Sample records for full performance potential

  1. Exact quantum scattering calculation of transport properties for free radicals: OH(X2Π)-helium.

    PubMed

    Dagdigian, Paul J; Alexander, Millard H

    2012-09-07

    Transport properties for OH-He are computed through quantum scattering calculations using the ab initio potential energy surfaces determined by Lee et al. [J. Chem. Phys. 113, 5736 (2000)]. To gauge the importance of the open-shell character of OH and the anisotropy of the potential on the transport properties, including the collision integrals Ω((1,1)) and Ω((2,2)), as well as the diffusion coefficient, calculations were performed with the full potential, with the difference potential V(dif) set to zero, and with only the spherical average of the potential. Slight differences (3%-5%) in the computed diffusion coefficient were found between the values obtained using the full potential and the truncated potentials. The computed diffusion coefficients were compared to recent experimental measurements and those computed with a Lennard-Jones (LJ) 12-6 potential. The values obtained with the full potential were slightly higher than the experimental values. The LJ 12-6 potential was found to underestimate the variation in temperature as compared to that obtained using the full OH-He ab initio potential.

  2. ASUPT Automated Objective Performance Measurement System.

    ERIC Educational Resources Information Center

    Waag, Wayne L.; And Others

    To realize its full research potential, a need exists for the development of an automated objective pilot performance evaluation system for use in the Advanced Simulation in Undergraduate Pilot Training (ASUPT) facility. The present report documents the approach taken for the development of performance measures and also presents data collected…

  3. Modified Light Duty AM2 Capability Assessment

    DTIC Science & Technology

    The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system

  4. The Inversion Potential of Ammonia: An Intrinsic Reaction Coordinate Calculation for Student Investigation

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Ramachandran, B. R.; Glendening, Eric D.

    2007-01-01

    A report is presented to describe how students can be empowered to construct the full, double minimum inversion potential for ammonia by performing intrinsic reaction coordinate calculations. This work can be associated with the third year physical chemistry lecture laboratory or an upper level course in computational chemistry.

  5. Kids and Sleep: How a Lack of ZZZ's Can Affect Those A's and B's.

    ERIC Educational Resources Information Center

    Engelhardt, Christin L.; Walsh, James K.

    1993-01-01

    Sleepy students may not reach their full potential. Most sleepiness results from sleep disorders, circadian factors, or schedules with too little sleep. Consequences of sleepiness include decreased performance, worsened mood, and potential for danger. Parents and professionals must understand the need for sleep and help students obtain enough…

  6. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  7. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  8. Quasi-steady-state analysis of coupled flashing ratchets.

    PubMed

    Levien, Ethan; Bressloff, Paul C

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  9. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Li, Zheng

    2018-05-01

    Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  10. Wake coupling to full potential rotor analysis code

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.

    1990-01-01

    The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.

  11. A random generation approach to pattern library creation for full chip lithographic simulation

    NASA Astrophysics Data System (ADS)

    Zou, Elain; Hong, Sid; Liu, Limei; Huang, Lucas; Yang, Legender; Kabeel, Aliaa; Madkour, Kareem; ElManhawy, Wael; Kwan, Joe; Du, Chunshan; Hu, Xinyi; Wan, Qijian; Zhang, Recoo

    2017-04-01

    As technology advances, the need for running lithographic (litho) checking for early detection of hotspots before tapeout has become essential. This process is important at all levels—from designing standard cells and small blocks to large intellectual property (IP) and full chip layouts. Litho simulation provides high accuracy for detecting printability issues due to problematic geometries, but it has the disadvantage of slow performance on large designs and blocks [1]. Foundries have found a good compromise solution for running litho simulation on full chips by filtering out potential candidate hotspot patterns using pattern matching (PM), and then performing simulation on the matched locations. The challenge has always been how to easily create a PM library of candidate patterns that provides both comprehensive coverage for litho problems and fast runtime performance. This paper presents a new strategy for generating candidate real design patterns through a random generation approach using a layout schema generator (LSG) utility. The output patterns from the LSG are simulated, and then classified by a scoring mechanism that categorizes patterns according to the severity of the hotspots, probability of their presence in the design, and the likelihood of the pattern causing a hotspot. The scoring output helps to filter out the yield problematic patterns that should be removed from any standard cell design, and also to define potential problematic patterns that must be simulated within a bigger context to decide whether or not they represent an actual hotspot. This flow is demonstrated on SMIC 14nm technology, creating a candidate hotspot pattern library that can be used in full chip simulation with very high coverage and robust performance.

  12. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  13. Analysis of the Impacts of City Year's Whole School Whole Child Model on Partner Schools' Performance

    ERIC Educational Resources Information Center

    Meredith, Julie; Anderson, Leslie M.

    2015-01-01

    City Year is a learning organization committed to the rigorous evaluation of its "Whole School Whole Child" model, which trains and deploys teams of AmeriCorps members to low-performing, urban schools to empower more students to reach their full potential. A third-party study by Policy Studies Associates (PSA) examined the impact of…

  14. Assessment potential of a new suture simulator in laparoscopic surgical skills training.

    PubMed

    Takeoka, Tomohira; Takiguchi, Shuji; Uemura, Munenori; Miyazaki, Yasuhiro; Takahashi, Tsuyoshi; Kurokawa, Yukinori; Makino, Tomoki; Yamasaki, Makoto; Mori, Masaki; Yuichiro Doki, And

    2017-12-01

    The skills necessary for performing effective laparoscopic suturing are difficult to acquire; as a result, simulators for learning these skills are rapidly becoming integrated into surgical training. The aim of the study was to verify whether a new hybrid simulator has the potential to measure skill improvement in young, less experienced gastroenterological surgeons. The study included 12 surgeons (median age, 29 (27-38)] years; 11 men (91.7%), one woman (8.3%)) who participated in a two-day laparoscopic training seminar. We used the new simulator before and after the program to evaluate individual performance. Skills were evaluated using five criteria: volume of air pressure leakage, number of full-thickness sutures, suture tension, wound area, and performance time. Air pressure leakage was significantly higher after than before the training (p = .027). The number of full-thickness sutures was significantly higher post-training (p < .01). Suture tension was significantly less post-training (p = .011). Wound opening areas were significantly smaller post-training (p = .018). Performance time was significantly shorter post-training (p = .032). Our study demonstrated the assessment quality of this new laparoscopic suture simulator.

  15. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  16. Full parabolic trough qualification from prototype to demonstration loop

    NASA Astrophysics Data System (ADS)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  17. A joint sparse representation-based method for double-trial evoked potentials estimation.

