Noncommutative QED+QCD and the {beta} function for QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.; Haghighat, M.; Mohammadi, R.
2010-11-15
QED based on {theta}-unexpanded noncomutative space-time in contrast with the noncommutative QED based on {theta}-expanded U(1) gauge theory via the Seiberg-Witten map is one-loop renormalizable. Meanwhile it suffers from asymptotic freedom that is not in agreement with the experiment. We show that the QED part of the U{sub *}(3)xU{sub *}(1) gauge group as an appropriate gauge group for the noncommutative QED+QCD is not only one-loop renormalizable but also has a {beta} function that can be positive, negative and even zero. In fact the {beta} function depends on the mixing parameter {delta}{sub 13} as a free parameter and it will bemore » equal to its counterpart in the ordinary QED for {delta}{sub 13}=0.367{pi}.« less
Third generation sfermion decays into Z and W gauge bosons: Full one-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arhrib, Abdesslam; LPHEA, Departement de Physique, Faculte des Sciences-Semlalia, B.P. 2390 Marrakech; Benbrik, Rachid
2005-05-01
The complete one-loop radiative corrections to third-generation scalar fermions into gauge bosons Z and W{sup {+-}} is considered. We focus on f-tilde{sub 2}{yields}Zf-tilde{sub 1} and f-tilde{sub i}{yields}W{sup {+-}}f-tilde{sub j}{sup '}, f,f{sup '}=t,b. We include SUSY-QCD, QED, and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one-loop correction can reach 10% in some supergravity scenario, while in model independent analysis like general the minimal supersymmetric standard model, the one-loop correction can reach 20% formore » large tan{beta} and large trilinear soft breaking terms A{sub b}.« less
Global symmetries and renormalizability of Lee-Wick theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chivukula, R. Sekhar; Farzinnia, Arsham; Foadi, Roshan
2010-08-01
In this paper we discuss the global symmetries and the renormalizability of Lee-Wick (LW) scalar QED. In particular, in the ''auxiliary-field'' formalism we identify softly broken SO(1,1) global symmetries of the theory. We introduce SO(1,1) invariant gauge-fixing conditions that allow us to show in the auxiliary-field formalism directly that the number of superficially divergent amplitudes in a LW Abelian gauge theory is finite. To illustrate the renormalizability of the theory, we explicitly carry out the one-loop renormalization program in LW scalar QED and demonstrate how the counterterms required are constrained by the joint conditions of gauge and SO(1,1) invariance. Wemore » also compute the one-loop beta functions in LW scalar QED and contrast them with those of ordinary scalar QED.« less
Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.
The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi; Instituto de Física Teórica; Pimentel, B.M., E-mail: pimentel@ift.unesp.br
2014-12-15
In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with thismore » propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.« less
NASA Astrophysics Data System (ADS)
Volkov, Sergey
2017-11-01
This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.
QED loop effects in the spacetime background of a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
Bloch-Nordsieck thermometers: one-loop exponentiation in finite temperature QED
NASA Astrophysics Data System (ADS)
Gupta, Sourendu; Indumathi, D.; Mathews, Prakash; Ravindran, V.
1996-02-01
We study the scattering of hard external particles in a heat bath in a real-time formalism for finite temperature QED. We investigate the distribution of the 4-momentum difference of initial and final hard particles in a fully covariant manner when the scale of the process, Q, is much larger than the temperature, T. Our computations are valid for all T subject to this constraint. We exponentiate the leading infra-red term at one-loop order through a resummation of soft (thermal) photon emissions and absorptions. For T > 0, we find that tensor structures arise which are not present at T = 0. These cant' thermal signatures. As a result, external particles can serve as thermometers introduced into the heat bath. We investigate the phase space origin of log( Q/ m) and log ( Q/ T) teens.
QED contributions to electron g-2
NASA Astrophysics Data System (ADS)
Laporta, Stefano
2018-05-01
In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.
Inflationary magnetogenesis and non-local actions: the conformal anomaly
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Menoufi, Basem Kamal, E-mail: bmahmoud@physics.umass.edu
2016-02-01
We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index n{sub B} ≅ 2 − α{sub e} where α{sub e} depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular,more » the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.« less
Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baulieu, L.; Coquereaux, R.
1982-04-15
We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Chao Kuangta; He Zhiguo
2009-12-01
We study the production of C=+ charmonium states X in e{sup +}e{sup -}{yields}{gamma}+X at B factories with X={eta}{sub c}(nS) (n=1, 2, 3), {chi}{sub cJ}(mP) (m=1, 2), and {sup 1}D{sub 2}(1D). In the S- and P-wave case, contributions of QED with one-loop QCD corrections are calculated within the framework of nonrelativistic QCD (NRQCD), and in the D-wave case only the QED contribution is considered. We find that in most cases the one-loop QCD corrections are negative and moderate, in contrast to the case of double charmonium production e{sup +}e{sup -}{yields}J/{psi}+X, where one-loop QCD corrections are positive and large in most cases.more » We also find that the production cross sections of some of these states in e{sup +}e{sup -}{yields}{gamma}+X are larger than that in e{sup +}e{sup -}{yields}J/{psi}+X by an order of magnitude even after the negative one-loop QCD corrections are included. We then argue that search for the X(3872), X(3940), Y(3940), and X(4160) in e{sup +}e{sup -}{yields}{gamma}+X at B factories may be helpful to clarify the nature of these states. For completeness, the production of bottomonium states in e{sup +}e{sup -} annihilation is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano
We present a first model-independent calculation of ππ intermediate states in the hadronic-light-by-light (HLBL) contribution to the anomalous magnetic moment of the muon (g - 2) μ that goes beyond the scalar QED pion loop. To this end, we combine a recently developed dispersive description of the HLBL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box a π μ box = –15.9(2) x 10 -11. We then construct a suitablemore » input for the γ*γ* → ππ helicity partial waves, based on a pion-pole left-hand cut and show that for the dominant charged-pion contribution, this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to our final estimate for the sum of these two contributions a π μ box + a ππ,π-pole μ,J=0 LHC = –24(1) x 10 -11.« less
Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; ...
2017-06-09
We present a first model-independent calculation of ππ intermediate states in the hadronic-light-by-light (HLBL) contribution to the anomalous magnetic moment of the muon (g - 2) μ that goes beyond the scalar QED pion loop. To this end, we combine a recently developed dispersive description of the HLBL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box a π μ box = –15.9(2) x 10 -11. We then construct a suitablemore » input for the γ*γ* → ππ helicity partial waves, based on a pion-pole left-hand cut and show that for the dominant charged-pion contribution, this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to our final estimate for the sum of these two contributions a π μ box + a ππ,π-pole μ,J=0 LHC = –24(1) x 10 -11.« less
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...
2015-01-07
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Power corrections to the HTL effective Lagrangian of QED
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Manuel, Cristina; Soto, Joan
2018-05-01
We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.
Mellin-Barnes approach to hadronic vacuum polarization and gμ-2
NASA Astrophysics Data System (ADS)
Charles, Jérôme; de Rafael, Eduardo; Greynat, David
2018-04-01
It is shown that with a precise determination of a few derivatives of the hadronic vacuum polarization (HVP) self-energy function Π (Q2) at Q2=0 , from lattice QCD (LQCD) or from a dedicated low-energy experiment, one can obtain an evaluation of the lowest order HVP contribution to the anomalous magnetic moment of the muon aμHVP with an accuracy comparable to the one reached using the e+e- annihilation cross section into hadrons. The technique of Mellin-Barnes approximants (MBa) that we propose is illustrated in detail with the example of the two loop vacuum polarization function in QED. We then apply it to the first few moments of the hadronic spectral function obtained from experiment and show that the resulting MBa evaluations of aμHVP converge very quickly to the full experimental determination.
Triviality of Quantum Electrodynamics Revisited
NASA Astrophysics Data System (ADS)
Djukanovic, D.; Gegelia, J.; Meißner, Ulf-G.
2018-03-01
Quantum electrodynamics is often considered to be a trivial theory. This is based on a number of evidences, both numerical and analytical. One of the strong indications for triviality of QED is the existence of the Landau pole for the running coupling. We show that by treating QED as the leading order approximation of an effective field theory and including the next-to-leading order corrections, the Landau pole is removed. We also analyze the cutoff dependence of the bare coupling at two-loop order and conclude that the conjecture, that for reasons of self-consistency, QED needs to be trivial is a mere artefact of the leading order approximation to the corresponding effective field theory. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” National Natural Science Foundation of under Grant No. 11621131001, DFG under Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (Grant FR/417/6-100/14) and the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025
Fluctuation relations and Maxwell's demon in a circuit QED setup
NASA Astrophysics Data System (ADS)
Nakamura, Yasunobu
The recent progress in information thermodynamics has resolved the paradox of Maxwell's demon and clarified the relationship between the information and the entropy. Its extension to quantum mechanical systems has also attracted much interest, and experimental demonstrations are awaited. Circuit QED systems offer the following tools suitable for investigating the properties of a quantum system coupled with a controlled environment: (i) a well-controlled qubit with a long coherence time, (ii) dispersive readout allowing high-fidelity quantum nondemolition measurement, and (iii) fast feedback control. We first apply the so-called two-measurement protocol (TMP) to a superconducting transmon qubit in a microwave cavity and study how the decoherence affects the nonequilibrium thermodynamic relations. Next, we implement Maxwell's demon in the circuit QED system by introducing a feedback loop and confirm the fluctuation relation including the effect of the information obtained in the feedback process. These results constitute a first step towards quantum thermodynamics in circuit QED systems.
Worldline approach to helicity flip in plane waves
NASA Astrophysics Data System (ADS)
Ilderton, Anton; Torgrimsson, Greger
2016-04-01
We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.
Ward identity and basis tensor gauge theory at one loop
NASA Astrophysics Data System (ADS)
Chung, Daniel J. H.
2018-06-01
Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.
Stability of flat spacetime in quantum gravity
NASA Astrophysics Data System (ADS)
Jordan, R. D.
1987-12-01
In a previous paper, a modified effective-action formalism was developed which produces equations satisfied by the expectation value of the field, rather than the usual in-out average. Here this formalism is applied to a quantized scalar field in a background which is a small perturbation from Minkowski spacetime. The one-loop effective field equation describes the back reaction of created particles on the gravitational field, and is calculated in this paper to linear order in the perturbation. In this way we rederive an equation first found by Horowitz using completely different methods. This equation possesses exponentially growing solutions, so we confirm Horowitz's conclusion that flat spacetime is unstable in this approximation to the theory. The new derivation shows that the field equation is just as useful as the one-loop approximation to the in-out equation, contrary to earlier arguments. However, the instability suggests that the one-loop approximation cannot be trusted for gravity. These results are compared with the corresponding situation in QED and QCD.
Do photons travel faster than gravitons?
NASA Astrophysics Data System (ADS)
Ejlli, Damian
2018-02-01
The vacuum polarization in an external gravitational field due to one loop electron-positron pair and one loop millicharged fermion-antifermion pair is studied. Considering the propagation of electromagnetic (EM) radiation and gravitational waves (GWs) in an expanding universe, it is shown that by taking into account QED effects in curved spacetime, the propagation velocity of photons is superluminal and can exceed that of gravitons. We apply these results to the case of the GW170817 event detected by LIGO. If the EM radiation and GWs are emitted either simultaneously or with a time difference from the same source, it is shown that the EM radiation while propagating with superluminal velocity, would be detected either in advance or in delay with respect to GW depending on the ratio of millicharged fermion relative charge to mass epsilon/mepsilon.
On μe-scattering at NNLO in QED
NASA Astrophysics Data System (ADS)
Mastrolia, P.; Passera, M.; Primo, A.; Schubert, U.; Torres Bobadilla, W. J.
2018-05-01
We report on the current status of the analytic evaluation of the two-loop corrections to the μescattering in Quantum Electrodynamics, presenting state-of-the art techniques which have been developed to address this challenging task.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, S. A., E-mail: volkoff-sergey@mail.ru
2016-06-15
A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.
NASA Astrophysics Data System (ADS)
Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.
2018-02-01
We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.
Revised and improved value of the QED tenth-order electron anomalous magnetic moment
NASA Astrophysics Data System (ADS)
Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko
2018-02-01
In order to improve the theoretical prediction of the electron anomalous magnetic moment ae we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called X 024 , was given a wrong value in the previous calculation due to an incorrect assignment of integration variables. The correction of this error causes a shift of -1.26 to the Set V contribution, and hence to the tenth-order universal (i.e., mass-independent) term A1(10 ). The previous evaluation of all other 388 integrals is free from errors and consistent with the new evaluation. Combining the new and the old (excluding X 024 ) calculations statistically, we obtain 7.606 (192 )(α /π )5 as the best estimate of the Set V contribution. Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term becomes A1(10 )=6.675 (192 ) . Adding hadronic and electroweak contributions leads to the theoretical prediction ae(theory)=1 159 652 182.032 (720 )×10-12 . From this and the best measurement of ae, we obtain the inverse fine-structure constant α-1(ae)=137.035 999 1491 (331 ) . The theoretical prediction of the muon anomalous magnetic moment is also affected by the update of QED contribution and the new value of α , but the shift is much smaller than the theoretical uncertainty.
NASA Astrophysics Data System (ADS)
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2017-08-01
In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017), 10.1103/PhysRevLett.118.022005], the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g -2 ) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1 /L2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. We have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; ...
2017-08-22
In our previous work, the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g — 2) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1/L 2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy.more » We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. Here, we have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Thomas; Christ, Norman; Hayakawa, Masashi
In our previous work, the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g — 2) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1/L 2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy.more » We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. Here, we have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.« less
QEDMOD: Fortran program for calculating the model Lamb-shift operator
NASA Astrophysics Data System (ADS)
Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.
2018-02-01
We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.
Numerical investigation of finite-volume effects for the HVP
NASA Astrophysics Data System (ADS)
Boyle, Peter; Gülpers, Vera; Harrison, James; Jüttner, Andreas; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
It is important to correct for finite-volume (FV) effects in the presence of QED, since these effects are typically large due to the long range of the electromagnetic interaction. We recently made the first lattice calculation of electromagnetic corrections to the hadronic vacuum polarisation (HVP). For the HVP, an analytical derivation of FV corrections involves a two-loop calculation which has not yet been carried out. We instead calculate the universal FV corrections numerically, using lattice scalar QED as an effective theory. We show that this method gives agreement with known analytical results for scalar mass FV effects, before applying it to calculate FV corrections for the HVP. This method for numerical calculation of FV effects is also widely applicable to quantities beyond the HVP.
Second order nonlinear QED processes in ultra-strong laser fields
NASA Astrophysics Data System (ADS)
Mackenroth, Felix
2017-10-01
In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.
Fresh look at the Abelian and non-Abelian Landau-Khalatnikov-Fradkin transformations
NASA Astrophysics Data System (ADS)
De Meerleer, T.; Dudal, D.; Sorella, S. P.; Dall'Olio, P.; Bashir, A.
2018-04-01
The Landau-Khalatnikov-Fradkin transformations (LKFTs) allow one to interpolate n -point functions between different gauges. We first offer an alternative derivation of these LKFTs for the gauge and fermions field in the Abelian (QED) case when working in the class of linear covariant gauges. Our derivation is based on the introduction of a gauge invariant transversal gauge field, which allows a natural generalization to the non-Abelian (QCD) case of the LKFTs. To our knowledge, within this rigorous formalism, this is the first construction of the LKFTs beyond QED. The renormalizability of our setup is guaranteed to all orders. We also offer a direct path integral derivation in the non-Abelian case, finding full consistency.
New determination of the fine structure constant from the electron value and QED.
Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B
2006-07-21
Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-03-10
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-01-01
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku
2015-01-09
The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
NASA Astrophysics Data System (ADS)
Teber, S.; Kotikov, A. V.
2018-04-01
The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional power of the d'Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model. In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results for both the interaction correction to the optical conductivity C*=(92 -9 π2)/(18 π ) and the anomalous dimension of the fermion field γψ(α ¯ ,ξ )=2 α ¯ (1 -3 ξ )/3 -16 (ζ2NF+4 /27 ) α¯ 2+O (α¯ 3) , where α ¯=e2/(4 π )2 and ξ is the gauge-fixing parameter.
WTO — a deterministic approach to 4-fermion physics
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
1996-09-01
The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.
Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei
2018-04-01
We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.
It is hard to learn how gravity and electromagnetism couple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu Yizen; Jacobs, David M.; Ng Yifung
2010-09-15
We construct the most general effective Lagrangian coupling gravity and electromagnetism up to mass dimension 6 by enumerating all possible nonminimal coupling terms respecting both diffeomorphism and gauge invariance. In all, there are only two unique terms after field redefinitions: one is known to arise from loop effects in QED, while the other is a parity-violating term which may be generated by weak interactions within the standard model of particle physics. We show that neither the cosmological propagation of light nor, contrary to earlier claims, solar system tests of general relativity are useful probes of these terms. These nonminimal couplingsmore » of gravity and electromagnetism may remain a mystery for the foreseeable future.« less
Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels
NASA Astrophysics Data System (ADS)
Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.
2018-05-01
Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
NASA Astrophysics Data System (ADS)
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
NASA Astrophysics Data System (ADS)
Di Stefano, Omar; Stassi, Roberto; Garziano, Luigi; Frisk Kockum, Anton; Savasta, Salvatore; Nori, Franco
2017-05-01
In quantum field theory, bare particles are dressed by a cloud of virtual particles to form physical particles. The virtual particles affect properties such as the mass and charge of the physical particles, and it is only these modified properties that can be measured in experiments, not the properties of the bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter systems. In some of these systems, the effective interaction between atom-like transitions and the cavity photons can be switched on or off by external control pulses. This offers unprecedented possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare particles. We consider a single three-level quantum system coupled to an optical resonator. Here we show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical observable photon, and back again. In this way, the hidden relationship between the bare and the physical excitations can be unravelled and becomes experimentally testable. The conversion between virtual and physical photons can be clearly pictured using Feynman diagrams with cut loops.
Spherical Primary Optical Telescope (SPOT) Segment Fabrication
2010-06-07
of Pyrex. One mirror (segment) was figured at GSFC and final figured at QED using Magnetorheological Finishing . Two other segments are in process...point) have been cast • Segment 1 was figured at GSFC completed at QED using magnetorheological finishing (MRF) • New GSFC figuring facility brought on
QED effects on individual atomic orbital energies
NASA Astrophysics Data System (ADS)
Kozioł, Karol; Aucar, Gustavo A.
2018-04-01
Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.
Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabad, Anatoly E.; Usov, Vladimir V.
2011-05-15
In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum c=1, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED atmore » exponentially large magnetic field is analyzed, resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.« less
Renormalization, conformal ward identities and the origin of a conformal anomaly pole
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Maglio, Matteo Maria
2018-06-01
We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.
niSWAP and NTCP gates realized in a circuit QED system
NASA Astrophysics Data System (ADS)
Essammouni, K.; Chouikh, A.; Said, T.; Bennai, M.
Based on superconducting qubit coupled to a resonator driven by a strong microwave field, we propose a method to implement two quantum logic gates (niSWAP and NTCP gates) of one qubit simultaneously controlling n qubits selected from N qubits in a circuit QED (1 < n < N) by introducing qubit-qubit interaction. The interaction between the qubits and the circuit QED can be achieved by tuning the gate voltage and the external flux. The operation times of the logic gates are much smaller than the decoherence time and dephasing time. Moreover, the numerical simulation under the influence of the gates operations shows that the scheme could be achieved efficiently with presently available techniques.
Reducing full one-loop amplitudes to scalar integrals at the integrand level
NASA Astrophysics Data System (ADS)
Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto
2007-02-01
We show how to extract the coefficients of the 4-, 3-, 2- and 1-point one-loop scalar integrals from the full one-loop amplitude of arbitrary scattering processes. In a similar fashion, also the rational terms can be derived. Basically no information on the analytical structure of the amplitude is required, making our method appealing for an efficient numerical implementation.
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena
NASA Astrophysics Data System (ADS)
Cottet, Audrey; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Cubaynes, Tino; Contamin, Lauriane C.; Delbecq, Matthieu; Viennot, Jérémie J.; Bruhat, Laure E.; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.
Cottet, Audrey; Dartiailh, Matthieu C; Desjardins, Matthieu M; Cubaynes, Tino; Contamin, Lauriane C; Delbecq, Matthieu; Viennot, Jérémie J; Bruhat, Laure E; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Corrections beyond the leading order in π{sup 0} → e{sup +}e{sup −} process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husek, T.; Kampf, K.; Novotný, J.
2016-01-22
We briefly summarize experimental and theoretical results on the rare decay π{sup 0} → e{sup +}e{sup −}. Two-loop QED corrections are reviewed and the bremsstrahlung contribution beyond the soft-photon approximation is analytically calculated. Using the leading logarithm approximation, the possible contribution of QCD corrections is estimated. The complete result can be used to fit the value of the contact interaction coupling χ{sup (r)} to the recent KTeV experiment with the result χ{sup (r)}(M{sub ρ}) = 4.5±1.0.
Isotope dependence of the Zeeman effect in lithium-like calcium
Köhler, Florian; Blaum, Klaus; Block, Michael; Chenmarev, Stanislav; Eliseev, Sergey; Glazov, Dmitry A.; Goncharov, Mikhail; Hou, Jiamin; Kracke, Anke; Nesterenko, Dmitri A.; Novikov, Yuri N.; Quint, Wolfgang; Minaya Ramirez, Enrique; Shabaev, Vladimir M.; Sturm, Sven; Volotka, Andrey V.; Werth, Günter
2016-01-01
The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests. PMID:26776466
Simulations of relativistic quantum plasmas using real-time lattice scalar QED
NASA Astrophysics Data System (ADS)
Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.
2018-05-01
Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.
Parton distribution functions with QED corrections in the valon model
NASA Astrophysics Data System (ADS)
Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin
2017-10-01
The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.
Hadronic vacuum polarization contribution to aμ from full lattice QCD
NASA Astrophysics Data System (ADS)
Chakraborty, Bipasha; Davies, C. T. H.; de Oliveira, P. G.; Koponen, J.; Lepage, G. P.; van de Water, R. S.; Hpqcd Collaboration
2017-08-01
We determine the contribution to the anomalous magnetic moment of the muon from the αQED2 hadronic vacuum polarization diagram using full lattice QCD and including u /d quarks with physical masses for the first time. We use gluon field configurations that include u , d , s and c quarks in the sea at multiple values of the lattice spacing, multiple u /d masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for aμHVP ,LO of 667 (6 )(12 )×10-10, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of aμ and the Standard Model of 3 σ .
Learning Compositional Simulation Models
2010-01-01
techniques developed by social scientists, economists, and medical researchers over the past four decades. Quasi-experimental designs (QEDs) are...statistical techniques from the social sciences known as quasi- experimental design (QED). QEDs allow a researcher to exploit unique characteristics...can be grouped under the rubric “quasi-experimental design ” (QED), and they attempt to exploit inherent characteristics of observational data sets
Silver, R B
1996-08-01
The role of Ca2+ in controlling cell processes (e.g. mitosis) presents an enigma in its ubiquity and selectivity. Intracellular free Ca2+ (Ca2+i) is an essential regulator of specific biochemical and physiological aspects of mitosis (e.g. nuclear envelope breakdown (NEB)). Changes in Ca2+i concentrations during mitosis in second cell-cycle sand dollar (Echinaracnius parma) blastomeres were imaged as Ca(2+)-dependent luminescence of the photoprotein aequorin with multi-spectral analytical video microscopy. Photons of this luminescence were seen as bright observable blobs (BOBs). Spatiotemporal patterns of BOBs were followed through one or more cell cycles to detect directly changes in Ca2+i, and were seen to change in a characteristic fashion prior to NEB, the onset of anaphase chromosome movement, and during cytokinesis. These patterns were observed from one cell cycle to the next in a single cell, from cell to cell, and from egg batch to egg batch. In both mitosis and synaptic transmission increases in Ca2+i concentration occurs in discrete, short-lived, highly localized pulses we name quantum emission domains (QEDs) within regions we named microdomains. Signal and statistical optical analyses of spatiotemporal BOB patterns show that many BOBs are linked by constant displacements in space-time (velocity). Linked BOBs are thus nonrandom and are classified as QEDS. Analyses of QED patterns demonstrated that the calcium signals required for NEB are nonrandom, and are evoked by an agent(s) generated proximal to a Ca2+i-QED; models of waves, diffusible agonists and Ca(2+)-activated Ca2+ release do not fit pre-NEB cell data. Spatial and temporal resolution of this multispectral approach significantly exceeds that reported for other methods, and avoids the perturbations associated with many fluorescent Ca2+ reporters that interfere with cells being studied (Ca(2+)-buffering, UV toxicity, etc.). Spatiotemporal patterns of Ca2+i-QED can control so many different processes, i.e. specific frequencies used to control particular processes. Predictive and structured patterns of calcium signals (e.g. a language expressed in Ca2+) may selectively regulate specific Ca(2+)-dependent cellular processes.
