Sample records for full numerical solution

  1. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  2. Numerical Simulations of STOVL Hot Gas Ingestion in Ground Proximity Using a Multigrid Solution Procedure

    NASA Technical Reports Server (NTRS)

    Wang, Gang

    2003-01-01

    A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.

  3. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew

    2017-04-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai-Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai-Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai-Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond.

  4. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  5. Methods in the study of discrete upper hybrid waves

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.

    2007-11-01

    Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.

  6. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    NASA Astrophysics Data System (ADS)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  7. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    NASA Astrophysics Data System (ADS)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  8. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    NASA Astrophysics Data System (ADS)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  9. Evaluation of truncation error and adaptive grid generation for the transonic full potential flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1983-01-01

    The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.

  10. Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.

    2016-07-01

    We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.

  11. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  12. The origin of spurious solutions in computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.

    1995-01-01

    The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.

  13. On the Unreasonable Effectiveness of post-Newtonian Theory in Gravitational-Wave Physics

    ScienceCinema

    Will, Clifford M.

    2017-12-22

    The first indirect detection of gravitational waves involved a binary system of neutron stars.  In the future, the first direct detection may also involve binary systems -- inspiralling and merging binary neutron stars or black holes. This means that it is essential to understand in full detail the two-body system in general relativity, a notoriously difficult problem with a long history. Post-Newtonian approximation methods are thought to work only under slow motion and weak field conditions, while numerical solutions of Einstein's equations are thought to be limited to the final merger phase.  Recent results have shown that post-Newtonian approximations seem to remain unreasonably valid well into the relativistic regime, while advances in numerical relativity now permit solutions for numerous orbits before merger.  It is now possible to envision linking post-Newtonian theory and numerical relativity to obtain a complete "solution" of the general relativistic two-body problem.  These solutions will play a central role in detecting and understanding gravitational wave signals received by interferometric observatories on Earth and in space.

  14. Triangular dislocation: an analytical, artefact-free solution

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.

    2015-05-01

    Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.

  15. Hybrid asymptotic-numerical approach for estimating first-passage-time densities of the two-dimensional narrow capture problem.

    PubMed

    Lindsay, A E; Spoonmore, R T; Tzou, J C

    2016-10-01

    A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full probability distribution of capture times of a random walker by multiple small traps located inside a bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate the variance in the capture time of a random walker by a single interior trap and determine this quantity to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of typical capture times and that the full density must be determined. To solve the underlying diffusion equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source that permits the solution of the transform equation to be represented as a superposition of Helmholtz Green's functions. Using this solution, we construct asymptotic short-time solutions of the first-passage-time density, which captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the Helmholtz Green's function is employed followed by numerical inversion of the Laplace transform, the method reproduces the density for larger times. We demonstrate the accuracy of our solution technique with a comparison to statistics obtained from a time-dependent solution of the diffusion equation and discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the multimodal behavior in the capture time density that arises when the traps are strategically arranged. The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap shapes.

  16. On the limits of numerical astronomical solutions used in paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.

    2017-04-01

    Numerical solutions of the equations of the Solar System estimate Earth's orbital parameters in the past and represent the backbone of cyclostratigraphy and astrochronology, now widely applied in geology and paleoclimatology. Given one numerical realization of a Solar System model (i.e., obtained using one code or integrator package), various parameters determine the properties of the solution and usually limit its validity to a certain time period. Such limitations are denoted here as "internal" and include limitations due to (i) the underlying physics/physical model and (ii) numerics. The physics include initial coordinates and velocities of Solar System bodies, treatment of the Moon and asteroids, the Sun's quadrupole moment, and the intrinsic dynamics of the Solar System itself, i.e., its chaotic nature. Numerical issues include solver algorithm, numerical accuracy (e.g., time step), and round-off errors. At present, internal limitations seem to restrict the validity of astronomical solutions to perhaps the past 50 or 60 myr. However, little is currently known about "external" limitations, that is, how do different numerical realizations compare, say, between different investigators using different codes and integrators? Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 myr (Laskar and coworkers and Varadi et al. 2003). In this contribution, I will present results from new Solar System integrations for Earth's eccentricity obtained using the integrator package HNBody (Rauch and Hamilton 2002). I will discuss the various internal limitations listed above within the framework of the present simulations. I will also compare the results to the existing solutions, the details of which are still being sorted out as several simulations are still running at the time of writing.

  17. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.

    PubMed

    Islam, Md Zahurul; Tsui, Ying Yin

    2016-10-03

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.

  18. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices

    PubMed Central

    Islam, Md. Zahurul; Tsui, Ying Yin

    2016-01-01

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104

  19. Localized solutions of Lugiato-Lefever equations with focused pump.

    PubMed

    Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A

    2017-12-04

    Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.

  20. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  1. Numerical simulations of three-dimensional laminar flow over a backward facing step; flow near side walls

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Liou, Meng-Sing; Povinelli, Louis A.; Arnone, Andrea

    1993-01-01

    This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry.

  2. Modeling of nonequilibrium space plasma flows

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas

    1995-01-01

    Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.

  3. A consistent spatial differencing scheme for the transonic full-potential equation in three dimensions

    NASA Technical Reports Server (NTRS)

    Thomas, S. D.; Holst, T. L.

    1985-01-01

    A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.

  4. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Jorris, Timothy R.

    2007-12-01

    To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.

  5. Canonical Nonlinear Viscous Core Solution in pipe and elliptical geometry

    NASA Astrophysics Data System (ADS)

    Ozcakir, Ozge

    2016-11-01

    In an earlier paper (Ozcakir et al. (2016)), two new nonlinear traveling wave solutions were found with collapsing structure towards the center of the pipe as Reynolds number R -> ∞ , which were called Nonlinear Viscous Core (NVC) states. Asymptotic scaling arguments suggested that the NVC state collapse rate scales as R - 1 / 4 where axial, radial and azimuthal velocity perturbations from Hagen-Poiseuille flow scale as R - 1 / 2, R - 3 / 4 and R - 3 / 4 respectively, while (1 - c) = O (R - 1 / 2) where c is the traveling wave speed. The theoretical scaling results were roughly consistent with full Navier-Stokes numerical computations in the range 105 < R <106 . In the present paper, through numerical solutions, we show that the scaled parameter free canonical differential equations derived in Ozcakir et al. (2016) indeed has solution that satisfies requisite far-field conditions. We also show that these are in good agreement with full Navier-Stokes calculations in a larger R range than previously calculated (R upto 106). Further, we extend our study to NVC states for pipes with elliptical cross-section and identify similar canonical structure in these cases. National Science Foundation NSF-DMS-1515755, EPSRC Grant EP/1037948/1.

  6. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  7. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  8. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  9. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Sephton, Mark A.

    2004-05-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in astrobiology. It begins with an examination of how life may have arisen on Earth and then reviews the evidence for possible life on Mars, Europa and Titan. The potential for life in exoplanetary systems and the search for extraterrestrial intelligence are also discussed. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a webstite hosting further teaching materials.

  10. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  11. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  12. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  13. Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry

    NASA Astrophysics Data System (ADS)

    Damevin, Henri-Marie

    Magnetogasdynamics, the science concerned with the mutual interaction between electromagnetic field and flow of electrically conducting gas, offers promising advances in flow control and propulsion of future hypersonic vehicles. Numerical simulations are essential for understanding phenomena, and for research and development. The current dissertation is devoted to the development and validation of numerical algorithms for the solution of multidimensional magnetogasdynamic equations and the simulation of hypersonic high-temperature effects. Governing equations are derived, based on classical magnetogasdynamic assumptions. Two sets of equations are considered, namely the full equations and equations in the low magnetic Reynolds number approximation. Equations are expressed in a suitable formulation for discretization by finite differences in a computational space. For the full equations, Gauss law for magnetism is enforced using Powell's methodology. The time integration method is a four-stage modified Runge-Kutta scheme, amended with a Total Variation Diminishing model in a postprocessing stage. The eigensystem, required for the Total Variation Diminishing scheme, is derived in generalized three-dimensional coordinate system. For the simulation of hypersonic high-temperature effects, two chemical models are utilized, namely a nonequilibrium model and an equilibrium model. A loosely coupled approach is implemented to communicate between the magnetogasdynamic equations and the chemical models. The nonequilibrium model is a one-temperature, five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. The chemical equilibrium model computes thermodynamics properties using curve fit procedures. Selected results are provided, which explore the different features of the numerical algorithms. The shock-capturing properties are validated for shock-tube simulations using numerical solutions reported in the literature. The computations of superfast flows over corners and in convergent channels demonstrate the performances of the algorithm in multiple dimensions. The implementation of diffusion terms is validated by solving the magnetic Rayleigh problem and Hartmann problem, for which analytical solutions are available. Prediction of blunt-body type flow are investigated and compared with numerical solutions reported in the literature. The effectiveness of the chemical models for hypersonic flow over blunt body is examined in various flow conditions. It is shown that the proposed schemes perform well in a variety of test cases, though some limitations have been identified.

  14. A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Kai; Cai Wei; Ji Xia

    2008-07-20

    In this paper, we propose a new full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) to accurately handle the discontinuities in electromagnetic fields associated with wave propagations in inhomogeneous optical waveguides. The numerical method is a combination of the traditional beam propagation method (BPM) with a newly developed generalized discontinuous Galerkin (GDG) method [K. Fan, W. Cai, X. Ji, A generalized discontinuous Galerkin method (GDG) for Schroedinger equations with nonsmooth solutions, J. Comput. Phys. 227 (2008) 2387-2410]. The GDG method is based on a reformulation, using distributional variables to account for solution jumps across material interfaces, of Schroedinger equationsmore » resulting from paraxial approximations of vector Helmholtz equations. Four versions of the GDG-BPM are obtained for either the electric or magnetic field components. Modeling of wave propagations in various optical fibers using the full vectorial GDG-BPM is included. Numerical results validate the high order accuracy and the flexibility of the method for various types of interface jump conditions.« less

  15. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  16. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  17. Full-order optimal compensators for flow control: the multiple inputs case

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  18. Targeted numerical simulations of binary black holes for GW170104

    NASA Astrophysics Data System (ADS)

    Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.

    2018-03-01

    In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.

  19. Spikes and matter inhomogeneities in massless scalar field models

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Lim, W. C.

    2016-01-01

    We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.

  20. Steering particles by breaking symmetries

    NASA Astrophysics Data System (ADS)

    Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René

    2018-06-01

    We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.

  1. Symmetry, stability, and computation of degenerate lasing modes

    NASA Astrophysics Data System (ADS)

    Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.

    2017-02-01

    We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.

  2. High-irradiance reactor design with practical unfolded optics

    NASA Astrophysics Data System (ADS)

    Feuermann, Daniel; Gordon, Jeffrey M.

    2008-08-01

    In the design of high-temperature chemical reactors and furnaces, as well as high-radiance light projection applications, reconstituting the ultra-high radiance of short-arc discharge lamps at maximum radiative efficiency constitutes a significant challenge. The difficulty is exacerbated by the high numerical aperture necessary at both the source and the target. Separating the optic from both the light source and the target allows practical operation, control, monitoring, diagnostics and maintenance. We present near-field unfolded aplanatic optics as a feasible solution. The concept is illustrated with a design customized to a high-temperature chemical reactor for nano-material synthesis, driven by an ultra-bright xenon short-arc discharge lamp, with near-unity numerical aperture for both light input and light output. We report preliminary optical measurements for the first prototype, which constitutes a double-ellipsoid solution. We also propose compound unfolded aplanats that collect the full angular extent of lamp emission (in lieu of light recycling optics) and additionally permit nearly full-circumference irradiation of the reactor.

  3. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  4. An exploratory study of a finite difference method for calculating unsteady transonic potential flow

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1979-01-01

    A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.

  5. K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsden, A.A.; Harlow, F.H.

    1977-10-01

    The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less

  6. Eshelby's problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane

    PubMed Central

    Lee, Y.-G.; Zou, W.-N.; Pan, E.

    2015-01-01

    This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141

  7. Determination of full piezoelectric complex parameters using gradient-based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kiyono, C. Y.; Pérez, N.; Silva, E. C. N.

    2016-02-01

    At present, numerical techniques allow the precise simulation of mechanical structures, but the results are limited by the knowledge of the material properties. In the case of piezoelectric ceramics, the full model determination in the linear range involves five elastic, three piezoelectric, and two dielectric complex parameters. A successful solution to obtaining piezoceramic properties consists of comparing the experimental measurement of the impedance curve and the results of a numerical model by using the finite element method (FEM). In the present work, a new systematic optimization method is proposed to adjust the full piezoelectric complex parameters in the FEM model. Once implemented, the method only requires the experimental data (impedance modulus and phase data acquired by an impedometer), material density, geometry, and initial values for the properties. This method combines a FEM routine implemented using an 8-noded axisymmetric element with a gradient-based optimization routine based on the method of moving asymptotes (MMA). The main objective of the optimization procedure is minimizing the quadratic difference between the experimental and numerical electrical conductance and resistance curves (to consider resonance and antiresonance frequencies). To assure the convergence of the optimization procedure, this work proposes restarting the optimization loop whenever the procedure ends in an undesired or an unfeasible solution. Two experimental examples using PZ27 and APC850 samples are presented to test the precision of the method and to check the dependency of the frequency range used, respectively.

  8. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects

    NASA Astrophysics Data System (ADS)

    Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhiev, Todor N.