    PubMed

    Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing

    2013-12-01

    In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Topographies and dynamics on multidimensional potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ball, Keith Douglas

    The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation constructed from data representing the full PES, and compare these predictions to those of reduced master equations based on statistical samples of the full PES. We introduce a sampling method which generates random, Boltzmann-weighted, energetically 'downhill' sequences. The study reveals that, at moderate temperatures, the slowest relaxation timescale converges as the number of sequences in a sample grows to ~1000. Furthermore, the asymptotic timescale is comparable to the full-PES value.

  19. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    PubMed

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  20. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    PubMed

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.

  1. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.

  2. An Exploratory Study of OEE Implementation in Indian Manufacturing Companies

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Soni, V. K.

    2015-04-01

    Globally, the implementation of Overall equipment effectiveness (OEE) has proven to be highly effective in improving availability, performance rate and quality rate while reducing unscheduled breakdown and wastage that stems from the equipment. This paper investigates the present status and future scope of OEE metrics in Indian manufacturing companies through an extensive survey. In this survey, opinions of Production and Maintenance Managers have been analyzed statistically to explore the relationship between factors, perspective of OEE and potential use of OEE metrics. Although the sample has been divers in terms of product, process type, size, and geographic location of the companies, they are enforced to implement improvement techniques such as OEE metrics to improve performance. The findings reveal that OEE metrics has huge potential and scope to improve performance. Responses indicate that Indian companies are aware of OEE but they are not utilizing full potential of OEE metrics.

  3. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    NASA Technical Reports Server (NTRS)

    Rauch, J.; Dochat, G.

    1985-01-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  4. Ab-initio investigations for opto-electronic response of (Cd, Zn)Ga2Te4: Promising solar PV materials

    NASA Astrophysics Data System (ADS)

    Sahariya, Jagrati; Soni, Amit; Kumar, Pancham

    2018-04-01

    In this paper, the first principle calculations are performed to analyze the structural, electronic and optical behavior of promising solar materials (Cd,Zn)Ga2Te4. To perform these calculations we have used one of the most accurate Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The ground state properties of these compounds are confirmed over here after proper examination of energy and charge convergence using Perdew-Burke-Ernzerhof (PBE-sol) exchange correlation potential. The investigations performed such as energy band structure, Density of States (DOS), optical parameters like complex dielectric function and absorption co-efficient are discussed over here to understand the overall response of the chosen system.

  5. 76 FR 48152 - Commercial Building Asset Rating Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ...: Occupancy schedule. HVAC system operation. Hot water use. Both the user-entered and the internally defined.... Technical Support Full documentation of the rating methodology would be available online for public review... welcome. Potential for Additional Supported Options While a national performance metric and rating system...

  6. "Language," "Communication," and the Longing for the Authentic in LSP Testing

    ERIC Educational Resources Information Center

    Hoekje, Barbara

    2016-01-01

    This commentary argues that the OET research raises inescapable contradictions in trying to separate "language" from "communication" within a weak performance test and advocates for reconceptualizing the legitimate domain of "language" more widely, reclaiming the full potential of the communicative competence…

  7. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    PubMed

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A fast, time-accurate unsteady full potential scheme

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.; Osher, S.

    1985-01-01

    The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.

  9. Mechanical energy expenditures and movement efficiency in full body reaching movements.

    PubMed

    Sha, Daohang; France, Christopher R; Thomas, James S

    2010-02-01

    The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.

  10. Children's cognitive performance and selective attention following recent community violence.

    PubMed

    McCoy, Dana Charles; Raver, C Cybele; Sharkey, Patrick

    2015-03-01

    Research has shown robust relationships between community violence and psychopathology, yet relatively little is known about the ways in which community violence may affect cognitive performance and attention. The present study estimates the effects of police-reported community violence on 359 urban children's performance on a computerized neuropsychological task using a quasi-experimental fixed-effects design. Living in close proximity to a recent violent crime predicted faster but marginally less accurate task performance for the full sample, evolutionarily adaptive patterns of "vigilant" attention (i.e., less attention toward positive stimuli, more attention toward negative stimuli) for children reporting low trait anxiety, and potentially maladaptive patterns of "avoidant" attention for highly anxious children. These results suggest that community violence can directly affect children's cognitive performance while also having different (and potentially orthogonal) impacts on attention deployment depending on children's levels of biobehavioral risk. Implications for mental health and sociological research are discussed. © American Sociological Association 2015.

  11. Children's Cognitive Performance and Selective Attention Following Recent Community Violence

    PubMed Central

    McCoy, Dana Charles; Raver, C. Cybele; Sharkey, Patrick

    2015-01-01

    Research has shown robust relationships between community violence and psychopathology, yet relatively little is known about the ways in which community violence may affect cognitive performance and attention. The present study estimates the effects of police-reported community violence on 359 urban children's performance on a computerized neuropsychological task using a quasi-experimental fixed-effects design. Living in close proximity to a recent violent crime predicted faster but marginally less accurate task performance for the full sample, evolutionarily adaptive patterns of “vigilant” attention (i.e., less attention toward positive stimuli, more attention toward negative stimuli) for children reporting low trait anxiety, and potentially maladaptive patterns of “avoidant” attention for highly anxious children. These results suggest that community violence can directly affect children's cognitive performance while also having different (and potentially orthogonal) impacts on attention deployment depending on children's levels of biobehavioral risk. Implications for mental health and sociological research are discussed. PMID:25663176

  12. Going ballistic: Graphene hot electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  13. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  14. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  15. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

    DOE PAGES

    Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...

    2016-03-04

    Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less

  16. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING CHEMICALS OF POTENTIAL INTEREST. (R825392)

    EPA Science Inventory

    A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...

  17. A Motive of Rhetorics: Invention and Speech Acts.

    ERIC Educational Resources Information Center

    Schneider, Michael J.

    While rhetorical theory has long been concerned with the epistemological foundations of rhetorical abilities, the full potential of the structuralist perspective is far from realized. The study of speech acts and inventive processes discloses the underlying logic of linguistic performance. A speech act is conceptualized in terms of the…

  18. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    USDA-ARS?s Scientific Manuscript database

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  19. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-06-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  20. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-04-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  1. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  2. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  3. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China.

    PubMed

    Feng, Jingjing; Chen, Xiaolin; Jia, Lei; Liu, Qizhen; Chen, Xiaojia; Han, Deming; Cheng, Jinping

    2018-04-10

    Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher's exact test.

  4. Fiscal year 1976 progress report on a feasibility study evaluating the use of surface penetrators for planetary exploration

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Oberbeck, V. R.; Bunch, T. E.; Reynolds, R. T.; Canning, T. N.; Jackson, R. W.

    1976-01-01

    The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites.

  5. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2017-12-01

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC 50 ). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC 50 of PPARγ full agonists had the following statistical parameters: q 2 cv =0.610, N opt =7, SEP cv =0.505, r 2 pr =0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Davis, Paul Christopher

    1992-01-01

    A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.