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert
2015-03-01
High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.
QED (quantum-electrodynamical) theory of excess spontaneous emission noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milonni, P.W.
1990-01-01
The results of a quantum-electrodynamical theory of excess spontaneous emission noise in lossy resonators will be presented. The Petermann K factor'' does not enter into the spontaneous emission rate of a single atom in the cavity. The QED theory allows different interpretations of the K factor, and we use this fact to justify semiclassical analyses and to provide in one example a simple derivation of K in terms of the amplification of the quantum vacuum field entering the resonator through its mirrors. 17 refs.
Observation of a dissipative phase transition in a one-dimensional circuit QED lattice
NASA Astrophysics Data System (ADS)
Fitzpatrick, Mattias; Sundaresan, Neereja; Li, Andy C. Y.; Koch, Jens; Houck, Andrew
The building blocks of circuit QED provide a useful toolbox for the study of nonequilibrium and highly nonlinear behavior. Here, we present results from a one-dimensional chain of 72 microwave cavities, each coupled to a superconducting qubit, where we coherently drive the system into a nonequilibrium steady state. We find experimental evidence for a dissipative phase transition in the system in which the steady state changes dramatically as the mean photon number is increased. Near the boundary between the two observed phases, the system demonstrates bistability, with characteristic switching times as long as 60 ms - far longer than any of the intrinsic rates known for the system. This experiment demonstrates the power of circuit QED systems for the studying nonequilibrium condensed matter physics and paves the way for future experiments exploring nonequilibrium physics with many-body quantum optics. This work was supported by the Army research Offic through Grant W911NF-15-1-0397 and the National Science Foundation through Grants No. DMR-0953475 and No. PHY-1055993. NS was supported by an NDSEG fellowship.
NASA Astrophysics Data System (ADS)
Wang, Yi-Min; Li, Cheng-Zu
2010-01-01
We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the long-range Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.
Generation of single- and two-mode multiphoton states in waveguide QED
NASA Astrophysics Data System (ADS)
Paulisch, V.; Kimble, H. J.; Cirac, J. I.; González-Tudela, A.
2018-05-01
Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In the optical regime, these states are generally obtained combining heralded single photons with linear optics tools and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al., Phys. Rev. Lett. 118, 213601 (2017), 10.1103/PhysRevLett.118.213601], we design several protocols that harness the long-range atomic interactions induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to generate two-mode multiphoton states, such as Yurke or NOON states.
NASA Astrophysics Data System (ADS)
Odaka, Shigeru; Kurihara, Yoshimasa
2016-12-01
An event generator for diphoton (γ γ ) production in hadron collisions that includes associated jet production up to two jets has been developed using a subtraction method based on the limited leading-log subtraction. The parton shower (PS) simulation to restore the subtracted divergent components involves both quantum electrodynamic (QED) and quantum chromodynamic radiation, and QED radiation at very small Q2 is simulated by referring to a fragmentation function (FF). The PS/FF simulation has the ability to enforce the radiation of a given number of energetic photons. The generated events can be fed to PYTHIA to obtain particle (hadron) level event information, which enables us to perform realistic simulations of photon isolation and hadron-jet reconstruction. The simulated events, in which the loop-mediated g g →γ γ process is involved, reasonably reproduce the diphoton kinematics measured at the LHC. Using the developed simulation, we found that the two-jet processes significantly contribute to diphoton production. A large two-jet contribution can be considered as a common feature in electroweak-boson production in hadron collisions although the reason is yet to be understood. Discussion concerning the treatment of the underlying events in photon isolation is necessary for future higher precision measurements.
Baltz, A J
2008-02-15
A new lowest order QED calculation for BNL Relativistic Heavy-Ion Collider e+ e- pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy-ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly 2 standard deviations larger than the STAR data. A corresponding higher-order QED calculation is consistent with the data.
Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.
Volotka, Andrey V; Plunien, Günter
2014-07-11
A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.
Gauge invariance and infrared divergences in spinor quantum electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rello, D.
1984-05-15
We apply to spinor QED a new technique developed by Bergere and Szymanowski in the case of scalar QED. This method expresses QED in terms of a manifestly gauge-independent theory. Moreover, exponentiation of the infrared divergences arises naturally.
Fourth-order self-energy contribution to the two loop Lamb shift
NASA Astrophysics Data System (ADS)
Palur Mallampalli, Subrahmanyam
1998-11-01
The calculation of the two loop Lamb shift in hydrogenic ions involves the numerical evaluation of ten Feynman diagrams. In this thesis, four fourth-order Feynman diagrams including the pure self-energy contributions are evaluated using exact Dirac-Coulomb propagators, so that higher order binding corrections can be extracted by comparing with the known terms in the Z/alpha expansion. The entire calculation is performed in Feynman gauge. One of the vacuum polarization diagrams is evaluated in the Uehling approximation. At low Z, it is seen to be perturbative in Z/alpha, while new predictions for high Z are made. The calculation of the three self-energy diagrams is reorganized into four terms, which we call the PO, M, F and P terms. The PO term is separately gauge invariant while the latter three form a gauge invariant set. The PO term is shown to exhibit the most non-perturbative behavior yet encountered in QED at low Z, so much so that even at Z = 1, the complete result is of the opposite sign as that of the leading term in its Z/alpha expansion. At high Z, we agree with an earlier calculation. The analysis of ultraviolet divergences in the two loop self-energy is complicated by the presence of sub- divergences. All divergences except the self-mass are shown to cancel. The self-mass is then removed by a self- mass counterterm. Parts of the calculation are shown to contain reference state singularities, that finally cancel. A numerical regulator to handle these singularities is described. The M term, an ultraviolet finite quantity, is defined through a subtraction scheme in coordinate space. Being computationally intensive, it is evaluated only at high Z, specifically Z = 83 and 92. The F term involves the evaluation of several Feynman diagrams with free electron propagators. These are computed for a range of values of Z. The P term, also ultraviolet finite, involves Dirac- Coulomb propagators that are best defined in coordinate space, as well as functions associated with the one loop self-energy that are best defined in momentum space. Possible methods of evaluating the P term are discussed.
NASA Astrophysics Data System (ADS)
Yuan, T.; Yu, J. Y.; Liu, W. Y.; Weng, S. M.; Yuan, X. H.; Luo, W.; Chen, M.; Sheng, Z. M.; Zhang, J.
2018-06-01
Two-dimensional particle-in-cell simulations have been performed to study electron-positron pair production and cascade development in single ultra-relativistic laser interaction with solid targets. The spatiotemporal distributions of particles produced via QED processes are illustrated and their dependence on laser polarizations is investigated. The evolution of particle generation displays clear QED cascade characters. Studies show that although a circularly polarized laser delays the QED process due to the effective ion acceleration, it can reduce the target heating and confine high-energy charged particles, which leads to deeper QED cascade order and denser pair plasma production than linearly polarized lasers. These findings may benefit the understanding of the coming experimental studies of ultra-relativistic laser target interaction in the QED dominated regime.
NASA Astrophysics Data System (ADS)
Lange, W.; Gerard, J.-M.
2003-06-01
Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All contributions should be accompanied by a readme file or covering letter, quoting `JOPB topical issue - Cavity QED', giving the postal and e-mail addresses for correspondence. Any subsequent change of address should be notified to the publishing office. We look forward to receiving your contribution to this topical issue.
ISR corrections to associated HZ production at future Higgs factories
NASA Astrophysics Data System (ADS)
Greco, Mario; Montagna, Guido; Nicrosini, Oreste; Piccinini, Fulvio; Volpi, Gabriele
2018-02-01
We evaluate the QED corrections due to initial state radiation (ISR) to associated Higgs boson production in electron-positron (e+e-) annihilation at typical energies of interest for the measurement of the Higgs properties at future e+e- colliders, such as CEPC and FCC-ee. We apply the QED Structure Function approach to the four-fermion production process e+e- →μ+μ- b b bar , including both signal and background contributions. We emphasize the relevance of the ISR corrections particularly near threshold and show that finite third order collinear contributions are mandatory to meet the expected experimental accuracy. We analyze in turn the rôle played by a full four-fermion calculation and beam energy spread in precision calculations for Higgs physics at future e+e- colliders.
Implementing N-quantum phase gate via circuit QED with qubit-qubit interaction
NASA Astrophysics Data System (ADS)
Said, T.; Chouikh, A.; Essammouni, K.; Bennai, M.
2016-02-01
We propose a method for realizing a quantum phase gate of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We show how to implement the proposed gate with one transmon qubit simultaneously controlling N transmon qubits in a circuit QED driven by a strong microwave field. In our scheme, the operation time of this phase gate is independent of the number N of qubits. On the other hand, this gate can be realized in a time of nanosecond-scale much smaller than the decoherence time and dephasing time both being the time of microsecond-scale. Numerical simulation of the occupation probabilities of the second excited lever shows that the scheme could be achieved efficiently within current technology.
Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system
Li, C.; Song, Z.
2016-01-01
We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Radiative corrections to quantum sticking on graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Clougherty, Dennis P.
2017-07-01
We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method (SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED. The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane. We find that for micromembranes (sizes ranging 100 nm to 10 μ m ), the latter three methods give results that are in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.
The impact of the photon PDF and electroweak corrections on [Formula: see text] distributions.
Pagani, D; Tsinikos, I; Zaro, M
2016-01-01
We discuss the impact of EW corrections on differential distributions in top-quark pair production at the LHC and future hadron colliders, focussing on the effects of initial-state photons. Performing a calculation at Next-to-Leading Order QCD+EW accuracy, we investigate in detail the impact of photon-initiated channels on central values as well as PDF and scale uncertainties, both at order [Formula: see text] and [Formula: see text]. We present predictions at 13 and 100 TeV, and provide results for the 8 TeV differential measurements performed by ATLAS and CMS. A thorough comparison of results obtained with the NNPDF2.3QED and CT14QED PDF sets is performed. While contributions due to the photon PDF are negligible with CT14QED, this is not the case for NNPDF2.3QED, where such contributions are sizeable and show large PDF uncertainties. On the one hand, we show that differential observables in top-pair production, in particular top-quark and [Formula: see text] rapidities, can be used to improve the determination of the photon PDF within the NNPDF approach. On the other hand, with current PDF sets, we demonstrate the necessity of including EW corrections and photon-induced contributions for a correct determination of both the central value and the uncertainties of theoretical predictions.
QED effects induced harmonics generation in extreme intense laser foil interaction
NASA Astrophysics Data System (ADS)
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
QED cascade saturation in extreme high fields.
Luo, Wen; Liu, Wei-Yuan; Yuan, Tao; Chen, Min; Yu, Ji-Ye; Li, Fei-Yu; Del Sorbo, D; Ridgers, C P; Sheng, Zheng-Ming
2018-05-30
Upcoming ultrahigh power lasers at 10 PW level will make it possible to experimentally explore electron-positron (e - e + ) pair cascades and subsequent relativistic e - e + jets formation, which are supposed to occur in extreme astrophysical environments, such as black holes, pulsars, quasars and gamma-ray bursts. In the latter case it is a long-standing question as to how the relativistic jets are formed and what their temperatures and compositions are. Here we report simulation results of pair cascades in two counter-propagating QED-strong laser fields. A scaling of QED cascade growth with laser intensity is found, showing clear cascade saturation above threshold intensity of ~10 24 W/cm 2 . QED cascade saturation leads to pair plasma cooling and longitudinal compression along the laser axis, resulting in the subsequent formation of relativistic dense e - e + jets along transverse directions. Such laser-driven QED cascade saturation may open up the opportunity to study energetic astrophysical phenomena in laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Bipasha; Davies, C. T. H.; de Oliveira, P. G.
We determine the contribution to the anomalous magnetic moment of the muon from themore » $$\\alpha^2_{\\mathrm{QED}}$$ hadronic vacuum polarization diagram using full lattice QCD and including $u/d$ quarks with physical masses for the first time. We use gluon field configurations that include $u$, $d$, $s$ and $c$ quarks in the sea at multiple values of the lattice spacing, multiple $u/d$ masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for $$a_{\\mu}^{\\mathrm{HVP,LO}}$$ of $667(6)(12)$, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of $$a_{\\mu}$$ and the Standard Model of 3$$\\sigma$$.« less
Continuously monitoring the parity of superconducting qubits in a 2D cQED architecture
NASA Astrophysics Data System (ADS)
Blok, Machiel; Flurin, Emmanuel; Livingston, William; Colless, James; Dove, Allison; Siddiqi, Irfan
Continuous measurements of joint qubit properties such as their parity can reveal insight into the collapse dynamics of entangled states and are a prerequisite for implementing continuous quantum error correction. Here it is crucial that the measurement collects no information other than the parity to avoid measurement induced dephasing. In a cQED architecture, a full-parity measurement can be implemented by strongly coupling two transmon qubits to a single high-Q planar resonator (χ >> κ). We will discuss the experimental implementation of this on-chip technique and the prospects to extend it to more qubits. This will allow us to monitor, in real-time, the projection into multi-partite entangled states and continuously detect errors on a logical qubit encoded in an entangled subspace. This work was supported by Army Research Office.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).
Nonlinear QED effects in X-ray emission of pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri, Soroush; Haghighat, Mansour; Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it
2017-10-01
In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarizationmore » characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.« less
Charged hadrons in local finite-volume QED+QCD with C⋆ boundary conditions
NASA Astrophysics Data System (ADS)
Lucini, B.; Patella, A.; Ramos, A.; Tantalo, N.
2016-02-01
In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C⋆ boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C⋆ boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in a fully consistent fashion without relying on gauge fixing and without peculiar complications. This class includes single particle states of most stable hadrons. We also calculate finite-volume corrections to the mass of stable charged particles and show that these are much smaller than in non-local formulations of QED.
Strong fields and QED as function of the g-factor
NASA Astrophysics Data System (ADS)
Rafelski, Johann; Labun, Lance
2012-10-01
Precision QED experiments (muon g-2 and Lamb shift) require understanding of QED with arbitrary gyromagnetic ratio g>2. We will first show that the need to have a renormalizable theory requires for g>2 reformulation in terms of Klein-Gordon-Pauli (KGP) equation. Using KGP, we obtain the nonperturbative effective action of QED within Schwinger proper time method in arbitrarily strong quasi-constant external electromagnetic fields as a function of g. The expression is divergent for |g|>2, given the magnetic instability of the vacuum due to the lowest Landau orbit eigenenergy having an indefinite value in strong magnetic fields. The spectrum of Landau eigenvalues for KGP in a magnetic field is an exact periodic function of g, no states are disappearing from the spectrum. This periodicity allows to establish a generalized form of the effective action valid for all g. We show the presence of a cusp at the periodic points g=-6,-2,2,6. Consequently, the QED beta function and parts of light-by-light scattering differ from perturbative computation near to g=2 and an asymptotically free domain of g for QED arises. We further show that only for g=(2N+1) there is exact correspondence of a field-dependent quasi-temperature and the Unruh Temperature.
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
NASA Astrophysics Data System (ADS)
Zoepfl, D.; Muppalla, P. R.; Schneider, C. M. F.; Kasemann, S.; Partel, S.; Kirchmair, G.
2017-08-01
Here we present the microwave characterization of microstrip resonators, made from aluminum and niobium, inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide.
NASA Astrophysics Data System (ADS)
Blencowe, M. P.; Armour, A. D.
2008-09-01
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
Kotwal, Ashutosh V.; Jayatilaka, Bodhitha
2016-01-01
W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less
Precision Spectroscopy of Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Hänsch, Theodor W.
1994-08-01
The simple hydrogen atom permits unique confrontations between spectroscopic experiment and fundamental theory. The experimental resolution and measurement accuracy continue to improve exponentially. Recent advances include a new measurement of the Lamb shift of the 1S ground state which provides now the most stringent test of QED for an atom and reveals unexpectedly large two-loop binding corrections. The H-D isotope shift of the extremely narrow 1S-2S two-photon resonance is yielding a new value for the structure radius of the deuteron, in agreement with nuclear theory. The Rydberg constant as determined within 3 parts in 1011 by two independent groups has become the most accurately known of any fundamental constant. Advances in the art of absolute optical frequency measurements will permit still more precise experiments in the near future.
LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR
Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational approach of [3].« less
NASA Astrophysics Data System (ADS)
Levy, Matthew; Blackburn, T.; Ratan, N.; Sadler, J.; Ridgers, C.; Kasim, M.; Ceurvorst, L.; Holloway, J.; Baring, M.; Bell, A.; Glenzer, S.; Gregori, G.; Ilderton, A.; Marklund, M.; Tabak, M.; Wilks, S.; Norreys, P.
2016-10-01
Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser (I >1018 W cm-2 where I is intensity at 1 μm wavelength) illuminates optically-thick matter. It underpins important applications of petawatt laser systems today, e.g., in isochoric heating of materials. Next-generation lasers such as ELI are anticipated to produce quantum electrodynamical (QED) bursts of γ-rays and anti-matter via the multiphoton Breit-Wheeler process which could enable scaled laboratory probes, e.g., of black hole winds. Here, applying strong-field QED to advances in plasma kinematic theory, we present a model elucidating absorption limited only by an avalanche of self-created electron-positron pairs at ultra-high-field. The model, confirmed by multidimensional QED-PIC simulations, works over six orders of magnitude in optical intensity and reveals this cascade is initiated at 1.8 x 1025 W cm-2 using a realistic linearly-polarized laser pulse. Here the laser couples its energy into highly-collimated electrons, ions, γ-rays, and positrons at 12%, 6%, 58% and 13% efficiency, respectively. We remark on attributes of the QED plasma state and possible applications.
Critical behavior of reduced QED4 ,3 and dynamical fermion gap generation in graphene
NASA Astrophysics Data System (ADS)
Kotikov, A. V.; Teber, S.
2016-12-01
The dynamical generation of a fermion gap in graphene is studied at the infra-red Lorentz-invariant fixed point where the system is described by an effective relativistic-like field theory: reduced QED4 ,3 with N four-component fermions (N =2 for graphene), where photons are (3 +1 ) dimensional and mediate a fully retarded interaction among (2 +1 )-dimensional fermions. A correspondence between reduced QED4 ,3 and QED3 allows us to derive an exact gap equation for QED4 ,3 up to next-to-leading order. Our results show that a dynamical gap is generated for α >αc, where 1.03 <αc<1.08 in the case N =2 or for N
Selecting and Improving Quasi-Experimental Designs in Effectiveness and Implementation Research.
Handley, Margaret A; Lyles, Courtney R; McCulloch, Charles; Cattamanchi, Adithya
2018-04-01
Interventional researchers face many design challenges when assessing intervention implementation in real-world settings. Intervention implementation requires holding fast on internal validity needs while incorporating external validity considerations (such as uptake by diverse subpopulations, acceptability, cost, and sustainability). Quasi-experimental designs (QEDs) are increasingly employed to achieve a balance between internal and external validity. Although these designs are often referred to and summarized in terms of logistical benefits, there is still uncertainty about (a) selecting from among various QEDs and (b) developing strategies to strengthen the internal and external validity of QEDs. We focus here on commonly used QEDs (prepost designs with nonequivalent control groups, interrupted time series, and stepped-wedge designs) and discuss several variants that maximize internal and external validity at the design, execution and implementation, and analysis stages.
NOAA GOES Geostationary Satellite Server
Size West CONUS IR Image MPEG | Loop Visible Full Size West CONUS VIS Image MPEG | Loop Water Vapor Full Size West Conus WV Image MPEG | Loop Alaska Infrared Full Size Alaska IR Image Loop | Color Infrared Full Size Hawaii IR Image Loop | Color Visible Full Size Hawaii VIS Image Loop Water Vapor Full
Exploring photonic topological insulator states in a circuit-QED lattice
NASA Astrophysics Data System (ADS)
Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng
2018-04-01
We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.
Geometric engineering on flops of length two
NASA Astrophysics Data System (ADS)
Collinucci, Andrés; Fazzi, Marco; Valandro, Roberto
2018-04-01
Type IIA on the conifold is a prototype example for engineering QED with one charged hypermultiplet. The geometry admits a flop of length one. In this paper, we study the next generation of geometric engineering on singular geometries, namely flops of length two such as Laufer's example, which we affectionately think of as the conifold 2.0. Type IIA on the latter geometry gives QED with higher-charge states. In type IIB, even a single D3-probe gives rise to a nonabelian quiver gauge theory. We study this class of geometries explicitly by leveraging their quiver description, showing how to parametrize the exceptional curve, how to see the flop transition, and how to find the noncompact divisors intersecting the curve. With a view towards F-theory applications, we show how these divisors contribute to the enhancement of the Mordell-Weil group of the local elliptic fibration defined by Laufer's example.
Lamb shift and fine structure of n = 2 in /sup 35/C1 XVI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, H.G.; DeSerio, R.; Livingston, A.E.
We have measured the wavelengths of the 2s /sup 3/S/sub 1/-2p /sup 3/P/sub 2/ and 2s /sup 3/S/sub 1/ -- 2p /sup 3/P/sub 0/ transitions in C1 XVI to be 613.825 +- 0.013 A and 705.854 +- 0.076 A. Our precision is sufficient to provide measurements of the 2s/sub 1/2/-2p/sub 3/2/ Lamb shifts to an accuracy of +- 0.3% and to test quantum electrodynamics (QED) theory in the strong-field region. We compres our results with the one-electron QED theories of Mohr and Erickson and discuss the accuracy of calculations of electron correlation in two-electron atoms.
NASA Astrophysics Data System (ADS)
Haftel, M. I.; Mandelzweig, V. B.
1994-05-01
Relativistic and QED corrections are calculated by using a direct solution of the Schrödinger equation for the 2 1S excited state of the helium atom obtained with the correlation-function hyperspherical-harmonic method. Our extremely accurate nonvariational results for relativistic, QED, and finite-size corrections coincide exactly (up to 0.000 03 cm-1) with the values obtained in precision variational calculations of Drake [Nucl. Instrum. Methods Phys. Res. B 5, 2207 (1988)] and Baker, Hill, and Morgan [in Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms, edited by Walter Johnson, Peter Mohr, and Joseph Sucher, AIP Conf. Proc. No. 189 (AIP, New York, 1989), p. 123] for both infinite and finite nuclear masses. This confirms that a discrepancy of 0.0033 cm-1 between theory and experiment is not a result of an inaccuracy of variational wave functions, but is rooted in our inadequate knowledge of the QED operators. A better understanding of the different QED contributions to the operators (such as, for example, a more precise estimate of the Bethe logarithm) is therefore needed to explain the discrepancy.
The MITLL-AFRL IWSLT 2016 Systems
2016-12-08
Processing for MT We preprocessed the Arabic- English dataset from the QED corpus to correct sentence alignment errors and run-together words. These...are often split across lines, sometimes leaving the matching English and Arabic words on different lines. We used line-final punctua- tion as a guide...to assemble English lines into full sentences, while simultaneously concatenating their Arabic counterparts. Some Arabic files contain lines with just
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baikov, P. A.; Chetyrkin, K. G.; Kuehn, J. H.
2010-04-02
We compute, for the first time, the order {alpha}{sub s}{sup 4} contributions to the Bjorken sum rule for polarized electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the correctness of our previously obtained results: the QCD Adler function and the five-loop {beta} function in quenched QED. In particular, the appearance of an irrational contribution proportional to {zeta}{sub 3} in the latter quantity is confirmed. We obtain the commensurate scale equation relating the effective strong couplingmore » constants as inferred from the Bjorken sum rule and from the Adler function at order {alpha}{sub s}{sup 4}.« less
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
Cavity quantum electrodynamics in the nonperturbative regime
NASA Astrophysics Data System (ADS)
De Bernardis, Daniele; Jaako, Tuomas; Rabl, Peter
2018-04-01
We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode L C resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.
NASA Astrophysics Data System (ADS)
Kubiček, K.; Mokler, P. H.; Mäckel, V.; Ullrich, J.; López-Urrutia, J. R. Crespo
2014-09-01
For the hydrogenlike Ar17+ ion, the 1s Lamb shift was absolutely determined with a 1.4% accuracy based on Lyman-α wavelength measurements that have negligible uncertainties from nuclear size effects. The result agrees with state-of-the-art quantum electrodynamics (QED) calculations, and demonstrates the suitability of Lyman-α transitions in highly charged ions as x-ray energy standards, accurate at the five parts-per-million level. For the heliumlike Ar16+ ion the transition energy for the 1s2p1P1→1s21S0 line was also absolutely determined on an even higher level of accuracy. Additionally, we present relative measurements of transitions in S15+,S14+, and Fe24+ ions. The data for the heliumlike S14+,Ar16+, and Fe24+ ions stringently confirm advanced bound-state QED predictions including screened QED terms that had recently been contested.