    2018-05-01

    In this paper we study the transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) under the influence of nonlinear gain, its saturation, and higher-order effects: self-steepening, third-order of dispersion, and intrapulse Raman scattering in the anomalous dispersion region. The variation method and the method of moments are applied in order to obtain the dynamic models with finite degrees of freedom for the description of stationary and pulsating solutions. Having applied the first model and its bifurcation analysis we have discovered the existence of families of subcritical Poincaré-Andronov-Hopf bifurcations due to the intrapulse Raman scattering, as well as some small nonlinear gain and the saturation of the nonlinear gain. A phenomenon of nonlinear stability has been studied and it has been shown that long living pulsating solutions with relatively small fluctuations of amplitude and frequencies exist at the bifurcation point. The numerical analysis of the second model has revealed the existence of Poincaré-Andronov-Hopf bifurcations of Raman dissipative soliton under the influence of the self-steepening effect and large nonlinear gain. All our theoretical predictions have been confirmed by the direct numerical solution of the full perturbed CCQGLE. The detailed comparison between the results obtained by both dynamic models and the direct numerical solution of the perturbed CCQGLE has proved the applicability of the proposed models in the investigation of the solutions of the perturbed CCQGLE.

  9. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  10. Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Clay A.; Glass, Robert J.; Tyler, Scott W.

    OAK - B135 We apply high resolution, full field light transmission techniques to study the onset and development of convection in simulated porous media (Hele-Shaw cells) and fractures. The light transmission technique allows quantitative measurement of the solute concentration fields in time thus allowing direct measurements of the mass flux of components. Experiments are first designed to test theoretical stability relations as a function of the solute concentrations, solute diffusivities and the medium's permeability. Structural evolution and convective transport as a function of dimensionless control parameters is then determined across the full range of parameter space. We also consider themore » application of lattice gas automata techniques to numerically model the onset and development of convection. (Gary Drew notified on 3/25/03 of copyrighted Material)« less

  11. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    NASA Astrophysics Data System (ADS)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  12. Revealing Numerical Solutions of a Differential Equation

    ERIC Educational Resources Information Center

    Glaister, P.

    2006-01-01

    In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…

  13. A new approximation for pore pressure accumulation in marine sediment due to water waves

    NASA Astrophysics Data System (ADS)

    Jeng, D.-S.; Seymour, B. R.; Li, J.

    2007-01-01

    The residual mechanism of wave-induced pore water pressure accumulation in marine sediments is re-examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions (Int. J. Numer. Anal. Methods Geomech. 2001; 25:885-907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11) are corrected. A numerical scheme is then employed to solve the case with a non-linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data (Laboratory and field investigation of wave-sediment interaction. Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution (J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11). The parametric study concludes that the pore pressure accumulation and use of full non-linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright

  14. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  15. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  16. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  17. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Bryan M.; Klein, Richard I.

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  18. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    NASA Astrophysics Data System (ADS)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  19. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  20. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    NASA Astrophysics Data System (ADS)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  1. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    NASA Astrophysics Data System (ADS)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  2. Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma

    DOE PAGES

    Scullard, Christian R.; Belt, Andrew P.; Fennell, Susan C.; ...

    2016-09-01

    We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation andmore » a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.« less

  3. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  4. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NASA Astrophysics Data System (ADS)

    Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.

  5. Modulation analysis of nonlinear beam refraction at an interface in liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assanto, Gaetano; Smyth, Noel F.; Xia Wenjun

    2011-09-15

    A theoretical investigation of solitary wave refraction in nematic liquid crystals is undertaken. A modulation theory based on a Lagrangian formulation of the governing optical solitary wave equations is developed. The resulting low-dimensional equations are found to give solutions in excellent agreement with full numerical solutions of the governing equations, as well as with previous experimental studies. The analysis deals with a number of types of refraction from a more to a less optically dense medium, the most famous being the Goos-Haenchen shift upon total internal reflection.

  6. Perturbation-iteration theory for analyzing microwave striplines

    NASA Technical Reports Server (NTRS)

    Kretch, B. E.

    1985-01-01

    A perturbation-iteration technique is presented for determining the propagation constant and characteristic impedance of an unshielded microstrip transmission line. The method converges to the correct solution with a few iterations at each frequency and is equivalent to a full wave analysis. The perturbation-iteration method gives a direct solution for the propagation constant without having to find the roots of a transcendental dispersion equation. The theory is presented in detail along with numerical results for the effective dielectric constant and characteristic impedance for a wide range of substrate dielectric constants, stripline dimensions, and frequencies.

  7. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    NASA Astrophysics Data System (ADS)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  8. Modeling of large amplitude plasma blobs in three-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, Justin R.; Umansky, Maxim V.

    2014-01-15

    Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where themore » background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability.« less

  9. Validation of OpenFoam for heavy gas dispersion applications.

    PubMed

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Lump Solitons in Surface Tension Dominated Flows

    NASA Astrophysics Data System (ADS)

    Milewski, Paul; Berger, Kurt

    1999-11-01

    The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.

  11. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.

  12. Numerical solution of the stochastic parabolic equation with the dependent operator coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashyralyev, Allaberen; Department of Mathematics, ITTU, Ashgabat; Okur, Ulker

    2015-09-18

    In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.

  13. Sedimentary Geothermal Feasibility Study: October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Zerpa, Luis

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less

  14. A Fixed-point Scheme for the Numerical Construction of Magnetohydrostatic Atmospheres in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Gilchrist, S. A.; Braun, D. C.; Barnes, G.

    2016-12-01

    Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin ( Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.

  15. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  16. Finite element solution of optimal control problems with inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1990-01-01

    A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.

  17. GeV-scale hot sterile neutrino oscillations: a numerical solution

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Laine, M.

    2018-02-01

    The scenario of baryogenesis through GeV-scale sterile neutrino oscillations is governed by non-linear differential equations for the time evolution of a sterile neutrino density matrix and Standard Model lepton and baryon asymmetries. By employing up-to-date rate coefficients and a non-perturbatively estimated Chern-Simons diffusion rate, we present a numerical solution of this system, incorporating the full momentum and helicity dependences of the density matrix. The density matrix deviates significantly from kinetic equilibrium, with the IR modes equilibrating much faster than the UV modes. For equivalent input parameters, our final results differ moderately (˜50%) from recent benchmarks in the literature. The possibility of producing an observable baryon asymmetry is nevertheless confirmed. We illustrate the dependence of the baryon asymmetry on the sterile neutrino mass splitting and on the CP-violating phase measurable in active neutrino oscillation experiments.

  18. Modeling quasi-static poroelastic propagation using an asymptotic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.

    2007-11-01

    Since the formulation of poroelasticity (Biot(1941)) and its reformulation (Rice & Cleary(1976)), there have been many efforts to solve the coupled system of equations. Perhaps because of the complexity of the governing equations, most of the work has been directed towards finding numerical solutions. For example, Lewis and co-workers published early papers (Lewis & Schrefler(1978); Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with finite-element methods for computing consolidation, subsidence, and examining the importance of coupling. Other early work dealt with flow in a deformable fractured medium (Narasimhan & Witherspoon 1976); Noorishad et al.(1984)Noorishad, Tsang, & Witherspoon. This effort eventually evolvedmore » into a general numerical approach for modeling fluid flow and deformation (Rutqvist et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of this and other work, numerous coupled, computer-based algorithms have emerged, typically falling into one of three categories: one-way coupling, loose coupling, and full coupling (Minkoff et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In one-way coupling the fluid flow is modeled using a conventional numerical simulator and the resulting change in fluid pressures simply drives the deformation. In loosely coupled modeling distinct geomechanical and fluid flow simulators are run for a sequence of time steps and at the conclusion of each step information is passed between the simulators. In full coupling, the fluid flow and geomechanics equations are solved simultaneously at each time step (Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez & Lewis(2002)). One disadvantage of a purely numerical approach to solving the governing equations of poroelasticity is that it is not clear how the various parameters interact and influence the solution. Analytic solutions have an advantage in that respect; the relationship between the medium and fluid properties is clear from the form of the solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.« less

  19. A numerical simulation of the full two-dimensional electrothermal de-icer pad. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Masiulaniec, Konstanty C.

    1988-01-01

    The ability to predict the time-temperature history of electrothermal de-icer pads is important in the subsequent design of improved and more efficient versions. These de-icer pads are installed near the surface of aircraft components, for the specific purpose of removing accreted ice. The proposed numerical model can incorporate the full 2-D geometry through a section of a region (i.e., section of an airfoil), that current 1-D numerical codes are unable to do. Thus, the effects of irregular layers, curvature, etc., can now be accounted for in the thermal transients. Each layer in the actual geometry is mapped via a body-fitted coordinate transformation into uniform, rectangular computational grids. The relevant heat transfer equations are transformed and discretized. To model the phase change that might occur in any accreted ice, in an enthalpy formulation the phase change equations are likewise transformed and discretized. The code developed was tested against numerous classical numerical solutions, as well as against experimental de-icing data on a UH1H rotor blade obtained from the NASA Lewis Research Center. The excellent comparisons obtained show that this code can be a useful tool in predicting the performance of current de-icer models, as well as in the designing of future models.

  20. An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.

    1985-01-01

    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.

  1. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  2. Alternative formulations of the Laplace transform boundary element (LTBE) numerical method for the solution of diffusion-type equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.

    1992-03-01

    The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.

  3. Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.

    1982-01-01

    A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.

  4. Reduced and simplified chemical kinetics for air dissociation using Computational Singular Perturbation

    NASA Technical Reports Server (NTRS)

    Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.

    1990-01-01

    The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.

  5. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-06-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  6. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-04-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  7. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  8. Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    NASA Astrophysics Data System (ADS)

    Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis

    2018-05-01

    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full open source semi-analytical codes are made available at the website https://lhyges.unistra.fr/FAHS-Marwan.

  9. Piezoviscosity In Lubrication Of Nonconformal Contacts

    NASA Technical Reports Server (NTRS)

    Jeng, Yeau-Ren; Hamrock, Bernard J.; Brewe, David E.

    1988-01-01

    Developments in theory of lubrication. Analysis of piezoviscous-rigid regime of lubrication of two ellipsoidal contacts. Begins with Reynolds equation for point contact. Equation nondimensionalized using Roelands empirical formula and Dowson and Higginson formula. Equation solved numerically. Solutions obtained for full spectrum of conditions to find effects of dimensionless load, speed, parameters of lubricated and lubricating materials, and angle between direction of rolling and direction of entrainment of lubricant.

  10. Numerical solution of the exact cavity equations of motion for an unstable optical resonator.

    PubMed

    Bowers, M S; Moody, S E

    1990-09-20

    We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

  11. Validation of the enthalpy method by means of analytical solution

    NASA Astrophysics Data System (ADS)

    Kleiner, Thomas; Rückamp, Martin; Bondzio, Johannes; Humbert, Angelika

    2014-05-01

    Numerical simulations moved in the recent year(s) from describing the cold-temperate transition surface (CTS) towards an enthalpy description, which allows avoiding incorporating a singular surface inside the model (Aschwanden et al., 2012). In Enthalpy methods the CTS is represented as a level set of the enthalpy state variable. This method has several numerical and practical advantages (e.g. representation of the full energy by one scalar field, no restriction to topology and shape of the CTS). The proposed method is rather new in glaciology and to our knowledge not verified and validated against analytical solutions. Unfortunately we are still lacking analytical solutions for sufficiently complex thermo-mechanically coupled polythermal ice flow. However, we present two experiments to test the implementation of the enthalpy equation and corresponding boundary conditions. The first experiment tests particularly the functionality of the boundary condition scheme and the corresponding basal melt rate calculation. Dependent on the different thermal situations that occur at the base, the numerical code may have to switch to another boundary type (from Neuman to Dirichlet or vice versa). The main idea of this set-up is to test the reversibility during transients. A former cold ice body that run through a warmer period with an associated built up of a liquid water layer at the base must be able to return to its initial steady state. Since we impose several assumptions on the experiment design analytical solutions can be formulated for different quantities during distinct stages of the simulation. The second experiment tests the positioning of the internal CTS in a parallel-sided polythermal slab. We compare our simulation results to the analytical solution proposed by Greve and Blatter (2009). Results from three different ice flow-models (COMIce, ISSM, TIMFD3) are presented.

  12. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1995-01-01

    A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.

  13. Nonlinear analysis for dual-frequency concurrent energy harvesting

    NASA Astrophysics Data System (ADS)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  14. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  15. Wakes and precursor soliton excitations by a moving charged object in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Tiwari, Sanat, E-mail: sanat-tiwari@uiowa.edu; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242; Sen, Abhijit, E-mail: senabhijit@gmail.com

    2016-02-15

    We study the evolution of nonlinear ion acoustic wave excitations due to a moving charged source in a plasma. Our numerical investigations of the full set of cold fluid equations go beyond the usual weak nonlinearity approximation and show the existence of a rich variety of solutions including wakes, precursor solitons, and “pinned” solitons that travel with the source velocity. These solutions represent a large amplitude generalization of solutions obtained in the past for the forced Korteweg deVries equation and can find useful applications in a variety of situations in the laboratory and in space, wherever there is a largemore » relative velocity between the plasma and a charged object.« less

  16. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  17. Discrete-time model reduction in limited frequency ranges

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.

  18. Numerical solutions of 2-D multi-stage rotor/stator unsteady flow interactions

    NASA Astrophysics Data System (ADS)

    Yang, R.-J.; Lin, S.-J.

    1991-01-01

    The Rai method of single-stage rotor/stator flow interaction is extended to handle multistage configurations. In this study, a two-dimensional Navier-Stokes multi-zone approach was used to investigate unsteady flow interactions within two multistage axial turbines. The governing equations are solved by an iterative, factored, implicit finite-difference, upwind algorithm. Numerical accuracy is checked by investigating the effect of time step size, the effect of subiteration in the Newton-Raphson technique, and the effect of full viscous versus thin-layer approximation. Computer results compared well with experimental data. Unsteady flow interactions, wake cutting, and the associated evolution of vortical entities are discussed.