  8. Self-Efficacy, Gender and Trait Anxiety as Moderators of Test Anxiety

    ERIC Educational Resources Information Center

    Onyeizugbo, Euckay U.

    2010-01-01

    Introduction: Test anxiety inhibits students from performing according to their full potential in academic setting. Objectives: This study investigated self-efficacy, gender and trait anxiety as moderators of test anxiety. Method: Two hundred and forty nine (249) psychology majors drawn from a university in Eastern Nigeria participated in the…

  9. The Street Stops Here.

    ERIC Educational Resources Information Center

    Murphy, Nora Sharkey

    2000-01-01

    States that schools should be a safe haven for children and urges society to return schools to the safe, secure places they once were. Discusses the need to keep media far away from children in the event of a campus emergency and perform full background checks on all potential school employees. Reports that Catholic schools are providing…

  10. Autism, Social Competence, and Academic Performance

    ERIC Educational Resources Information Center

    Schriber Orloff, Susan N.

    2009-01-01

    In this article, a reader is asking for advice regarding her 10-year-old daughter who is having difficulty with her reading and focusing skills and social skills. The author recommends that her daughter should have a full evaluation of her academic skills and potentials inclusive of psychology, speech, and occupational therapy. The author also…

  11. The Influence of Parental Separation and Divorce on Adolescent Academic Achievement: Developmental Issues.

    ERIC Educational Resources Information Center

    Nisivoccia, Joseph Dominick

    Parental separation and divorce can have a critically adverse effect on the academic performance and achievement of adolescent students. The psychological and social disadvantages can significantly interfere with students reaching their full potential for success in school. Information is provided on the scope of divorce in society and its…

  12. Evaluating and Developing Vocational Potential of Institutionalized Retarded Adolescents.

    ERIC Educational Resources Information Center

    Parnicky, Joseph J., Ed.; Kahn, Harris, Ed.

    Vocational performance predictors were tested with 437 mildly retarded students (mean age 18 1/2, mean IQ 64) in a five-stage training situation progressing from half to full day and from on to off campus. Findings demonstrated considerable overlap as well as some independence among measures. High degrees of reliability and intercorrelation were…

  13. Benchmarking reference services: an introduction.

    PubMed

    Marshall, J G; Buchanan, H S

    1995-01-01

    Benchmarking is based on the common sense idea that someone else, either inside or outside of libraries, has found a better way of doing certain things and that your own library's performance can be improved by finding out how others do things and adopting the best practices you find. Benchmarking is one of the tools used for achieving continuous improvement in Total Quality Management (TQM) programs. Although benchmarking can be done on an informal basis, TQM puts considerable emphasis on formal data collection and performance measurement. Used to its full potential, benchmarking can provide a common measuring stick to evaluate process performance. This article introduces the general concept of benchmarking, linking it whenever possible to reference services in health sciences libraries. Data collection instruments that have potential application in benchmarking studies are discussed and the need to develop common measurement tools to facilitate benchmarking is emphasized.

  14. Theoretical investigation of the He4Br2 conformers.

    PubMed

    Valdés, Álvaro; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2012-07-05

    Full dimensional quantum dynamics calculations of the three lowest isomers of the He(4)Br(2) van der Waals molecule in its ground electronic state are reported. The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method and a realistic potential form that includes the sum of three body ab initio coupled-cluster single double triple [CCSD(T)] He-Br(2) interactions plus the He-He and Br-Br interactions. This potential exhibits several multiple minima, with the three lowest ones lying very close in energy, just within 2 cm(-1). Such small differences are also found in the calculated binding energies of the three most stable conformers, indicating the floppiness of the system and, thus, the need of accurate potential forms and quantum full dynamics methods to treat this kind of complexes. The 12 dimensional results reported in this work present benchmark data and, thus, can serve to evaluate approximate methods aiming to describe higher order rare gas-dihalogen (N > 4) complexes. A comparison with previous studies using different potential forms and approaches to the energetics for the He(4)Br(2) cluster is also presented.

  15. Psychological variables and Wechsler Adult Intelligence Scale-IV performance.

    PubMed

    Gass, Carlton S; Gutierrez, Laura

    2017-01-01

    The MMPI-2 and WAIS-IV are commonly used together in neuropsychological evaluations yet little is known about their interrelationships. This study explored the potential influence of psychological factors on WAIS-IV performance in a sample of 180 predominantly male veteran referrals that underwent a comprehensive neuropsychological examination in a VA Medical Center. Exclusionary criteria included failed performance validity testing and self-report distortion on the MMPI-2. A Principal Components Analysis was performed on the 15 MMPI-2 content scales, yielding three broader higher-order psychological dimensions: Internalized Emotional Dysfunction (IED), Externalized Emotional Dysfunction (EED), and Fear. Level of IED was not related to performance on the WAIS-IV Full Scale IQ or its four indexes: (Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed). EED was not related to WAIS-IV performance. Level of Fear, which encompasses health preoccupations (HEA) and distorted perceptions (BIZ), was significantly related to WAIS-IV Full Scale IQ and Verbal Comprehension. These results challenge the common use of high scores on the MMPI-2 IED measures (chiefly depression and anxiety) to explain deficient WAIS-IV performance. In addition, they provide impetus for further investigation of the relation between verbal intelligence and Fear.

  16. Understanding the Fundamental Properties of Transfer-Free, Wafer-Level Graphene on Silicon and its Potential for Micro- and Nanodevices

    DTIC Science & Technology

    2015-06-18

    graphene on silicon for on-chip supercapacitors ”, ECS 227th Meeting 2015, Chicago May 24-28, 2015. c) manuscripts submitted but not yet published...for supercapacitors ”, submitted, March 2015. Graphene has been shown to perform extremely well as a material for charge storage in macroscopic... supercapacitors . However, this performance has not been exploited in full for on-chip energy storage, due to the lack of a suitable fabrication process

  17. Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO2 (110) Model Electrode.

    PubMed

    Exner, Kai S; Anton, Josef; Jacob, Timo; Over, Herbert

    2016-06-20

    Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2 (110) model electrode. The full procedure is introduced, starting from the stable reaction intermediates, computing the energy barriers, and finally performing microkinetic simulations, all performed under the influence of the solvent and the electrode potential. Full kinetics from first-principles allows the rate-determining step in the CER to be identified and the experimentally observed change in the Tafel slope to be explained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Potential Benefit of Singing for People with Parkinson's Disease: A Systematic Review.