Self field electromagnetism and quantum phenomena
NASA Astrophysics Data System (ADS)
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
CP violation at one loop in the polarization-independent chargino production in e+e- collisions
NASA Astrophysics Data System (ADS)
Rolbiecki, K.; Kalinowski, J.
2007-12-01
Recently Osland and Vereshagin noticed, based on sample calculations of some box diagrams, that in unpolarized e+e- collisions CP-odd effects in the nondiagonal chargino-pair production process are generated at one loop. Here we perform a full one-loop analysis of these effects and point out that in some cases the neglected vertex and self-energy contributions may play a dominant role. We also show that CP asymmetries in chargino production are sensitive not only to the phase of μ parameter in the chargino sector but also to the phase of stop trilinear coupling At.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions.
Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-12-16
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
APFEL: A PDF evolution library with QED corrections
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Rojo, Juan
2014-06-01
Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the variable-flavor-number scheme and with either pole or MS bar heavy quark masses. APFEL consistently accounts for the QED corrections to the evolution of quark and gluon PDFs and for the contribution from the photon PDF in the proton. The coupled QCD ⊗ QED equations are solved in x-space by means of higher order interpolation, followed by Runge-Kutta solution of the resulting discretized evolution equations. APFEL is based on an innovative and flexible methodology for the sequential solution of the QCD and QED evolution equations and their combination. In addition to PDF evolution, APFEL provides a module that computes Deep-Inelastic Scattering structure functions in the FONLL general-mass variable-flavor-number scheme up to O(αs2) . All the functionalities of APFEL can be accessed via a Graphical User Interface, supplemented with a variety of plotting tools for PDFs, parton luminosities and structure functions. Written in FORTRAN 77, APFEL can also be used via the C/C++ and Python interfaces, and is publicly available from the HepForge repository.
Cavity QED at the quantum-classical boundary
NASA Astrophysics Data System (ADS)
Fink, J. M.; Steffen, L.; Bishop, L. S.; Wallraff, A.
2010-03-01
The quantum limit of cavity QED is characterized by a well resolved vacuum Rabi mode splitting spectrum. If the number of excitations n in the resonantly coupled matter-light system is increased from one, the nonlinear √n scaling of the dressed eigenstates is observed [1]. At very large photon numbers the transmission spectrum turns into a single Lorentzian line as expected from the correspondence principle. This classical limit emerges when the occupancy of the low energy dressed states is increased until the quantum nonlinearity of the available transitions becomes small compared to dephasing and relaxation rates [2]. We explore this quantum-classical crossover in a circuit QED system where we vary the thermal occupation of the resonator by 5 orders of magnitude using a quasi-thermal noise source. From vacuum Rabi spectra measured in linear response and from time resolved vacuum Rabi oscillation measurements we consistently extract cavity field temperatures between 100 mK and 10 K using a master equation model. The presented experimental approach is useful to determine the thermal occupation of a quantum system and offers the possibility to study entanglement and decoherence at elevated temperatures. [1] J. M. Fink et al. Nature 454, 315 (2008). [2] I. Rau, et al. Phys. Rev. B 70, 054521 (2004).
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Design Considerations for Clean QED Fusion Propulsion Systems
NASA Astrophysics Data System (ADS)
Bussard, Robert W.; Jameson, Lorin W.
1994-07-01
The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.
Lamb shift and fine structure at n =2 in a hydrogenlike muonic atom with the nuclear spin I =0
NASA Astrophysics Data System (ADS)
Korzinin, Evgeny Yu.; Shelyuto, Valery A.; Ivanov, Vladimir G.; Karshenboim, Savely G.
2018-01-01
The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution, proportional to RN2, with the higher-order corrections included. We also consider the consistency of the pure QED theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order (Zα ) 4m ,α (Zα ) 4m , and (Zα ) 5m . The numerical results are presented for the muonic atoms with two lightest scalar nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.
Batalin-Fradkin-Vilkovisky approach for a nonlocal symmetry of QED
NASA Astrophysics Data System (ADS)
Rabello, Silvio J.; Gaete, Patricio
1995-12-01
In this paper we use the Batalin-Fradkin-Vilkovisky (BFV) formalism to study a recently proposed nonlocal symmetry of QED. In the BFV extended phase space we show that this symmetry stems from a canonical transformation in the ghost sector.
Microwave Photon Detector in Circuit QED
NASA Astrophysics Data System (ADS)
Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique
2009-03-01
In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.
Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study
Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.
2007-01-01
The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979
First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence
NASA Astrophysics Data System (ADS)
Della Valle, F.; Milotti, E.; Ejlli, A.; Messineo, G.; Piemontese, L.; Zavattini, G.; Gastaldi, U.; Pengo, R.; Ruoso, G.
2014-11-01
Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by quantum electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δ nu(vac )=(4 ±20 )×1 0-23 T-2 (the error represents a 1 σ deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from nonlinear electrodynamics. This result reduces to a factor of 50 the gap to be overcome to measure for the first time the value of Δ nu(vac ,QED ) predicted by QED: Δ nu(vac ,QED )=4 ×10-24 T-2 . These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor-2 improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos.
QED Effects in Molecules: Test on Rotational Quantum States of H2
NASA Astrophysics Data System (ADS)
Salumbides, E. J.; Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.
2011-07-01
Quantum electrodynamic effects have been systematically tested in the progression of rotational quantum states in the XΣg+1, v=0 vibronic ground state of molecular hydrogen. High-precision Doppler-free spectroscopy of the EFΣg+1-XΣg+1 (0,0) band was performed with 0.005cm-1 accuracy on rotationally hot H2 (with rotational quantum states J up to 16). QED and relativistic contributions to rotational level energies as high as 0.13cm-1 are extracted, and are in perfect agreement with recent calculations of QED and high-order relativistic effects for the H2 ground state.
Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U
NASA Technical Reports Server (NTRS)
Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.
1986-01-01
Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.
Measure of Development for Student Conduct Administration
ERIC Educational Resources Information Center
Nelson, Adam Ross
2017-01-01
Student Conduct Administration (SCA) is one of many names for the processes and procedures through which colleges and universities manage student behavior. Despite the accessibility of quasi-experimental design (QED) in the study of education (Schlotter, Schwerdt, & Woessman, 2011), the existing scholarship has yet to generate strong empirical…
Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.
Eberl, Helmut; Ginina, Elena; Hidaka, Keisho
2017-01-01
We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.
Electromagnetic corrections to the hadronic vacuum polarization of the photon within QEDL and QEDM
NASA Astrophysics Data System (ADS)
Bussone, Andrea; Della Morte, Michele; Janowski, Tadeusz
2018-03-01
We compute the leading QED corrections to the hadronic vacuum polarization (HVP) of the photon, relevant for the determination of leptonic anomalous magnetic moments, al. We work in the electroquenched approximation and use dynamical QCD configurations generated by the CLS initiative with two degenerate flavors of nonperturbatively O(a)-improved Wilson fermions. We consider QEDL and QEDM to deal with the finite-volume zero modes. We compare results for the Wilson loops with exact analytical determinations. In addition we make sure that the volumes and photon masses used in QEDM are such that the correct dispersion relation is reproduced by the energy levels extracted from the charged pions two-point functions. Finally we compare results for pion masses and the HVP between QEDL and QEDM. For the vacuum polarization, corrections with respect to the pure QCD case, at fixed pion masses, turn out to be at the percent level.
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.
1987-01-01
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.
Chiral symmetry breaking in quenched massive strong-coupling four-dimensional QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawes, F.T.; Williams, A.G.
1995-03-15
We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched four-dimensional QED. The results are compared for three different fermion-photon proper vertex [ital Ansa]$[ital uml---tze]: bare [gamma][sup [mu
Batalin-Fradkin-Vilkovisky approach for a nonlocal symmetry of QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabello, S.J.; Gaete, P.
1995-12-15
In this paper we use the Batalin-Fradkin-Vilkovisky (BFV) formalism to study a recently proposed nonlocal symmetry of QED. In the BFV extended phase space we show that this symmetry stems from a canonical transformation in the ghost sector. {copyright} 1995 The American Physical Society.
Study of Electron G-2 From 1947 To Present
NASA Astrophysics Data System (ADS)
Kinoshita, Toichiro
2014-03-01
In 1947 Kusch and Foley discovered in the study of Zeeman splitting of Ga atom that the electron g-factor was about 0.2% larger than the value 2 predicted by the Dirac equation. Soon afterwards Schwinger showed that it can be explained as the effect of radiative correction. His calculation, in the second order perturbation theory of the Lorentz invariant formulation of renormalized quantum electrodynamics, showed that the electron has an excess magnetic moment ae ≡ (g - 2) / 2 = α / (2 π) , where α is the fine structure constant, in agreement with the measurement within 3%. Thus began a long series of friendly competition between experimentalists and theorists to improve the precision of ae. Over the period of more than 60 years measurement precision of ae was improved by more than 104 by the spin precession technique, and further 103 by the Penning trap experiments. In step with the progress of measurement, the theory of ae, expressed as a power series in α, has been pushed to the fifth power of α. Including small contributions from hadronic effects and weak interaction effect and using the best non-QED value of α: α-1 = 137 . 035999049 (90) , one finds ae (theory) = 1159652181 . 72 (77) ×10-12 . The uncertainty is about 0 . 66 ppb , where 1 ppb =10-9 . The intrinsic uncertainty of theory itself is less than 0 . 1 ppb . The over all uncertainty comes mostly from the uncertainty of non-QED α mentioned above, which is about 0 . 66 ppb . This is in good agreement with the latest measurement: ae (experiment) = 1159652180 . 73 (28) ×10-12 . The uncertainty of measurement is 0 . 24 ppb . An alternate approach to test QED is to assume the validity of QED (and the Standard Model of particle physics) and obtain α by solving the equation ae (experiment) =ae (theory) . This yields α-1 (ae) = 137 . 0359991727 (342) , whose uncertainty is 0 . 25 ppb , better than α obtained by any other means. Although comparison of theory and experiment of ae began historically as a test of the validity of QED, it has now evolved into a precision test of fine structure constant at the level exceeding 1 ppb , which may be regarded as a test of internal consistency of quantum mechanics as a whole. Supported in part by the U. S. National Science Foundation under Grant No. NSF-PHY-0757868.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet.
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J; Ares, Natalia; Thompson, Amber L; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J; Lancaster, Tom; Ardavan, Arzhang; Briggs, G Andrew D; Leek, Peter J; Laird, Edward A
2017-10-06
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
NASA Astrophysics Data System (ADS)
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Schäfer, A.; Schliemann, J.
2018-04-01
Chamseddine and Mukhanov recently proposed a modified version of general relativity that implements the idea of a limiting curvature. In the spatially flat, homogeneous, and isotropic sector, their theory turns out to agree with the effective dynamics of the simplest version of loop quantum gravity if one identifies their limiting curvature with a multiple of the Planck curvature. At the same time, it extends to full general relativity without any symmetry assumptions and thus provides an ideal toy model for full loop quantum gravity in the form of a generally covariant effective action known to all orders. In this paper, we study the canonical structure of this theory and point out some interesting lessons for loop quantum gravity. We also highlight in detail how the two theories are connected in the spatially flat, homogeneous, and isotropic sector.
Quantum Electrodynamics: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.
QED's School Market Trends: Teacher Buying Behavior & Attitudes, 2001-2002. Research Report.
ERIC Educational Resources Information Center
Quality Education Data, Inc., Denver, CO.
This study examined teachers' classroom material buying behaviors and trends. Data came from Quality Education Data's National Education Database, which includes U.S. K-12 public, private, and Catholic schools and districts. Researchers surveyed K-8 teachers randomly selected from QED's National Education Database. Results show that teachers spend…
Designing and Conducting Strong Quasi-Experiments in Education. Version 2
ERIC Educational Resources Information Center
Scher, Lauren; Kisker, Ellen; Dynarski, Mark
2015-01-01
The purpose of this paper is to describe best practices in designing and implementing strong quasi-experimental designs (QED) when assessing the effectiveness of policies, programs or practices. The paper first discusses the issues researchers face when choosing to conduct a QED, as opposed to a more rigorous randomized controlled trial design.…
377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; ...
377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; YERBA BUENA CABLE BENT; DRG. NO. 34 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Born-Oppenheimer approximation in an effective field theory language
NASA Astrophysics Data System (ADS)
Brambilla, Nora; Krein, Gastão; Tarrús Castellà, Jaume; Vairo, Antonio
2018-01-01
The Born-Oppenheimer approximation is the standard tool for the study of molecular systems. It is founded on the observation that the energy scale of the electron dynamics in a molecule is larger than that of the nuclei. A very similar physical picture can be used to describe QCD states containing heavy quarks as well as light-quarks or gluonic excitations. In this work, we derive the Born-Oppenheimer approximation for QED molecular systems in an effective field theory framework by sequentially integrating out degrees of freedom living at energies above the typical energy scale where the dynamics of the heavy degrees of freedom occurs. In particular, we compute the matching coefficients of the effective field theory for the case of the H2+ diatomic molecule that are relevant to compute its spectrum up to O (m α5). Ultrasoft photon loops contribute at this order, being ultimately responsible for the molecular Lamb shift. In the effective field theory the scaling of all the operators is homogeneous, which facilitates the determination of all the relevant contributions, an observation that may become useful for high-precision calculations. Using the above case as a guidance, we construct under some conditions an effective field theory for QCD states formed by a color-octet heavy quark-antiquark pair bound with a color-octet light-quark pair or excited gluonic state, highlighting the similarities and differences between the QED and QCD systems. Assuming that the multipole expansion is applicable, we construct the heavy-quark potential up to next-to-leading order in the multipole expansion in terms of nonperturbative matching coefficients to be obtained from lattice QCD.
Infrared problem in quantum acoustodynamics
NASA Astrophysics Data System (ADS)
Clougherty, Dennis P.; Sengupta, Sanghita
2017-05-01
Quantum electrodynamics (QED) provides a highly accurate description of phenomena involving the interaction of atoms with light. We argue that the quantum theory describing the interaction of cold atoms with a vibrating membrane—quantum acoustodynamics (QAD)—shares many issues and features with QED. Specifically, the adsorption of an atom on a vibrating membrane can be viewed as the counterpart to QED radiative electron capture. A calculation of the adsorption rate to lowest order in the atom-phonon coupling is finite; however, higher-order contributions suffer from an infrared problem mimicking the case of radiative capture in QED. Terms in the perturbation series for the adsorption rate diverge as a result of massless particles in the model (flexural phonons of the membrane in QAD and photons in QED). We treat this infrared problem in QAD explicitly to obtain finite results by regularizing with a low-frequency cutoff that corresponds to the inverse size of the membrane. Using a coherent-state basis for the soft-phonon final state, we then sum the dominant contributions to derive a new formula for the multiphonon adsorption rate of atoms on the membrane that gives results that are finite, nonperturbative in the atom-phonon coupling, and consistent with the Kinoshita-Lee-Nauenberg theorem. For micromembranes, we predict a reduction with increasing membrane size for the low-energy adsorption rate. We discuss the relevance of this to the adsorption of a cold gas of atomic hydrogen on suspended graphene.
From bosonic topological transition to symmetric fermion mass generation
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke
2018-03-01
A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.
Flying relativistic mirrors for nonlinear QED studies.
NASA Astrophysics Data System (ADS)
Bulanov, Stepan; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2017-10-01
Recent progress in laser technology has led to a dramatic increase of laser power and intensity. As a result, the laser-matter interaction will happen in the radiation dominated regimes. In a strong electromagnetic field, electrons can be accelerated to such high velocities that the radiation reaction starts to play an important role. The radiation effects change drastically the laser-plasma interaction leading to fast energy losses. Moreover, previously unexplored regimes of the interaction will be entered into, in which quantum electrodynamics (QED) can occur. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail. In order to study different regimes of interaction as well as the transition from one into another the utilization of flying relativistic mirrors, which can generate electromagnetic pulses with varying frequency and intensity, is proposed. The scheme is demonstrated for multiphoton Compton scattering. Work supported by U.S. DOE under Contract No. DE-AC02-05CH11231.
Evaluation of the Earth System CoG Infrastructure in Supporting a Model Intercomparison Project
NASA Astrophysics Data System (ADS)
Wallis, J. C.; Rood, R. B.; Murphy, S.; Cinquini, L.; DeLuca, C.
2013-12-01
Earth System CoG is a web-based collaboration environment that combines data services with metadata and project management services. The environment is particularly suited to support software development and model intercomparison projects. CoG was recently used to support the National Climate Predictions and Projections Platform (NCPP) Quantitative Evaluation of Downscaling (QED-2013) workshop. QED-2013 was a workshop with a community approach for the objective, quantitative evaluation of techniques to downscale climate model predictions and projections. This paper will present a brief introduction to CoG, QED-2013, and findings from an ethnographic evaluation of how CoG supported QED-2013. The QED-2013 workshop focused on real-world application problems drawn from several sectors, and contributed to the informed use of downscaled data. This workshop is a part of a larger effort by NCPP and partner organizations to develop a standardized evaluation framework for local and regional climate information. The main goals of QED-2013 were to a) coordinate efforts for quantitative evaluation, b) develop software infrastructure, c) develop a repository of information, d) develop translational and guidance information, e) identify and engage key user communities, and f) promote collaboration and interoperability. CoG was a key player in QED-2013 support. NCPP was an early adopter of the CoG platform, providing valuable recommendations for overall development plus specific workshop-related requirements. New CoG features developed for QED-2013 included: the ability to publish images and associated metadata contained within XML files to its associated data node combine both artifacts into an integrated display. The ability to modify data search facets into scientifically relevant groups and display dynamic lists of workshop participants and their interests was also added to the interface. During the workshop, the QED-2013 project page on CoG provided meeting logistics, meeting materials, shared spaces and resources, and data services. The evaluation of CoG tools was focused on the usability of products rather than metrics, such as number of independent hits to a web site. We wanted to know how well CoG tools supported the workshop participants and their tasks. For instance, what workshop tasks could be performed within the CoG environment? Were these tasks performed there or with alternative tools? And do participants plan to use the tools after the workshop for other projects? Ultimately, we wanted to know if CoG contributed to NCPP's need for a flexible and extensible evaluation platform, and did it support the integration of dispersed resources, quantitative evaluation of climate projections, and the generation and management of interpretive information. Evaluation of the workshop and activity occurred during, at the end of, and after the workshop. During the workshop, an ethnographer observed and participated in the workshop, and collected short, semi-structured interviews with a subset of the participants. At the end of the workshop, an exit survey was administered to all the participants. After the workshop, a variety of methods were used to capture the impact of the workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Meng-Zheng; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ye, Liu, E-mail: yeliu@ahu.edu.cn
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC)more » transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.« less
Generic calculation of two-body partial decay widths at the full one-loop level
NASA Astrophysics Data System (ADS)
Goodsell, Mark D.; Liebler, Stefan; Staub, Florian
2017-11-01
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
NASA Astrophysics Data System (ADS)
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Quantum Electrodynamics: Theory
Lincoln, Don
2018-01-16
The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilabâs Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
..., demographic, and other information that allow their customers to market to teachers, administrators, schools... turning to the other company. By contrast, MCH lacked a K-12 database comparable to MDR or QED's..., including the time and cost to develop a database with market coverage and accuracy comparable to MDR or QED...
Gauge covariance of the fermion Schwinger–Dyson equation in QED
Jia, Shaoyang; Pennington, Michael R.
2017-03-27
Any practical application of the Schwinger–Dyson equations to the study of n-point Green's functions in a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. Here, by using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gaugemore » covariance of any viable truncation of the Schwinger–Dyson equation for the fermion 2-point function.« less
Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED
NASA Astrophysics Data System (ADS)
Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo
2018-04-01
We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.
Physical angular momentum separation for QED
NASA Astrophysics Data System (ADS)
Sun, Weimin
2017-04-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
Simulations of QCD and QED with C* boundary conditions
NASA Astrophysics Data System (ADS)
Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario
2018-03-01
We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214
Photon-photon entanglement with a single trapped atom.
Weber, B; Specht, H P; Müller, T; Bochmann, J; Mücke, M; Moehring, D L; Rempe, G
2009-01-23
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.
NASA Astrophysics Data System (ADS)
Zapp, Kai; Orús, Román
2017-06-01
The simulation of lattice gauge theories with tensor network (TN) methods is becoming increasingly fruitful. The vision is that such methods will, eventually, be used to simulate theories in (3 +1 ) dimensions in regimes difficult for other methods. So far, however, TN methods have mostly simulated lattice gauge theories in (1 +1 ) dimensions. The aim of this paper is to explore the simulation of quantum electrodynamics (QED) on infinite lattices with TNs, i.e., fermionic matter fields coupled to a U (1 ) gauge field, directly in the thermodynamic limit. With this idea in mind we first consider a gauge-invariant infinite density matrix renormalization group simulation of the Schwinger model—i.e., QED in (1 +1 ) d . After giving a precise description of the numerical method, we benchmark our simulations by computing the subtracted chiral condensate in the continuum, in good agreement with other approaches. Our simulations of the Schwinger model allow us to build intuition about how a simulation should proceed in (2 +1 ) dimensions. Based on this, we propose a variational ansatz using infinite projected entangled pair states (PEPS) to describe the ground state of (2 +1 ) d QED. The ansatz includes U (1 ) gauge symmetry at the level of the tensors, as well as fermionic (matter) and bosonic (gauge) degrees of freedom both at the physical and virtual levels. We argue that all the necessary ingredients for the simulation of (2 +1 ) d QED are, a priori, already in place, paving the way for future upcoming results.
Scheme for Implementing Teleporting an Arbitrary Tripartite Entangled State in Cavity QED
NASA Astrophysics Data System (ADS)
Wang, Xue-Wen; Peng, Zhao-Hui
2009-10-01
We propose to teleport an arbitrary tripartite entangled state in cavity QED. In this scheme, the five-qubit Brown state is chosen as the quantum channel. It has been shown that the teleportation protocol can be completed perfectly with two different measurement methods. In the future, our scheme might be realizable based on present experimental technology.
QED induced redshift and anomalous microwave emission from dust
NASA Astrophysics Data System (ADS)
Prevenslik, Thomas V.
2015-08-01
The Planck satellite imaging of CMB polarizations at 353 GHz extrapolated to 160 GHz suggested the AME was caused by dust and not as a relic of gravity waves from Universe expansion. AME stands for anomalous microwave emisssion. Similarly, dust has also been implicated in questioning Universe expansion by exaggerating Hubble redshift measurements. In this regard, QED induced EM radiation in dust NPs may be the commonality by which an expanding Universe may be assessed. QED stands for quantum electrodynamics, EM for electromagnetic, and NPs for nanoparticles. QED radiation is a consequence of QM that denies the atoms in NPs under TIR confinement the heat capacity to allow increases in NP temperature upon absorbing galaxy light. QM stands for quantum mechanics and TIR for total internal reflection.In this paper, the only galaxy light considered are single Lyα photons absorbed in spherical dust NPs. Since NPs have high surface to volume ratios, an absorbed Lyα photon is induced by QED to be totally confined by TIR to the NP surface. Hence, the TIR wavelength λ of the QED photon moving at velocity c/n in the NP surface is λ = 2πa, where c is the speed of light, and n and a are the refractive index and radius of the NP. The boundary between QED induced spinning and redshift depends on the NP material. For amorphous silicate, small NPs with a < 0.040 microns conserve the Lyα photon energy by NP spinning; whereas, the larger NPs having a > 0.040 microns redshift the Lyα photon to produce VIS and near IR galaxy light.Since the TIR mode is tangential to the surface of the NP, the Lyα photon produces circularly polarized light during absorption thereby exerting a momentary torque on the NP. Conserving the Lyα photon energy hc/λ* with the rotational energy ½ Jω2 of the NP gives the spin ω = √ (2 hc/Jλ*). Here, h is Planck’s constant, λ* the Lyα wavelength, J the NP rotational moment of inertia, J = 2 ma2/5, m the NP mass, m = 4πρa3/3, and ρ the NP density. Hence, the spin rate ω for amorphous silicate NPs having radii 0.001 < a < 0.04 microns suggests AME from 0.1 to 860 GHz as well as redshift produced in dust may be used to assess Universe expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
The theory of quantum electrodynamics (QED) is perhaps the most precisely tested physics theory ever conceived. It describes the interaction of charged particles by emitting photons. The most precise prediction of this very precise theory is the magnetic strength of the electron, what physicists call the magnetic moment. Prediction and measurement agree to 12 digits of precision. In this video, Fermilab’s Dr. Don Lincoln talks about this amazing measurement.
Subaperture metrology technologies extend capabilities in optics manufacturing
NASA Astrophysics Data System (ADS)
Tricard, Marc; Forbes, Greg; Murphy, Paul
2005-10-01
Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.
Observing Resonant Entanglement Dynamics in Circuit QED
NASA Astrophysics Data System (ADS)
Mlynek, J. A.; Abdumalikov, A. A.; Fink, J. M.; Steffen, L.; Lang, C.; van Loo, A. F.; Wallraff, A.