  19. Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body

    NASA Astrophysics Data System (ADS)

    Nanjangud, Angadh; Eke, Fidelis

    2017-06-01

    This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.

  20. Ion Dynamics Model for Collisionless Radio Frequency Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T.R.; Meyyappan, M.

    2000-01-01

    Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.

  1. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  2. Numerical Algorithm for Delta of Asian Option

    PubMed Central

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  3. Numerical modelling of nonlinear full-wave acoustic propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less

  4. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  5. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  6. Highly Unstable Double-Diffusive Finger Convection in a Hele-Shaw Cell: Baseline Experimental Data for Evaluation of Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRINGLE,SCOTT E.; COOPER,CLAY A.; GLASS JR.,ROBERT J.

    An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapidmore » progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.« less

  7. Effects of inhomogeneities on MCG due to a single current dipole

    NASA Astrophysics Data System (ADS)

    Chen, Jiange; Niki, Noboru; Nakaya, Yutaka; Nishitani, Hiroshi; Kang, Yoongming

    1999-05-01

    The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: (1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; (2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Generally lungs, subcutaneous fat, skeletal muscle play a larger role than other tissues. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

  8. A stability analysis on forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Bakar, Shahirah Abu; Arifin, Norihan Md; Ali, Fadzilah Md; Bachok, Norfifah; Nazar, Roslinda

    2017-08-01

    The stagnation-point flow over a shrinking sheet in Darcy-Forchheimer porous medium is numerically studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by using shooting technique method with Maple implementation. Dual solutions are observed in a certain range of the shrinking parameter. Regarding on numerical solutions, we prepared stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results or each solution, which enable us to discuss the features of the respective solutions.

  9. A numerical solution for two-dimensional Fredholm integral equations of the second kind with kernels of the logarithmic potential form

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.

  10. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  11. A review of spectral methods

    NASA Technical Reports Server (NTRS)

    Lustman, L.

    1984-01-01

    An outline for spectral methods for partial differential equations is presented. The basic spectral algorithm is defined, collocation are emphasized and the main advantage of the method, the infinite order of accuracy in problems with smooth solutions are discussed. Examples of theoretical numerical analysis of spectral calculations are presented. An application of spectral methods to transonic flow is presented. The full potential transonic equation is among the best understood among nonlinear equations.

  12. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    McBride, Neil; Gilmour, Iain

    2004-02-01

    Compiled by a team of experts, this textbook has been designed for introductory university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation. The composition, internal structure, surface morphology and atmospheres of the terrestrial planets are then described. This leads naturally to a discussion of the giant planets and why they are compositionally different. Minor bodies are reviewed and the book concludes with a discussion of the origin of the Solar System and the evidence from meteorites. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials. Written by a team of experts in an accessible style that avoids complex mathematics, and illustrated in colour throughout Contains numerous pedagogical features including boxed summaries, brief biographies of pioneering astronomers, bulleted questions and answers throughout, over 90 exercises with full solutions, and a glossary of terms Supported by a website hosting additional teaching materials including illustrations, further exercises and links to other Internet resources

  13. Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method

    NASA Astrophysics Data System (ADS)

    Seydel, Julia; Schuster, Thomas

    2017-12-01

    We consider the nonlinear inverse problem of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field as well as from surface sensor measurements. The displacement field is represented as a solution of Cauchy’s equation of motion, which is a nonlinear elastic wave equation. Hyperelasticity means that the first Piola-Kirchhoff stress tensor is given as the gradient of the stored energy function. We assume that a dictionary of suitable functions is available. The aim is to recover the stored energy with respect to this dictionary. The considered inverse problem is of vital interest for the development of structural health monitoring systems which are constructed to detect defects in elastic materials from boundary measurements of the displacement field, since the stored energy encodes the mechanical properties of the underlying structure. In this article we develop a numerical solver using the attenuated Landweber method. We show that the parameter-to-solution map satisfies the local tangential cone condition. This result can be used to prove local convergence of the attenuated Landweber method in the case that the full displacement field is measured. In our numerical experiments we demonstrate how to construct an appropriate dictionary and show that our method is well suited to localize damages in various situations.

  14. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.

  15. Numerical analysis of the asymptotic two-point boundary value solution for N-body trajectories.

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.; Allemann, R. A.

    1972-01-01

    Previously published asymptotic solutions for lunar and interplanetary trajectories have been modified and combined to formulate a general analytical boundary value solution applicable to a broad class of trajectory problems. In addition, the earlier first-order solutions have been extended to second-order to determine if improved accuracy is possible. Comparisons between the asymptotic solution and numerical integration for several lunar and interplanetary trajectories show that the asymptotic solution is generally quite accurate. Also, since no iterations are required, a solution to the boundary value problem is obtained in a fraction of the time required for numerically integrated solutions.

  16. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  17. The route to chaos for the Kuramoto-Sivashinsky equation

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Smyrlis, Yiorgos

    1990-01-01

    The results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. This paper is concerned with the asymptotic nonlinear dynamics at the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic attractor, to another steady fully modal attractor, to another periodic attractor, to a steady tetramodal attractor, to another periodic attractor having a full sequence of period-doublings (in parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the length of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4,669201609... . Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.

  18. Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework

    NASA Astrophysics Data System (ADS)

    Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.

    2015-12-01

    Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.

  19. Numerical simulations to the nonlinear model of interpersonal relationships with time fractional derivative

    NASA Astrophysics Data System (ADS)

    Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan

    2017-01-01

    The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.

  20. A THREE-DIMENSIONAL NUMERICAL SOLUTION FOR THE SHAPE OF A ROTATIONALLY DISTORTED POLYTROPE OF INDEX UNITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2013-02-15

    We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybridmore » inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  2. Solution of the Riemann problem for polarization waves in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ivanov, S. K.; Kamchatnov, A. M.; Congy, T.; Pavloff, N.

    2017-12-01

    We provide a classification of the possible flows of two-component Bose-Einstein condensates evolving from initially discontinuous profiles. We consider the situation where the dynamics can be reduced to the consideration of a single polarization mode (also denoted as "magnetic excitation") obeying a system of equations equivalent to the Landau-Lifshitz equation for an easy-plane ferromagnet. We present the full set of one-phase periodic solutions. The corresponding Whitham modulation equations are obtained together with formulas connecting their solutions with the Riemann invariants of the modulation equations. The problem is not genuinely nonlinear, and this results in a non-single-valued mapping of the solutions of the Whitham equations with physical wave patterns as well as the appearance of interesting elements—contact dispersive shock waves—that are absent in more standard, genuinely nonlinear situations. Our analytic results are confirmed by numerical simulations.

  3. Comparison with CLPX II airborne data using DMRT model

    USGS Publications Warehouse

    Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.

    2009-01-01

    In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.

  4. A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.

  5. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  6. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less

  7. Gravitational waveforms for neutron star binaries from binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  8. Gravitational waveforms for neutron star binaries from binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Brown, Duncan A.; Szilágyi, Béla; Kaplan, Jeffrey D.; Lippuner, Jonas; Muhlberger, Curran D.; Foucart, Francois; Duez, Matthew D.

    2016-02-01

    Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over ˜15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ .

  9. Theory of precipitation effects on dead cylindrical fuels

    Treesearch

    Michael A. Fosberg

    1972-01-01

    Numerical and analytical solutions of the Fickian diffusion equation were used to determine the effects of precipitation on dead cylindrical forest fuels. The analytical solution provided a physical framework. The numerical solutions were then used to refine the analytical solution through a similarity argument. The theoretical solutions predicted realistic rates of...

  10. Remarks on the maximum luminosity

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  11. Crank-Nicholson difference scheme for a stochastic parabolic equation with a dependent operator coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashyralyev, Allaberen; Okur, Ulker

    In the present paper, the Crank-Nicolson difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is considered. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, convergence estimates for the solution of difference schemes for the numerical solution of three mixed problems for parabolic equations are obtained. The numerical results are given.

  12. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lattice Boltzmann approach for complex nonequilibrium flows.

    PubMed

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  14. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  15. The use of multigrid techniques in the solution of the Elrod algorithm for a dynamically loaded journal bearing. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed, utilizing a multigrid iterative technique. The code is compared with a presently existing direct solution in terms of computational time and accuracy. The model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobssen-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via liquid striations. The mixed nature of the equations (elliptic in the full film zone and nonelliptic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  16. Heterogeneous nanofluids: natural convection heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  17. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  18. Circuit-based versus full-wave modelling of active microwave circuits

    NASA Astrophysics Data System (ADS)

    Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.

    2018-03-01

    Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.

  19. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  20. Gravity-Driven Thin Film Flow of an Ellis Fluid.

    PubMed

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-12-01

    The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity ( η 0 ), τ 1/2 , and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ , on the front velocity saturation depended on τ 1/2 . This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications.

  1. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  2. Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data

    NASA Astrophysics Data System (ADS)

    Chang, Chueh-Hsin; Yu, Ching-Hao; Sheu, Tony Wen-Hann

    2016-10-01

    In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut - uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.

  3. Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Langer, S.

    2016-01-01

    In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.

  4. Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues

    PubMed Central

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-01

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue. PMID:25603180

  5. Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues.

    PubMed

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-16

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue.

  6. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  7. A meshless method using radial basis functions for numerical solution of the two-dimensional KdV-Burgers equation

    NASA Astrophysics Data System (ADS)

    Zabihi, F.; Saffarian, M.

    2016-07-01

    The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.

  8. Modeling flow and solute transport in irrigation furrows

    USDA-ARS?s Scientific Manuscript database

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  9. Progress on the decommissioning of Zion nuclear generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commencedmore » in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first two years of the Zion programme offer some interesting learning opportunities. The critical importance of leadership and project control systems will be emphasised in the paper. Strong supplier relationships and good community cooperation are essential. A learning and adaptable team, incentivised to meet schedule and budget, drives affordability of the whole programme. Our key lessons so far concern organisation and people as much as engineering and technology. (authors)« less

  10. Collisional breakup in a quantum system of three charged particles

    PubMed

    Rescigno; Baertschy; Isaacs; McCurdy

    1999-12-24

    Since the invention of quantum mechanics, even the simplest example of the collisional breakup of a system of charged particles, e(-) + H --> H(+) + e(-) + e(-) (where e(-) is an electron and H is hydrogen), has resisted solution and is now one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculation of the energies and directions for a final state in which all three particles are moving away from each other. Even with supercomputers, the correct mathematical description of this state has proved difficult to apply. A framework for solving ionization problems in many areas of chemistry and physics is finally provided by a mathematical transformation of the Schrodinger equation that makes the final state tractable, providing the key to a numerical solution of this problem that reveals its full dynamics.

  11. Coupling between fluid dynamics and energy addition in arcjet and microwave thrusters

    NASA Technical Reports Server (NTRS)

    Micci, M. M.

    1986-01-01

    A new approach to numerically solving the problem of the constricted electric arcjet is presented. An Euler Implicit finite difference scheme is used to solve the full compressible Navier Stokes equations in two dimensions. The boundary and initial conditions represent the constrictor section of the arcjet, and hydrogen is used as a propellant. The arc is modeled as a Gaussian distribution across the centerline of the constrictor. Temperature, pressure and velocity profiles for steady state converged solutions show both axial and radial changes in distributions resulting from their interaction with the arc energy source for specific input conditions. The temperature rise is largest at the centerline where there is a the greatest concentration arc energy. The solution does not converge for all initial inputs and the limitations in the range of obtainable solutions are discussed.

  12. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  13. Light propagation in Swiss-cheese cosmologies

    NASA Astrophysics Data System (ADS)

    Szybka, Sebastian J.

    2011-08-01

    We study the effect of inhomogeneities on light propagation. The Sachs equations are solved numerically in the Swiss-cheese models with inhomogeneities modeled by the Lemaître-Tolman solutions. Our results imply that, within the models we study, inhomogeneities may partially mimic the accelerated expansion of the Universe provided the light propagates through regions with lower than the average density. The effect of inhomogeneities is small and full randomization of the photons’ trajectories reduces it to an insignificant level.

  14. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    NASA Astrophysics Data System (ADS)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm

    2018-03-01

    The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.

  15. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  16. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2017-10-28

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  17. Numerical simulation of the pollution formed by exhaust jets at the ground running procedure

    NASA Astrophysics Data System (ADS)

    Korotaeva, T. A.; Turchinovich, A. O.

    2016-10-01

    The paper presents an approach that is new for aviation-related ecology. The approach allows defining spatial distribution of pollutant concentrations released at engine ground running procedure (GRP) using full gas-dynamic models. For the first time such a task is modeled in three-dimensional approximation in the framework of the numerical solution of the Navier-Stokes equations with taking into account a kinetic model of interaction between the components of engine exhaust and air. The complex pattern of gas-dynamic flow that occurs at the flow around an aircraft with the jet exhausts that interact with each other, air, jet blast deflector (JBD), and surface of the airplane has been studied in the present work. The numerical technique developed for calculating the concentrations of pollutants produced at the GRP stage permits to define level, character, and area of contamination more reliable and increase accuracy in definition of sanitary protection zones.