    PubMed

    Barnish, Jean; Atkinson, Rachel A; Barran, Susannah M; Barnish, Maxwell S

    2016-06-03

    There is evidence that participation in performing arts brings psychosocial benefits in the general population and in recent years there has been substantial interest in the potential therapeutic benefit of performing arts, including singing, for people with chronic medical conditions including those of neurological aetiology. To systematically review the existing body of evidence regarding the potential benefit of singing on clinical outcomes of people with PD. Seven online bibliographic databases were systematically searched in January 2016 and supplementary searches were conducted. Full-text original peer-reviewed scientific papers that investigated the potential benefit of singing on at least one of speech, functional communication, cognitive status, motor function and quality of life in human participants with PD were eligible for inclusion. 449 unique records were identified, 25 full-text articles were screened and seven studies included in the review. All seven studies assessed the impact of singing on speech, five found partial evidence of benefit and two found no evidence of benefit. One study assessed each of functional communication and quality of life and no significant benefit was found. No included study assessed the impact of singing on motor function or cognitive status. Singing may benefit the speech of people with PD, although evidence is not unequivocal. Further research is required to assess wider benefits including on functional communication, cognitive status, motor function and quality of life. Substantial methodological limitations were identified in the existing literature. Recommendations are made for advancing the state of the literature.

  19. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Grosvenor, Sandy; Jones, Jeremy; Koratkar, Anuradha; Li, Connie; Mackey, Jennifer; Neher, Ken; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations more efficiently, The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper examines the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what have been its successes and challenges.

  20. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations. The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper will examine the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what has been its successes and challenges.

  1. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.

    PubMed

    Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A

    2012-04-13

    Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.

  2. Renewal: Remaking America's Schools for the Twenty-First Century

    ERIC Educational Resources Information Center

    Kwalwasser, Harold

    2012-01-01

    Harold Kwalwasser has put together a call to action for education reform that makes a clear case for what has to be done in order to educate all children to their full potential. He visited forty high-performing and transforming school districts, charters, parochial, and private schools to understand why they have succeeded where others have…

  3. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  4. Motor planning flexibly optimizes performance under uncertainty about task goals.

    PubMed

    Wong, Aaron L; Haith, Adrian M

    2017-03-03

    In an environment full of potential goals, how does the brain determine which movement to execute? Existing theories posit that the motor system prepares for all potential goals by generating several motor plans in parallel. One major line of evidence for such theories is that presenting two competing goals often results in a movement intermediate between them. These intermediate movements are thought to reflect an unintentional averaging of the competing plans. However, normative theories suggest instead that intermediate movements might actually be deliberate, generated because they improve task performance over a random guessing strategy. To test this hypothesis, we vary the benefit of making an intermediate movement by changing movement speed. We find that participants generate intermediate movements only at (slower) speeds where they measurably improve performance. Our findings support the normative view that the motor system selects only a single, flexible motor plan, optimized for uncertain goals.

  5. A simulation system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose A.; Shepherd, Chip

    1993-01-01

    America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.

  6. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  7. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  8. Hardware Based Technology Assessment in Support of Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; BraggSitton, Shannon; Carter, Robert; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones.

  9. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  10. Full-Wave Based Validation of Stripline Field Applicator For Low Frequency Material Measurements

    DTIC Science & Technology

    2009-03-01

    16 3.3.1 Principal Solution. . . . . . . . . . . . . . . . . 17 3.3.2 Reflected Solution. . . . . . . . . . . . . . . . . 22 3.4 Applying...potential) [ 17 ]. The vector potential BCs are found to be Ax(x, y = ±h, z) = 0 ∀ x, z (3.2) ∂Ay(x, y = ±h, z) ∂y = 0 ∀ x, z (3.3) Az(x, y = ±h, z...solution at y = ±h, an inverse Fourier transform must be performed on the principal contribution 17 ηre ηim x x η-plane −jp jp Figure 3.2

  11. Scalable, full-colour and controllable chromotropic plasmonic printing

    PubMed Central

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  12. Scalable, full-colour and controllable chromotropic plasmonic printing.

    PubMed

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-11-16

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization.

  13. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  14. Performance Optimization Control of ECH using Fuzzy Inference Application

    NASA Astrophysics Data System (ADS)

    Dubey, Abhay Kumar

    Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.

  15. Do nurses who work in a fair organization sleep and perform better and why? Testing potential psychosocial mediators of organizational justice.

    PubMed

    Hietapakka, Laura; Elovainio, Marko; Heponiemi, Tarja; Presseau, Justin; Eccles, Martin; Aalto, Anna-Mari; Pekkarinen, Laura; Kuokkanen, Liisa; Sinervo, Timo

    2013-10-01

    We examined whether organizational justice is associated with sleep quality and performance in a population-based sample of 1,729 Finnish registered nurses working full time. In addition, we tested psychological mechanisms mediating the potential association. The results of multivariate linear regression analyses showed higher organizational justice to be associated with fewer sleeping problems (β values range from -.20 to -.11) and higher self-reported performance (β values range from .05 to .35). Furthermore, psychological distress (related to the psychological stress model) and job involvement (related to the psychosocial resource model) mediated the association between organizational justice and sleep. Sleeping problems partly mediated the association between organizational justice and performance. Psychological distress explained 51% to 83% and job involvement explained 10% to 15% of the total effects of justice variables on sleeping problems. The findings provide support for the psychological stress model and offer practical implications for reducing nurses' sleeping problems.

  16. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trovato, S.A.; Parry, J.O.

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effectivemore » method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.« less

  17. Scaling of Ion Thrusters to Low Power

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.

    1998-01-01

    Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.

  18. Computational Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Takeoff and Landing Conditions

    NASA Technical Reports Server (NTRS)

    Tompkins, Daniel M.; Sexton, Matthew R.; Mugica, Edward A.; Beyar, Michael D.; Schuh, Michael J.; Stremel, Paul M.; Deere, Karen A.; McMillin, Naomi; Carter, Melissa B.

    2016-01-01

    Due to the aft, upper surface engine location on the Hybrid Wing Body (HWB) planform, there is potential to shed vorticity and separated wakes into the engine when the vehicle is operated at off-design conditions and corners of the envelope required for engine and airplane certification. CFD simulations were performed of the full-scale reference propulsion system, operating at a range of inlet flow rates, flight speeds, altitudes, angles of attack, and angles of sideslip to identify the conditions which produce the largest distortion and lowest pressure recovery. Pretest CFD was performed by NASA and Boeing, using multiple CFD codes, with various turbulence models. These data were used to make decisions regarding model integration, characterize inlet flow distortion patterns, and help define the wind tunnel test matrix. CFD was also performed post-test; when compared with test data, it was possible to make comparisons between measured model-scale and predicted full-scale distortion levels. This paper summarizes these CFD analyses.

  19. Leader personality and crew effectiveness: Factors influencing performance in full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full mission simulation research study was completed to assess the potential for selection along dimensions of personality. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles using a battery of personality assessment scales, and the performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a Positive Instrumental Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Communion profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of Competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  20. Effects of vision on head-putter coordination in golf.