2012-02-01
We study the resonant interaction of up to three two-level systems and a single mode of an electromagnetic field in a circuit QED setup. Our investigation is focused on how a single excitation is dynamically shared in this fourpartite system. The underlying theory of the experiment is governed by the Tavis-Cummings-model, which on resonance predicts dynamics known as vacuum Rabi oscillations. The resonant situation has already been studied spectroscopically with three qubits [1] and time resolved measurements have been carried out in a tripartite system [2]. Here we are able to observe the coherent oscillations and their √N- enhancement by tracking the populations of all three qubits and the resonator. Full quantum state tomography is used to verify that the dynamics generates the maximally entangled 3-qubit W-state when the cavity state factorizes. The √N-speed-up offers the possibility to create W-states within a few ns with a fidelity of 75%. We compare the resonant collective method to an approach, which achieves entanglement by sequentially tuning qubits into resonance with the cavity.[4pt] [1] J. M. Fink, Physical Review Letters 103, 083601 (2009)[0pt] [2] F. Altomare, Nature Physics 6, 777--781 (2010)
Hadronic light-by-light scattering contribution to the muon g - 2 on the lattice
NASA Astrophysics Data System (ADS)
Asmussen, Nils; Gérardin, Antoine; Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B.; Nyffeler, Andreas; Pascalutsa, Vladimir; Wittig, Hartmut
2018-05-01
We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g̅2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor Fπ0γ*γ* (q21; q21) in the spacelike region with photon virtualities up to 1.5 GeV2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by γ*γ* → hadrons fusion cross sections and then compared with phenomenological models.
NASA Astrophysics Data System (ADS)
Loyall, Joseph P.; Carvalho, Marco; Martignoni, Andrew, III; Schmidt, Douglas; Sinclair, Asher; Gillen, Matthew; Edmondson, James; Bunch, Larry; Corman, David
2009-05-01
Net-centric information spaces have become a necessary concept to support information exchange for tactical warfighting missions using a publish-subscribe-query paradigm. To support dynamic, mission-critical and time-critical operations, information spaces require quality of service (QoS)-enabled dissemination (QED) of information. This paper describes the results of research we are conducting to provide QED information exchange in tactical environments. We have developed a prototype QoS-enabled publish-subscribe-query information broker that provides timely delivery of information needed by tactical warfighters in mobile scenarios with time-critical emergent targets. This broker enables tailoring and prioritizing of information based on mission needs and responds rapidly to priority shifts and unfolding situations. This paper describes the QED architecture, prototype implementation, testing infrastructure, and empirical evaluations we have conducted based on our prototype.
An architecture for integrating planar and 3D cQED devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axline, C.; Reagor, M.; Heeres, R.
Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q striplinemore » resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.« less
Soft pair excitations and double-log divergences due to carrier interactions in graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-03-01
Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.
ERIC Educational Resources Information Center
Malgieri, Massimiliano; Tenni, Antonio; Onorato, Pasquale; De Ambrosis, Anna
2016-01-01
In this paper we present a reasoning line for introducing the Pauli exclusion principle in the context of an introductory course on quantum theory based on the sum over paths approach. We start from the argument originally introduced by Feynman in "QED: The Strange Theory of Light and Matter" and improve it by discussing with students…
Lincoln, Don
2018-01-16
The theory of quantum electrodynamics (QED) is perhaps the most precisely tested physics theory ever conceived. It describes the interaction of charged particles by emitting photons. The most precise prediction of this very precise theory is the magnetic strength of the electron, what physicists call the magnetic moment. Prediction and measurement agree to 12 digits of precision. In this video, Fermilabâs Dr. Don Lincoln talks about this amazing measurement.
Transverse Momentum Distributions of Electron in Simulated QED Model
NASA Astrophysics Data System (ADS)
Kaur, Navdeep; Dahiya, Harleen
2018-05-01
In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.
Massive photons: An infrared regularization scheme for lattice QCD + QED
Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.; ...
2016-08-10
The commonly adopted approach for including electromagnetic interactions in lattice QCD simulations relies on using finite volume as the infrared regularization for QED. The long-range nature of the electromagnetic interaction, however, implies that physical quantities are susceptible to power-law finite volume corrections, which must be removed by performing costly simulations at multiple lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we introduce a photon mass as an alternative means for gaining control over infrared effects associated with electromagnetic interactions. We present findings for hadron mass shifts due to electromagnetic interactions (i.e., for the proton,more » neutron, charged and neutral kaon) and corresponding mass splittings, and compare the results with those obtained from conventional QCD+QED calculations. Results are reported for numerical studies of three flavor electroquenched QCD using ensembles corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from QED effects. The calculations are performed with three lattice volumes with spatial extents ranging from 3.4 - 6.7 fm. As a result, we find that for equal computing time (not including the generation of the lattice configurations), the electromagnetic mass shifts can be extracted from computations on a single (our smallest) lattice volume with comparable or better precision than the conventional approach.« less
Exploration of the Tavis-Cummings Model with Multiple Qubits in Circuit QED
NASA Astrophysics Data System (ADS)
Fink, J. M.; Blais, A.; Wallraff, A.
2009-03-01
Superconducting qubits in coplanar waveguide resonators provide an unprecedentedly large dipole coupling strength to microwave frequency photons confined in an on-chip waveguide resonator [1]. In contrast to atoms in traditional cavity QED a controlled number of qubits remain at fixed positions with constant coupling to the cavity field at all times. Utilizing these properties we have performed measurements with up to three independently flux-tunable qubits to study cavity mediated multi-qubit interactions. By tuning the qubits in resonance with the cavity field individually, we demonstrate the square root of N scaling of the collective dipole coupling strength with the number of resonant atoms N as described by the Tavis-Cummings model. To our knowledge this is the first observation of this nonlinearity in a system in which the atom number can be changed one by one in a discrete fashion. In addition, the energies of both bright and dark coupled multi-qubit / photon states are well explained by the Tavis-Cummings model over a wide range of detunings. On resonance we obtain an equal superposition of a photon and a Dicke state with an excitation equally shared among the N qubits.[1] J. M. Fink et al. Nature 454, 315 (2008).
Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-10-01
We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.
Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction
NASA Astrophysics Data System (ADS)
Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping
2018-04-01
We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.
Weak annihilation and new physics in charmless [Formula: see text] decays.
Bobeth, Christoph; Gorbahn, Martin; Vickers, Stefan
We use currently available data of nonleptonic charmless 2-body [Formula: see text] decays ([Formula: see text]) that are mediated by [Formula: see text] QCD- and QED-penguin operators to study weak annihilation and new-physics effects in the framework of QCD factorization. In particular we introduce one weak-annihilation parameter for decays related by [Formula: see text] quark interchange and test this universality assumption. Within the standard model, the data supports this assumption with the only exceptions in the [Formula: see text] system, which exhibits the well-known "[Formula: see text] puzzle", and some tensions in [Formula: see text]. Beyond the standard model, we simultaneously determine weak-annihilation and new-physics parameters from data, employing model-independent scenarios that address the "[Formula: see text] puzzle", such as QED-penguins and [Formula: see text] current-current operators. We discuss also possibilities that allow further tests of our assumption once improved measurements from LHCb and Belle II become available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Adler, C.; Aggarwal, M.M.
2004-04-07
We present the first data on e{sup +}e{sup -} pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. Themore » pair transverse momentum, p{sub T}, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The e{sup +} and e{sup -} p{sub T} spectra are similar, with no evidence for interference effects due to higher-order diagrams.« less
Avoided level crossings in very highly charged ions
Beiersdorfer, P.; Scofield, J. H.; Brown, G. V.; ...
2016-05-13
In this paper, we report a systematic measurement of the (2pmore » $$-1\\atop{1/2}$$3d 3/2) J=1 and (2s$$-1\\atop{1/2}$$3p 1/2) J=1 levels in 14 neonlike ions between Ba 46+ and Pb 72+ and document the effects of their avoided crossing near Z = 68. Strong mixing affects the oscillator strengths over a surprisingly wide range of atomic numbers and leads to the vanishing of one transition two atomic numbers below the crossing. The crossing voids the otherwise correct expectation that the (2p$$-1\\atop{1/2}$$3d 3/2) J=1 level energy is only weakly affected by quantum electrodynamics (QED). For about 10 atomic numbers surrounding the crossing, its QED contributions are anomalously large, attaining almost equality to those affecting the (2s$$-1\\atop{1/2}$$3p 1/2) J=1 level. As a result, the accuracy of energy level calculations appears compromised near the crossing.« less
Higgs boson self-coupling from two-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less
Loop transfer recovery for general nonminimum phase discrete time systems. I - Analysis
NASA Technical Reports Server (NTRS)
Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov
1992-01-01
A complete analysis of loop transfer recovery (LTR) for general nonstrictly proper, not necessarily minimum phase discrete time systems is presented. Three different observer-based controllers, namely, `prediction estimator' and full or reduced-order type `current estimator' based controllers, are used. The analysis corresponding to all these three controllers is unified into a single mathematical framework. The LTR analysis given here focuses on three fundamental issues: (1) the recoverability of a target loop when it is arbitrarily given, (2) the recoverability of a target loop while taking into account its specific characteristics, and (3) the establishment of necessary and sufficient conditions on the given system so that it has at least one recoverable target loop transfer function or sensitivity function. Various differences that arise in LTR analysis of continuous and discrete systems are pointed out.
Renormalization group and Ward identities for infrared QED4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastropietro, Vieri
2007-10-15
A regularized version of Euclidean QED4 in the Feynman gauge is considered, with a fixed ultraviolet cutoff, photon mass of the size of the cutoff, and any value, including zero, of the electron mass. We will prove that the Schwinger functions are expressed by convergent series for small values of the charge and verify the Ward identities, up to corrections which are small for momentum scales far from the ultraviolet cutoff.
NASA Astrophysics Data System (ADS)
Bernardini, M.; Bollini, D.; Brunini, P. L.; Fiorentino, E.; Massam, T.; Monari, L.; Palmonari, F.; Rimondi, F.; Zichichi, A.
The analysis of 12 827 e+ + e- → e± + e∓ events observed in the s-range 1.44-9.0 GeV2 allows measurement of the energy dependence of the cross-section for the most typical QED process, with ±2% accuracy. Within this limit the data follow QED, with first-order radiative corrections included.
Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions.
Jentschura, Ulrich D; Mohr, Peter J; Tan, Joseph N; Wundt, Benedikt J
2008-04-25
A comparison of precision frequency measurements to quantum electrodynamics (QED) predictions for Rydberg states of hydrogenlike ions can yield information on values of fundamental constants and test theory. With the results of a calculation of a key QED contribution reported here, the uncertainty in the theory of the energy levels is reduced to a level where such a comparison can yield an improved value of the Rydberg constant.
Flavor and topological current correlators in parity-invariant three-dimensional QED
NASA Astrophysics Data System (ADS)
Karthik, Nikhil; Narayanan, Rajamani
2017-09-01
We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.
Quantum phases in circuit QED with a superconducting qubit array
Zhang, Yuanwei; Yu, Lixian; Liang, J. -Q; Chen, Gang; Jia, Suotang; Nori, Franco
2014-01-01
Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization. PMID:24522250
Correlated Light-Matter Interactions in Cavity QED
NASA Astrophysics Data System (ADS)
Flick, Johannes; Pellegrini, Camilla; Ruggenthaler, Michael; Appel, Heiko; Tokatly, Ilya; Rubio, Angel
2015-03-01
In the last decade, time-dependent density functional theory (TDDFT) has been successfully applied to a large variety of problems, such as calculations of absorption spectra, excitation energies, or dynamics in strong laser fields. Recently, we have generalized TDDFT to also describe electron-photon systems (QED-TDDFT). Here, matter and light are treated on an equal quantized footing. In this work, we present the first numerical calculations in the framework of QED-TDDFT. We show exact solutions for fully quantized prototype systems consisting of atoms or molecules placed in optical high-Q cavities and coupled to quantized electromagnetic modes. We focus on the electron-photon exchange-correlation (xc) contribution by calculating exact Kohn-Sham potentials using fixed-point inversions and present the performance of the first approximated xc-potential based on an optimized effective potential (OEP) approach. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, and Fritz-Haber-Institut der MPG, Berlin
Solution of QCD⊗QED coupled DGLAP equations at NLO
NASA Astrophysics Data System (ADS)
Zarrin, S.; Boroun, G. R.
2017-09-01
In this work, we present an analytical solution for QCD⊗QED coupled Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations at the leading order (LO) accuracy in QED and next-to-leading order (NLO) accuracy in perturbative QCD using double Laplace transform. This technique is applied to obtain the singlet, gluon and photon distribution functions and also the proton structure function. We also obtain contribution of photon in proton at LO and NLO at high energy and successfully compare the proton structure function with HERA data [1] and APFEL results [2]. Some comparisons also have been done for the singlet and gluon distribution functions with the MSTW results [3]. In addition, the contribution of photon distribution function inside the proton has been compared with results of MRST [4] and with the contribution of sea quark distribution functions which obtained by MSTW [3] and CTEQ6M [5].
Surface dose measurement for helical tomotherapy.
Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav
2011-06-01
To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.
Mølmer-Sørensen entangling gate for cavity QED systems
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Nevado, Pedro; Keller, Matthias
2017-10-01
The Mølmer-Sørensen gate is a state-of-the-art entangling gate in ion trap quantum computing where the gate fidelity can exceed 99%. Here we propose an analogous implementation in the setting of cavity QED. The cavity photon mode acts as the bosonic degree of freedom in the gate in contrast to that played by the phonon mode in ion traps. This is made possible by utilising cavity assisted Raman transitions interconnecting the logical qubit states embedded in a four-level energy structure, making the ‘anti-Jaynes-Cummings’ term available under the rotating-wave approximation. We identify practical sources of infidelity and discuss their effects on the gate performance. Our proposal not only demonstrates an alternative entangling gate scheme but also sheds new light on the relationship between ion traps and cavity QED, in the sense that many techniques developed in the former are transferable to the latter through our framework.
Anomaly-Induced Dynamical Refringence in Strong-Field QED
NASA Astrophysics Data System (ADS)
Mueller, N.; Hebenstreit, F.; Berges, J.
2016-08-01
We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.
Emergency cooling analysis for the loss of coolant malfunction
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1972-01-01
This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.
Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulat, Falko; Höche, Stefan; Prestel, Stefan
We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.
Cai, Jie; Xie, Xiaohong; Hu, Yi; Zhan, Yang; Yu, Wanting; Wang, Aibing; Wang, Naidong
2017-06-01
Porcine circovirus associated diseases (PCVAD) caused by PCV2 are responsible for severe economic losses in the swine industry. The mechanism of PCV2 replication has not been fully elucidated yet. PCV2 may be successfully rescued by means of either an infectious DNA clone containing the full length of the viral genomic DNA, or from PCV2-infected clinical tissues in PK15 cell culture. However, viruses harvested by both methods have low titres. In this study, PCV2 was prepared with a higher titre from PK15 cells infected by recombinant baculoviruses containing 1PCV2 (one stem-loop structure) or 1.1PCV2 (two stem-loop structure) genomic DNA copy. In addition, infectious DNA clones containing two stem-loop structures in either plasmid or baculovirus backbones are capable of generating a higher virus titre than the DNA clones with only one copy of stem-loop structure.
Numerical simulations of loops heated to solar flare temperatures. III - Asymmetrical heating
NASA Technical Reports Server (NTRS)
Cheng, C.-C.; Doschek, G. A.; Karpen, J. T.
1984-01-01
A numerical model is defined for asymmetric full solar flare loop heating and comparisons are made with observational data. The Dynamic Flux Tube Model is used to describe the heating process in terms of one-dimensional, two fluid conservation equations of mass, energy and momentum. An adaptive grid allows for the downward movement of the transition region caused by an advancing conduction front. A loop 20,000 km long is considered, along with a flare heating system and the hydrodynamic evolution of the loop. The model was applied to generating line profiles and spatial X-ray and UV line distributions, which were compared with SMM, P78-1 and Hintori data for Fe, Ca and Mg spectra. Little agreement was obtained, and it is suggested that flares be treated as multi-loop phenomena. Finally, it is concluded that chromospheric evaporation is not an effective mechanism for generating the soft X-ray bursts associated with flares.
Nonlinear model predictive control for chemical looping process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
PAX ECONOPACK Economic Analysis Package. User’s Manual.
1986-01-01
35807-4301 ______________ I I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Commander US Army Corns of Fneineers January 1936 ATTN: TOAP-ZCP-"B...20 Mass. Ave. , NW 3 NUMBER OF PAGES ..ILI;I DC 20314-10G-0 253 14. MONITRING AGENCY NAME & ADDRESSIl dlierent [min Controlling Office) IS. SECURITY...PROMPT. EXANPLE: C>QED (1) QED EDITOR = CONTROL A - FOR CHARACTER DELETION = CONTROL W - FOR WORD DELETION = CONTROL Q - FOR L[NE DELETION = CONTROL R
Method for generating maximally entangled states of multiple three-level atoms in cavity QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Guangsheng; Li Shushen; Feng Songlin
2004-03-01
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Quantum optimal control with automatic differentiation using graphics processors
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David
We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
A Study of a Standard BIT Circuit.
1977-02-01
IENDED BIT APPROACHES FOR QED MODULES AND APPLICATION OF THE ANALYTIC MEASURES 36 4.1 Built-In-Test for Memory Class Modules 37 4.1.1 Random Access...Implementation 68 4.1.5.5 Criti cal Parameters 68 4.1.5.6 QED Module Test Equipment Requirements 68 4.1.6 Application of Analytic Measures to the...Microprocessor BIT Techniques.. 121 4.2.9 Application of Analytic Measures to the Recommended BIT App roaches 125 4.2.10 Process Class BIT by Partial
Weak gauge boson radiation in parton showers
NASA Astrophysics Data System (ADS)
Christiansen, Jesper R.; Sjöstrand, Torbjörn
2014-04-01
The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined.
Beyond standard model calculations with Sherpa
Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; ...
2015-03-24
We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.
Beyond standard model calculations with Sherpa.
Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank
We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.
The photon PDF from high-mass Drell–Yan data at the LHC
Giuli, F.
2017-06-15
Achieving the highest precision for theoretical predictions at the LHC requires the calculation of hard-scattering cross sections that include perturbative QCD corrections up to (N)NNLO and electroweak (EW) corrections up to NLO. Parton distribution functions (PDFs) need to be provided with matching accuracy, which in the case of QED effects involves introducing the photon parton distribution of the proton, xγ(x,Q2) . In this work a determination of the photon PDF from fits to recent ATLAS measurements of high-mass Drell–Yan dilepton production atmore » $$\\sqrt{s}$$=8 TeV is presented. This analysis is based on the xFitter framework, and has required improvements both in the APFEL program, to account for NLO QED effects, and in the aMCfast interface to account for the photon-initiated contributions in the EW calculations within MadGraph5_aMC@NLO. The results are compared with other recent QED fits and determinations of the photon PDF, consistent results are found.« less
QED multi-dimensional vacuum polarization finite-difference solver
NASA Astrophysics Data System (ADS)
Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo
2015-11-01
The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph
The photon PDF from high-mass Drell-Yan data at the LHC.
Giuli, F
2017-01-01
Achieving the highest precision for theoretical predictions at the LHC requires the calculation of hard-scattering cross sections that include perturbative QCD corrections up to (N)NNLO and electroweak (EW) corrections up to NLO. Parton distribution functions (PDFs) need to be provided with matching accuracy, which in the case of QED effects involves introducing the photon parton distribution of the proton, [Formula: see text]. In this work a determination of the photon PDF from fits to recent ATLAS measurements of high-mass Drell-Yan dilepton production at [Formula: see text] TeV is presented. This analysis is based on the xFitter framework, and has required improvements both in the APFEL program, to account for NLO QED effects, and in the aMCfast interface to account for the photon-initiated contributions in the EW calculations within MadGraph5_aMC@NLO. The results are compared with other recent QED fits and determinations of the photon PDF, consistent results are found.
New Circuit QED system based on Triple-leg Stripline Resonator.
NASA Astrophysics Data System (ADS)
Kim, Dongmin; Moon, Kyungsun
Conventional circuit QED system consists of a qubit located inside a linear stripline resonator, which has successfully demonstrated a strong coupling between a single photon and a qubit. Here we present a new circuit QED system, where the qubit is coupled to triple-leg stripline resonator (TSR). We have shown that TSR supports two-fold degenerate photon modes among others. By coupling them to a single qubit, we have obtained the dressed states of a coupled system of a single qubit and two-fold degenerate photon modes. By locating two qubits at two legs of TSR, we have studied a potential two-bit gate operation (e.g., CNOT gate) of the system. We will discuss the main advantage of utilizing two-fold degenerate photon modes This work is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B01013756).
High-energy vacuum birefringence and dichroism in an ultrastrong laser field
NASA Astrophysics Data System (ADS)
Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino
2017-10-01
The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
New high-precision deep concave optical surface manufacturing capability
NASA Astrophysics Data System (ADS)
Piché, François; Maloney, Chris; VanKerkhove, Steve; Supranowicz, Chris; Dumas, Paul; Donohue, Keith
2017-10-01
This paper describes the manufacturing steps necessary to manufacture hemispherical concave aspheric mirrors for high- NA systems. The process chain is considered from generation to final figuring and includes metrology testing during the various manufacturing steps. Corning Incorporated has developed this process by taking advantage of recent advances in commercially available Satisloh and QED Technologies equipment. Results are presented on a 100 mm concave radius nearly hemispherical (NA = 0.94) fused silica sphere with a better than 5 nm RMS figure. Part interferometric metrology was obtained on a QED stitching interferometer. Final figure was made possible by the implementation of a high-NA rotational MRF mode recently developed by QED Technologies which is used at Corning Incorporated for production. We also present results from a 75 mm concave radius (NA = 0.88) Corning ULE sphere that was produced using sub-aperture tools from generation to final figuring. This part demonstrates the production chain from blank to finished optics for high-NA concave asphere.
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2015-03-01
Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.
NASA Astrophysics Data System (ADS)
Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.
2017-12-01
The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the g-factor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region-strong-coupling regime beyond the Furry picture.
NASA Astrophysics Data System (ADS)
Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.
2017-12-01
The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the gfactor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region of the strong-coupling regime beyond the Furry picture.
Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects
NASA Astrophysics Data System (ADS)
Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.
2017-07-01
We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.
2016-01-01
The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591
CT14QED parton distribution functions from isolated photon production in deep inelastic scattering
NASA Astrophysics Data System (ADS)
Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.
2016-06-01
We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.
NASA Astrophysics Data System (ADS)
Adkins, Gregory
2016-03-01
Positronium spectroscopy is of continuing interest as a high-precision test of our understanding of binding in QED. Positronium-the electron-positron bound state-represents the purest example of binding in QFT as the constituents are structureless and their interactions are dominated by QED with only negligible contributions from strong or weak effects. Positronium differs from other Coulombic bound systems such as hydrogen or muonium in having maximal recoil (the constituent mass ratio m / M is one) and being subject to real and virtual annihilation into photons. Positronium spectroscopy (n = 1 hyperfine splitting, n = 2 fine structure, and the 2 S - 1 S interval) has reached a precision of order 1MHz , and ongoing experimental efforts may lead to improved results. Theoretical calculations of positronium energies at order mα6 ~ 18 . 7MHz are complete, but only partial results are known at order mα7 ~ 0 . 14MHz . I will report on the status of the positronium energy calculations and present new results for order mα7 contributions. Support provided by the NSF through Grant No. PHY-1404268.
Hardware-efficient fermionic simulation with a cavity-QED system
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad
2018-03-01
In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.
NASA Astrophysics Data System (ADS)
Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin
2016-09-01
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight
NASA Technical Reports Server (NTRS)
Bussard, Robert W.; Jameson, Lorin W.
1993-01-01
A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.
Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.
1982-12-01
Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or
Complete spectrum of long operators in Script N = 4 SYM at one loop
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Kazakov, Vladimir A.; Sakai, Kazuhiro; Zarembo, Konstantin
2005-07-01
We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop Script N = 4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spectral curve of classical strings on AdS5 × S5 derived in [64]. To complete the comparison we introduce stacks, novel bound states of roots of different flavors which arise in the thermodynamic limit of the corresponding Bethe ansatz equations. We furthermore show the equivalence of various types of Bethe equations for the underlying fraktur sfraktur u(2,2|4) superalgebra, in particular of the type ``Beauty'' and ``Beast''.
Resolving photon number states in a superconducting circuit.