  18. A fast numerical method for the valuation of American lookback put options

    NASA Astrophysics Data System (ADS)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  19. Spectral methods in general relativity and large Randall-Sundrum II black holes

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; \\\\; Yaghoobpour-Tari, Shima

    2013-06-01

    Using a novel numerical spectral method, we have found solutions for large static Randall-Sundrum II (RSII) black holes by perturbing a numerical AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. We used a numerical spectral method independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman for a similar numerical solution. We have compared our black-hole solution to the one Figueras and Wiseman have derived by perturbing their numerical AdS5-CFT4 solution, showing that our solution agrees closely with theirs. We have obtained a closed-form approximation to the metric of the black hole on the brane. We have also deduced the new results that to first order in 1/(-ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ).

  20. On recent advances and future research directions for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.; Manhardt, P. D.

    1986-01-01

    This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.

  1. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  2. Constructing exact symmetric informationally complete measurements from numerical solutions

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  3. Analytical and numerical solution for wave reflection from a porous wave absorber

    NASA Astrophysics Data System (ADS)

    Magdalena, Ikha; Roque, Marian P.

    2018-03-01

    In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.

  4. Ignition and structure of a laminar diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations.

  5. Numerical method of lines for the relaxational dynamics of nematic liquid crystals.

    PubMed

    Bhattacharjee, A K; Menon, Gautam I; Adhikari, R

    2008-08-01

    We propose an efficient numerical scheme, based on the method of lines, for solving the Landau-de Gennes equations describing the relaxational dynamics of nematic liquid crystals. Our method is computationally easy to implement, balancing requirements of efficiency and accuracy. We benchmark our method through the study of the following problems: the isotropic-nematic interface, growth of nematic droplets in the isotropic phase, and the kinetics of coarsening following a quench into the nematic phase. Our results, obtained through solutions of the full coarse-grained equations of motion with no approximations, provide a stringent test of the de Gennes ansatz for the isotropic-nematic interface, illustrate the anisotropic character of droplets in the nucleation regime, and validate dynamical scaling in the coarsening regime.

  6. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  7. Flow and Heat Transfer Analysis of an Eyring-Powell Fluid in a Pipe

    NASA Astrophysics Data System (ADS)

    Ali, N.; Nazeer, F.; Nazeer, Mubbashar

    2018-02-01

    The steady non-isothermal flow of an Eyring-Powell fluid in a pipe is investigated using both perturbation and numerical methods. The results are presented for two viscosity models, namely the Reynolds model and the Vogel model. The shooting method is employed to compute the numerical solution. Criteria for validity of perturbation solution are developed. When these criteria are met, it is shown that the perturbation solution is in good agreement with the numerical solution. The influence of various emerging parameters on the velocity and temperature field is also shown.

  8. Application of Self-Similarity Constrained Reynolds-Averaged Turbulence Models to Rayleigh-Taylor and Richtmyer-Meshkov Unstable Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Hartland, Tucker A.; Schilling, Oleg

    2016-11-01

    Analytical self-similar solutions corresponding to Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instability are combined with observed values of the growth parameters in these instabilities to derive coefficient sets for K- ɛ and K- L- a Reynolds-averaged turbulence models. It is shown that full numerical solutions of the model equations give mixing layer widths, fields, and budgets in good agreement with the corresponding self-similar quantities for small Atwood number. Both models are then applied to Rayleigh-Taylor instability with increasing density contrasts to estimate the Atwood number above which the self-similar solutions become invalid. The models are also applied to a reshocked Richtmyer-Meshkov instability, and the predictions are compared with data. The expressions for the growth parameters obtained from the similarity analysis are used to develop estimates for the sensitivity of their values to changes in important model coefficients. Numerical simulations using these modified coefficient values are then performed to provide bounds on the model predictions associated with uncertainties in these coefficient values. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the 2016 LLNL High-Energy-Density Physics Summer Student Program.

  9. A 1D radiative transfer benchmark with polarization via doubling and adding

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  10. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  11. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  12. Refraction of dispersive shock waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.

    2012-09-01

    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.

  13. Theory of viscous transonic flow over airfoils at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R.; Mead, H. R.

    1977-01-01

    This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.

  14. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  15. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  16. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2004-01-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics,model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sevee numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius r(sub a). We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius r(sub a). A better assimilation shall serve our nudging tests in near future.

  17. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Tangborn, A.

    2004-05-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.

  18. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.; Brewe, David E.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  19. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, C. M.; Brewe, D. E.

    1989-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  20. Aerodynamic Analysis of the M33 Projectile Using the CFX Code

    DTIC Science & Technology

    2011-12-01

    is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The M33 projectile has been analyzed using the ANSYS CFX code that is based...analyzed using the ANSYS CFX code that is based on the numerical solution of the full Navier-Stokes equations. Simulation data were obtained...using the CFX code. The ANSYS - CFX code is a commercial CFD program used to simulate fluid flow in a variety of applications such as gas turbine

  1. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2001-01-01

    A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.

  2. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    McBride, Neil; Gilmour, Iain

    2004-03-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation that reviews in detail the terrestrial planets, giant planets and minor bodies. It concludes with a discussion of the origin of the Solar System. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials.

  3. Numerical and experimental study of curved and planar frequency selective surfaces with arbitrary illumination. M.S. Thesis - Maryland Univ., 1989

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen

    1991-01-01

    A frequency selective surface (FSS) composed of apertures in a metallic sheet is known as the inductive FSS. The infinite inductive FSS theory is derived and the aperture fields are solved by a spectral domain formulation with method of moments solution. Both full domain and subsectional basis functions are studied. A locally planar technique (LPT) is used to determine the forward scattered field from a generally shaped inductive FSS with arbitrary illumination.

  4. Models of primary runaway electron distribution in the runaway vortex regime

    DOE PAGES

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    2017-11-01

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less

  5. Edge momentum transport by neutrals: an interpretive numerical framework

    NASA Astrophysics Data System (ADS)

    Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team

    2017-06-01

    Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.

  6. Collisionless kinetic theory of oblique tearing instabilities

    DOE PAGES

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-15

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less

  8. Collisionless kinetic theory of oblique tearing instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  9. Collisionless kinetic theory of oblique tearing instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-01

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.

  10. Investigation of the three-dimensional flow field within a transonic fan rotor: Experiment and analysis

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.; Wood, J. R.

    1984-01-01

    An experimental investigation of the three dimensional flow field through a low aspect ratio, transonic, axial flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three dimensional, unsteady Euler equations using an explicit time marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial by 30 axial by 50 blade to blade) permits details of the transonic flow field such as shock location, turning distribution and blade loading levels to be investigated and compared to analytical results.

  11. Nonlinear evolution of the first mode supersonic oblique waves in compressible boundary layers. Part 1: Heated/cooled walls

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1993-01-01

    The nonlinear stability of an oblique mode propagating in a two-dimensional compressible boundary layer is considered under the long wave-length approximation. The growth rate of the wave is assumed to be small so that the concept of unsteady nonlinear critical layers can be used. It is shown that the spatial/temporal evolution of the mode is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity and density. Expressions for the linear growth rate show clearly the effects of wall heating and cooling and in particular how heating destabilizes the boundary layer for these long wavelength inviscid modes at O(1) Mach numbers. A generalized expression for the linear growth rate is obtained and is shown to compare very well for a range of frequencies and wave-angles at moderate Mach numbers with full numerical solutions of the linear stability problem. The numerical solution of the nonlinear unsteady critical layer problem using a novel method based on Fourier decomposition and Chebychev collocation is discussed and some results are presented.

  12. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-07-01

    The study of the electrodynamics of static, axisymmetric, and force-free Kerr magnetospheres relies vastly on solutions of the so-called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give a detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established set-ups (split-monopole, paraboloidal, BH disc, uniform).

  13. Numerically solving the relativistic Grad-Shafranov equation in Kerr spacetimes: Numerical techniques

    NASA Astrophysics Data System (ADS)

    Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.

    2018-04-01

    The study of the electrodynamics of static, axisymmetric and force-free Kerr magnetospheres relies vastly on solutions of the so called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established setups (split-monopole, paraboloidal, BH-disk, uniform).

  14. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    NASA Astrophysics Data System (ADS)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  15. Influence of the Numerical Scheme on the Solution Quality of the SWE for Tsunami Numerical Codes: The Tohoku-Oki, 2011Example.

    NASA Astrophysics Data System (ADS)

    Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.

    2015-12-01

    Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.

  16. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

    2017-12-01

    Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

  17. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  18. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks.

    PubMed

    Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L

    2013-12-01

    In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.

  19. Exact solution for the time evolution of network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.; Plato, A. D. K.

    2007-05-01

    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean-field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature, including examples of urn, backgammon, and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a minority game also show features described by our model.

  20. A dimensionally split Cartesian cut cell method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert

    2018-07-01

    We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.

  1. Marching iterative methods for the parabolized and thin layer Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Israeli, M.

    1985-01-01

    Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.

  2. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.

    PubMed

    Lue, Leo; Linse, Per

    2011-12-14

    Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics

  3. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  4. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    NASA Astrophysics Data System (ADS)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  5. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.

    PubMed

    Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S

    2015-07-27

    In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.

  6. An improved conjugate gradient scheme to the solution of least squares SVM.

    PubMed

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  7. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  8. Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift

    PubMed Central

    Zhao, Lei; Yue, Xingye; Waxman, David

    2013-01-01

    A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318

  9. Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions

    USGS Publications Warehouse

    Moench, A.F.; Barlow, P.M.

    2000-01-01

    Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.

  10. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  11. Documentation for the MODFLOW 6 framework

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Banta, Edward R.

    2017-08-10

    MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Survey. Growing interest in surface and groundwater interactions, local refinement with nested and unstructured grids, karst groundwater flow, solute transport, and saltwater intrusion, has led to the development of numerous MODFLOW versions. Often times, there are incompatibilities between these different MODFLOW versions. The report describes a new MODFLOW framework called MODFLOW 6 that is designed to support multiple models and multiple types of models. The framework is written in Fortran using a modular object-oriented design. The primary framework components include the simulation (or main program), Timing Module, Solutions, Models, Exchanges, and Utilities. The first version of the framework focuses on numerical solutions, numerical models, and numerical exchanges. This focus on numerical models allows multiple numerical models to be tightly coupled at the matrix level.

  12. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  13. Numerical modeling and optimization of the Iguassu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  14. A dual potential formulation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gegg, S. G.; Pletcher, R. H.; Steger, J. L.

    1989-01-01

    A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.

  15. Accelerated and decelerated expansion in a causal dissipative cosmology

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Cruz, Norman; Lepe, Samuel

    2017-12-01

    In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic equation of state (EoS) p =ω ρ , in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form ξ =ξ0ρ1 /2. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, cb. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for ω , ξ0, cb accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions d S /d t >0 (growth of the entropy) and d2S /d t2<0 (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.

  16. Application of symbolic/numeric matrix solution techniques to the NASTRAN program

    NASA Technical Reports Server (NTRS)

    Buturla, E. M.; Burroughs, S. H.

    1977-01-01

    The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.

  17. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  18. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  19. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  20. Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation

    NASA Astrophysics Data System (ADS)

    Lim, Woei Chet; Regis, Marco; Clarkson, Chris

    2013-10-01

    We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.

  1. Quasi-generalized variables

    NASA Technical Reports Server (NTRS)

    Baumgarten, J.; Ostermeyer, G. P.

    1986-01-01

    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.

  2. Numerical analysis of the transient response of an axisymmetric ablative char layer considering internal flow effects

    NASA Technical Reports Server (NTRS)

    Pittman, C. M.; Howser, L. M.

    1972-01-01

    The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.

  3. Analytical Approach to (2+1)-Dimensional Boussinesq Equation and (3+1)-Dimensional Kadomtsev-Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Sarıaydın, Selin; Yıldırım, Ahmet

    2010-05-01

    In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation utt -uxx-uyy-(u2)xx-uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation uxt -6ux 2 +6uuxx -uxxxx -uyy -uzz = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically.

  4. Finite element solutions of free convective Casson fluid flow past a vertically inclined plate submitted in magnetic field in presence of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Reddy, B. Mahesh; Reddy, G. Jithender

    2017-09-01

    The aim of this research work is to study the influence of thermal radiation on steady magnetohydrodynamic-free convective Casson fluid flow of an optically thick fluid over an inclined vertical plate with heat and mass transfer. Combined phenomenon of heat and mass transfer is considered. Numerical solutions in general form are obtained by using the finite element method. The sum of thermal and mechanical parts is expressed as velocity of fluid. Corresponding limiting solutions are also reduced from the general solutions. It is found that the obtained numerical solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. Numerical results for the controlling flow parameters are drawn graphically and discussed in detail. In some special cases, the obtained numerical results are compared and found to be in good agreement with the previously published results which are available in literature. Applications of this study includes laminar magneto-aerodynamics, materials processing and magnetohydrodynamic propulsion thermo-fluid dynamics, etc.

  5. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis.

    PubMed

    Khan, Farman U; Qamar, Shamsul

    2017-05-01

    A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  7. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  8. Solitary solutions including spatially localized chaos and their interactions in two-dimensional Kolmogorov flow.

    PubMed

    Hiruta, Yoshiki; Toh, Sadayoshi

    2015-12-01

    Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.

  9. A review on the solution of Grad-Shafranov equation in the cylindrical coordinates based on the Chebyshev collocation technique

    NASA Astrophysics Data System (ADS)

    Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.

    2017-03-01

    Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.

  10. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  11. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  12. On the Solution of Elliptic Partial Differential Equations on Regions with Corners

    DTIC Science & Technology

    2015-07-09

    In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on

  13. Calculating corner singularities by boundary integral equations.

    PubMed

    Shi, Hualiang; Lu, Ya Yan; Du, Qiang

    2017-06-01

    Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.