    PubMed

    Gonzalez, David Antonio; Kegel, Stefan; Ishikura, Tadao; Lee, Tim

    2012-07-01

    Low-skill golfers coordinate the movements of their head and putter with an allocentric, isodirectional coupling, which is opposite to the allocentric, antidirectional coordination pattern used by experts (Lee, Ishikura, Kegel, Gonzalez, & Passmore, 2008). The present study investigated the effects of four vision conditions (full vision, no vision, target focus, and ball focus) on head-putter coupling in low-skill golfers. Performance in the absence of vision resulted in a level of high isodirectional coupling that was similar to the full vision condition. However, when instructed to focus on the target during the putt, or focus on the ball through a restricted viewing angle, low-skill golfers significantly decoupled the head--putter coordination pattern. However, outcome measures demonstrated that target focus resulted in poorer performance compared with the other visual conditions, thereby providing overall support for use of a ball focus strategy to enhance coordination and outcome performance. Focus of attention and reduced visual tracking were hypothesized as potential reasons for the decoupling.

  1. Current trends in the management of aspen and mixed aspen forests for sustainable production

    Treesearch

    A. J. David; John C. Zasada; D. W. Gilmore; S. M. Landhausser

    2001-01-01

    Quaking aspen (Populus tremuloides Michx.) is a remarkable species that performs several significant ecological roles throughout its range while at the same time is facing ever-increasing harvesting pressure. Although its full product potential remains untapped, aspen utilization has increased noticeably in the past 15 years as it has become a desired species for...

  2. A Computational/Experimental Study of Two Optimized Supersonic Transport Designs and the Reference H Baseline

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.

    1999-01-01

    Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.

  3. Optimization of Selected Remote Sensing Algorithms for Embedded NVIDIA Kepler GPU Architecture

    NASA Technical Reports Server (NTRS)

    Riha, Lubomir; Le Moigne, Jacqueline; El-Ghazawi, Tarek

    2015-01-01

    This paper evaluates the potential of embedded Graphic Processing Units in the Nvidias Tegra K1 for onboard processing. The performance is compared to a general purpose multi-core CPU and full fledge GPU accelerator. This study uses two algorithms: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery and Automated Cloud-Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 51 for ACCA algorithm and 20 for the dimension reduction algorithm, as compared to the performance of the high-end 8-core server Intel Xeon CPU with 13.5 times higher power consumption.

  4. Computational investigations of the band structure, and thermodynamic and optical features of thorium-based oxide ThGeO4 using the full-potential linearized augmented plane-wave plus local orbital approach

    NASA Astrophysics Data System (ADS)

    Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.

    2018-05-01

    In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.

  5. CCD charge collection efficiency and the photon transfer technique

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Klaasen, K.; Elliott, T.

    1985-01-01

    The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.

  6. Ethical considerations in adherence research.

    PubMed

    Patel, Nupur U; Moore, Blake A; Craver, Rebekah F; Feldman, Steven R

    2016-01-01

    Poor adherence to treatment is a common cause of medical treatment failure. Studying adherence is complicated by the potential for the study environment to impact adherence behavior. Studies performed without informing patients about adherence monitoring must balance the risks of deception against the potential benefits of the knowledge to be gained. Ethically monitoring a patient's adherence to a treatment plan without full disclosure of the monitoring plan requires protecting the patient's rights and upholding the fiduciary obligations of the investigator. Adherence monitoring can utilize different levels of deception varying from stealth monitoring, debriefing after the study while informing the subject that some information had been withheld in regard to the use of adherence monitoring (withholding), informed consent that discloses some form of adherence monitoring is being used and will be disclosed at the end of the study (authorized deception), and full disclosure. Different approaches offer different benefits and potential pitfalls. The approach used must balance the risk of nondisclosure against the potential for confounding the adherence monitoring data and the potential benefits that adherence monitoring data will have for the research subjects and/or other populations. This commentary aims to define various methods of adherence monitoring and to provide a discussion of the ethical considerations that accompany the use of each method and adherence monitoring in general as it is used in clinical research.

  7. Evaluation of the potential of ozone as a power plant biocide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattice, J.S.; Trabalka, J.R.; Adams, S.M.

    1978-09-01

    A review of the literature on the chemistry and biological effects of ozone was conducted to evaluate the potential of ozone to function as a power plant biocide. Evaluation of this potential is dependent upon determining the ability of ozone to maintain the integrity of both the condenser cooling system and the associated ecosystem. The well-known bactericidal capacity of ozone and the limited biofouling control studies conducted thus far suggest that ozone can control both slime and macroinvertebrate fouling at power plants. However, full-scale demonstrations of the minimum levels of ozone required and of solution of the practical aspects ofmore » application have not been performed.« less

  8. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  9. Realizing the full potential of a RITA spectrometer

    NASA Astrophysics Data System (ADS)

    Lefmann, K.; Niedermayer, Ch.; Abrahamsen, A. B.; Bahl, C. R. H.; Christensen, N. B.; Jacobsen, H. S.; Larsen, T. L.; Häfliger, P.; Filges, U.; Rønnow, H. M.

    2006-11-01

    The “re-invented triple-axis spectrometer (RITA) concept has existed for a decade. Recent developments at RITA-2 at PSI, have revealed more of the potential of this instrument class. We demonstrate the performance of the multi-blade imaging mode, which has been applied e.g. to studies of dispersion relations and emphasize the power of this mode in combination with the low background of RITA-2. In addition, we present other ways of utilizing the position sensitive detector in a RITA instrument. Simulations of a planned upgrade of the guide-monochromator system at RITA-2 have shown a potential to increase the flux at the sample position by a factor 5.

  10. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  11. [Potential effects of screen media on cognitive development among children under 3 years old: review of literature].

    PubMed

    Brzozowska, Inga; Sikorska, Iwona

    2016-01-01

    The literature review regarding potential effects of screen media on cognitive development among children under 3 years old, is presented. In this article, cognitive aspects of development include acquisition of language, attention, learning and later school performance. The constant increase of children's access to television is noted, indicating that 60% of infants and toddlers watch TV regularly for 1-2 hours per day. The review included 40 articles and book chapters of significant such as Anderson, Barr, Christakis, Zimmerman, Meltzoff, Courage, Setliff, Troseth. The data was selected from electronic databases of scientific publications: Psychology & Behavioral Sciences Collection, Social Sciences Full Text (H.W. Wilson) and Humanities Full Text (H.W. Wilson) available in Poland. Cited articles provide evidence of the negative impact of exposure to television, media and video on the cognitive functioning of children under 3 years old. The potential impact of watching TV for difficulties in ability to focus attention appears as a core danger. Furthermore, studies suggest a possible connection between early exposure to television and ADHD as well as difficulties with language acquisition, learning and poorer school results.

  12. Defining clogging potential for permeable concrete.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  14. Air Force Systems Command Research Planning Guide (Research Objectives).