Schuster, D I; Houck, A A; Schreier, J A; Wallraff, A; Gambetta, J M; Blais, A; Frunzio, L; Majer, J; Johnson, B; Devoret, M H; Girvin, S M; Schoelkopf, R J
2007-02-01
Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
FeynArts model file for MSSM transition counterterms from DREG to DRED
NASA Astrophysics Data System (ADS)
Stöckinger, Dominik; Varšo, Philipp
2012-02-01
The FeynArts model file MSSMdreg2dred implements MSSM transition counterterms which can convert one-loop Green functions from dimensional regularization to dimensional reduction. They correspond to a slight extension of the well-known Martin/Vaughn counterterms, specialized to the MSSM, and can serve also as supersymmetry-restoring counterterms. The paper provides full analytic results for the counterterms and gives one- and two-loop usage examples. The model file can simplify combining MS¯-parton distribution functions with supersymmetric renormalization or avoiding the renormalization of ɛ-scalars in dimensional reduction. Program summaryProgram title:MSSMdreg2dred.mod Catalogue identifier: AEKR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL-License [1] No. of lines in distributed program, including test data, etc.: 7600 No. of bytes in distributed program, including test data, etc.: 197 629 Distribution format: tar.gz Programming language: Mathematica, FeynArts Computer: Any, capable of running Mathematica and FeynArts Operating system: Any, with running Mathematica, FeynArts installation Classification: 4.4, 5, 11.1 Subprograms used: Cat Id Title Reference ADOW_v1_0 FeynArts CPC 140 (2001) 418 Nature of problem: The computation of one-loop Feynman diagrams in the minimal supersymmetric standard model (MSSM) requires regularization. Two schemes, dimensional regularization and dimensional reduction are both common but have different pros and cons. In order to combine the advantages of both schemes one would like to easily convert existing results from one scheme into the other. Solution method: Finite counterterms are constructed which correspond precisely to the one-loop scheme differences for the MSSM. They are provided as a FeynArts [2] model file. Using this model file together with FeynArts, the (ultra-violet) regularization of any MSSM one-loop Green function is switched automatically from dimensional regularization to dimensional reduction. In particular the counterterms serve as supersymmetry-restoring counterterms for dimensional regularization. Restrictions: The counterterms are restricted to the one-loop level and the MSSM. Running time: A few seconds to generate typical Feynman graphs with FeynArts.
Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander
2017-10-01
The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.
Multipartite quantum correlations among atoms in QED cavities
NASA Astrophysics Data System (ADS)
Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.
2018-02-01
We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.
A study of the reaction e +e -→ γγ at LEP
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukomoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van Den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Von Der Schmitt, H.; Von Krogh, J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration
1990-05-01
The pure QED reaction e +e -→ γγ has been studied at centre of mass energies around the mass of the Z 0 boson using data recorded by the OPAL detector at LEP. The results are in good agreement with the QED prediction. Lower limits on the cutoff parameters of the modified electron propagator are found to be Λ +>89 GeV and Λ. The lower limit on the mass of an excited electron is 82 GeV assuming the coupling constant λ=1. Upper limits on the branching ratios of Z 0→ γγ, Z 0→ π0γ and Z 0→ ηγ are set at 3.7×10 -4, 3.9×10 -4 and 5.8×10 -4 respectively. Two events from the reaction e +e -→ γγγ have been observed, consistent with the QED prediction. An upper limit on the branching ratio of Z 0→ γγγ is set at 2.8×10 -4. All the limits are given at 95% confidence level.
Measurement of the cross sections of the reactions e +e - → γγ and e +e - → γγγ at LEP
NASA Astrophysics Data System (ADS)
Akwawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Beaudoin, G.; Beck, A.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; De Jong, S.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinshaw, D. A.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Janissen, L.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Leroy, C.; Lessard, L.; Levegrün, S.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Mildenberger, J.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Moisan, C.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Prebys, E.; Pritchard, T. W.; Przysiezniak, H.; Quast, G.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Stroehmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Taras, P.; Thackray, N. J.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; Van Kooten, R.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Walker, J. P.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration
1991-03-01
The cross section of the pure QED process e +e -→ γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0→ γγ, Z 0→ π0γ and Z 0→ ηγ have been set at 1.4×10 -4, 1.4×10 -4 and 2.0×10 -4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ+ > 117 GeV and Λ- > 110 GeV. The reaction e +e - → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0→ γγγ has been set at 6.6 × 10 -5. All the limits are given at 95% confidence level.
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
NASA Astrophysics Data System (ADS)
Vaidya, Varun D.; Guo, Yudan; Kroeze, Ronen M.; Ballantine, Kyle E.; Kollár, Alicia J.; Keeling, Jonathan; Lev, Benjamin L.
2018-01-01
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
Chiral current generation in QED by longitudinal photons
NASA Astrophysics Data System (ADS)
Acosta Avalo, J. L.; Pérez Rojas, H.
2016-08-01
We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
NASA Astrophysics Data System (ADS)
Pandit, Rishi; Sentoku, Yasuhiko
2013-10-01
Effects of the radiative damping in the interaction of extremely intense laser (> 1022 W/cm2) with dense plasma is studied via a relativistic collisional particle-in-cell simulation, PICLS. When the laser intensity is getting close to 1024 W/cm2, the effect of quantum electrodynamics (QED) appears. We had calculated γ-rays from the radiative damping processes based on the classical model [1], but had taken into account the QED effect [2] in the spectrum calculation. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. Such relativistic γ-ray has wide range of frequencies and the angular distribution depends on the hot electron source. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and also the QED effect in the γ-rays spectrum at the extremely relativistic intensity. Supported by US DOE DE-SC0008827.
NASA Astrophysics Data System (ADS)
Jones, S. P.; Kerner, M.; Luisoni, G.
2018-04-01
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
Jones, S P; Kerner, M; Luisoni, G
2018-04-20
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
Stitching Techniques Advance Optics Manufacturing
NASA Technical Reports Server (NTRS)
2010-01-01
Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."
A Numerical Analyst’s Jordan Canonical Form.
1983-05-01
1 minors of M. of which there are Ir+1)* The bound on deg(Vc) comes from Bdzout’s Theorem, and the bound on deg(Vj) from Theorem 6.10. Q.E.D. 7.3...to express the condition that rank(M-MA.I)t should be no more than some constant in terms of determinants of minors . All these polynomials taken...desired. Q.E.D. of Lemna 7.7. Lemma 7.8: Let the variety V be generated by LP.( 1 . ,)J. Then V is symmetric if and only if V is generated by a set of
Multicanonical hybrid Monte Carlo algorithm: Boosting simulations of compact QED
NASA Astrophysics Data System (ADS)
Arnold, G.; Schilling, K.; Lippert, Th.
1999-03-01
We demonstrate that substantial progress can be achieved in the study of the phase structure of four-dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms through an efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation of adequate samples (with order 100 flip-flops) becomes a matter of half a year's run time at 2 Gflops sustained performance for lattices of size up to 244.
Analytic few-photon scattering in waveguide QED
NASA Astrophysics Data System (ADS)
Hurst, David L.; Kok, Pieter
2018-04-01
We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit
NASA Astrophysics Data System (ADS)
Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.
2017-04-01
We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
Quantum self-gravitating collapsing matter in a quantum geometry
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge
2016-09-01
The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.
NASA Astrophysics Data System (ADS)
Rajaram, Vignesh; Subramanian, Shankar C.
2016-07-01
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.
High-LET Patterns of DSBs in DNA Loops, the HPRT Gene and Phosphorylation Foci
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
We present new results obtained with our model based on the track structure and chromatin geometry that predicts the DSB spatial and genomic distributions in a cell nucleus with the full genome represented. The model generates stochastic patterns of DSBs in the physical space of the nucleus filled with the realistic configuration of human chromosomes. The model was re-used to find the distribution of DSBs in a physical volume corresponding to a visible phosphorylation focus believed to be associated with a DSB. The data shows whether there must more than one DSB per foci due to finite size of the visible focus, even if a single DSB is radiochemically responsible for the phosphorylation of DNA in its vicinity. The same model can predict patterns of closely located DSBs in a given gene, or in a DNA loop, one of the large-scale chromatin structures. We demonstrated for the example of the HPRT gene, how different sorts of radiation lead to proximity effect in DSB locations, which is important for modeling gene deletions. The spectrum of intron deletions and total gene deletions was simulated for the HPRT gene. The same proximity effect of DSBs in a loop can hinder DSB restitutions, as parts of the loop between DSBs is deleted with a higher likelihood. The distributions of DSBs and deletions of DNA in a loop are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Shibiao
2004-06-01
We propose a scheme for approximately and conditionally teleporting an unknown atomic state in cavity QED. Our scheme does not involve the Bell-state measurement and thus an additional atom is unnecessary. Only two atoms and one single-mode cavity are required. The scheme may be used to teleport the state of a cavity mode to another mode using a single atom. The idea may also be used to teleport the state of a trapped ion.
Tropical Sectors - NOAA GOES Geostationary Satellite Server
Hurricane IR Image (Pacific) Loop Visible Full Size Hurricane VIS Image (Pacific) Loop Water Vapor Full Size purposes only, they are not considered "operational". This web site should not be used to support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyler, L.L.; Trent, D.S.
The TEMPEST computer program was used to simulate fluid and thermal mixing in the cold leg and downcomer of a pressurized water reactor under emergency core cooling high-pressure injection (HPI), which is of concern to the pressurized thermal shock (PTS) problem. Application of the code was made in performing an analysis simulation of a full-scale Westinghouse three-loop plant design cold leg and downcomer. Verification/assessment of the code was performed and analysis procedures developed using data from Creare 1/5-scale experimental tests. Results of three simulations are presented. The first is a no-loop-flow case with high-velocity, low-negative-buoyancy HPI in a 1/5-scale modelmore » of a cold leg and downcomer. The second is a no-loop-flow case with low-velocity, high-negative density (modeled with salt water) injection in a 1/5-scale model. Comparison of TEMPEST code predictions with experimental data for these two cases show good agreement. The third simulation is a three-dimensional model of one loop of a full size Westinghouse three-loop plant design. Included in this latter simulation are loop components extending from the steam generator to the reactor vessel and a one-third sector of the vessel downcomer and lower plenum. No data were available for this case. For the Westinghouse plant simulation, thermally coupled conduction heat transfer in structural materials is included. The cold leg pipe and fluid mixing volumes of the primary pump, the stillwell, and the riser to the steam generator are included in the model. In the reactor vessel, the thermal shield, pressure vessel cladding, and pressure vessel wall are thermally coupled to the fluid and thermal mixing in the downcomer. The inlet plenum mixing volume is included in the model. A 10-min (real time) transient beginning at the initiation of HPI is computed to determine temperatures at the beltline of the pressure vessel wall.« less
NASA Astrophysics Data System (ADS)
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark-diquark correlations in the quantum field theory of confined quarks and gluons.
Anderson localization to enhance light-matter interaction (Conference Presentation)
NASA Astrophysics Data System (ADS)
Garcia, Pedro David
2016-04-01
Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, Nature Nanotechnology, 9, 285 (2014). [5] P.D. Garcia, A. Javadi, and P. Lodahl, In preparation.
Quarterly environmental data summary for first quarter 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1999 is enclosed. The data presented in this constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group and merged into the database during the first quarter of 1999. KPA results for on-site total uranium analyses performed during first quarter 1999 are included. Air monitoring data presented are the most recent completemore » sets of quarterly data.« less
QED Tests and Search for New Physics in Molecular Hydrogen
NASA Astrophysics Data System (ADS)
Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.
2013-06-01
The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).
Jia, Shaoyang; Pennington, M. R.
2017-08-01
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
Remnants of semiclassical bistability in the few-photon regime of cavity QED.
Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo
2011-11-21
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America
Electromagnetically induced transparency in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Ku, Hsiang-Sheng; Long, Junling; Wu, Xian; Lake, Russell; Gu, Xiu; Liu, Yu-Xi; Pappas, David
Electromagnetically induced transparency (EIT) is a phenomenon caused by quantum interference between distinct transition paths in a three-level system. In general, it is difficult to realize EIT in a system of three-level superconducting quantum circuit, because the decay rates and the Rabi frequency of the driving field do not normally satisfy the conditions for EIT. However, we propose to achieve EIT within a driven circuit quantum electrodynamics (cQED) system by creating polariton states and engineering the decay rates of their levels with the driving field. In this talk we present spectroscopic measurements of the polariton states that will enable demonstration of EIT within cQED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Shaoyang; Pennington, M. R.
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
NASA Astrophysics Data System (ADS)
Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.
2018-02-01
We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions
NASA Astrophysics Data System (ADS)
Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.
Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo
2017-11-01
Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.
Theory of nonclassical photonic states in driven-dissipative circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Elliott, Matthew
Superconducting circuits provide an architecture upon which cavity quantum electrodynamics (QED) can be implemented at microwave frequencies in a highly tunable environment. Known as circuit QED, these systems can achieve larger nonlinearities, stronger coupling and greater controllability than can be achieved in cavity QED, all in a customisable, solid state device, making this technology an exciting test bed for both quantum optics and quantum information processing. These new parameter regimes open up new avenues for quantum technology, while also allowing older quantum optics results to finally be tested. In particular is is now possible to experimentally produce nonclassical states, such as squeezed and Schrodinger cat states, relatively simply in these devices. Using open quantum systems methods, in this thesis we investigate four problems which involve the use of nonclassical states in circuit QED. First we investigate the effects of a Kerr nonlinearity on the ability to preserve transported squeezed states in a superconducting cavity, and whether this setup permits us to generate, and perform tomography, of a highly squeezed field using a qubit, with possible applications in the characterisation of sources of squeezed microwaves. Second, we present a novel scheme for the amplification of cat states using a coupled qubit and external microwave drives, inspired by the stimulated Raman adiabatic passage. This scheme differs from similar techniques in circuit QED in that it is deterministic and therefore compatible with a protocol for stabilising cat states without the need for complex dissipation engineering. Next we use solutions of Fokker-Planck equations to study the exact steady-state response of two nonlinear systems: a transmon qubit coupled to a readout resonator, where we find good agreement with experiments and see simultaneous bistability of the cavity and transmon; and a parametrically driven nonlinear resonator, where we compare the classical and quantum phases of the system and discuss applications in the generation of squeezed states and stabilisation of cat states. Finally, we investigate the use of two different types of superconducting qubits in a single experiment, seeing that this enables engineering of the self- and cross-Kerr effects in a line of cavities. This could provide a valuable means of entangling cavity states, in addition to a resource for quantum simulation.
Quantum Nonlinear Optics without real Photons
NASA Astrophysics Data System (ADS)
Macrí, Vincenzo; Frisk Kockum, Anton; Stassi, Roberto; di Stefano, Omar; Savasta, Salvatore; Nori, Franco
We propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially-separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual, rather than real, photons. This nonlinear optical process is coherent and reversible, so that the two excited atoms can transfer back the excitation to the first one: the atomic analogue of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be extended to consider other nonlinear interatomic processes, e.g. four-qubit mixing, and is an attractive architecture for the realization of quantum devices on a chip. Univ. of Michigan, USA.
Quantum Nonlinear Optics without Photons
NASA Astrophysics Data System (ADS)
Macrı, Vincenzo
Here we propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear optical process is coherent and reversible, so that the couple of excited atoms can transfer back the excitation to the first one: the analogous for atoms of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be expanded to consider other nonlinear inter-atomic processes as the four-qubit mixing and is an attractive architecture for the realization of quantum devices on a chip.
Accommodation and vergence latencies in human infants
Tondel, Grazyna M.; Candy, T. Rowan
2008-01-01
Purpose Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Methods Infants and adults were tested in three conditions i) Binocular viewing of a target moving in depth at 5cm/s (closed loop) ii) monocular viewing of the same target (vergence open loop) iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). Results There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 seconds across the infant age range. Conclusions Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested. PMID:18199466
Accommodation and vergence latencies in human infants.
Tondel, Grazyna M; Candy, T Rowan
2008-02-01
Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Infants and adults were tested in three conditions (i) binocular viewing of a target moving in depth at 5 cm/s (closed loop) (ii) monocular viewing of the same target (vergence open loop) (iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 s across the infant age range. Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested.
Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils
NASA Astrophysics Data System (ADS)
Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.
2017-09-01
In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.
NASA Astrophysics Data System (ADS)
Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike
2018-01-01
We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy
2009-04-14
DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.
Single link flexible beam testbed project. Thesis
NASA Technical Reports Server (NTRS)
Hughes, Declan
1992-01-01
This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.
Tunable-cavity QED with phase qubits
NASA Astrophysics Data System (ADS)
Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.
First Lattice Calculation of the QED Corrections to Leptonic Decay Rates
NASA Astrophysics Data System (ADS)
Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N.
2018-02-01
The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ 2 and πμ 2 decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED approximation is estimated. Our result for the correction to the tree-level Kμ 2/πμ 2 decay ratio is -1.22 (16 )%, to be compared to the estimate of -1.12 (21 )% based on chiral perturbation theory and adopted by the Particle Data Group.
A Facile Two-Step Method to Implement N√ {iSWAP} and N√ {SWAP} Gates in a Circuit QED
NASA Astrophysics Data System (ADS)
Said, T.; Chouikh, A.; Bennai, M.
2018-05-01
We propose a way for implementing a two-step N√ {iSWAP} and N √ {SWAP} gates based on the qubit-qubit interaction with N superconducting qubits, by coupling them to a resonator driven by a strong microwave field. The operation times do not increase with the growth of the qubit number. Due to the virtual excitations of the resonator, the scheme is insensitive to the decay of the resonator. Numerical analysis shows that the scheme can be implemented with high fidelity. Moreover, we propose a detailed procedure and analyze the experimental feasibility. So, our proposal can be experimentally realized in the range of current circuit QED techniques.
Relativistic and QED Effects in the Fundamental Vibration of T2
NASA Astrophysics Data System (ADS)
Trivikram, T. Madhu; Schlösser, M.; Ubachs, W.; Salumbides, E. J.
2018-04-01
The hydrogen molecule has become a test ground for quantum electrodynamical calculations in molecules. Expanding beyond studies on stable hydrogenic species to the heavier radioactive tritium-bearing molecules, we report on a measurement of the fundamental T2 vibrational splitting (v =0 →1 ) for J =0 - 5 rotational levels. Precision frequency metrology is performed with high-resolution coherent anti-Stokes Raman spectroscopy at an experimental uncertainty of 10-12 MHz, where sub-Doppler saturation features are exploited for the strongest transition. The achieved accuracy corresponds to a 50-fold improvement over a previous measurement, and it allows for the extraction of relativistic and QED contributions to T2 transition energies.
Implementing quantum optics with parametrically driven superconducting circuits
NASA Astrophysics Data System (ADS)
Aumentado, Jose
Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.
Renormalizing a viscous fluid model for large scale structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk
2016-02-01
Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less
Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)
NASA Astrophysics Data System (ADS)
Guo, Lingzhen; Johansson, Göran
We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).
Feedback loop compensates for rectifier nonlinearity
NASA Technical Reports Server (NTRS)
1966-01-01
Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.« less
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Senatore, Leonardo
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
Lewandowski, Matthew; Senatore, Leonardo
2017-08-31
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less
QED theory of multiphoton transitions in atoms and ions
NASA Astrophysics Data System (ADS)
Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter
2018-03-01
This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.
On thermalization of electron-positron-photon plasma
NASA Astrophysics Data System (ADS)
Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.
2015-12-01
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
The measurement of Bethe-Heitler bremstrahlung in muon-hydrogen interactions at 200 GeV
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Hinssieux, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1984-12-01
Using a lead glass detector installed in the EMC forward spectrometer radiative photons have been measured in 200 GeV muon-hydrogen collisions. The results are compared with the standard QED one photon emission theory of Mo and Tsai and also with the more recent predictions of a multiphoton emission theory of Chahine. We conclude that there is no evidence for any deviation from the standard theory, in terms of the yield and angular distribution of photons with fractional energy, z>0.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.
The commonly adopted approach for including electromagnetic interactions in lattice QCD simulations relies on using finite volume as the infrared regularization for QED. The long-range nature of the electromagnetic interaction, however, implies that physical quantities are susceptible to power-law finite volume corrections, which must be removed by performing costly simulations at multiple lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we introduce a photon mass as an alternative means for gaining control over infrared effects associated with electromagnetic interactions. We present findings for hadron mass shifts due to electromagnetic interactions (i.e., for the proton,more » neutron, charged and neutral kaon) and corresponding mass splittings, and compare the results with those obtained from conventional QCD+QED calculations. Results are reported for numerical studies of three flavor electroquenched QCD using ensembles corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from QED effects. The calculations are performed with three lattice volumes with spatial extents ranging from 3.4 - 6.7 fm. As a result, we find that for equal computing time (not including the generation of the lattice configurations), the electromagnetic mass shifts can be extracted from computations on a single (our smallest) lattice volume with comparable or better precision than the conventional approach.« less
Fermion determinants in static, inhomogeneous magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fry, M.P.
1995-01-15
The renormalized fermionic determinant of QED in 3+1 dimensions, det[sub ren], in a static, unidirectional, inhomogeneous magnetic field with finite flux can be calculated from the massive Euclidean Schwinger model's determinant det[sub Sch] in the same field by integrating det[sub Sch] over the fermion's mass. Since det[sub ren] for general fields is central to QED, it is desirable to have nonperturbative information on this determinant, even for the restricted magnetic fields considered here. To this end we continue our study of the physically relevant determinant det[sub Sch]. It is shown that the contribution of the massless Schwinger model to det[submore » Sch] is canceled by a contribution from the massive sector of QED in 1+1 dimensions and that zero modes are suppressed in det[sub Sch]. We then calculate det[sub Sch] analytically in the presence of a finite flux, cylindrical magnetic field. Its behavior for large flux and small fermion mass suggests that the zero-energy bound states of the two-dimensional Pauli Hamiltonian are the controlling factor in the growth of ln det[sub Sch]. Evidence is presented that det[sub Sch] does not converge to the determinant of the massless Schwinger model in the small mass limit for finite, nonzero flux magnetic fields.« less
Signatures of Hong-Ou-Mandel interference at microwave frequencies
NASA Astrophysics Data System (ADS)
Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.
2013-10-01
Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.
Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment
NASA Astrophysics Data System (ADS)
Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.
1994-01-01
High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.
SU-F-T-322: A Comparison of Two Si Detectors for in Vivo Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talarico, O; Krylova, T; Lebedenko, I
Purpose: To compare two types of semiconductor detectors for in vivo dosimetry by their dependence from various parameters in different conditions. Methods: QED yellow (Sun Nuclear) and EDP (Scanditronix) Si detectors were radiated by a Varian Clinac 2300 ix with 6 and 18 MV energies. 10 cm thickness water equivalent phantom consisted of 30×30 cm{sup 2} squared plates was used for experiments. Dose dependencies for different beam angles (0 – 180°), field size (3–40 cm), dose (50 – 300 MU), and dose rates (50 – 300 MU/min) were obtained and calibrated with Standard Farmer chamber (PTW). Results: Reproducibility, linearity, dosemore » rate, angular dependence, and field size dependence were obtained for QED and EDP. They show no dose-rate dependence in available clinical dose rate range (100–600 MU/min). Both diodes have linear dependence with increasing the dose. Therefore even in case of high radiation therapy (including total body irradiation) it is not necessary to apply an additional correction during in vivo dosimetry. The diodes have different behavior for angular and field size dependencies. QED diode showed that dose value is stable for beam angles from 0 to 60°, for 60–180° correction factor has to be applied for each beam angle during in vivo measurements. For EDP diode dose value is sensitive to beam angle in whole range of angles. Conclusion: The study shows that QED diode is more suitable for in vivo dosimetry due to dose value independence from incident beam angle in the range 0–60°. There is no need in correction factors for increasing of dose and dose rate for both diodes. The next step will be to carry out measurements in non-standard conditions of total body irradiation. After this modeling of these experiments with Monte Carlo simulation for comparison calculated and obtained data is planned.« less
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M
2016-12-16
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
openQ*D simulation code for QCD+QED
NASA Astrophysics Data System (ADS)
Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario
2018-03-01
The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System
NASA Astrophysics Data System (ADS)
Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.
2016-12-01
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
Fiber-Coupled Cavity-QED Source of Identical Single Photons
NASA Astrophysics Data System (ADS)
Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.
2018-03-01
We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.
Teleportation of atomic and photonic states in low-Q cavity QED
NASA Astrophysics Data System (ADS)
Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man
2012-11-01
We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.
An extensible circuit QED architecture for quantum computation
NASA Astrophysics Data System (ADS)
Dicarlo, Leo
Realizing a logical qubit robust to single errors in its constituent physical elements is an immediate challenge for quantum information processing platforms. A longer-term challenge will be achieving quantum fault tolerance, i.e., improving logical qubit resilience by increasing redundancy in the underlying quantum error correction code (QEC). In QuTech, we target these challenges in collaboration with industrial and academic partners. I will present the circuit QED quantum hardware, room-temperature control electronics, and software components of the complete architecture. I will show the extensibility of each component to the Surface-17 and -49 circuits needed to reach the objectives with surface-code QEC, and provide an overview of latest developments. Research funded by IARPA and Intel Corporation.