  14. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  15. A numerical solution of Duffing's equations including the prediction of jump phenomena

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.; Ghasghai-Abdi, E.

    1987-01-01

    Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.

  16. On a more rigorous gravity field processing for future LL-SST type gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Daras, I.; Pail, R.; Murböck, M.

    2013-12-01

    In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of individual error sources to the system's error budget. More specifically we analyze sensor noise from the laser interferometer and the accelerometers, errors in the kinematic orbits and the background fields as well as temporal and spatial aliasing errors. We give special care on the assessment of error sources with stochastic behavior, such as the laser interferometer and the accelerometers, and their consistent stochastic modeling in frame of the adjustment process.

  17. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-II

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Numerical solutions of the Jet-A spray combustion were obtained by means of the KIVA-II computer code after Jet-A properties were added to the 12 chemical species the program had initially contained. Three different reaction mechanism models are considered. The first model consists of 131 reactions and 45 species; it is evaluated by comparing calculated ignition delay times with available shock tube data, and it is used in the evaluation of the other two simplified models. The simplified mechanisms consider 45 reactions and 27 species and 5 reactions and 12 species, respectively. In the prediction of pollutants NOx and CO, the full mechanism of 131 reactions is considered to be more reliable. The numerical results indicate that the variation of the maximum flame temperature is within 20 percent as compared with that of the full mechanism of 131 reactions. The chemical compositions of major components such as C3H8, H2O, O2, CO2, and N2 are of the same order of magnitude. However, the concentrations of pollutants are quite different.

  18. Overview of the new capabilities of TORIC-v6 and comparison with TORIC-v5

    NASA Astrophysics Data System (ADS)

    Bilato, R.; Brambilla, M.; Bertelli, N.

    2016-10-01

    Since its release, version 5 (v5) of the full-wave TORIC code, characterized by an optimized parallelized solver for its routinely use in TRANSP package, has been ameliorated in many technical issues, e.g. the plasma-vacuum transition and the full-spectrum antenna modeling. For the WPCD-benchmark cases a good agreement between the new version, v6, and v5 is found. The major improvement, however, has been done in interfacing TORIC-v6 with the Fokker-Planck SSFPQL solver to account for the back-reaction of ICRF and NBI heating on the wave propagation and absorption. Special algorithms have been developed for SSFPQL for the numerical precision at high pitch-angle resolution and to evaluate the generalized dispersion function directly from the numerical solution. Care has been spent in automatizing the non-linear loop between TORIC-v6 and SSFPQL. In v6 the description of wave absorption at high-harmonics has been revised and applied to DEMO. For high-harmonic regimes there is an ongoing activity on the comparison with AORSA.

  19. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.

    PubMed

    Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo

    2016-05-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

  20. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  1. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules

    PubMed Central

    Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo

    2015-01-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866

  2. Numerical applications of the advective-diffusive codes for the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.

    2016-11-01

    In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.

  3. 3-D Inhomogeous Radiative Transfer Model using a Planar-stratified Forward RT Model and Horizontal Perturbation Series

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Gasiewski, A. J.

    2017-12-01

    A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.

  4. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  5. Numerical simulation of the interaction between a flowfield and chemical reaction on premixed pulsed jet combustion

    NASA Astrophysics Data System (ADS)

    Hishida, Manabu; Hayashi, A. Koichi

    1992-12-01

    Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.

  6. Dilute and dense axion stars

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  7. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  8. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  9. Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua

    1991-08-01

    This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.

  10. Discrete Kinetic Eigenmode Spectra of Electron Plasma Oscillations in Weakly Collisional Plasma: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.

    2013-01-01

    It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.

  11. The stability of freak waves with regard to external impact and perturbation of initial data

    NASA Astrophysics Data System (ADS)

    Smirnova, Anna; Shamin, Roman

    2014-05-01

    We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y

  12. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  13. Multigrid Approach to Incompressible Viscous Cavity Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1996-01-01

    Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.

  14. Region of validity of the finite–temperature Thomas–Fermi model with respect to quantum and exchange corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachkov, Sergey, E-mail: serj.dyachkov@gmail.com; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700; Levashov, Pavel, E-mail: pasha@ihed.ras.ru

    We determine the region of applicability of the finite–temperature Thomas–Fermi model and its thermal part with respect to quantum and exchange corrections. Very high accuracy of computations has been achieved by using a special approach for the solution of the boundary problem and numerical integration. We show that the thermal part of the model can be applied at lower temperatures than the full model. Also we offer simple approximations of the boundaries of validity for practical applications.

  15. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  16. A numerical simulation of the NFAC (National Full-scale Aerodynamics Complex) open-return wind tunnel inlet flow

    NASA Technical Reports Server (NTRS)

    Kaul, U. K.; Ross, J. C.; Jacocks, J. L.

    1985-01-01

    The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.

  17. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  18. Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.

    PubMed

    Li, Ben; Stenstrom, M K

    2014-01-01

    One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.

  19. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  20. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  1. An iterative transformation procedure for numerical solution of flutter and similar characteristics-value problems

    NASA Technical Reports Server (NTRS)

    Gossard, Myron L

    1952-01-01

    An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.

  2. The thermoelastic Aldo contact model with frictional heating

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Ciavarella, M.

    2004-03-01

    In the study of the essential features of thermoelastic contact, Comninou and Dundurs (J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called "Aldo model", where the full 3 D body is replaced by a large number of thin rods normal to the interface and insulated between each other, and the system was further reduced to 2 rods by Barber's Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat flux at the interface driven by temperature differences of the bodies, and opposed by a contact resistance, finding possible multiple and history dependent solutions, depending on the imposed temperature differences. The Aldo model is here extended to include the presence of frictional heating. It is found that the number of solutions of the problem is still always odd, and Barber's graphical construction and the stability analysis of the previous case with no frictional heating can be extended. For any given imposed temperature difference, a critical speed is found for which the uniform pressure solution becomes non-unique and/or unstable. For one direction of the temperature difference, the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions occur, outermost solutions (those involving only one rod in contact) are always stable. A full numerical analysis has been performed to explore the transient behaviour of the system, in the case of two rods of different size. In the general case of N rods, Barber's conjecture is shown to hold since there can only be two stable states for all the rods, and the reduction to two rods is always possible, a posteriori.

  3. Analytical and numerical solutions of the equation for the beam propagation in a photovoltaic-photorefractive media

    NASA Astrophysics Data System (ADS)

    Lin, Ji; Wang, Hou

    2013-07-01

    We use the classical Lie-group method to study the evolution equation describing a photovoltaic-photorefractive media with the effects of diffusion process and the external electric field. We reduce it to some similarity equations firstly, and then obtain some analytically exact solutions including the soliton solution, the exponential solution and the oscillatory solution. We also obtain the numeric solitons from these similarity equations. Moreover, We show theoretically that these solutions have two types of trajectories. One type is a straight line. The other is a parabolic curve, which indicates these solitons have self-deflection.

  4. High-speed reacting flow simulation using USA-series codes

    NASA Astrophysics Data System (ADS)

    Chakravarthy, S. R.; Palaniswamy, S.

    In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.

  5. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  6. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  7. Development of a pressure based multigrid solution method for complex fluid flows

    NASA Technical Reports Server (NTRS)

    Shyy, Wei

    1991-01-01

    In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.

  8. POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Ştefănescu, R.; Sandu, A.; Navon, I. M.

    2015-08-01

    This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.

  9. A unified approach for numerical simulation of viscous compressible and incompressible flows over adiabatic and isothermal walls

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Soliman, M.; White, S.

    1992-01-01

    A new formulation (including the choice of variables, their non-dimensionalization, and the form of the artificial viscosity) is proposed for the numerical solution of the full Navier-Stokes equations for compressible and incompressible flows with heat transfer. With the present approach, the same code can be used for constant as well as variable density flows. The changes of the density due to pressure and temperature variations are identified and it is shown that the low Mach number approximation is a special case. At zero Mach number, the density changes due to the temperature variation are accounted for, mainly through a body force term in the momentum equation. It is also shown that the Boussinesq approximation of the buoyancy effects in an incompressible flow is a special case. To demonstrate the new capability, three examples are tested. Flows in driven cavities with adiabatic and isothermal walls are simulated with the same code as well as incompressible and supersonic flows over a wall with and without a groove. Finally, viscous flow simulations of an oblique shock reflection from a flat plate are shown to be in good agreement with the solutions available in literature.

  10. Investigation of the complex electroviscous effects on electrolyte (single and multiphase) flow in porous medi.

    NASA Astrophysics Data System (ADS)

    Bolet, A. J. S.; Linga, G.; Mathiesen, J.

    2017-12-01

    Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.

  11. Development of iterative techniques for the solution of unsteady compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Hixon, Duane; Sankar, L. N.

    1993-01-01

    During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.

  12. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  13. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  14. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  15. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  16. Bulk viscous cosmology with causal transport theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried, E-mail: oliver.piattella@gmail.com, E-mail: fabris@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br

    2011-05-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDMmore » case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10{sup −11} || cb{sup 2} ∼< 10{sup −8}.« less

  17. Spinning solutions in general relativity with infinite central density

    NASA Astrophysics Data System (ADS)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  18. Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt

    NASA Astrophysics Data System (ADS)

    Sahraoui, M.; Marshall, H.; Kaviany, M.

    1993-09-01

    In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.

  19. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  20. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  1. Gap Excitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits

    NASA Technical Reports Server (NTRS)

    Neto, Andrea; Siegel, Peter H.

    2001-01-01

    At submillimeter wavelengths typical gap discontinuities in microstrip, CPW lines or at antenna terminals, which might contain diodes or active elements, cannot be viewed as simple quasi statically evaluated lumped elements. Planar Schottky diodes at 2.5 THz, for example, have a footprint that is comparable to a wavelength. Thus, apart from modelling the diodes themselves, the connection with their exciting elements (antennas or microstrip) gives rise to parasitics. Full wave or strictly numeric approaches can be used to account for these parasitics but at the expense of generality of the solution and the CPU time of the calculation. In this paper an equivalent network is derived that accurately accounts for large gap discontinuities (with respect to a wavelength) without suffering from the limitations of available numeric techniques.

  2. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  3. Flow to a well in a water-table aquifer: An improved laplace transform solution

    USGS Publications Warehouse

    Moench, A.F.

    1996-01-01

    An alternative Laplace transform solution for the problem, originally solved by Neuman, of constant discharge from a partially penetrating well in a water-table aquifer was obtained. The solution differs from existing solutions in that it is simpler in form and can be numerically inverted without the need for time-consuming numerical integration. The derivation invloves the use of the Laplace transform and a finite Fourier cosine series and avoids the Hankel transform used in prior derivations. The solution allows for water in the overlying unsaturated zone to be released either instantaneously in response to a declining water table as assumed by Neuman, or gradually as approximated by Boulton's convolution integral. Numerical evaluation yields results identical with results obtained by previously published methods with the advantage, under most well-aquifer configurations, of much reduced computation time.

  4. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  5. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  6. Exact Closed-form Solutions for Lamb's Problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-04-01

    In this article, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem, for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's (1974) integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson (1974), which strongly confirms the correctness of our explicit formulas. It is hoped that in due time, these formulas may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  7. Exact closed-form solutions for Lamb's problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-07-01

    In this paper, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson, which strongly confirms the correctness of our explicit formulae. It is hoped that in due time, these formulae may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  8. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  9. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  10. Recent advances in two-phase flow numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  11. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  12. On the Minimal Accuracy Required for Simulating Self-gravitating Systems by Means of Direct N-body Methods

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; Boekholt, Tjarda

    2014-04-01

    The conservation of energy, linear momentum, and angular momentum are important drivers of our physical understanding of the evolution of the universe. These quantities are also conserved in Newton's laws of motion under gravity. Numerical integration of the associated equations of motion is extremely challenging, in particular due to the steady growth of numerical errors (by round-off and discrete time-stepping and the exponential divergence between two nearby solutions. As a result, numerical solutions to the general N-body problem are intrinsically questionable. Using brute force integrations to arbitrary numerical precision we demonstrate empirically that ensembles of different realizations of resonant three-body interactions produce statistically indistinguishable results. Although individual solutions using common integration methods are notoriously unreliable, we conjecture that an ensemble of approximate three-body solutions accurately represents an ensemble of true solutions, so long as the energy during integration is conserved to better than 1/10. We therefore provide an independent confirmation that previous work on self-gravitating systems can actually be trusted, irrespective of the intrinsically chaotic nature of the N-body problem.

  13. Verification of Numerical Solutions for the Deployment of the Highly Nonlinear MARSIS Antenna Boom Lenticular Joints

    NASA Technical Reports Server (NTRS)

    Adams, Douglas S.; Wu, Shih-Chin

    2006-01-01

    The MARSIS antenna booms are constructed using lenticular hinges between straight boom segments in a novel design which allows the booms to be extremely lightweight while retaining a high stiffness and well defined structural properties once they are deployed. Lenticular hinges are elegant in form but are complicated to model as they deploy dynamically and require highly specialized nonlinear techniques founded on carefully measured mechanical properties. Results from component level testing were incorporated into a highly specialized ADAMS model which employed an automated damping algorithm to account for the discontinuous boom lengths formed during the deployment. Additional models with more limited capabilities were also developed in both DADS and ABAQUS to verify the ADAMS model computations and to help better define the numerical behavior of the models at the component and system levels. A careful comparison is made between the ADAMS and DADS models in a series of progressive steps in order to verify their numerical results. Different trade studies considered in the model development are outlined to demonstrate a suitable level of model fidelity. Some model sensitivities to various parameters are explored using subscale and full system models. Finally, some full system DADS models are exercised to illustrate the limitations of traditional modeling techniques for variable geometry systems which were overcome in the ADAMS model.