    DTIC Science & Technology

    1987-07-15

    potential for producing alloys with superior properties. Titanium and Iron Aluminides - Basic research to identify approaches leading to the formation...performance of ni’.kel, aluminumr,, and titanium alloys and ceramics are required to provide future Air Force weapon systems components with structural...seriously block full exploitat,on. Aluminum and Titanium Alloys - Three generic families of Pylie-,7 alloys are being investigated for both alloy

  15. Co-morbid depressive disorder is associated with better neurocognitive performance in first episode schizophrenia spectrum.

    PubMed

    Herniman, Sarah E; Cotton, Sue M; Killackey, Eóin; Hester, Robert; Allott, Kelly A

    2018-03-15

    Both major depressive disorder (MDD) and first episode schizophrenia spectrum (FES) are associated with significant neurocognitive deficits. However, it remains unclear whether the neurocognitive deficits in individuals with FES are more severe if there is comorbid depressive disorder. The aim of this study was to compare the neurocognitive profiles between those with and without full-threshold depressive disorder in FES. This study involved secondary analysis of baseline data from a randomized controlled trial of vocational intervention for young people with first-episode psychosis (N = 82; age range: 15-25 years). Those with full-threshold depressive disorder (n = 24) had significantly better information processing speed than those without full-threshold depressive disorder. Severity of depressive symptoms was also associated with better information processing speed. In additional to the cross-sectional design, limitations of this study include the absence of assessing insight as a potential mediator. After the first psychotic episode, it could be speculated that those with better information processing speed may be more likely to develop full-threshold depressive disorder, as their ability to efficiently process information may allow them to be more aware of their situations and environments, and consequently to have greater insight into the devastating consequences of FES. Such novel findings support the examination of full-threshold depressive disorder in relation to neurocognitive performance across illness phases in future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Overview of the CLIC detector and its physics potential

    NASA Astrophysics Data System (ADS)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  17. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Li, Ping; Gajaraj, Shashikanth

    2016-12-01

    Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL -1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL -1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL -1 ). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*

    PubMed Central

    Hardy, David J.; Stone, John E.; Schulten, Klaus

    2009-01-01

    Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132

  19. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor.

    PubMed

    André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T

    2016-02-01

    The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  1. Ultrahigh-performance liquid chromatography electrospray ionization Q-Orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: method development and validation.

    PubMed

    Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W

    2014-10-22

    This paper presents an application of ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap MS) for the determination of 451 pesticide residues in fruits and vegetables. Pesticides were extracted from samples using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure. UHPLC/ESI Q-Orbitrap MS in full MS scan mode acquired full MS data for quantification, and UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) (i.e., data-dependent scan mode) obtained product ion spectra for identification. UHPLC/ESI Q-Orbitrap MS quantification was achieved using matrix-matched standard calibration curves along with the use of isotopically labeled standards or a chemical analogue as internal standards to achieve optimal method accuracy. The method performance characteristics include overall recovery, intermediate precision, and measurement uncertainty evaluated according to a nested experimental design. For the 10 matrices studied, 94.5% of the pesticides in fruits and 90.7% in vegetables had recoveries between 81 and 110%; 99.3% of the pesticides in fruits and 99.1% of the pesticides in vegetables had an intermediate precision of ≤20%; and 97.8% of the pesticides in fruits and 96.4% of the pesticides in vegetables showed measurement uncertainty of ≤50%. Overall, the UHPLC/ESI Q-Orbitrap MS demonstrated acceptable performance for the quantification of pesticide residues in fruits and vegetables. The UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) along with library matching showed great potential for identification and is being investigated further for routine practice.

  2. Computer-aided detection (CAD) of breast cancer on full field digital and screening film mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Xuejun; Qian, Wei; Song, Xiaoshan; Qian, Yuyan; Song, Dansheng; Clark, Robert A.

    2003-05-01

    Full-field digital mammography (FFDM) as a new breast imaging modality has potential to detect more breast cancers or to detect them at smaller sizes and earlier stages compared with screening film mammography (SFM). However, its performance needs verification, and it would pose new problems for the development of CAD methods for breast cancer detection and diagnosis. Performance evaluation of CAD systems on FFDM and SFM has been conducted in this study, respectively. First, an adaptive CAD system employing a series of advanced modules has been developed on FFDM. Second, a standardization approach has been developed to make the CAD system independent of characteristics of digitizer or imaging modalities for mammography. CAD systems developed previously for SFM and developed in this study for FFDM have been evaluated on FFDM and SFM images without and with standardization, respectively, to examine the performance improvement of the CAD system developed in this study. Computerized free-response receiver operating characteristic (FROC) analysis has been adopted as performance evaluation method. Compared with previous one, the CAD system developed in this study demonstrated significantly performance improvements. However, the comparison results have shown that the performances of final CAD system in this study are not significantly different on FFDM and on SFM after standardization. It needs further study on the assessment of CAD system performance on FFDM and SFM modalities.

  3. Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru

    Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.

  4. Optical trapping performance of dielectric-metallic patchy particles

    PubMed Central

    Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.

    2015-01-01

    We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054

  5. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon; Krynski, Marcin; Elliott, Stephen R.; Csányi, Gábor

    2018-06-01

    We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials.

  6. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  7. A pre-lithiation method for sulfur cathode used for future lithium metal free full battery

    NASA Astrophysics Data System (ADS)

    Wu, Yunwen; Yokoshima, Tokihiko; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya

    2017-02-01

    Lithium metal free sulfur battery paired by lithium sulfide (Li2S) is a hot point in recent years because of its potential for relatively high capacity and its safety advantage. Due to the insulating nature and high sensitivity to moisture of Li2S, it calls for new way to introduce Li ion into S cathode besides the method of directly using the Li2S powder for the battery pre-lithiation. Herein, we proposed a pre-lithiation method to lithiate the polypyrrole (PPy)/S/Ketjenblack (KB) electrode into PPy/Li2S/KB cathode at room temperature. By this process, the fully lithiated PPy/Li2S/KB cathode showed facilitated charge transfer than the original PPy/S/KB cathode, leading to better cycling performance at high C-rates and disappearance of over potential phenomenon. In this work, the ion-selective PPy layer has been introduced on the cathode surface by an electrodeposition method, which can suppress the polysulfide dissolution from the cathode source. The lithium metal free full battery coupled by the prepared Li2S/KB cathode and graphite anode exhibited excellent cycling performance. Hence, we believe this comprehensive fabrication approach of Li2S cathode will pave a way for the application of new type lithium metal free secondary battery.

  8. Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents

    NASA Technical Reports Server (NTRS)

    Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)

    2001-01-01

    Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.

  9. Mixing console design for telematic applications in live performance and remote recording

    NASA Astrophysics Data System (ADS)

    Samson, David J.

