about the agnecy’s next-generation planet hunting satellite. NASA’s Transiting Exoplanet Survey Satellite (TESS) is scheduled to launch April 16 on a SpaceX Falcon 9 rocket, from Cape Canaveral Air Force Station in Florida.

  4. KSC-2009-1375

    NASA Image and Video Library

    2008-11-06

    VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, an overhead crane moves the NOAA-N Prime satellite to a stand. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA

  5. KSC-02pd1894

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia sits on Launch Pad 39A, atop the Mobile Launcher Platform. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  6. KSC-97PC1802

    NASA Image and Video Library

    1997-12-18

    NASA’s Lunar Prospector is prepared for mating to the Trans Lunar Injection Module of the spacecraft, seen in the background, at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  7. KSC-97PC1804

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  8. KSC-97PC1806

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  9. KSC-97PC1805

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff move NASA’s Lunar Prospector spacecraft over the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  10. KSC-97PC1803

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  11. KSC-97PC1807

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft atop the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  12. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle on a captive carry evaluation flight September 27, 2004

    NASA Image and Video Library

    2004-09-27

    Attached to the same B-52B mothership that once launched X-15 research aircraft in the 1960s, NASA's third X-43A performed a captive carry evaluation flight from Edwards Air Force Base, California on September 27, 2004. The X-43 remained mated to the B-52 throughout this mission, intended to check its readiness for launch scheduled later in the fall.

  13. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-31

    The flags of the United States, Russia and Kazakhstan are seen at the launch pad after the Soyuz TMA-18 spacecraft was rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)

  14. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118888 (11 May 2009) --- Flight director Bryan Lunney monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  15. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118822 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  16. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118817 (11 May 2009) --- Flight controller Mark McDonald monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  17. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080409 (14 May 2010) --- Brent Jett (left), director, flight crew operations; and flight director Norm Knight are pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  18. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118883 (11 May 2009) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  19. STS-125 Flight Controllers on Console - (Orbit Shift)

    NASA Image and Video Library

    2009-05-11

    JSC2009-E-118882 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.

  20. STS-107 Columbia rollout to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2017-12-08

    Gail Skofronick-Jackson, NASA GPM Project Scientist, talks during a science briefing for the launch of the Global Precipitation Measurement (GPM) Core Observatory aboard an H-IIA rocket, Wednesday, Feb. 26, 2014, Tanegashima Space Center, Japan. Launch is scheduled for early in the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2017-12-08

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager talks during a technical briefing for the launch of the Global Precipitation Measurement (GPM) Core Observatory aboard an H-IIA rocket, Wednesday, Feb. 26, 2014, Tanegashima Space Center, Japan. Launch is scheduled for early in the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. KSC-99pp1393

    NASA Image and Video Library

    1999-12-07

    KENNEDY SPACE CENTER, FLA. -- Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope

  4. ARES I-X Launch Prep

    NASA Image and Video Library

    2009-10-25

    A launch countdown sign showing one day until launch of the NASA ARES I-X rocket is seen along the road between Cape Canaveral Air Force Base and the NASA Kennedy Space Center in Cape Canaveral, Florida on Monday, Oct. 26, 2009. The flight test of Ares I-X, scheduled for Tuesday, Oct. 27, 2009, will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)

  5. KSC-2012-1862

    NASA Image and Video Library

    2012-02-17

    Satellites: The principal objectives of the Launch Services Program are to provide safe, reliable, cost-effective and on schedule launch services for NASA and NASA-sponsored payloads seeking launch on expendable vehicles. These payloads have a number of purposes. Scientific satellites obtain information about the space environment and transmit it to stations on Earth. Applications satellites designed to perform experiments that have everyday usefulness for people on Earth, such as weather forecasting and communications. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  6. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  7. KSC-01pp1041

    NASA Image and Video Library

    2001-05-30

    Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station

  8. KSC-01pp1040

    NASA Image and Video Library

    2001-05-30

    Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station

  9. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite sits on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket waiting for launch. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  10. KSC-06pd1745

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett introduces his crew to waiting media at KSC's Shuttle Landing Facility after their arrival from Houston. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  11. KSC-01pp1330

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001

  12. InSight Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  13. KSC-97PC1141

    NASA Image and Video Library

    1997-07-29

    The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  14. KSC-97PC1143

    NASA Image and Video Library

    1997-07-29

    The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  15. KSC-97PC1142

    NASA Image and Video Library

    1997-07-29

    The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  16. KSC-97PC1170

    NASA Image and Video Library

    1997-07-31

    The solid rocket motors of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft are erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  17. KSC-97PC1175

    NASA Image and Video Library

    1997-08-02

    The second stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  18. KSC-97PC1144

    NASA Image and Video Library

    1997-07-29

    The first stage of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft is erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  19. STS-103 Wiring inspections in the aft compartment of Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.

  20. OA-7 Nano-rack Installation

    NASA Image and Video Library

    2017-02-27

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare several Nanoracks for installation on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

Top