  14. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  15. Undular bore theory for the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2012-09-01

    We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.

  16. Viscous wing theory development. Volume 1: Analysis, method and results

    NASA Technical Reports Server (NTRS)

    Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.

    1986-01-01

    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.

  17. A reduced-order model from high-dimensional frictional hysteresis

    PubMed Central

    Biswas, Saurabh; Chatterjee, Anindya

    2014-01-01

    Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof. PMID:24910522

  18. A direct numerical method for predicting concentration profiles in a turbulent boundary layer over a flat plate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dow, J. W.

    1972-01-01

    A numerical solution of the turbulent mass transport equation utilizing the concept of eddy diffusivity is presented as an efficient method of investigating turbulent mass transport in boundary layer type flows. A FORTRAN computer program is used to study the two-dimensional diffusion of ammonia, from a line source on the surface, into a turbulent boundary layer over a flat plate. The results of the numerical solution are compared with experimental data to verify the results of the solution. Several other solutions to diffusion problems are presented to illustrate the versatility of the computer program and to provide some insight into the problem of mass diffusion as a whole.

  19. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  20. An efficient technique for the numerical solution of the bidomain equations.

    PubMed

    Whiteley, Jonathan P

    2008-08-01

    Computing the numerical solution of the bidomain equations is widely accepted to be a significant computational challenge. In this study we extend a previously published semi-implicit numerical scheme with good stability properties that has been used to solve the bidomain equations (Whiteley, J.P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006). A new, efficient numerical scheme is developed which utilizes the observation that the only component of the ionic current that must be calculated on a fine spatial mesh and updated frequently is the fast sodium current. Other components of the ionic current may be calculated on a coarser mesh and updated less frequently, and then interpolated onto the finer mesh. Use of this technique to calculate the transmembrane potential and extracellular potential induces very little error in the solution. For the simulations presented in this study an increase in computational efficiency of over two orders of magnitude over standard numerical techniques is obtained.

  1. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  2. Singular perturbation analysis of AOTV-related trajectory optimization problems

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1990-01-01

    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.

  3. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  4. Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.

    2017-09-01

    We extend the numerical pole field solver (Fornberg and Weideman (2011) [12]) to enable the computation of the multivalued Painlevé transcendents, which are the solutions to the third, fifth and sixth Painlevé equations, on their Riemann surfaces. We display, for the first time, solutions to these equations on multiple Riemann sheets. We also provide numerical evidence for the existence of solutions to the sixth Painlevé equation that have pole-free sectors, known as tronquée solutions.

  5. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  6. A Full-Featured User Friendly CO 2-EOR and Sequestration Planning Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Bill

    A Full-Featured, User Friendly CO 2-EOR and Sequestration Planning Software This project addressed the development of an integrated software solution that includes a graphical user interface, numerical simulation, visualization tools and optimization processes for reservoir simulation modeling of CO 2-EOR. The objective was to assist the industry in the development of domestic energy resources by expanding the application of CO 2-EOR technologies, and ultimately to maximize the CO 2} sequestration capacity of the U.S. The software resulted in a field-ready application for the industry to address the current CO 2-EOR technologies. The software has been made available to the publicmore » without restrictions and with user friendly operating documentation and tutorials. The software (executable only) can be downloaded from NITEC’s website at www.nitecllc.com. This integrated solution enables the design, optimization and operation of CO 2-EOR processes for small and mid-sized operators, who currently cannot afford the expensive, time intensive solutions that the major oil companies enjoy. Based on one estimate, small oil fields comprise 30% of the of total economic resource potential for the application of CO 2-EOR processes in the U.S. This corresponds to 21.7 billion barrels of incremental, technically recoverable oil using the current “best practices”, and 31.9 billion barrels using “next-generation” CO 2-EOR techniques. The project included a Case Study of a prospective CO 2-EOR candidate field in Wyoming by a small independent, Linc Energy Petroleum Wyoming, Inc. NITEC LLC has an established track record of developing innovative and user friendly software. The Principle Investigator is an experienced manager and engineer with expertise in software development, numerical techniques, and GUI applications. Unique, presently-proprietary NITEC technologies have been integrated into this application to further its ease of use and technical functionality.« less

  7. A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1988-01-01

    Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  8. A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.

    1996-01-01

    In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

  9. Nonlinear Mechanisms for the Generation of Nearshore Wave Phenomena.

    DTIC Science & Technology

    1988-04-01

    Kadomtsev - Petviashvili equation . Numerical solutions of this equation indicate that steady state is reached only if dispersion is negative; otherwise...leads to a forced Kadomtsev - Petviashvili equation . Numerical solutions of this equation indicate that steady state is reached only if dispersion is

  10. A Semi-Analytical Solution to Time Dependent Groundwater Flow Equation Incorporating Stream-Wetland-Aquifer Interactions

    NASA Astrophysics Data System (ADS)

    Boyraz, Uǧur; Melek Kazezyılmaz-Alhan, Cevza

    2017-04-01

    Groundwater is a vital element of hydrologic cycle and the analytical & numerical solutions of different forms of groundwater flow equations play an important role in understanding the hydrological behavior of subsurface water. The interaction between groundwater and surface water bodies can be determined using these solutions. In this study, new hypothetical approaches are implemented to groundwater flow system in order to contribute to the studies on surface water/groundwater interactions. A time dependent problem is considered in a 2-dimensional stream-wetland-aquifer system. The sloped stream boundary is used to represent the interaction between stream and aquifer. The rest of the aquifer boundaries are assumed as no-flux boundary. In addition, a wetland is considered as a surface water body which lies over the whole aquifer. The effect of the interaction between the wetland and the aquifer is taken into account with a source/sink term in the groundwater flow equation and the interaction flow is calculated by using Darcy's approach. A semi-analytical solution is developed for the 2-dimensional groundwater flow equation in 5 steps. First, Laplace and Fourier cosine transforms are employed to obtain the general solution in Fourier and Laplace domain. Then, the initial and boundary conditions are applied to obtain the particular solution. Finally, inverse Fourier transform is carried out analytically and inverse Laplace transform is carried out numerically to obtain the final solution in space and time domain, respectively. In order to verify the semi-analytical solution, an explicit finite difference algorithm is developed and analytical and numerical solutions are compared for synthetic examples. The comparison of the analytical and numerical solutions shows that the analytical solution gives accurate results.

  11. Numerical investigation of a modified family of centered schemes applied to multiphase equations with nonconservative sources

    NASA Astrophysics Data System (ADS)

    Crochet, M. W.; Gonthier, K. A.

    2013-12-01

    Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.

  12. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  13. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  14. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  15. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  16. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  17. Numerical modeling of thermal refraction inliquids in the transient regime.

    PubMed

    Kovsh, D; Hagan, D; Van Stryland, E

    1999-04-12

    We present the results of modeling of nanosecond pulse propagation in optically absorbing liquid media. Acoustic and electromagnetic wave equations must be solved simultaneously to model refractive index changes due to thermal expansion and/or electrostriction, which are highly transient phenomena on a nanosecond time scale. Although we consider situations with cylindrical symmetry and where the paraxial approximation is valid, this is still a computation-intensive problem, as beam propagation through optically thick media must be modeled. We compare the full solution of the acoustic wave equation with the approximation of instantaneous expansion (steady-state solution) and hence determine the regimes of validity of this approximation. We also find that the refractive index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulsewidth and the acoustic transit time exceeds a factor of unity.

  18. A point particle model of lightly bound skyrmions

    NASA Astrophysics Data System (ADS)

    Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin

    2017-04-01

    A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.

  19. Long term evolution of planetary systems with a terrestrial planet and a giant planet.

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2017-06-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion.

  20. Full two-dimensional transient solutions of electrothermal aircraft blade deicing

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.; Leffel, K. L.

    1985-01-01

    Two finite difference methods are presented for the analysis of transient, two-dimensional responses of an electrothermal de-icer pad of an aircraft wing or blade with attached variable ice layer thickness. Both models employ a Crank-Nicholson iterative scheme, and use an enthalpy formulation to handle the phase change in the ice layer. The first technique makes use of a 'staircase' approach, fitting the irregular ice boundary with square computational cells. The second technique uses a body fitted coordinate transform, and maps the exact shape of the irregular boundary into a rectangular body, with uniformally square computational cells. The numerical solution takes place in the transformed plane. Initial results accounting for variable ice layer thickness are presented. Details of planned de-icing tests at NASA-Lewis, which will provide empirical verification for the above two methods, are also presented.

  1. Soliton evolution and radiation loss for the sine-Gordon equation.

    PubMed

    Smyth, N F; Worthy, A L

    1999-08-01

    An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized sine-Gordon equation and loss terms are added to the variational equations derived from the averaged Lagrangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions of the resulting approximate equations, which include loss, are found to be in good agreement with full numerical solutions of the sine-Gordon equation.

  2. High order filtering methods for approximating hyberbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1990-01-01

    In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.

  3. Asymptotic analysis of dissipative waves with applications to their numerical simulation

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.

  4. Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.

    2017-09-01

    The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.

  5. Transonic Navier-Stokes solutions of three-dimensional afterbody flows

    NASA Technical Reports Server (NTRS)

    Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.

    1989-01-01

    The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.

  6. A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case

    NASA Astrophysics Data System (ADS)

    Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.

    2017-12-01

    In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.

  7. Projection scheme for a reflected stochastic heat equation with additive noise

    NASA Astrophysics Data System (ADS)

    Higa, Arturo Kohatsu; Pettersson, Roger

    2005-02-01

    We consider a projection scheme as a numerical solution of a reflected stochastic heat equation driven by a space-time white noise. Convergence is obtained via a discrete contraction principle and known convergence results for numerical solutions of parabolic variational inequalities.

  8. Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1982-01-01

    Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.

  9. A mathematical solution for the parameters of three interfering resonances

    NASA Astrophysics Data System (ADS)

    Han, X.; Shen, C. P.

    2018-04-01

    The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)

  10. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  11. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  12. Spurious Behavior of Shock-Capturing Methods: Problems Containing Stiff Source Terms and Discontinuities

    NASA Technical Reports Server (NTRS)

    Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang

    2013-01-01

    The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations. The present investigation for three very different stiff system cases confirms some of the findings of Lafon & Yee (1996) and LeVeque & Yee (1990) for a model scalar PDE. The findings might shed some light on the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and discontinuities in general.

  13. Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009;14:1064-8

    NASA Astrophysics Data System (ADS)

    Magyari, Eugen

    2011-01-01

    In a recent paper published in this Journal the title problem has been investigated numerically. In the present paper the exact solution for the temperature boundary layer is given in terms of the solution of the flow problem (the Blasius problem) in a compact integral form.

  14. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.

    2007-01-01

    In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.

  15. A deterministic particle method for one-dimensional reaction-diffusion equations

    NASA Technical Reports Server (NTRS)

    Mascagni, Michael

    1995-01-01

    We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.

  16. Solitons in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2003-05-01

    The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).

  17. 2.5-D poroelastic wave modelling in double porosity media

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Greenhalgh, Stewart; Wang, Yanghua

    2011-09-01

    To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

  18. Resonant oscillations in open axisymmetric tubes

    NASA Astrophysics Data System (ADS)

    Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.

    2017-12-01

    We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

  19. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  20. The stagnation-point flow towards a shrinking sheet with homogeneous - heterogeneous reactions effects: A stability analysis

    NASA Astrophysics Data System (ADS)

    Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah

    2017-01-01

    A numerical study is performed to evaluate the problem of stagnation - point flow towards a shrinking sheet with homogeneous - heterogeneous reaction effects. By using non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results of the equations can be obtained numerically by shooting method with maple implementation. Based on the numerical results obtained, the velocity ratio parameter λ< 0, the dual solutions do exist. Then, the stability analysis is carried out to determine which solution is more stable between both of the solutions by bvp4c solver in Matlab.

  1. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  2. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  3. Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes

    NASA Astrophysics Data System (ADS)

    Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan

    2018-04-01

    Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.

  4. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  5. Constrained and Unconstrained Variational Finite Element Formulation of Solutions to a Stress Wave Problem - a Numerical Comparison.

    DTIC Science & Technology

    1982-10-01

    Element Unconstrained Variational Formulations," Innovativ’e Numerical Analysis For the Applied Engineering Science, R. P. Shaw, et at, Fitor...Initial Boundary Value of Gun Dynamics Solved by Finite Element Unconstrained Variational Formulations," Innovative Numerical Analysis For the Applied ... Engineering Science, R. P. Shaw, et al, Editors, University Press of Virginia, Charlottesville, pp. 733-741, 1980. 2 J. J. Wu, "Solutions to Initial

  6. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  7. Numerical solutions for Helmholtz equations using Bernoulli polynomials

    NASA Astrophysics Data System (ADS)

    Bicer, Kubra Erdem; Yalcinbas, Salih

    2017-07-01

    This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.

  8. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.

    PubMed

    Chao, Fa-An; Byrd, R Andrew

    2017-04-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C α , H α , etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain. Published by Elsevier Inc.

  9. Propagation effects in the generation process of high-order vortex harmonics.

    PubMed

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  10. Linear and nonlinear pattern selection in Rayleigh-Benard stability problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1993-01-01

    A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.

  11. An asymptotic induced numerical method for the convection-diffusion-reaction equation

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.; Sorensen, Danny C.

    1988-01-01

    A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.

  12. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  13. Measurement of Plastic Stress and Strain for Analytical Method Verification (MSFC Center Director's Discretionary Fund Project No. 93-08)

    NASA Technical Reports Server (NTRS)

    Price, J. M.; Steeve, B. E.; Swanson, G. R.