    The development of a telematic mixing console addresses audio engineers' need for a fully integrated system architecture that improves efficiency and control for applications such as distributed performance and remote recording. Current systems used in state of the art telematic performance rely on software-based interconnections with complex routing schemes that offer minimal flexibility or control over key parameters needed to achieve a professional workflow. The lack of hardware-based control in the current model limits the full potential of both the engineer and the system. The new architecture provides a full-featured platform that, alongside customary features, integrates (1) surround panning capability for motorized, binaural manikin heads, as well as all sources in the included auralization module, (2) self-labelling channel strips, responsive to change at all remote sites, (3) onboard roundtrip latency monitoring, (4) synchronized remote audio recording and monitoring, and (5) flexible routing. These features combined with robust parameter automation and precise analog control will raise the standard for telematic systems as well as advance the development of networked audio systems for both research and professional audio markets.

  10. Energy Efficiency Appliance Standards: Where do we stand, how far can we go and how do we get there? An analysis across several economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; de la Rue du Can, Stephane; McNeil, Michael A.

    This paper analyses several potential savings scenarios for minimum energy performance standard (MEPS) and comparable programs for governments participating i n the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, of the Clean Energy Ministerial, which represent over 60% of primary energy consumption in the world. We compare projected energy savings from the main end uses in the residential sector using three energy efficiency scenarios: (1) recent achievements, (2) cost-effective saving potential, and (3) energy efficiency technical potential. The recent achievement scenario (1) evaluates the future impact of MEPS enacted or under development between 2010 and 2012. The cost-effective potential scenariomore » (2) identifies the maximum potential for energy efficiency that results in net benefits to the consumer. The best available technology scenario (3) re presents the full potential of energy efficiency considering best available technologies as candidates for MEPS and incentive programs. We use the Bottom Up Energy Analysis System (BUENAS), developed by Lawrence Berkeley National Laboratory in collaboration with the Collaborative Labelling and Appliances Standards Program (CLASP), to provide a consistent methodology to com pare the different scenarios. This paper focuses on the main end uses in the residential sector. The comparison of the three scenarios for each economy provides possible opportunities for scaling up current policies or implementing additional policies. This comparison across economies reveals country best practices as well as end uses that present the greatest additional potential savings. The paper describes areas where methodologies and additional policy instruments can increase penetration of energy efficient technologies. First , we summarize the barriers and provide remedial policy tools/best practices, such as techno-economic analysis, in response to each barriers that prevent economies from capturing the full cost-effective potentials of MEPS (Scenario 1 to 2). Then, we consider the possible complementary policy options, such as incentive pro grams, to reach the full technical potential of energy efficiency in the residential sector (Scenario 2 to 3).« less

  11. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact.

    PubMed

    Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S

    2017-07-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.

  12. Linking organizational resources and work engagement to employee performance and customer loyalty: the mediation of service climate.

    PubMed

    Salanova, Marisa; Agut, Sonia; Peiró, José María

    2005-11-01

    This study examined the mediating role of service climate in the prediction of employee performance and customer loyalty. Contact employees (N=342) from 114 service units (58 hotel front desks and 56 restaurants) provided information about organizational resources, engagement, and service climate. Furthermore, customers (N=1,140) from these units provided information on employee performance and customer loyalty. Structural equation modeling analyses were consistent with a full mediation model in which organizational resources and work engagement predict service climate, which in turn predicts employee performance and then customer loyalty. Further analyses revealed a potential reciprocal effect between service climate and customer loyalty. Implications of the study are discussed, together with limitations and suggestions for future research. ((c) 2005 APA, all rights reserved).

  13. An "adiabatic-hindered-rotor" treatment allows para-H(2) to be treated as if it were spherical.

    PubMed

    Li, Hui; Roy, Pierre-Nicholas; Le Roy, Robert J

    2010-09-14

    In para-H(2)-{molecule} interactions, the common assumption that para-H(2) may be treated as a spherical particle is often substantially in error. For example, quantum mechanical eigenvalues on a full four-dimensional (4D) potential energy surface for para H(2)-{linear molecule} species often differ substantially from those calculated from the corresponding two-dimensional (2D) surface obtained by performing a simple spherical average over the relative orientations of the H(2) moiety. However, use of an "adiabatic-hindered-rotor" approximation can yield an effective 2D surface whose spectroscopic properties are an order of magnitude closer to those yielded by a full 4D treatment.

  14. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application.

    PubMed

    Carrere, Hélène; Antonopoulou, Georgia; Affes, Rim; Passos, Fabiana; Battimelli, Audrey; Lyberatos, Gerasimos; Ferrer, Ivet

    2016-01-01

    When properly designed, pretreatments may enhance the methane potential and/or anaerobic digestion rate, improving digester performance. This paper aims at providing some guidelines on the most appropriate pretreatments for the main feedstocks of biogas plants. Waste activated sludge was firstly investigated and implemented at full-scale, its thermal pretreatment with steam explosion being most recommended as it increases the methane potential and digestion rate, ensures sludge sanitation and the heat needed is produced on-site. Regarding fatty residues, saponification is preferred for enhancing their solubilisation and bioavailability. In the case of animal by-products, this pretreatment can be optimised to ensure sterilisation, solubilisation and to reduce inhibition linked to long chain fatty acids. With regards to lignocellulosic biomass, the first goal should be delignification, followed by hemicellulose and cellulose hydrolysis, alkali or biological (fungi) pretreatments being most promising. As far as microalgae are concerned, thermal pretreatment seems the most promising technique so far. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The COREL and W12SC3 computer programs for supersonic wing design and analysis

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Rosen, B. S.

    1983-01-01

    Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case.

  16. Emergency centre investigation of first-onset seizures in adults in the Western Cape, South Africa.

    PubMed

    Smith, A B; Van Hoving, D J; Wallis, L A

    2013-08-21

    Patients with first-onset seizures commonly present to emergency centres (ECs). The differential diagnosis is broad, potentially life-threatening conditions need to be excluded, and these patients need to be correctly diagnosed and appropriately referred. There are currently no data on adults presenting with first-onset seizures to ECs in South Africa. To review which investigations were performed on adults presenting with first-onset seizures to six ECs in the Western Cape Province. A prospective, cross-sectional study was conducted from 1 July 2011 to 31 December 2011. All adults with first-onset seizures were included; children and trauma patients were excluded. Subgroup analyses were conducted regarding HIV status and inter-facility variation. A total of 309 patients were included. Computed tomography (CT) scans were planned in 218 (70.6%) patients, but only performed in 169; 96 (56.8%) showed abnormalities judged to be causative (infarction, intracerebral haemorrhage and atrophy being the most common). At least 80% of patients (n=247) received a full renal and electrolyte screen, blood glucose testing and a full haematological screen. Lumbar puncture (LP) was performed in 67 (21.7%) patients, with normal cerebrospinal fluid findings in 51 (76.1%). Only 27 (8%) patients had an electroencephalogram, of which 5 (18%) were abnormal. There was a statistically significant difference in the number of CT scans (p=0.002) and LPs (p<0.001) performed in the HIV-positive group (n=49). This study demonstrated inconsistency and wide local variance for all types of investigations done. It emphasises the need for a local guideline to direct doctors to appropriate investigations, ensuring better quality patient care and potential cost-saving.