NASA Astrophysics Data System (ADS)
Frolov, Alexei M.
2015-10-01
Formulas and expectation values which are need to determine the lowest-order QED corrections (∼α3) and corresponding recoil (or finite mass) corrections in the two-electron helium-like ions are presented. Other important properties of the two-electron ions are also determined to high accuracy, including the expectation values of the quasi-singular Vinti operator and < reN-2> and < ree-2> expectation values. Elastic scattering of fast electrons by the two-electron ions in the Born approximation is considered. Interpolation formulas are derived for the bound state properties of the two-electron ions as the function of the nuclear electric charge Q.
Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko
2012-09-14
This letter presents the complete QED contribution to the electron g-2 up to the tenth order. With the help of the automatic code generator, we evaluate all 12,672 diagrams of the tenth-order diagrams and obtain 9.16 (58)(α/π)(5). We also improve the eighth-order contribution obtaining -1.9097 (20)(α/π)(4), which includes the mass-dependent contributions. These results lead to a(e)(theory)=1,159,652,181.78(77)×10(-12). The improved value of the fine-structure constant α(-1)=137.035999173 (35) [0.25 ppb] is also derived from the theory and measurement of a(e).
Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons
Frixione, Stefano; Hirschi, V.; Pagani, D.; ...
2015-06-26
Here, we compute the contribution of order α S 2α 2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson — Z, W ±, and Higgs — by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. Furthermore, this next-to-leading order contribution is then combined with that of order αS3α, and with the two dominant lowest-order ones, α S 2α and α Sα 2, to obtain phenomenological results relevant to a 8, 13, and 100 TeV pp collider.
NASA Astrophysics Data System (ADS)
Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.
2012-07-01
The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.
Leo, Berit; Schweimer, Kristian; Rösch, Paul; Hartl, Maximilian J; Wöhrl, Birgitta M
2012-09-10
The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Stefan
2011-10-01
This article discusses the occurrence of one-loop amplitudes within a next-to-next-to-leading-order calculation. In a next-to-next-to-leading-order calculation, the one-loop amplitude enters squared and one would therefore naively expect that the O({epsilon})- and O({epsilon}{sup 2})-terms of the one-loop amplitudes are required. I show that the calculation of these terms can be avoided if a method is known, which computes the O({epsilon}{sup 0})-terms of the finite remainder function of the two-loop amplitude.
Dark Matter signals at the LHC from a 3HDM
NASA Astrophysics Data System (ADS)
Cordero, A.; Hernandez-Sanchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokolowska, D.
2018-05-01
We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2. The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2, with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, {H}_2\\to {H}_1f\\overline{f}(f=u,d,c,s,b,e,μ, τ ) , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h\\to {H}_1{H}_2\\to {H}_1{H}_1f\\overline{f} into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q\\overline{q}\\to {H}_1{H}_1{Z}^{\\ast}\\to {H}_1{H}_1f\\overline{f} . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, [InlineMediaObject not available: see fulltext.], with invariant mass of f\\overline{f} much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e - case will give a spectacular QED mono-shower signal.
Invariant measure of the one-loop quantum gravitational backreaction on inflation
NASA Astrophysics Data System (ADS)
Miao, S. P.; Tsamis, N. C.; Woodard, R. P.
2017-06-01
We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.
THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu
We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated frommore » the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.« less
Ficarelli, A; Tassi, F; Restivo, F M
1999-03-01
We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.
Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.
Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L
2016-08-19
In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4) MeV in the modified minimal subtraction scheme at 2 GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Semiclosed transfemoral iliac endarterectomy with an oscillating ring stripper.
Stevick, C A; Bloom, R J
1989-10-01
The technique of endarterectomy for the removal of occlusive atherosclerotic lesions of the aorta and iliac arteries has been utilized successfully in the revascularization of ischemic limbs since its introduction in 1951. The oscillating loop endarterectomy device (Amsco-Hall arterial oscillator) has proven to be useful for endarterectomy of segmental occlusive disease as a substitute for bypass with prosthetic graft. For our elderly debilitated patients, we have adopted a new technique of semiclosed transfemoral iliac endarterectomy for management of occlusive external iliac disease with a patent common iliac artery. We report seven patients treated during May 1987 through May 1988 for external iliac artery occlusion by transfemoral oscillating loop endarterectomy. At 12 months for follow-up review, the cumulative limb salvage rate was 80% with no perioperative mortality. One patient required above-knee amputation eight months following endarterectomy to control forefoot sepsis. Two patients required subsequent leg bypass procedures to achieve full healing of foot level amputation. One patient required dilatation of residual stenosis at the iliac bifurcation by percutaneous balloon angioplasty. Semiclosed transfemoral endarterectomy with the Amsco-Hall oscillating loop device remains an attractive option to the vascular surgeon for recanalization of the iliac artery without the need for an extensive retroperitoneal dissection.
Super energy saver heat pump with dynamic hybrid phase change material
Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN
2010-07-20
A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.
Energy Systems Integration News | Energy Systems Integration Facility |
distribution feeder models for use in hardware-in-the-loop (HIL) experiments. Using this method, a full feeder ; proposes an additional control loop to improve frequency support while ensuring stable operation. The and Frequency Deviation," also proposes an additional control loop, this time to smooth the wind
Spontaneous dressed-state polarization in the strong driving regime of cavity QED.
Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo
2009-10-23
We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.
Micromachined integrated quantum circuit containing a superconducting qubit
NASA Astrophysics Data System (ADS)
Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert
We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.
Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method
NASA Astrophysics Data System (ADS)
Mottaghizadeh, Marzieh; Eslami, Parvin; Taghavi-Shahri, Fatemeh
2017-05-01
We analytically solved the QED⊗QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED (1.2952 < Q2 < 1010) (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) (2 < Q2 < 108) (Ref. 4). We also compared the proton structure function, F2p(x,Q2), with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high x and Q2.
Discrete Time-Crystalline Order in Cavity and Circuit QED Systems
NASA Astrophysics Data System (ADS)
Gong, Zongping; Hamazaki, Ryusuke; Ueda, Masahito
2018-01-01
Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup, focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases on top of the discrete time-crystalline order. In a deep quantum regime with few qubits, we find clear signatures of a transient discrete time-crystalline behavior, which is absent in the isolated counterpart. We establish a phenomenology of dissipative discrete time crystals by generalizing the Landau theory of phase transitions to Floquet open systems.
Free electron laser and fundamental physics
NASA Astrophysics Data System (ADS)
Dattoli, Giuseppe; Nguyen, Federico
2018-03-01
This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.
Emergent gauge theories and supersymmetry: A QED primer
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2013-04-01
We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.
Jia, Shaoyang; Pennington, M. R.
2016-12-12
In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less
Final-state QED multipole radiation in antenna parton showers
NASA Astrophysics Data System (ADS)
Kleiss, Ronald; Verheyen, Rob
2017-11-01
We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 → 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.
Liu, Tong; Su, Qi-Ping; Yang, Jin-Hu; Zhang, Yu; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping
2017-08-01
A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Interacting potential between spinons in the compact QED3 description of the Heisenberg model
NASA Astrophysics Data System (ADS)
Dillenschneider, R.; Richert, J.
2008-02-01
We implement a Chern-Simons (CS) contribution into the compact QED3 description of the antiferromagnetic Heisenberg model in two dimensions at zero temperature. The CS term allows for the conservation of the SU(2) symmetry of the quantum spin system and fixes the flux through a plaquette to be a multiple of π as was shown by Marston. We work out the string tension of the confining potential which acts between the spinons and show that the CS term induces a screening effect on the magnetic field only. The confining potential between spinons is not affected by the CS flux. The strict site-occupation by a single spin 1/2 is enforced by the introduction of an imaginary chemical potential constraint.
Protected Quantum Computation with Multiple Resonators in Ultrastrong Coupling Circuit QED
NASA Astrophysics Data System (ADS)
Nataf, Pierre; Ciuti, Cristiano
2011-11-01
We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic “anisotropic” nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic “cat” state.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2014-06-24
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2015-02-17
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2004-05-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model
NASA Astrophysics Data System (ADS)
Altshuler, Boris L.
2017-04-01
The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.
NASA Astrophysics Data System (ADS)
Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.
2018-04-01
In a preceding paper we introduced a formalism to study the scattering of low-intensity fields from a system of multilevel emitters embedded in a three-dimensional (3 D ) dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multilevel quantum emitter coupled to a one-dimensional (1 D ) waveguide. The reduction of the photon-scattering relation to 1 D waveguides provides a direct solution of the scattering problem involving low-intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multilevel emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photodetection in the waveguide architecture. We show this by considering a specific problem of state generation by photodetection in a multilevel emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the 1 D results apply to a plethora of physical systems such as atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a 1 D waveguide or transmission line.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony
One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less
All-optical signatures of strong-field QED in the vacuum emission picture
NASA Astrophysics Data System (ADS)
Gies, Holger; Karbstein, Felix; Kohlfürst, Christian
2018-02-01
We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3 +1 -dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.
Quantum interference and complex photon statistics in waveguide QED
NASA Astrophysics Data System (ADS)
Zhang, Xin H. H.; Baranger, Harold U.
2018-02-01
We obtain photon statistics by using a quantum jump approach tailored to a system in which one or two qubits are coupled to a one-dimensional waveguide. Photons confined in the waveguide have strong interference effects, which are shown to play a vital role in quantum jumps and photon statistics. For a single qubit, for instance, the bunching of transmitted photons is heralded by a jump that increases the qubit population. We show that the distribution and correlations of waiting times offer a clearer and more precise characterization of photon bunching and antibunching. Further, the waiting times can be used to characterize complex correlations of photons which are hidden in g(2 )(τ ) , such as a mixture of bunching and antibunching.
Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm
2010-01-01
The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.
NASA Astrophysics Data System (ADS)
Ohta, N.; Percacci, R.; Pereira, A. D.
2018-05-01
We compute the one-loop divergences in a theory of gravity with a Lagrangian of the general form f (R ,Rμ νRμ ν), on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.
One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations
NASA Astrophysics Data System (ADS)
Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro
2017-10-01
In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.
A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Million, S.; Shah, B.; Hinedi, S.
1994-01-01
Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.
How drug-like are 'ugly' drugs: do drug-likeness metrics predict ADME behaviour in humans?
Ritchie, Timothy J; Macdonald, Simon J F
2014-04-01
Using a published drug-likeness score based on the calculated physicochemical properties of marketed oral drugs (quantitative estimate of drug-likeness, QED) and published human data, high-scoring and low-scoring drugs were compared to determine how well the score correlated with their actual pharmaceutical and pharmacokinetic (PK) profiles in humans. Drugs with high QED scores exhibit higher absorption and bioavailability, are administered at lower doses and have fewer drug-drug interaction warnings, P-glycoprotein interactions and absorption issues due to a food effect. By contrast, the high-scoring drugs exhibit similar behaviour to low-scoring drugs with respect to free fraction in plasma, extent of gut-wall metabolism, first-pass hepatic extraction, elimination half-life, clearance, volume of distribution and frequency of dosing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.
1994-10-31
The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10{sup 7} to 10{sup 9} over previousmore » optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements.« less
History of magnetorheological finishing
NASA Astrophysics Data System (ADS)
Harris, Daniel C.
2011-06-01
Magnetorheological finishing (MRF) is a deterministic method for producing complex optics with figure accuracy <50 nm and surface roughness <1 nm. MRF was invented at the Luikov Institute of Heat and Mass Transfer in Minsk, Belarus in the late 1980s by a team led by William Kordonski. When the Soviet Union opened up, New York businessman Lowell Mintz was invited to Minsk in 1990 to explore possibilities for technology transfer. Mintz was told of the potential for MRF, but did not understand whether it had value. Mintz was referred to Harvey Pollicove at the Center for Optics Manufacturing of the University of Rochester. As a result of their conversation, they sent Prof. Steve Jacobs to visit Minsk and evaluate MRF. From Jacobs' positive findings, and with support from Lowell Mintz, Kordonski and his colleagues were invited in 1993 to work at the Center for Optics Manufacturing with Jacobs and Don Golini to refine MRF technology. A "preprototype" finishing machine was operating by 1994. Prof. Greg Forbes and doctoral student Paul Dumas developed algorithms for deterministic control of MRF. In 1996, Golini recognized the commercial potential of MRF, secured investment capital from Lowell Mintz, and founded QED Technologies. The first commercial MRF machine was unveiled in 1998. It was followed by more advanced models and by groundbreaking subaperture stitching interferometers for metrology. In 2006, QED was acquired by and became a division of Cabot Microelectronics. This paper recounts the history of the development of MRF and the founding of QED Technologies.
Ianchulev, Tsontcho; Chang, David F; Koo, Edward; MacDonald, Susan; Calvo, Ernesto; Tyson, Farrell Toby; Vasquez, Andrea; Ahmed, Iqbal Ike K
2018-04-18
To assess the safety and efficacy of microinterventional endocapsular nuclear fragmentation in moderate to severe cataracts. This was a prospective single-masked multisurgeon interventional randomised controlled trial (ClinicalTrials.gov NCT02843594) where 101 eyes of 101 subjects with grade 3-4+ nuclear cataracts were randomised to torsional phacoemulsification alone (controls) or torsional phacoemulsification with adjunctive endocapsular nuclear fragmentation using a manual microinterventional nitinol filament loop device (miLOOP group). Outcome measures were phacoemulsification efficiency as measured by ultrasound energy (cumulative dispersed energy (CDE) units) and fluidics requirements (total irrigation fluid used) as well as incidence of intraoperative and postoperative complications. Only high-grade advanced cataracts were enrolled with more than 85% of eyes with baseline best corrected visual acuity (BCVA) of 20/200 or worse in either group. Mean CDE was 53% higher in controls (32.8±24.9 vs 21.4±13.1 with miLOOP assistance) (p=0.004). Endothelial cell loss after surgery was low and similar between groups (7-8%, p=0.561) One-month BCVA averaged 20/27 Snellen in miLOOP eyes and 20/24 in controls. No direct complications were caused by the miLOOP. In two cases, capsular tears occurred during IOL implantation and in all remaining cases during phacoemulsification, with none occurring during the miLOOP nucleus disassembly part of the procedure. Microinterventional endocapsular fragmentation with the manual, disposable miLOOP device achieved consistent, ultrasound-free, full-thickness nucleus disassembly and significantly improved overall phaco efficiency in advanced cataracts. NCT02843594. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
New BCJ representations for one-loop amplitudes in gauge theories and gravity
NASA Astrophysics Data System (ADS)
He, Song; Schlotterer, Oliver; Zhang, Yong
2018-05-01
We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.
Chemical Looping Technology: Oxygen Carrier Characteristics.
Luo, Siwei; Zeng, Liang; Fan, Liang-Shih
2015-01-01
Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; Bei, Hongbin; Robertson, Ian M.
2017-06-08
One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less
QED is not endangered by the proton's size
NASA Astrophysics Data System (ADS)
De Rújula, A.
2010-10-01
Pohl et al. have reported a very precise measurement of the Lamb-shift in muonic hydrogen (Pohl et al., 2010) [1], from which they infer the radius characterizing the proton's charge distribution. The result is 5 standard deviations away from the one of the CODATA compilation of physical constants. This has been interpreted (Pohl et al., 2010) [1] as possibly requiring a 4.9 standard-deviation modification of the Rydberg constant, to a new value that would be precise to 3.3 parts in 1013, as well as putative evidence for physics beyond the standard model (Flowers, 2010) [2]. I demonstrate that these options are unsubstantiated.
Engineered circuit QED with dense resonant modes
NASA Astrophysics Data System (ADS)
Wilhelm, Frank; Egger, Daniel
2013-03-01
In circuit quantum electrodynamics even in the ultrastrong coupling regime, strong quasi-resonant interaction typically involves only one mode of the resonator as the mode spacing is comparable to the frequency of the mode. We are going to present an engineered hybrid transmission line consisting of a left-handed and a right-handed portion that has a low-frequency van-Hove singularity hence showing a dense mode spectrum at an experimentally accessible point. This gives rise to strong multi-mode coupling and can be utilized in multiple ways to create strongly correlated microwave photons. Supported by DARPA through the QuEST program and by NSERC Discovery grants
Yangian symmetry for bi-scalar loop amplitudes
NASA Astrophysics Data System (ADS)
Chicherin, Dmitry; Kazakov, Vladimir; Loebbert, Florian; Müller, Dennis; Zhong, De-liang
2018-05-01
We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N=4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.
Compact, closed-loop controlled waste incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadow, K.C.; Seeker, W.R.
1999-07-01
Technologies for solid and liquid waste destruction in compact incinerators are being developed in collaboration between industry, universities, and a Government laboratory. This paper reviews progress on one technology, namely active combustion control to achieve efficient and controlled afterburning of air-starved reaction products. This technology which uses synchronized waste gas injection into acoustically stabilized air vortices was transitioned to a simplified afterburner design and practical operational conditions. The full-scale, simplified afterburner, which achieved CO and NO{sub x} emissions of about 30 ppm with a residence time of less than 50 msec, was integrated with a commercially available marine incinerator tomore » increase throughput and reduce emissions. Closed-loop active control with diode laser sensors and novel control strategies was demonstrated on a sub-scale afterburner.« less
Unimodular gravity and the lepton anomalous magnetic moment at one-loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín, Carmelo P., E-mail: carmelop@fis.ucm.es
We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.
THE LITTLEST HIGGS MODEL AND ONE-LOOP ELECTROWEAK PRECISION CONSTRAINTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHEN, M.C.; DAWSON,S.
2004-06-16
We present in this talk the one-loop electroweak precision constraints in the Littlest Higgs model, including the logarithmically enhanced contributions from both fermion and scalar loops. We find the one-loop contributions are comparable to the tree level corrections in some regions of parameter space. A low cutoff scale is allowed for a non-zero triplet VEV. Constraints on various other parameters in the model are also discussed. The role of triplet scalars in constructing a consistent renormalization scheme is emphasized.
Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory
Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia
2016-03-14
We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.
NASA Astrophysics Data System (ADS)
Ann, Byoung-moo; Song, Younghoon; Kim, Junki; Yang, Daeho; An, Kyungwon
2015-08-01
Exact measurement of the second-order correlation function g(2 )(t ) of a light source is essential when investigating the photon statistics and the light generation process of the source. For a stationary single-mode light source, the Mandel Q factor is directly related to g(2 )(0 ) . For a large mean photon number in the mode, the deviation of g(2 )(0 ) from unity is so small that even a tiny error in measuring g(2 )(0 ) would result in an inaccurate Mandel Q . In this work, we address the detector-dead-time effect on g(2 )(0 ) of stationary sub-Poissonian light. It is then found that detector dead time can induce a serious error in g(2 )(0 ) and thus in Mandel Q in those cases even in a two-detector configuration. Utilizing the cavity-QED microlaser, a well-established sub-Poissonian light source, we measured g(2 )(0 ) with two different types of photodetectors with different dead times. We also introduced prolonged dead time by intentionally deleting the photodetection events following a preceding one within a specified time interval. We found that the observed Q of the cavity-QED microlaser was underestimated by 19% with respect to the dead-time-free Q when its mean photon number was about 600. We derived an analytic formula which well explains the behavior of the g(2 )(0 ) as a function of the dead time.
Secluded WIMPs, Dark QED with Massive Photons, and the Galactic Center Gamma-Ray Excess
NASA Technical Reports Server (NTRS)
Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.
2015-01-01
We discuss a particular secluded WIMP dark matter model consisting of neutral fermions as the dark matter candidate and a Proca-Wentzel (PW) field as a mediator. In the model that we consider here, dark matter WIMPs interact with standard model (SM) particles only through the PW field of approximately MeV-multi-GeV mass particles. The interactions occur via a U(1)' mediator, V'(sub mu), which couples to the SM by kinetic mixing with U(1) hypercharge bosons, B'(sub mu). One important difference between our model and other such models in the literature is the absence of an extra singlet scalar, so that the parameter with dimension of mass M(sup 2, sub V) is not related to a spontaneous symmetry breaking. This QED based model is also renormalizable. The mass scale of the mediator and the absence of the singlet scalar can lead to interesting astrophysical signatures. The dominant annihilation channels are different from those usually considered in previous work. We show that the GeV energy gamma-ray excess in the galactic center region, as derived from Fermi-LAT Gamma-ray Space Telescope data, can be attributed to such secluded dark matter WIMPs, given parameters of the model that are consistent with both the cosmological dark matter density and the upper limits on WIMP spin-independent elastic scattering. Secluded WIMP models are also consistent with suggested upper limits on a DM contribution to the cosmic-ray antiproton flux.
The matter power spectrum in redshift space using effective field theory
NASA Astrophysics Data System (ADS)
Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun
2017-11-01
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.
New graph polynomials in parametric QED Feynman integrals
NASA Astrophysics Data System (ADS)
Golz, Marcel
2017-10-01
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.
Assessment of a simple, novel endoluminal method for gastrotomy closure in NOTES.
Lee, Sang Soo; Oelschlager, Brant K; Wright, Andrew S; Soares, Renato V; Sinan, Huseyin; Montenovo, Martin I; Hwang, Joo Ha
2011-10-01
A reliable method for gastrotomy closure in NOTES will be essential for NOTES to become viable clinically. However, methods using existing and widely available endoscopic accessories have been ineffective. The objective of this study was to evaluate the feasibility and safety of a new simple method for gastric closure (retracted clip-assisted loop closure) that uses existing endoscopic accessories with minor modifications. The retracted clip-assisted loop closure technique involves deploying 3-4 Resolution(®) clips (modified by attaching a 90-cm length of suture to the end of each clip) along the margin of the gastrotomy with one jaw on the serosal surface and the other jaw on the mucosal surface. The suture strings are threaded through an endoloop. Traction is then applied to the strings causing the gastric wall to tent. The endoloop is secured below the tip of the clips, completing a full-thickness gastrotomy closure. The main outcome measures were feasibility, efficacy, and safety of the new retracted clip-assisted loop closure technique for NOTES gastrotomy closure. An air-tight seal was achieved in 100% (n = 9) of stomachs. The mean leak pressure was 116.3 (±19.4) mmHg. The retracted clip-assisted loop closure technique can be used to perform NOTES gastrotomy closure by using existing endoscopic accessories with minor modifications.
Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-15
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less
Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.
We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating themore » Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.« less
Resonator reset in circuit QED by optimal control for large open quantum systems
NASA Astrophysics Data System (ADS)
Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre
2017-10-01
We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.
Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan
2015-06-01
A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.
NASA Astrophysics Data System (ADS)
Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.
2016-03-01
We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.
Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED
NASA Astrophysics Data System (ADS)
Larson, Jonas
2012-01-01
We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.
Hybrid Circuit QED with Electrons on Helium
NASA Astrophysics Data System (ADS)
Yang, Ge
Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.
Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations
Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; ...
2015-03-13
We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating themore » Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.« less
Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
NASA Astrophysics Data System (ADS)
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-01
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.
NASA Astrophysics Data System (ADS)
Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee
2018-06-01
We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Pallab; Goldman, Hart; Raghu, S.
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, Xiao; Cady, Jeffrey; Zajac, David; Petta, Jason
We demonstrate a hybrid circuit quantum electrodynamics (cQED) architecture in which a single electron in a Si/SiGe double quantum dot is dipole-coupled to the electric field of microwave photons in a superconducting cavity. Vacuum Rabi splitting is observed in the cavity transmission when the transition energy of the single-electron charge qubit matches that of a cavity photon, demonstrating that our device is in the strong coupling regime. The achievement of strong coupling is largely facilitated by an exceptionally low charge decoherence rate of 5 MHz and paves the way toward a wide range of cQED experiments with quantum dots, such as non-local qubit interactions, strong spin-cavity coupling and single photon generation . Research sponsored by ARO Grant No. W911NF-15-1-0149, the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4535, and the NSF (DMR-1409556 and DMR-1420541).
Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.
2017-10-01
Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.
Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals
NASA Astrophysics Data System (ADS)
Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.
2018-04-01
We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.