    1999-01-01

    The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel pump component.

  14. Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model

    NASA Astrophysics Data System (ADS)

    Tabbert, Felix; Schelte, Christian; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-03-01

    We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.

  15. Blade loss transient dynamics analysis, volume 2. Task 2: Theoretical and analytical development. Task 3: Experimental verification

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.

  16. Electrostatic forces in the Poisson-Boltzmann systems

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  17. Compressible convection in geophysical fluids: comparison of anelastic, anelastic liquid and full numerical simulations

    NASA Astrophysics Data System (ADS)

    Curbelo, Jezabel; Alboussiere, Thierry; Labrosse, Stephane; Dubuffet, Fabien; Ricard, Yanick

    2015-11-01

    In this talk we describe the numerical method implemented to study convection in a fully compressible two-dimensional model, which may be reduced to the different simplifications such as the anelastic approximation and the anelastic liquid approximation. Various equations of state are considered, from the ideal gas equation to equations related to liquid or solid condensed matter. We are particularly interested in the total value and spatial distribution of viscous dissipation. We analyze the solutions obtained with each approximation in a wide range of dimensionless parameters and compare the domain of validity of each of them. The authors are grateful to the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support ``Investissements d'Avenir'' (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR).

  18. On making cuts for magnetic scalar potentials in multiply connected regions

    NASA Astrophysics Data System (ADS)

    Kotiuga, P. R.

    1987-04-01

    The problem of making cuts is of importance to scalar potential formulations of three-dimensional eddy current problems. Its heuristic solution has been known for a century [J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Clarendon, Oxford, 1981), Chap. 1, Article 20] and in the last decade, with the use of finite element methods, a restricted combinatorial variant has been proposed and solved [M. L. Brown, Int. J. Numer. Methods Eng. 20, 665 (1984)]. This problem, in its full generality, has never received a rigorous mathematical formulation. This paper presents such a formulation and outlines a rigorous proof of existence. The technique used in the proof expose the incredible intricacy of the general problem and the restrictive assumptions of Brown [Int. J. Numer. Methods Eng. 20, 665 (1984)]. Finally, the results make rigorous Kotiuga's (Ph. D. Thesis, McGill University, Montreal, 1984) heuristic interpretation of cuts and duality theorems via intersection matrices.

  19. A viscous flow study of shock-boundary layer interaction, radial transport, and wake development in a transonic compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Reid, Lonnie

    1991-01-01

    A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.

  20. ON THE MINIMAL ACCURACY REQUIRED FOR SIMULATING SELF-GRAVITATING SYSTEMS BY MEANS OF DIRECT N-BODY METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portegies Zwart, Simon; Boekholt, Tjarda

    2014-04-10

    The conservation of energy, linear momentum, and angular momentum are important drivers of our physical understanding of the evolution of the universe. These quantities are also conserved in Newton's laws of motion under gravity. Numerical integration of the associated equations of motion is extremely challenging, in particular due to the steady growth of numerical errors (by round-off and discrete time-stepping and the exponential divergence between two nearby solutions. As a result, numerical solutions to the general N-body problem are intrinsically questionable. Using brute force integrations to arbitrary numerical precision we demonstrate empirically that ensembles of different realizations of resonant three-bodymore » interactions produce statistically indistinguishable results. Although individual solutions using common integration methods are notoriously unreliable, we conjecture that an ensemble of approximate three-body solutions accurately represents an ensemble of true solutions, so long as the energy during integration is conserved to better than 1/10. We therefore provide an independent confirmation that previous work on self-gravitating systems can actually be trusted, irrespective of the intrinsically chaotic nature of the N-body problem.« less

  1. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  2. Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Sim, Lik; Zueco, J.; Bhargava, R.

    2010-02-01

    A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the x-z plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the x-z plane). The Navier-Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u‧) and secondary velocity (v‧) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845-856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous reduction in Darcian drag force. Primary velocity is seen to decrease with an increase in Hall current parameter (Nh) but there is a decrease in secondary velocity. The study finds important applications in magnetic materials processing, hydromagnetic plasma energy generators, magneto-geophysics and planetary astrophysics.

  3. A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors

    PubMed Central

    Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ

    2011-01-01

    The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228

  4. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  5. A Riemannian geometric mapping technique for identifying incompressible equivalents to subsonic potential flows

    NASA Astrophysics Data System (ADS)

    German, Brian Joseph

    This research develops a technique for the solution of incompressible equivalents to planar steady subsonic potential flows. Riemannian geometric formalism is used to develop a gauge transformation of the length measure followed by a curvilinear coordinate transformation to map the given subsonic flow into a canonical Laplacian flow with the same boundary conditions. The effect of the transformation is to distort both the immersed profile shape and the domain interior nonuniformly as a function of local flow properties. The method represents the full nonlinear generalization of the classical methods of Prandtl-Glauert and Karman-Tsien. Unlike the classical methods which are "corrections," this method gives exact results in the sense that the inverse mapping produces the subsonic full potential solution over the original airfoil, up to numerical accuracy. The motivation for this research was provided by an observed analogy between linear potential flow and the special theory of relativity that emerges from the invariance of the d'Alembert wave equation under Lorentz transformations. This analogy is well known in an operational sense, being leveraged widely in linear unsteady aerodynamics and acoustics, stemming largely from the work of Kussner. Whereas elements of the special theory can be invoked for compressibility effects that are linear and global in nature, the question posed in this work was whether other mathematical techniques from the realm of relativity theory could be used to similar advantage for effects that are nonlinear and local. This line of thought led to a transformation leveraging Riemannian geometric methods common to the general theory of relativity. A gauge transformation is used to geometrize compressibility through the metric tensor of the underlying space to produce an equivalent incompressible flow that lives not on a plane but on a curved surface. In this sense, forces owing to compressibility can be ascribed to the geometry of space in much the same way that general relativity ascribes gravitational forces to the curvature of space-time. Although the analogy with general relativity is fruitful, it is important not to overstate the similarities between compressibility and the physics of gravity, as the interest for this thesis is primarily in the mathematical framework and not physical phenomenology or epistemology. The thesis presents the philosophy and theory for the transformation method followed by a numerical method for practical solutions of equivalent incompressible flows over arbitrary closed profiles. The numerical method employs an iterative approach involving the solution of the equivalent incompressible flow with a panel method, the calculation of the metric tensor for the gauge transformation, and the solution of the curvilinear coordinate mapping to the canonical flow with a finite difference approach for the elliptic boundary value problem. This method is demonstrated for non-circulatory flow over a circular cylinder and both symmetric and lifting flows over a NACA 0012 profile. Results are validated with accepted subcritical full potential test cases available in the literature. For chord-preserving mapping boundary conditions, the results indicate that the equivalent incompressible profiles thicken with Mach number and develop a leading edge droop with increased angle of attack. Two promising areas of potential applicability of the method have been identified. The first is in airfoil inverse design methods leveraging incompressible flow knowledge including heuristics and empirical data for the potential field effects on viscous phenomena such as boundary layer transition and separation. The second is in aerodynamic testing using distorted similarity-scaled models.

  6. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  7. NONLINEAR AND FIBER OPTICS: Self-similar solution obtained by self-focusing of annular laser beams

    NASA Astrophysics Data System (ADS)

    Azimov, B. S.; Platonenko, Viktor T.; Sagatov, M. M.

    1991-03-01

    A numerical modeling is reported of steady-state self-focusing of an annular beam with thin "walls." An approximate similar solution is found to describe well the relationships observed in the numerical experiment for a special selection of the input parameters of the beam. This solution is used to estimate the focal length. Such self-similar self-focusing is shown to affect the whole power of the beam.

  8. Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution

    ERIC Educational Resources Information Center

    Subramanian, Venkat R.

    2006-01-01

    High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…

  9. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  10. Improvements to embedded shock wave calculations for transonic flow-applications to wave drag and pressure rise predictions

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1974-01-01

    The numerical solution of a single, mixed, nonlinear equation with prescribed boundary data is discussed. A second order numerical procedure for solving the nonlinear equation and a shock fitting scheme was developed to treat the discontinuities that appear in the solution.

  11. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  12. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

    NASA Technical Reports Server (NTRS)

    Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.

  13. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  14. A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.

    2014-12-01

    The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.

  15. Modified harmonic balance method for the solution of nonlinear jerk equations

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Hasan, A. S. M. Z.

    2018-03-01

    In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

  16. A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems

    NASA Astrophysics Data System (ADS)

    Liu, Hailiang; Wang, Zhongming

    2017-01-01

    We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states.

  17. A numerical and experimental study of three-dimensional liquid sloshing in a rotating spherical container

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.

    1992-01-01

    A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.

  18. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  19. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  20. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  1. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  2. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow

  3. Numerical uncertainty in computational engineering and physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M

    2009-01-01

    Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts ofmore » consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.« less

  4. Explicit solutions of normal form of driven oscillatory systems in entrainment bands

    NASA Astrophysics Data System (ADS)

    Tsarouhas, George E.; Ross, John

    1988-11-01

    As in a prior article (Ref. 1), we consider an oscillatory dissipative system driven by external sinusoidal perturbations of given amplitude Q and frequency ω. The kinetic equations are transformed to normal form and solved for small Q near a Hopf bifurcation to oscillations in the autonomous system. Whereas before we chose irrational ratios of the frequency of the autonomous system ωn to ω, with quasiperiodic response of the system to the perturbation, we now choose rational coprime ratios, with periodic response (entrainment). The dissipative system has either two variables or is adequately described by two variables near the bifurcation. We obtain explicit solutions and develop these in detail for ωn/ω=1; 1:2; 2:1; 1:3; 3:1. We choose a specific dissipative model (Brusselator) and test the theory by comparison with full numerical solutions. The analytic solutions of the theory give an excellent approximation for the autonomous system near the bifurcation. The theoretically predicted and calculated entrainment bands agree very well for small Q in the vicinity of the bifurcation (small μ); deviations increase with increasing Q and μ. The theory is applicable to one or two external periodic perturbations.

  5. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri Victorovich

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.

  6. Analytical guidance law development for aerocapture at Mars

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1992-01-01

    During the first part of this reporting period research has concentrated on performing a detailed evaluation, to zero order, of the guidance algorithm developed in the first period taking the numerical approach developed in the third period. A zero order matched asymptotic expansion (MAE) solution that closely satisfies a set of 6 implicit equations in 6 unknowns to an accuracy of 10(exp -10), was evaluated. Guidance law implementation entails treating the current state as a new initial state and repetitively solving the MAE problem to obtain the feedback controls. A zero order guided solution was evaluated and compared with optimal solution that was obtained by numerical methods. Numerical experience shows that the zero order guided solution is close to optimal solution, and that the zero order MAE outer solution plays a critical role in accounting for the variations in Loh's term near the exit phase of the maneuver. However, the deficiency that remains in several of the critical variables indicates the need for a first order correction. During the second part of this period, methods for computing a first order correction were explored.

  7. Essentially nonoscillatory postprocessing filtering methods

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1992-01-01

    High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters.

  8. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  9. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less

  10. Blended near-optimal tools for flexible water resources decision making

    NASA Astrophysics Data System (ADS)

    Rosenberg, David

    2015-04-01

    State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.

  11. A collocation-shooting method for solving fractional boundary value problems

    NASA Astrophysics Data System (ADS)

    Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.

    2010-12-01

    In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.

  12. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    NASA Astrophysics Data System (ADS)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  13. Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution

    NASA Astrophysics Data System (ADS)

    Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique

    2015-05-01

    A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.

  14. Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello

    2014-11-01

    The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.

  15. Fast sweeping method for the factored eikonal equation

    NASA Astrophysics Data System (ADS)

    Fomel, Sergey; Luo, Songting; Zhao, Hongkai

    2009-09-01

    We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

  16. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  17. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  18. POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ştefănescu, R., E-mail: rstefane@vt.edu; Sandu, A., E-mail: sandu@cs.vt.edu; Navon, I.M., E-mail: inavon@fsu.edu

    2015-08-15

    This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush–Kuhn–Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov–Galerkin projections. For the first time POD, tensorialmore » POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov–Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.« less

  19. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    NASA Technical Reports Server (NTRS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  20. Transient airload computer analysis for simulating wind induced impulsive noise conditions of a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.

  1. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  2. Chemistry-split techniques for viscous reactive blunt body flow computations

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1987-01-01

    The weak-coupling structure between the fluid and species equations has been exploited and resulted in three, closely related, time-iterative implicit techniques. While the primitive variables are solved in two separated groups and each by an Alternating Direction Implicit (ADI) factorization scheme, the rate-species Jacobian can be treated in either full or diagonal matrix form, or simply ignored. The latter two versions render the split technique to solving for species as scalar rather than vector variables. The solution is completed at the end of each iteration after determining temperature and pressure from the flow density, energy and species concentrations. Numerical experimentation has shown that the split scalar technique, using partial rate Jacobian, yields the best overall stability and consistency. Satisfactory viscous solutions were obtained for an ellipsoidal body of axis ratio 3:1 at Mach 35 and an angle of attack of 20 degrees.

  3. Roy-Steiner equations for pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.

  4. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    NASA Astrophysics Data System (ADS)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  5. Using 4th order Runge-Kutta method for solving a twisted Skyrme string equation

    NASA Astrophysics Data System (ADS)

    Hadi, Miftachul; Anderson, Malcolm; Husein, Andri

    2016-03-01

    We study numerical solution, especially using 4th order Runge-Kutta method, for solving a twisted Skyrme string equation. We find numerically that the value of minimum energy per unit length of vortex solution for a twisted Skyrmion string is 20.37 × 1060 eV/m.

  6. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  7. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    NASA Astrophysics Data System (ADS)

    Al-Marouf, M.; Samtaney, R.

    2017-05-01

    We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  8. Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach

    NASA Astrophysics Data System (ADS)

    Trinkle, Dallas R.

    2017-10-01

    A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.

  9. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  10. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  11. Features in simulation of crystal growth using the hyperbolic PFC equation and the dependence of the numerical solution on the parameters of the computational grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starodumov, Ilya; Kropotin, Nikolai

    2016-08-10

    We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less

  12. Recent applications of the transonic wing analysis computer code, TWING

    NASA Technical Reports Server (NTRS)

    Subramanian, N. R.; Holst, T. L.; Thomas, S. D.

    1982-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  13. Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends

    NASA Astrophysics Data System (ADS)

    Kakihara, Kuniaki; Kono, Naoya; Saitoh, Kunimasa; Koshiba, Masanori

    2006-11-01

    This paper presents a new full-vectorial finite-element method in a local cylindrical coordinate system, to effectively analyze bending losses in photonic wires. The discretization is performed in the cross section of a three-dimensional curved waveguide, using hybrid edge/nodal elements. The solution region is truncated by anisotropic, perfectly matched layers in the cylindrical coordinate system, to deal properly with leaky modes of the waveguide. This approach is used to evaluate bending losses in silicon wire waveguides. The numerical results of the present approach are compared with results calculated with an equivalent straight waveguide approach and with reported experimental data. These comparisons together demonstrate the validity of the present approach based on the cylindrical coordinate system and also clarifies the limited validity of the equivalent straight waveguide approximation.

  14. Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.

    2018-07-01

    Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.

  15. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  16. Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

    NASA Astrophysics Data System (ADS)

    Pandey, Rishi Kumar; Mishra, Hradyesh Kumar

    2017-11-01

    In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.

  17. Numerical methods for axisymmetric and 3D nonlinear beams

    NASA Astrophysics Data System (ADS)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  18. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  19. A numerical solution for thermoacoustic convection of fluids in low gravity

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.

    1973-01-01

    A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.

  20. Introduction to Numerical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  1. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  2. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  3. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  4. Computations of ideal and real gas high altitude plume flows

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  5. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  6. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  7. Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Buning, Pieter G.

    2000-01-01

    We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.

  8. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    NASA Astrophysics Data System (ADS)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  9. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  10. Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review

    NASA Astrophysics Data System (ADS)

    Kahnert, Michael

    2016-07-01

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.

  11. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy.

    PubMed

    Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M

    2011-09-24

    Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.

  12. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  13. Zdeněk Kopal: Numerical Analyst

    NASA Astrophysics Data System (ADS)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  14. Numerical solution of the exterior oblique derivative BVP using the direct BEM formulation

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Špir, Róbert; Mikula, Karol

    2016-04-01

    The fixed gravimetric boundary value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. A direct formulation of the boundary element method (BEM) for the Laplace equation leads to a boundary integral equation (BIE) where a harmonic function is represented as a superposition of the single-layer and double-layer potential. Such a potential representation is applied to obtain a numerical solution of FGBVP. The oblique derivative problem is treated by a decomposition of the gradient of the unknown disturbing potential into its normal and tangential components. Our numerical scheme uses the collocation with linear basis functions. It involves a triangulated discretization of the Earth's surface as our computational domain considering its complicated topography. To achieve high-resolution numerical solutions, parallel implementations using the MPI subroutines as well as an iterative elimination of far zones' contributions are performed. Numerical experiments present a reconstruction of a harmonic function above the Earth's topography given by the spherical harmonic approach, namely by the EGM2008 geopotential model up to degree 2160. The SRTM30 global topography model is used to approximate the Earth's surface by the triangulated discretization. The obtained BEM solution with the resolution 0.05 deg (12,960,002 nodes) is compared with EGM2008. The standard deviation of residuals 5.6 cm indicates a good agreement. The largest residuals are obviously in high mountainous regions. They are negative reaching up to -0.7 m in Himalayas and about -0.3 m in Andes and Rocky Mountains. A local refinement in the area of Slovakia confirms an improvement of the numerical solution in this mountainous region despite of the fact that the Earth's topography is here considered in more details.

  15. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  16. Transport of a decay chain in homogenous porous media: analytical solutions.

    PubMed

    Bauer, P; Attinger, S; Kinzelbach, W

    2001-06-01

    With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.

  17. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  18. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  19. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  20. On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance

    2004-01-01

    We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.

  1. Discrete conservation laws and the convergence of long time simulations of the mkdv equation

    NASA Astrophysics Data System (ADS)

    Gorria, C.; Alejo, M. A.; Vega, L.

    2013-02-01

    Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.

  2. Numerical Tests and Properties of Waves in Radiating Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less

  3. Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed

    NASA Astrophysics Data System (ADS)

    Wen, X.; Mobbs, S.

    2014-03-01

    A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.

  4. Eulerian Lagrangian Adaptive Fup Collocation Method for solving the conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko

    2014-05-01

    Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.

  5. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  6. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  7. Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives

    NASA Astrophysics Data System (ADS)

    Antunes, Pedro R. S.; Ferreira, Rui A. C.

    2017-07-01

    In this work we study boundary value problems associated to a nonlinear fractional ordinary differential equation involving left and right Caputo derivatives. We discuss the regularity of the solutions of such problems and, in particular, give precise necessary conditions so that the solutions are C1([0, 1]). Taking into account our analytical results, we address the numerical solution of those problems by the augmented -RBF method. Several examples illustrate the good performance of the numerical method.

  8. Calculation of double-lunar swingby trajectories: Part 2: Numerical solutions in the restricted problem of three bodies

    NASA Technical Reports Server (NTRS)

    Stalos, S.

    1990-01-01

    The double-lunar swingby trajectory is a method for maintaining alignment of an Earth satellite's line of apsides with the Sun-Earth line. From a Keplerian point of view, successive close encounters with the Moon cause discrete, instantaneous changes in the satellite's eccentricity and semimajor axis. Numerical solutions to the planar, restricted problem of three bodies as double-lunar swingby trajectories are identified. The method of solution is described and the results compared to the Keplerian formulation.

  9. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  10. Numerical analysis of soliton solutions of the modified Korteweg-de Vries-sine-Gordon equation

    NASA Astrophysics Data System (ADS)

    Popov, S. P.

    2015-03-01

    Multisoliton solutions of the modified Korteweg-de Vries-sine-Gordon equation (mKdV-SG) are found numerically by applying the quasi-spectral Fourier method and the fourth-order Runge-Kutta method. The accuracy and features of the approach are determined as applied to problems with initial data in the form of various combinations of perturbed soliton distributions. Three-soliton solutions are obtained, and the generation of kinks, breathers, wobblers, perturbed kinks, and nonlinear oscillatory waves is studied.

  11. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.

  12. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  13. Hybrid reconstruction of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren; TAE Team

    2016-10-01

    Field-reversed configurations (FRC) are poorly represented by fluid-based models and require instead an ion-distribution function. Two such populations are needed since ``core'' ions are roughly restricted to the region inside the separatrix, whereas ``periphery'' ions can escape along open field lines. The Vlasov equation governs the distribution, the general solution to which is an arbitrary function of the constants of motion (Hamiltonian, canonical angular momentum). Only a small subset of such distributions are realistic in view of collisions, which smooth the distribution, and instabilities, which reorganize the field structure. Collisions and end loss are included if the distribution is a solution to the Fokker-Planck (FP) equation. Vlasov and FP solutions are nearly identical in weakly-collisional plasmas. Numerical construction of such equilibria requires solving both Ampere's law for the magnetic flux variable and the ponderous task of a full velocity-space integration at each point. The latter can be done analytically by expressing the distribution as the superposition of simple basis elements. This procedure allows rapid reconstruction of evolving equilibria based on limited diagnostic observables in FRC experiments.

  14. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    NASA Astrophysics Data System (ADS)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  15. On singularities of capillary surfaces in the absence of gravity

    DOE PAGES

    Roytburd, V.

    1983-01-01

    We smore » tudy numerical solutions to the equation of capillary surfaces in trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90 ° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.« less

  16. Numerical Simulations of Multidimensional Flows in Presence of either Strong Shocks or Strong Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Font, J. A.; Ibanez, J. M.; Marti, J. M.

    1993-04-01

    Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES

  17. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    ERIC Educational Resources Information Center

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  18. Numerical modelling of the Black Sea eigen-oscillations on a curvilinear boundary fitted coordinate system

    NASA Astrophysics Data System (ADS)

    Koychev Demirov, Encho

    1994-12-01

    The paper presents a numerical solution of barotropic and two-layer eigen-oscillation problems for the Black Sea on a boundary fitted coordinate system. This solution is compared with model and empirical data obtained by other workers. Frequencies of the eigen-oscillations found by the numerical solution of spectral problem are compared with the data obtained by spectral analysis of the sea-level oscillations measured near the town of Achtopol and Cape Irakli in stormy sea on 17-21 February 1979. Extreme oscillations of the sea-level result from resonant amplifications of three eigenmodes of the Black Sea of 68.3 -1, 36.6 -1 and 27.3 -1 cycles h -1 frequency.

  19. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid).

  20. An analytically iterative method for solving problems of cosmic-ray modulation

    NASA Astrophysics Data System (ADS)

    Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian

    2017-09-01

    The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.

  1. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  2. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  3. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  4. An interative solution of an integral equation for radiative transfer by using variational technique

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1973-01-01

    An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.

  5. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    PubMed

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  6. The Osher scheme for non-equilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.

  7. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone

    PubMed Central

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution. PMID:26447973

  8. Time-periodic solutions of the Benjamin-Ono equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less

  9. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  10. Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.

    PubMed

    Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei

    2018-03-08

    The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.

  11. Numerical simulations of the flow with the prescribed displacement of the airfoil and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Řidký, V.; Šidlof, P.; Vlček, V.

    2013-04-01

    The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.

  12. Surface plasmons for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Pirozhenko, I. G.

    2015-04-01

    Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor, which must be accounted for. We obtain explicit formulas for both form factors and for the reflection coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to chemical potential, except for zero chemical potential, where only a TE plasmon exists.

  13. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  14. Transport of reacting solutes subject to a moving dissolution boundary: Numerical methods and solutions

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.

  15. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  16. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects of soil water diffusivity. This presentation emphasizes the transformative nature of the improved T-O finite water-content solution, and highlights the benefits of the methods' reliability in high-resolution large watershed simulations in the high performance computing environment, and discusses coupling of the soil matrix and non-Darcian macropores.

  17. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  18. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  19. Numerical simulation of the transonic flow past the blunted wedge in the diverging channel

    NASA Astrophysics Data System (ADS)

    Ryabinin, Anatoly

    2018-05-01

    Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.

  20. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  1. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  2. A multistage time-stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1985-01-01

    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.

  3. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.

  4. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  5. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  6. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    NASA Astrophysics Data System (ADS)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  7. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    NASA Astrophysics Data System (ADS)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  8. New solutions for steady bubbles in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanveer, S.

    1987-03-01

    Exact solutions are presented for steadily moving bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area, both the speed of the bubble and the distance of its centroid from the channel centerline remain arbitrary when surface tension is ignored. However, numerical evidence suggests that this twofold arbitrariness is removed by the effect of surface tension, i.e., for given bubble area and surface tension, solutions exist only when the bubble velocity and the centroid distance from the channel centerline attain one or more isolated values. From a limitedmore » numerical search, no nonsymmetric solutions could be found; however, a branch of symmetric bubble solutions that was not found in earlier work was found. This branch corresponds to one of the Romero-Vanden-Broeck branch of finger solutions when the bubble size is large. A new procedure for numerical calculations of bubble solutions in the presence of surface tension is presented and is found to work very well for reasonably large bubbles, unlike the previous method of Tanveer (Phys. Fluids 29, 3537 (1986)). The precise power law dependence of bubble velocity on surface tension for small surface tension is explored for bubbles of different area. Agreement is noted with recent analytical results for a finger.« less

  9. Self-similar solutions to isothermal shock problems

    NASA Astrophysics Data System (ADS)

    Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.

    We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.

  10. The Bean model in suprconductivity: Variational formulation and numerical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, L.

    The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.

  11. Numerical prediction of three-dimensional juncture region flow using the parabolic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.

    1979-01-01

    A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.

  12. Does the Acquisition of Mathematical Knowledge Make Students Better Problem Solvers? An Examination of Third Graders' Solutions of Division-with-Remainder (DWR) Problems.

    ERIC Educational Resources Information Center

    Guerrero, Lourdes; Rivera, Antonio

    Fourteen third graders were given numerical computation and division-with-remainder (DWR) problems both before and after they were taught the division algorithm in classrooms. Their solutions were examined. The results show that students' initial acquisition of the division algorithm did improve their performance in numerical division computations…

  13. A disturbance based control/structure design algorithm

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark D.; Slater, Gary L.

    1989-01-01

    Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.

  14. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  15. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    USDA-ARS?s Scientific Manuscript database

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  16. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy

    PubMed Central

    2011-01-01

    Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385

  17. Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.

    2014-03-01

    A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.

  18. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  19. Numerical method and FORTRAN program for the solution of an axisymmetric electrostatic collector design problem

    NASA Technical Reports Server (NTRS)

    Reese, O. W.

    1972-01-01

    The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.

  20. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models

    NASA Astrophysics Data System (ADS)

    Toufik, Mekkaoui; Atangana, Abdon

    2017-10-01

    Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.

Top