Resonant Compton Scattering in Highly-Magnetized Pulsars
NASA Astrophysics Data System (ADS)
Wadiasingh, Zorawar
Soft gamma repeaters and anomalous X-ray pulsars are subset of slow-rotating neutron stars, known as magnetars, that have extremely high inferred surface magnetic fields, of the order 100-1000 TeraGauss. Hard, non-thermal and pulsed persistent X-ray emission extending between 10 keV and 230 keV has been seen in a number of magnetars by RXTE, INTEGRAL, and Suzaku. In this thesis, the author considers inner magnetospheric models of such persistent hard X-ray emission where resonant Compton upscattering of soft thermal photons is anticipated to be the most efficient radiative process. This high efficiency is due to the relative proximity of the surface thermal photons, and also because the scattering becomes resonant at the cyclotron frequency. At the cyclotron resonance, the effective cross section exceeds the classical Thomson one by over two orders of magnitude, thereby enhancing the efficiency of continuum production and cooling of relativistic electrons. In this thesis, a new Sokolov and Ternov formulation of the QED Compton scattering cross section for strong magnetic fields is employed in electron cooling and emission spectra calculations. This formalism is formally correct for treating spin-dependent effects and decay rates that are important at the cyclotron resonance. The author presents electron cooling rates at arbitrary interaction points in a magnetosphere using the QED cross sections. The QED effects reduce the rates below high-field extrapolations of older magnetic Thomson results. The author also computes angle-dependent upscattering model spectra, formed using collisional integrals, for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. It is found that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below 1 MeV, except for very select viewing perspectives that sample tangents to field lines. This small parameter space makes it difficult to observe signals extending into the Fermi-LAT band. Polarization dependence in spectra is illustrated, offering potential constraints for models of magnetar emission in anticipation of a future hard X-ray polarimetry missions.
Exactly solvable quantum cosmologies from two killing field reductions of general relativity
NASA Astrophysics Data System (ADS)
Husain, Viqar; Smolin, Lee
1989-11-01
An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
NASA Astrophysics Data System (ADS)
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Lattice corrections to the quark quasidistribution at one loop
Carlson, Carl E.; Freid, Michael
2017-05-12
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Lattice corrections to the quark quasidistribution at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Freid, Michael
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Development of a Prototype Miniature Silicon Microgyroscope
Xia, Dunzhu; Chen, Shuling; Wang, Shourong
2009-01-01
A miniature vacuum-packaged silicon microgyroscope (SMG) with symmetrical and decoupled structure was designed to prevent unintended coupling between drive and sense modes. To ensure high resonant stability and strong disturbance resisting capacity, a self-oscillating closed-loop circuit including an automatic gain control (AGC) loop based on electrostatic force feedback is adopted in drive mode, while, dual-channel decomposition and reconstruction closed loops are applied in sense mode. Moreover, the temperature effect on its zero bias was characterized experimentally and a practical compensation method is given. The testing results demonstrate that the useful signal and quadrature signal will not interact with each other because their phases are decoupled. Under a scale factor condition of 9.6 mV/°/s, in full measurement range of ± 300 deg/s, the zero bias stability reaches 15°/h with worse-case nonlinearity of 400 ppm, and the temperature variation trend of the SMG bias is thus largely eliminated, so that the maximum bias value is reduced to one tenth of the original after compensation from -40 °C to 80 °C. PMID:22408543
NASA Astrophysics Data System (ADS)
Wang, Li-Ying; Ravi, Vidhya M.; Leblanc, Gérard; Padrós, Esteve; Cladera, Josep; Perálvarez-Marín, Alex
2016-09-01
Molecular dynamics simulations have been used to study the alternate access mechanism of the melibiose transporter from Escherichia coli. Starting from the outward-facing partially occluded form, 2 out of 12 simulations produced an outward full open form and one partially open, whereas the rest yielded fully or partially occluded forms. The shape of the outward-open form resembles other outward-open conformations of secondary transporters. During the transporter opening, conformational changes in some loops are followed by changes in the periplasm region of transmembrane helix 7. Helical curvature relaxation and unlocking of hydrophobic and ionic locks promote the outward opening of the transporter making accessible the substrate binding site. In particular, FRET studies on mutants of conserved aromatic residues of extracellular loop 4 showed lack of substrate binding, emphasizing the importance of this loop for making crucial interactions that control the opening of the periplasmic side. This study indicates that the alternate access mechanism for the melibiose transporter fits better into a flexible gating mechanism rather than the archetypical helical rigid-body rocker-switch mechanism.
Nonequilibrium Quantum Simulation in Circuit QED
NASA Astrophysics Data System (ADS)
Raftery, James John
Superconducting circuits have become a leading architecture for quantum computing and quantum simulation. In particular, the circuit QED framework leverages high coherence qubits and microwave resonators to construct systems realizing quantum optics models with exquisite precision. For example, the Jaynes-Cummings model has been the focus of significant theoretical interest as a means of generating photon-photon interactions. Lattices of such strongly correlated photons are an exciting new test bed for exploring non-equilibrium condensed matter physics such as dissipative phase transitions of light. This thesis covers a series of experiments which establish circuit QED as a powerful tool for exploring condensed matter physics with photons. The first experiment explores the use of ultra high speed arbitrary waveform generators for the direct digital synthesis of complex microwave waveforms. This new technique dramatically simplifies the classical control chain for quantum experiments and enables high bandwidth driving schemes expected to be essential for generating interesting steady-states and dynamical behavior. The last two experiments explore the rich physics of interacting photons, with an emphasis on small systems where a high degree of control is possible. The first experiment realizes a two-site system called the Jaynes-Cummings dimer, which undergoes a self-trapping transition where the strong photon-photon interactions block photon hopping between sites. The observation of this dynamical phase transition and the related dissipation-induced transition are key results of this thesis. The final experiment augments the Jaynes-Cummings dimer by redesigning the circuit to include in-situ control over photon hopping between sites using a tunable coupler. This enables the study of the dimer's localization transition in the steady-state regime.
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg
2013-04-07
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Santra, Robin
2013-04-01
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.
Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.
Dixit, Gopal; Santra, Robin
2013-04-07
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.
Rigó, István Zoltán; Røkkum, Magne
2013-12-01
We compared the results of two methods for reinsertion of flexor digitorum profundus tendons retrospectively. In 35 fingers of 29 patients pull-out suture and in 13 fingers of 11 patients transverse intraosseous loop technique was performed with a mean follow-up of 8 and 6 months, respectively. Eleven and nine fingers achieved "excellent" or "good" function according to Strickland and Glogovac at 8 weeks; 20 and ten at the last control in the pull-out and transverse intraosseous loop groups, respectively. The difference at 8 weeks was statistically significant in favour of the transverse intraosseous loop group. Ten patients underwent 12 complications in the pull-out group (four superficial infections; one rerupture, one PIP and one DIP joint contracture, one adhesion, two granulomas, one nail deformity and one carpal tunnel syndrome) and four of them were reoperated (one carpal tunnel release, one teno-arthrolysis and two resections of granuloma). There was no complication and no reoperation in the transverse intraosseous loop group, the difference being statistically significant for the former. In our study the transverse intraosseous loop technique seemed to be a safe alternative with possibly better functional results compared to the pull-out suture.
The singular behavior of one-loop massive QCD amplitudes with one external soft gluon
NASA Astrophysics Data System (ADS)
Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander
2012-03-01
We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.
NASA Astrophysics Data System (ADS)
Seradjeh, Babak Hosseyni
In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of the QED3 theory to spin response in the superconductor, relevant for neutron scattering measurements. We show that the theory explains the observed spin gap numerically and the evolution of the response in energy and momenta qualitatively. We study the issue of resonance in these measurements by developing a formalism for exciton bound states. Keywords. High-temperature superconductivity; Antiferromagnetism; Spinons; Spin response; Three-dimensional quantum electrodynamics; Chiral symmetry breaking; Confinement; Duality transformation; renormalization group; Variational methods;
Apparatus for Ultrahigh Precision Measurement of 13 S1 - 23S 1 Interval in Positronium
NASA Astrophysics Data System (ADS)
Goldman, Harris J.
Positronium (Ps) is a purely leptonic atom comprising an electron and its antimatter equivalent, the positron, in a quasi-stable bound state. Due to its fundamental nature, Ps is an ideal test bed for bound-state QED. Recent high-precision spectroscopic experiments reveal a discrepancy in the measurement of the proton charge radius rp, known as the Proton Charge Radius Puzzle. Spectroscopic measurments carried out on hydrogen and muonic hydrogen, the bound state of a muon and a proton, differ from other scattering and other spectroscopic experiments by 3.3sigma. The measurement of rp comes from fitting the resulting measurement of either the 1S-2S interval of hydrogen or the Lamb Shift in muonic hydrogen to theory. Neither of these atoms are governed purely by quantum electrodynamics (QED) alone as nuclear structure has a role to play. The ratio of the masses of the orbiting particle m to that of the nucleus M is a coefficient in a number of a QED corrections to the energy levels of hydrogen (m/M = 1/1836) and muonic hydrogen ( m/M = 207/1836) and reveals the importance of performing a complementary spectroscopic measurement in Ps, where m/M = 1. The last measurement of the 1S-2S interval was carried out by Fee, Chu, Mills, et al. in 1993 to a precision of 3.2 ppb. The state-of-the-art measurement on hydrogen is now at an uncertainty of 4.2 x 10-15. While the simplicity of Ps causes it to be appealing to test bound-state QED, its antiparticle-particle nature makes it difficult to work with: the ground state lifetime of the triplet state is 142 ns, and whereas the 2S lifetime in Ps is 1.14 micros, the 2S lifetime in hydrogen is 105x longer. We have designed and constructed an apparatus and experiment to measure the 1S-2S interval in Ps at precision levels that we expect to immediately improve upon the previous measurements by factor of 2x and pave the way for ultimate comparison to the hydrogenic measurements. The apparatus also opens the doors to a new frontier in high-precision spectroscopy: the sub-micros regime.
NASA Astrophysics Data System (ADS)
Sulyok, G.
2017-07-01
Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.
Hippocampal closed-loop modeling and implications for seizure stimulation design
NASA Astrophysics Data System (ADS)
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2015-10-01
Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal closed-loop modeling and implications for seizure stimulation design.
Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z
2015-10-01
Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal Closed-Loop Modeling and Implications for Seizure Stimulation Design
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2016-01-01
Objective Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the Entorhinal Cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3→CA1, via the Schaffer-Collateral synapse, and CA1→CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (Principal Dynamic Modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main Results Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance DBS is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy. PMID:26355815
The inheritance of fingerprint patterns.
Slatis, H M; Katznelson, M B; Bonné-Tamir, B
1976-05-01
Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis.
The inheritance of fingerprint patterns.
Slatis, H M; Katznelson, M B; Bonné-Tamir, B
1976-01-01
Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis. PMID:1266855
Morawski, Ireneusz; Voigtländer, Bert
2010-03-01
We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.
Solution NMR analyses of the anticodon arms of proteinogenic and non-proteinogenic tRNAGly
Chang, Andrew T.; Nikonowicz, Edward P.
2012-01-01
Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extra-translational functions including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNAGly,GCC and tRNAGly,UCC) and the third is non-proteinogenic (np-tRNAGly,UCC) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNAGly,UCC with a loop-closing C-A+ base pair melts at a 10 °C lower temperature than those of tRNAGly,GCC or np-tRNAGly,UCC. U-A and C-G pairs close the loops of the later two molecules and enhance stem stability. Mg2+ stabilizes the tRNAGly,UCC anticodon arm and lessens the Tm differential. The structures of the three tRNAGly anticodon arms exhibit small differences between one another, but none of them form the classical U-turn motif. The anticodon loop of tRNAGly,GCC becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNAGly,UCC and np-tRNAGly,UCC establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of the full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences. PMID:22468768
Lustig, B; Lin, N H; Smith, S M; Jernigan, R L; Jeang, K T
1995-01-01
A prototypic hammerhead ribozyme has three helices that surround an asymmetrical central core loop. We have mutagenized a hammerhead type ribozyme. In agreement with previous studies, progressive removal of stem-loop II from a three stemmed ribozyme showed that this region is not absolutely critical for catalysis. However, complete elimination of stem II and its loop did reduce, but did not eliminate, function. In a stem-loop II-deleted ribozyme, activity was best preserved when a purine, preferably a G, was present at position 10.1. This G contributed to catalysis irregardless of its role as either one part of a canonical pair with a C residue at 11.1 or a lone nucleotide with C (11.1) deleted. Computational methods using lattices generated 87 million three-dimensional chain forms for a stem-loop II-deleted RNA complex that preserved one potential G.C base pair at positions 10.1 and 11.1. This exhaustive set of chain forms included one major class of structures with G(10.1) being spatially proximal to the GUCX cleavage site of the substrate strand. Strong correlations were observed between colinear arrangement of stems I and III, constraints of base-pairing in the central core loop, and one particular placement of G(10.1) relative to the cleavage site. Our calculations of a stem-loop II-deleted ribozyme indicate that without needing to invoke any other constraints, the inherent asymmetry in the lengths of the two loop strands (3 nt in one and 7 nt in the other) that compose the core and flank G10.1-C11.1 stipulated strongly this particular G placement. This suggests that the hammerhead ribozyme maintains an asymmetry in its internal loop for a necessary structure/function reason. Images PMID:7567466
Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators
NASA Astrophysics Data System (ADS)
Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam
2018-05-01
In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.
Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides
NASA Astrophysics Data System (ADS)
Lemonde, M.-A.; Meesala, S.; Sipahigil, A.; Schuetz, M. J. A.; Lukin, M. D.; Loncar, M.; Rabl, P.
2018-05-01
We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.
An update on the BQCD Hybrid Monte Carlo program
NASA Astrophysics Data System (ADS)
Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk
2018-03-01
We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.
Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.
Lemonde, M-A; Meesala, S; Sipahigil, A; Schuetz, M J A; Lukin, M D; Loncar, M; Rabl, P
2018-05-25
We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.
New measurement of the electron magnetic moment and the fine structure constant.
Hanneke, D; Fogwell, S; Gabrielse, G
2008-03-28
A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr magnetons, g/2=1.001 159 652 180 73 (28) [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure constant, with alpha{-1}=137.035 999 084 (51) [0.37 ppb], and an uncertainty 20 times smaller than for any independent determination of alpha.
Comments on atomic stabilization in intense fields and relativity
NASA Astrophysics Data System (ADS)
Faisal, F. H. M.
2000-07-01
We comment on the problem of atomic stabilization for non-relativistic intensities, Up≪mc2, and discuss how it might be affected at relativistic intensities, Up⩾mc2. Two concepts of stabilization, type I and type II, are distinguished in the present discussion. It is pointed out that in the relativistic case investigations in 3D become unavoidable for any reliable information on the problem. We also point out that for ponderomotive energies greater than 2mc2, the threshold of real pairs production, both the frameworks of classical relativistic simulation, as well as of one-particle Dirac wavefunction, break down. New thinking is needed to develop non-perturbative QED methods in that situation.
Loop Integrands for Scattering Amplitudes from the Riemann Sphere
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2015-09-01
The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
Stabilizing windings for tilting and shifting modes
Jardin, Stephen C.; Christensen, Uffe R.
1984-01-01
This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.
Nonperturbative dynamics of scalar field theories through the Feynman-Schwinger representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin Savkli; Franz Gross; John Tjon
2004-04-01
In this paper we present a summary of results obtained for scalar field theories using the Feynman-Schwinger (FSR) approach. Specifically, scalar QED and {chi}{sup 2}{phi} theories are considered. The motivation behind the applications discussed in this paper is to use the FSR method as a rigorous tool for testing the quality of commonly used approximations in field theory. Exact calculations in a quenched theory are presented for one-, two-, and three-body bound states. Results obtained indicate that some of the commonly used approximations, such as Bethe-Salpeter ladder summation for bound states and the rainbow summation for one body problems, producemore » significantly different results from those obtained from the FSR approach. We find that more accurate results can be obtained using other, simpler, approximation schemes.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2017-08-16
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Observations of loops and prominences
NASA Technical Reports Server (NTRS)
Strong, Keith T.
1994-01-01
We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly. Their coronal manifestation seems to be an extended arcade of loops overlying the filament. Reliable alignment of the ground-based data with the X-ray images make it possible to make a detailed intercomparison of the hot and cold plasma structures over extended periods. Hence we are able to follow the long-term evolution of these structures and see how they become destabilized and erupt.
Effective action for stochastic partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less
Simulating a transmon implementation of the surface code, Part II
NASA Astrophysics Data System (ADS)
O'Brien, Thomas; Tarasinski, Brian; Rol, Adriaan; Bultink, Niels; Fu, Xiang; Criger, Ben; Dicarlo, Leonardo
The majority of quantum error correcting circuit simulations use Pauli error channels, as they can be efficiently calculated. This raises two questions: what is the effect of more complicated physical errors on the logical qubit error rate, and how much more efficient can decoders become when accounting for realistic noise? To answer these questions, we design a minimal weight perfect matching decoder parametrized by a physically motivated noise model and test it on the full density matrix simulation of Surface-17, a distance-3 surface code. We compare performance against other decoders, for a range of physical parameters. Particular attention is paid to realistic sources of error for transmon qubits in a circuit QED architecture, and the requirements for real-time decoding via an FPGA Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.
Teleportation of a two-atom entangled state with a thermal cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Lihua; Jin Xingri; Zhang Shou
2005-08-15
We present a scheme to teleport an unknown atomic entangled state in driven cavity QED. In our scheme, the success probability can reach 1.0. In addition, the scheme is insensitive to the cavity decay and the thermal field.
OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn
With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and movemore » toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.« less
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
ABOVE-THE-LOOP-TOP OSCILLATION AND QUASI-PERIODIC CORONAL WAVE GENERATION IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasao, Shinsuke; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp
Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFsmore » from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.« less
One-loop effects of a heavy Higgs boson: A functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmaier, S.; Grosse-Knetter, C.
1995-11-01
We integrate out the Higgs boson in the electroweak standard model at one loop, assuming that it is very heavy. We construct a low-energy effective Lagrangian, which parametrizes the one-loop effect of the heavy Higgs boson at {O}({ital M}{sup O}{sup -}{sub {ital H}}). Instead of applying conventional diagrammatical techniques, we integrate out the Higgs boson directly in the path integral. {copyright} 1995 American Institute of Physics
Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.
Tourkine, Piotr; Vanhove, Pierre
2016-11-18
The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
NASA Astrophysics Data System (ADS)
Howe, P. S.; Parkes, A. J.; West, P. C.
1985-01-01
It is shown analytically that there are no one-loop supersymmetry anomalies in N = 2 and N = 4 supersymmetric Yang-Mills theories. This implies that the two-loop β functions in these theories are in accord with supersymmetry when the one-loop finite local counter terms required by supersymmetry are correctly taken into account. Permanent address: Department of Mathematics, King's College, London, UK.
N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Perkins, Warren B.
2016-12-01
We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.
Transequatorial loops interconnecting McMath regions 12472 and 12474
NASA Technical Reports Server (NTRS)
Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.
1977-01-01
The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.
Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi B. R.
2010-01-01
Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ...
Improved Edge Performance in MRF
NASA Technical Reports Server (NTRS)
Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc
2004-01-01
The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.
Superadiabatic holonomic quantum computation in cavity QED
NASA Astrophysics Data System (ADS)
Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding
2017-06-01
Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.
Scaling laws for positron production in laser-electron beam collisions
NASA Astrophysics Data System (ADS)
Blackburn, Tom; Ilderton, Anton; Murphy, Christopher; Marklund, Mattias
2017-10-01
Showers of gamma rays and positrons are produced when a multi-GeV electron beam collides with a super-intense laser pulse. All-optical realisation of this geometry, where the electron beam is generated by laser-wakefield acceleration, is currently attracting much experimental interest as a probe of radiation reaction and QED effects. These interactions may be modelled theoretically in the framework of strong-field QED or numerically by large-scale PIC simulation. To complement these, we present analytical scaling laws for the electron beam energy loss, gamma ray spectrum, and the positron yield and energy that are valid in the radiation-reaction-dominated regime. These indicate that by employing the collision of a 2 GeV electron beam with a laser pulse of intensity 5 ×1021Wcm-2 , it is possible to produce 10,000 positrons in a single shot at currently available laser facilities. The authors acknowledge support from the Knut and Alice Wallenberg Foundation.
Chip-to-chip entanglement of transmon qubits using engineered measurement fields
NASA Astrophysics Data System (ADS)
Dickel, C.; Wesdorp, J. J.; Langford, N. K.; Peiter, S.; Sagastizabal, R.; Bruno, A.; Criger, B.; Motzoi, F.; DiCarlo, L.
2018-02-01
While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with 49 % concurrence and 73 % Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator systems. By ensuring the measured output field does not distinguish |01 > from |10 > , unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the |00 > and |11 > states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.
Semi-Classical Models for Virtual Antiparticle Pairs
NASA Technical Reports Server (NTRS)
Batchelor, David; Zukor, Dorothy (Technical Monitor)
2001-01-01
Virtual particle-antiparticle pairs of massive elementary particle& are predicted in Quantum Field Theory (QFT) to appear from the vacuum and annihilate each other again within their Heisenberg lifetimes h/4mc(exp 2). In this work, semiclassical models of this process - for the cases of massive leptons, quarks, and the massive weak bosons W and Z - are constructed. It is shown that the dynamical lifetime of the particle- antiparticle system in each case equals the Heisenberg lifetime to good approximation, and obeys appropriate quantization conditions on the field fluctuation action. In other words, the dynamical lifetime of the semiclassical model agrees with QED and QCD to good approximation. But the formula for the dynamical lifetime in each model includes the force strength coupling constant (e in the lepton case, alpha(sup s) (q(exp 2)) in the quark cases), while the Heisenberg lifetime formula does not. Observing the agreement of the Heisenberg and dynamical lifetimes, we may derive the QED and QCD coupling constants in terms of h, c, and numerical factors only.
NASA Astrophysics Data System (ADS)
Sehati, N.; Tavassoly, M. K.
2017-08-01
Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.
NASA Astrophysics Data System (ADS)
Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.
Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.
Hybrid Circuit QED with Double Quantum Dots
NASA Astrophysics Data System (ADS)
Petta, Jason
2014-03-01
Cavity quantum electrodynamics explores quantum optics at the most basic level of a single photon interacting with a single atom. We have been able to explore cavity QED in a condensed matter system by placing a double quantum dot (DQD) inside of a high quality factor microwave cavity. Our results show that measurements of the cavity field are sensitive to charge and spin dynamics in the DQD.[2,3] We can explore non-equilibrium physics by applying a finite source-drain bias across the DQD, which results in sequential tunneling. Remarkably, we observe a gain as large as 15 in the cavity transmission when the DQD energy level detuning is matched to the cavity frequency. These results will be discussed in the context of single atom lasing.[4] I will also describe recent progress towards reaching the strong-coupling limit in cavity-coupled Si DQDs. In collaboration with Manas Kulkarni, Yinyu Liu, Karl Petersson, George Stehlik, Jacob Taylor, and Hakan Tureci. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and NSF.
Line strengths of QED-sensitive forbidden transitions in B-, Al-, F- and Cl-like ions
NASA Astrophysics Data System (ADS)
Bilal, M.; Volotka, A. V.; Beerwerth, R.; Fritzsche, S.
2018-05-01
The magnetic dipole (M 1 ) line strength between the fine-structure levels of the ground configurations in B-, F-, Al-, and Cl-like ions are calculated for the four elements argon, iron, molybdenum, and tungsten. Systematically enlarged multiconfiguration Dirac-Hartree-Fock (MCDHF) wave functions are employed to account for the interelectronic interaction with the Breit interaction included in first-order perturbation theory. The QED corrections are evaluated to all orders in α Z utilizing an effective potential approach. The calculated line strengths are compared with the results of other theories. The M 1 transition rates are reported using accurate energies from the literature. Moreover, the lifetimes in the range of millisecond to picosecond are predicted including the contributions from the transition rate due to the E 2 transition channel. The discrepancies of the predicted rates from those available from the literature are discussed and a benchmark data set of theoretical lifetimes is provided to support future experiments.
Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2002-03-01
Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.
Two-loop beam and soft functions for rapidity-dependent jet vetoes
NASA Astrophysics Data System (ADS)
Gangal, Shireen; Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.
2017-02-01
Jet vetoes play an important role in many analyses at the LHC. Traditionally, jet vetoes have been imposed using a restriction on the transverse momentum p Tj of jets. Alternatively, one can also consider jet observables for which p Tj is weighted by a smooth function of the jet rapidity y j that vanishes as | y j | → ∞. Such observables are useful as they provide a natural way to impose a tight veto on central jets but a looser one at forward rapidities. We consider two such rapidity-dependent jet veto observables, T_{Bj} and {T_{Cj} , and compute the required beam and dijet soft functions for the jet-vetoed color-singlet production cross section at two loops. At this order, clustering effects from the jet algorithm become important. The dominant contributions are computed fully analytically while corrections that are subleading in the limit of small jet radii are expressed in terms of finite numerical integrals. Our results enable the full NNLL' resummation and are an important step towards N3LL resummation for cross sections with a T_{Bj} or T_{Cj} jet veto.
The full spectrum of AdS5/CFT4 I: representation theory and one-loop Q-system
NASA Astrophysics Data System (ADS)
Marboe, Christian; Volin, Dmytro
2018-04-01
With the formulation of the quantum spectral curve for the AdS5/CFT4 integrable system, it became potentially possible to compute its full spectrum with high efficiency. This is the first paper in a series devoted to the explicit design of such computations, with no restrictions to particular subsectors being imposed. We revisit the representation theoretical classification of possible states in the spectrum and map the symmetry multiplets to solutions of the quantum spectral curve at zero coupling. To this end it is practical to introduce a generalisation of Young diagrams to the case of non-compact representations and define algebraic Q-systems directly on these diagrams. Furthermore, we propose an algorithm to explicitly solve such Q-systems that circumvents the traditional usage of Bethe equations and simplifies the computation effort. For example, our algorithm quickly obtains explicit analytic results for all 495 multiplets that accommodate single-trace operators in N=4 SYM with classical conformal dimension up to \\frac{13}{2} . We plan to use these results as the seed for solving the quantum spectral curve perturbatively to high loop orders in the next paper of the series.
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor); Iskenderian, Theodore C. (Inventor)
1991-01-01
An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft.
2008-11-01
Simulations of an engine and its Full Authority Digital Engine Control ( FADEC ), along with a 6 degree-of-freedom (6DoF) airframe dynamics model and...as needed. In its current configuration, the generic turbine engine model’s FADEC is included in the same simulation and runs primarily on 2 a...back to the engine. As mentioned previously, the FADEC and engine are combined into one simulation and are collectively referred to as “the engine
Complete Michel parameter analysis of the inclusive semileptonic b{yields}c transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dassinger, Benjamin; Feger, Robert; Mannel, Thomas
2009-04-01
We perform a complete 'Michel parameter' analysis of all possible helicity structures which can appear in the process B{yields}X{sub c}l{nu}{sub l}. We take into account the full set of operators parametrizing the effective Hamiltonian and include the complete one-loop QCD corrections as well as the nonperturbative contributions. The moments of the leptonic energy as well as the combined moments of the hadronic energy and hadronic invariant mass are calculated including the nonstandard contributions.
Fast Wave Transmission Measurements on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.
1997-11-01
Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.
A mechanically tunable and efficient ceramic probe for MR-microscopy at 17 Tesla
NASA Astrophysics Data System (ADS)
Kurdjumov, Sergei; Glybovski, Stanislav; Hurshkainen, Anna; Webb, Andrew; Abdeddaim, Redha; Ciobanu, Luisa; Melchakova, Irina; Belov, Pavel
2017-09-01
In this contribution we propose and study numerically a new probe (radiofrequency coil) for magnetic resonance mi-croscopy in the field of 17T. The probe is based on two coupled donut resonators made of a high-permittivity and low-loss ceramics excited by a non-resonant inductively coupled loop attached to a coaxial cable. By full-wave numerical simulation it was shown that the probe can be precisely tuned to the Larmor frequency of protons (723 MHz) by adjusting a gap between the two resonators. Moreover, the impedance of the probe can be matched by varying the distance from one of the resonators to the loop. As a result, a compact and mechanically tunable resonant probe was demonstrated for 17 Tesla applications using no lumped capacitors for tuning and matching. The new probe was numerically compared to a conventional solenoidal probe showing better efficiency.
NASA Astrophysics Data System (ADS)
Sever, Amit; Vieira, Pedro; Wang, Tianheng
2011-11-01
We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.
47 CFR 51.230 - Presumption of acceptability for deployment of an advanced services loop technology.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an advanced services loop technology. 51.230 Section 51.230 Telecommunication FEDERAL COMMUNICATIONS... Carriers § 51.230 Presumption of acceptability for deployment of an advanced services loop technology. (a) An advanced services loop technology is presumed acceptable for deployment under any one of the...
Spatiotemporal Dynamics of a Network of Coupled Time-Delay Digital Tanlock Loops
NASA Astrophysics Data System (ADS)
Paul, Bishwajit; Banerjee, Tanmoy; Sarkar, B. C.
The time-delay digital tanlock loop (TDTLs) is an important class of phase-locked loop that is widely used in electronic communication systems. Although nonlinear dynamics of an isolated TDTL has been studied in the past but the collective behavior of TDTLs in a network is an important topic of research and deserves special attention as in practical communication systems separate entities are rarely isolated. In this paper, we carry out the detailed analysis and numerical simulations to explore the spatiotemporal dynamics of a network of a one-dimensional ring of coupled TDTLs with nearest neighbor coupling. The equation representing the network is derived and we carry out analytical calculations using the circulant matrix formalism to obtain the stability criteria. An extensive numerical simulation reveals that with the variation of gain parameter and coupling strength the network shows a variety of spatiotemporal dynamics such as frozen random pattern, pattern selection, spatiotemporal intermittency and fully developed spatiotemporal chaos. We map the distinct dynamical regions of the system in two-parameter space. Finally, we quantify the spatiotemporal dynamics by using quantitative measures like Lyapunov exponent and the average quadratic deviation of the full network.
Merrick, Karl A.; Fisher, Robert P.
2010-01-01
Eukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners—cyclins A and B—Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin. Cdk2 can follow a kinetically distinct path to activation in which T-loop phosphorylation precedes cyclin-binding, and thereby out-compete the more abundant Cdk1 for limiting amounts of cyclin A. Mathematical modeling suggests this could be a principal basis for the temporal ordering of CDK activation during S phase, which may dictate the sequence in which replication origins fire. Still to be determined are how: 1) the activation machinery discriminates between closely related CDKs, and 2) coordination of the cell cycle is affected when this mechanism of pathway insulation breaks down. PMID:20139727
Cosmological coherent state expectation values in loop quantum gravity I. Isotropic kinematics
NASA Astrophysics Data System (ADS)
Dapor, Andrea; Liegener, Klaus
2018-07-01
This is the first paper of a series dedicated to loop quantum gravity (LQG) coherent states and cosmology. The concept is based on the effective dynamics program of Loop Quantum Cosmology, where the classical dynamics generated by the expectation value of the Hamiltonian on semiclassical states is found to be in agreement with the quantum evolution of such states. We ask the question of whether this expectation value agrees with the one obtained in the full theory. The answer is in the negative, Dapor and Liegener (2017 arXiv:1706.09833). This series of papers is dedicated to detailing the computations that lead to that surprising result. In the current paper, we construct the family of coherent states in LQG which represent flat (k = 0) Robertson–Walker spacetimes, and present the tools needed to compute expectation values of polynomial operators in holonomy and flux on such states. These tools will be applied to the LQG Hamiltonian operator (in Thiemann regularization) in the second paper of the series. The third paper will present an extension to cosmologies and a comparison with alternative regularizations of the Hamiltonian.
Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R.
2016-05-01
EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in which we find a similar rooting pattern of coronal loops.
Deployable radiator with flexible line loop
NASA Technical Reports Server (NTRS)
Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)
2003-01-01
Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).
On the performance of digital phase locked loops in the threshold region
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.
Universality, twisted fans, and the Ising model. [Renormalization, two-loop calculations, scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, J.W.; Harrington, S.J.
1975-06-24
Critical exponents are evaluated for the Ising model using universality in the form of ''twisted fans'' previously introduced in Reggeon field theory. The universality is with respect to scales induced through renormalization. Exact twists are obtained at ..beta.. = 0 in one loop for D = 2,3 with ..nu.. = 0.75 and 0.60 respectively. In two loops one obtains ..nu.. approximately 1.32 and 0.68. No twists are obtained for eta, however. The results for the standard two loop calculations are also presented as functions of a scale.
From Loops to Trees By-passing Feynman's Theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catani, Stefano; Gleisberg, Tanju; Krauss, Frank
2008-04-22
We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less
Vector-Vector Scattering on the Lattice
NASA Astrophysics Data System (ADS)
Romero-López, Fernando; Urbach, Carsten; Rusetsky, Akaki
2018-03-01
In this work we present an extension of the LüScher formalism to include the interaction of particles with spin, focusing on the scattering of two vector particles. The derived formalism will be applied to Scalar QED in the Higgs Phase, where the U(1) gauge boson acquires mass.
Open-loop-feedback control of serum drug concentrations: pharmacokinetic approaches to drug therapy.
Jelliffe, R W
1983-01-01
Recent developments to optimize open-loop-feedback control of drug dosage regimens, generally applicable to pharmacokinetically oriented therapy with many drugs, involve computation of patient-individualized strategies for obtaining desired serum drug concentrations. Analyses of past therapy are performed by least squares, extended least squares, and maximum a posteriori probability Bayesian methods of fitting pharmacokinetic models to serum level data. Future possibilities for truly optimal open-loop-feedback therapy with full Bayesian methods, and conceivably for optimal closed-loop therapy in such data-poor clinical situations, are also discussed. Implementation of these various therapeutic strategies, using automated, locally controlled infusion devices, has also been achieved in prototype form.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions
NASA Astrophysics Data System (ADS)
Bais, F. A.; Striet, J.
2003-08-01
Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.
Higgs-like mechanism for spontaneous spacetime symmetry breaking
NASA Astrophysics Data System (ADS)
Nishimura, Kimihide
2015-10-01
The study of spontaneous breakdown of spacetime symmetries leads to the discovery of another type of Higgs mechanism operating in a chiral SU(2) model. Some of the Nambu-Goldstone vector mesons emergent from simultaneous violations of gauge and Lorentz symmetries are, in this case, absorbed by a left-handed doublet and endow one of the fermions with a right-handed state, while another part becomes emergent as photons. Accordingly, this mechanism allows a chiral fermion to acquire a mass, and it may enable the emergent theory to reproduce the electromagnetism equivalent to the QED sector in the standard theory. It is also mentioned that the "fermion-boson puzzle" known in the presence of a 't Hooft-Polyakov monopole does not exist in our theory.
Experience using individually supplied heater rods in critical power testing of advanced BWR fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majed, M.; Morback, G.; Wiman, P.
1995-09-01
The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give largemore » advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.« less
Full-Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines.
1981-12-01
Geometry or Fuel Flow Scheduled as a Function of Engine State, i.e. FIGV = f( N1 C2 ) Closed Loop - Geometry or Fuel Flow Modulated To Maintain an Engine...Low Pressure Turbine Inlet Area (A41) Closed Loop (Integral) N2, T22 Core Stream Exhaust Nozzle Area (AJE) Closed Loop (Integral) N1 , T2 Duct Stream...to remain at the breakpoint value while low rotor speed reference ( N1 reference) is scheduled to decrease as a function of power lever angle (PLA), to
Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars
NASA Astrophysics Data System (ADS)
Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.
2018-02-01
Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
75 FR 43172 - Maternal, Infant, and Early Childhood Home Visiting Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... the evaluation results have been published in a peer-reviewed journal; or (bb) quasi-experimental... design (i.e. randomized controlled trial [RCT] or quasi-experimental design [QED]), level of attrition... a quasi-experimental design as a study design in which sample members are selected for the program...
NASA Astrophysics Data System (ADS)
Anderson, Philip
2013-03-01
The "maverick genius" referred to in the title of Phillip Schewe's book is Freeman Dyson: a truly great mathematical physicist, bestselling author, longest-serving member of the US military's JASON advisory group, and occupant of the "fourth chair" when the Nobel Prize for Physics was awarded for quantum electrodynamics (QED) - among many other distinctions.
Novel Approaches to Quantum Computation Using Solid State Qubits
2007-12-31
hysteretic DC-SQUIDs, Phys. Rev. B 71, 220509(R) (2005). 18. C.-P. Yang and S. Han, Generation of Greenberger-Horne- Zeilinger entangled states with three SQUID...Horne- Zeilinger entangled states with multiple superconducting quantum interference device qubits/atoms in cavity QED, Phys. Rev. A 70, 062323 (2004
Universality hypothesis breakdown at one-loop order
NASA Astrophysics Data System (ADS)
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
Atomistic Simulations of the pH Induced Functional Rearrangement of Influenza Hemagglutinin
NASA Astrophysics Data System (ADS)
Lin, Xingcheng; Noel, Jeffrey; Wang, Qinghua; Ma, Jianpeng; Onuchic, Jose
Influenza hemagglutinin (HA), a surface glycoprotein responsible for the entry and replication of flu viruses in their host cells, functions by starting a dramatic conformational rearrangement, which leads to a fusion of the viral and endosomal membranes. It has been claimed that a loop-to-coiled-coil transition of the B-loop domain of HA drives the HA-induced membrane fusion. On the lack of dynamical details, however, the microscopic picture for this proposed ``spring-loaded'' movement is missing. To elaborate on the transition of the B-loop, we performed a set of unbiased all-atom molecular dynamics simulations of the full B-loop structure with the CHARMM36 force field. The complete free-energy profile constructed from our simulations reveals a slow transition rate for the B-loop that is incompatible with a downhill process. Additionally, our simulations indicate two potential sources of kinetic traps in the structural switch of the B-loop: Desolvation barriers and non-native secondary structure formation. The slow timescale of the B-loop transition also confirms our previous discovery from simulations using a coarse-grained structure-based model, which identified two competitive pathways both with a slow B-loop transition for HA to guide the membrane fusion.
Some new results for the one-loop mass correction to the compactified λϕ4 theory
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo; Kirsten, Klaus
2018-03-01
In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.
Strings in bubbling geometries and dual Wilson loop correlators
NASA Astrophysics Data System (ADS)
Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.
2017-12-01
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
Computing Maximally Supersymmetric Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at infinity for (L ≥ 4)-loops. Finally in Ch. 7, the current status of ultraviolet divergences in the five-loop four-point mSUGRA amplitude is addressed. This includes a discussion of ongoing work aimed at resolving the mSUGRA finiteness question. The following Mathematica scripts are submitted with this dissertation: • on shell diagrams and numerics.m with dependencies: -- all_trees *.m -- external_kinematics_*_point.m -- rational_external_*_point.m where "*" is a wild-card string of any set of characters of any length -- either an integer or a number spelled out.
Loop corrections for Kaluza-Klein AdS amplitudes
NASA Astrophysics Data System (ADS)
Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.
2018-05-01
Recently we conjectured the four-point amplitude of graviton multiplets in AdS5 × S5 at one loop by exploiting the operator product expansion of N = 4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; /SLAC; Drummond, James M.
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less
Closed-loop fiber optic gyroscope with homodyne detection
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, BingKun; Chen, Shufen
1996-09-01
Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.
Loop corrections to primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Cavity-QED interactions of two correlated atoms
NASA Astrophysics Data System (ADS)
Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan
2018-05-01
We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.
A real-time simulator of a turbofan engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.
1989-01-01
A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.
Two-loop renormalization of gaugino masses in general supersymmetric gauge models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.
1994-01-03
We calculate the two-loop renormalization group equations for the running gaugino masses in general supersymmetry (SUSY) gauge models, improving our previous result. We also study its consequences on the unification of the gaugino masses in the SUSY SU(5) model. The two-loop correction to the one-loop relation [ital m][sub [ital i
Evaluating Mathematics Achievement of Middle School Students in a Looping Environment
ERIC Educational Resources Information Center
Franz, Dana Pomykal; Thompson, Nicole L.; Fuller, Bob; Hare, R. Dwight; Miller, Nicole C.; Walker, Jacob
2010-01-01
Looping, a school structure where students remain with one group of teachers for two or more school years, is used by middle schools to meet the diverse needs of young adolescents. However, little research exists on how looping effects the academic performance of students. This study was designed to determine if looping influenced middle school…
Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H
2018-05-28
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
NASA Astrophysics Data System (ADS)
Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.
2018-05-01
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
PyR@TE 2: A Python tool for computing RGEs at two-loop
NASA Astrophysics Data System (ADS)
Lyonnet, F.; Schienbein, I.
2017-04-01
Renormalization group equations are an essential tool for the description of theories across different energy scales. Even though their expressions at two-loop for an arbitrary gauge field theory have been known for more than thirty years, deriving the full set of equations for a given model by hand is very challenging and prone to errors. To tackle this issue, we have introduced in Lyonnet et al. (2014) a Python tool called PyR@TE; Python Renormalization group equations @ Two-loop for Everyone. With PyR@TE, it is easy to implement a given Lagrangian and derive the complete set of two-loop RGEs for all the parameters of the theory. In this paper, we present the new version of this code, PyR@TE 2, which brings many new features and in particular it incorporates kinetic mixing when several U(1) gauge groups are involved. In addition, the group theory part has been greatly improved as we introduced a new Python module dubbed PyLie that deals with all the group theoretical aspects required for the calculation of the RGEs as well as providing very useful model building capabilities. This allows the use of any irreducible representation of the SU(n) , SO(2 n) and SO(2n + 1) groups. Furthermore, it is now possible to implement terms in the Lagrangian involving fields which can be contracted into gauge singlets in more than one way. As a byproduct, results for a popular model (SM + complex triplet) for which, to our knowledge, the complete set of two-loop RGEs has not been calculated before are presented in this paper. Finally, the two-loop RGEs for the anomalous dimension of the scalar and fermion fields have been implemented as well. It is now possible to export the coupled system of beta functions into a numerical C++ function, leading to a consequent speed up in solving them.
One-loop matching and running with covariant derivative expansion
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-24
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-01
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these "mixed" one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of "integrating out" heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.
NASA Astrophysics Data System (ADS)
Rück, Marlon; Reuther, Johannes
2018-04-01
We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.
Zhu, X. R.
2000-01-01
Silicon diode dosimeters have been used routinely for in‐vivo dosimetry. Despite their popularity, an appropriate implementation of an in‐vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as dmax for the 10×10 cm2 field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target‐to‐surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode‐dosimeter‐based in‐vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n‐type) and the newly available QED (p‐type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n‐type than for p‐type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p‐type) diodes are smaller than ISORAD detectors. PACS number(s): 87.66.–a, 87.52.–g PMID:11674824
Lorentzian Goldstone modes shared among photons and gravitons
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.; Jejelava, J.; Kepuladze, Z.
2018-02-01
It has long been known that photons and gravitons may appear as vector and tensor Goldstone modes caused by spontaneous Lorentz invariance violation (SLIV). Usually this approach is considered for photons and gravitons separately. We develop the emergent electrogravity theory consisting of the ordinary QED and the tensor-field gravity model which mimics the linearized general relativity in Minkowski spacetime. In this theory, Lorentz symmetry appears incorporated into higher global symmetries of the length-fixing constraints put on the vector and tensor fields involved, A_{μ }2=± MA2 and H_{μ ν }2=± MH2 (MA and MH are the proposed symmetry breaking scales). We show that such a SLIV pattern being related to breaking of global symmetries underlying these constraints induces the massless Goldstone and pseudo-Goldstone modes shared by photon and graviton. While for a vector field case the symmetry of the constraint coincides with Lorentz symmetry SO(1, 3) of the electrogravity Lagrangian, the tensor-field constraint itself possesses much higher global symmetry SO(7, 3), whose spontaneous violation provides a sufficient number of zero modes collected in a graviton. Accordingly, while the photon may only contain true Goldstone modes, the graviton appears at least partially to be composed of pseudo-Goldstone modes rather than of pure Goldstone ones. When expressed in terms of these modes, the theory looks essentially nonlinear and contains a variety of Lorentz and CPT violating couplings. However, all SLIV effects turn out to be strictly cancelled in the lowest order processes considered in some detail. How this emergent electrogravity theory could be observationally different from conventional QED and GR theories is also briefly discussed.
Using Functional Languages and Declarative Programming to analyze ROOT data: LINQtoROOT
NASA Astrophysics Data System (ADS)
Watts, Gordon
2015-05-01
Modern high energy physics analysis is complex. It typically requires multiple passes over different datasets, and is often held together with a series of scripts and programs. For example, one has to first reweight the jet energy spectrum in Monte Carlo to match data before plots of any other jet related variable can be made. This requires a pass over the Monte Carlo and the Data to derive the reweighting, and then another pass over the Monte Carlo to plot the variables the analyser is really interested in. With most modern ROOT based tools this requires separate analysis loops for each pass, and script files to glue to the results of the two analysis loops together. A framework has been developed that uses the functional and declarative features of the C# language and its Language Integrated Query (LINQ) extensions to declare the analysis. The framework uses language tools to convert the analysis into C++ and runs ROOT or PROOF as a backend to get the results. This gives the analyser the full power of an object-oriented programming language to put together the analysis and at the same time the speed of C++ for the analysis loop. The tool allows one to incorporate C++ algorithms written for ROOT by others. A by-product of the design is the ability to cache results between runs, dramatically reducing the cost of adding one-more-plot and also to keep a complete record associated with each plot for data preservation reasons. The code is mature enough to have been used in ATLAS analyses. The package is open source and available on the open source site CodePlex.
Chemical looping integration with a carbon dioxide gas purification unit
Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.
2017-01-24
A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.
Chang, Andrew T; Nikonowicz, Edward P
2012-05-01
Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extratranslational functions, including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNA(Gly,GCC) and tRNA(Gly,UCC)), and the third is nonproteinogenic (np-tRNA(Gly,UCC)) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNA(Gly,UCC) with a loop-closing C-A(+) base pair melts at a temperature 10 °C lower than those of tRNA(Gly,GCC) and np-tRNA(Gly,UCC). U-A and C-G pairs close the loops of the latter two molecules and enhance stem stability. Mg(2+) stabilizes the tRNA(Gly,UCC) anticodon arm and reduces the T(m) differential. The structures of the three tRNA(Gly) anticodon arms exhibit small differences among one another, but none of them form the classical U-turn motif. The anticodon loop of tRNA(Gly,GCC) becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNA(Gly,UCC) and np-tRNA(Gly,UCC) establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences.
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan
2017-03-20
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
Method for spinning up a three-axis controlled spacecraft
NASA Technical Reports Server (NTRS)
Vorlicek, Preston L. (Inventor)
1988-01-01
A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).
The modified Altemeier procedure for a loop colostomy prolapse.
Watanabe, Makoto; Murakami, Masahiko; Ozawa, Yoshiaki; Uchida, Marie; Yamazaki, Kimiyasu; Fujimori, Akira; Otsuka, Koji; Aoki, Takeshi
2015-11-01
Loop colostomy prolapse is associated with an impaired quality of life. Surgical treatment may sometimes be required for cases that cannot be closed by colon colostomy because of high-risk morbidities or advanced disease. We applied the Altimeter operation for patients with transverse loop colostomy. The Altemeier operation is therefore indicated for rectal prolapse. This technique involves a simple operation, which includes a circumferential incision through the full thickness of the outer and inner cylinder of the prolapsed limb, without incising the abdominal wall, and anastomosis with sutures using absorbable thread. We performed the Altemeier operation for three cases of loop stomal prolapse. Those patients demonstrated no postoperative complications (including obstruction, prolapse recurrence, or hernia). Our findings suggest that this procedure is useful as an optional surgical treatment for cases of transverse loop colostomy prolapse as a permanent measure in patients with high-risk morbidities or advanced disease.
On-the-fly reduction of open loops
NASA Astrophysics Data System (ADS)
Buccioni, Federico; Pozzorini, Stefano; Zoller, Max
2018-01-01
Building on the open-loop algorithm we introduce a new method for the automated construction of one-loop amplitudes and their reduction to scalar integrals. The key idea is that the factorisation of one-loop integrands in a product of loop segments makes it possible to perform various operations on-the-fly while constructing the integrand. Reducing the integrand on-the-fly, after each segment multiplication, the construction of loop diagrams and their reduction are unified in a single numerical recursion. In this way we entirely avoid objects with high tensor rank, thereby reducing the complexity of the calculations in a drastic way. Thanks to the on-the-fly approach, which is applied also to helicity summation and for the merging of different diagrams, the speed of the original open-loop algorithm can be further augmented in a very significant way. Moreover, addressing spurious singularities of the employed reduction identities by means of simple expansions in rank-two Gram determinants, we achieve a remarkably high level of numerical stability. These features of the new algorithm, which will be made publicly available in a forthcoming release of the OpenLoops program, are particularly attractive for NLO multi-leg and NNLO real-virtual calculations.
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
Strings in bubbling geometries and dual Wilson loop correlators
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...
2017-12-20
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
One-loop Pfaffians and large-field inflation in string theory
NASA Astrophysics Data System (ADS)
Ruehle, Fabian; Wieck, Clemens
2017-06-01
We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.
Dynamically limiting energy consumed by cooling apparatus
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.
2015-05-26
Cooling apparatuses and methods are provided which include one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is coupled to the N controllable components, and dynamically adjusts operation of the N controllable components, based on Z input parameters and one or more specified constraints, to provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.
Dynamically limiting energy consumed by cooling apparatus
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.
2015-06-09
Cooling methods are provided which include providing: one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is also provided to dynamically adjust operation of the N controllable components, based on Z input parameters and one or more specified constraints, and provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.
Strings in bubbling geometries and dual Wilson loop correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Tweaking one-loop determinants in AdS3
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip
2017-10-01
We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
Skylab observations of X-ray loops connecting separate active regions. [solar activity
NASA Technical Reports Server (NTRS)
Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.
1976-01-01
One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.
Vehicle to wireless power transfer coupling coil alignment sensor
Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.
2016-02-16
A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.
The Cygnus Loop: An Older Supernova Remnant.
ERIC Educational Resources Information Center
Straka, William
1987-01-01
Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)
Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant
Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN
2006-02-07
A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.