  17. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  18. Thermo-electrochemical instrumentation of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit

    2018-03-01

    The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.

  19. Clinical peer review program self-evaluation for US hospitals.

    PubMed

    Edwards, Marc T

    2010-01-01

    Prior research has shown wide variation in clinical peer review program structure, process, governance, and perceived effectiveness. This study sought to validate the utility of a Peer Review Program Self-Evaluation Tool as a potential guide to physician and hospital leaders seeking greater program value. Data from 330 hospitals show that the total score from the self-evaluation tool is strongly associated with perceived quality impact. Organizational culture also plays a significant role. When controlling for these factors, there was no evidence of benefit from a multispecialty review process. Physicians do not generally use reliable methods to measure clinical performance. A high rate of change since 2007 has not produced much improvement. The Peer Review Program Self-Evaluation Tool reliably differentiates hospitals along a continuum of perceived program performance. The full potential of peer review as a process to improve the quality and safety of care has yet to be realized.

  20. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP)

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  1. Diagnosing students' misconceptions in algebra: results from an experimental pilot study.

    PubMed

    Russell, Michael; O'Dwyer, Laura M; Miranda, Helena

    2009-05-01

    Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.

  2. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  3. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  4. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.

    2003-06-01

    The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.

  5. Education of Military Dependent Students: Better Information Needed to Assess Student Performance

    DTIC Science & Technology

    2011-03-01

    construction and maintenance of school facilities . 20 U.S.C. §§ 7702, 7703, 7707, 7708. Page 4 GAO-11-231 Education of Military Dependent Students...highly specialized education, social, psychological, and medical services in order to maximize their full potential for useful and meaningful...Force 82. • Tutor.com. Since the end of 2009, DOD has provided children of active duty military with free, unlimited access to online tutoring

  6. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  7. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    PubMed

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  8. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn2 and ZrV2

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Chun; Jansen, H. J. F.; Freeman, A. J.

    1988-03-01

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn2 and ZrV2 have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to a much higher value of the density of states at EF in ZnZr2. The most important difference between the materials ZrZn2 and ZrV2 is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter μsp. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr2.

  9. Low cost point focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design concepts and plans for mass-production facilities and equipment, field installation, and maintenance were developed and used for cost analysis of a pneumatically stabilized plastic film point focus solar concentrator which has potential application in conjunction with Brayton cycle engines or supply of thermal energy. A sub-scale reflector was fabricated and optically tested by laser ray tracing to determine focal deviations of the surface slope and best focal plane. These test data were then used for comparisons with theoretical concentrator performance modeling and predictions of full-scale design performance. Results of the economic study indicate the concentrator design will have low cost when mass-produced and has cost/performance parameters that fall within current Jet Propulsion Laboratory goals.

  10. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  11. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its ability to execute full weight-supporting locomotion on a treadmill belt.

  12. Vectorized schemes for conical potential flow using the artificial density method

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.; Dwoyer, D. L.; South, J. C., Jr.; Keen, J. M.

    1984-01-01

    A method is developed to determine solutions to the full-potential equation for steady supersonic conical flow using the artificial density method. Various update schemes used generally for transonic potential solutions are investigated. The schemes are compared for speed and robustness. All versions of the computer code have been vectorized and are currently running on the CYBER-203 computer. The update schemes are vectorized, where possible, either fully (explicit schemes) or partially (implicit schemes). Since each version of the code differs only by the update scheme and elements other than the update scheme are completely vectorizable, comparisons of computational effort and convergence rate among schemes are a measure of the specific scheme's performance. Results are presented for circular and elliptical cones at angle of attack for subcritical and supercritical crossflows.

  13. Microsolvation of Cl anion by water clusters: Pertubative Monte Carlo simulations using a hybrid HF/MM potential

    NASA Astrophysics Data System (ADS)

    Truong, Thanh N.; Stefanovich, Eugene V.

    1997-05-01

    We present a study of micro-solvation of Cl anion by water clusters of the size up to seven molecules using a perturbative Monte Carlo approach with a hybrid HF/MM potential. In this approach, a perturbation theory was used to avoid performing full SCF calculations at every Monte Carlo step. In this study, the anion is treated quantum mechanically at the HF/6-31G ∗ level of theory while interactions between solvent waters are presented by the TIP3P potential force field. Analysis on the solvent induced dipole moment of the ion indicates that the Cl anion resides most of the time on the surface of the clusters. Accuracy of the perturbative MC approach is also discussed.

  14. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    PubMed

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  15. Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Kaplar, Robert J.

    2017-02-01

    Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.

  16. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  17. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  18. Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase

    PubMed Central

    York, Jennifer E.; Young, Andrew J.; Radford, Andrew N.

    2014-01-01

    It is well established that the lunar cycle can affect the behaviour of nocturnal animals, but its potential to have a similar influence on diurnal species has received less research attention. Here, we demonstrate that the dawn song of a cooperative songbird, the white-browed sparrow weaver (Plocepasser mahali), varies with moon phase. When the moon was above the horizon at dawn, males began singing on average 10 min earlier, if there was a full moon compared with a new moon, resulting in a 67% mean increase in performance period and greater total song output. The lack of a difference between full and new moon dawns when the moon was below the horizon suggests that the observed effects were driven by light intensity, rather than driven by other factors associated with moon phase. Effects of the lunar cycle on twilight signalling behaviour have implications for both pure and applied animal communication research. PMID:24429683

  19. Development of the trickle roof cooling and heating system: Experimental plan

    NASA Astrophysics Data System (ADS)

    Haves, P.; Jankovic, T.; Doderer, E.

    1982-07-01

    A passive system applicable both to retrofit and new construction was developed. This system (the trickle roof system) dissipates heat from a thin film of water flowing over the roof. A small scale trickle roof system dissipator was tested at Trinity University under a range of ambient conditions and operating configurations. The results suggest that trickle roof systems should have comparable performance to roof pond systems. Provided is a review of the trickle roof system concept, several possible configurations, and the benefits the systems can provide. Test module experiments And results are presented in detail. The requirements for full scale testing are discussed and a plan is outlined using the two identical residential scale passive test facility buildings at Trinity University, San Antonio, Texas. Full scale experimental results would be used to validate computer algorithms, provide system optimization, and produce a nationwide performance assessment and design guidelines. This would provide industry with the information necessary to determine the commerical potential of the trickle roof system.

  20. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  1. Full-Body Gaze Control Mechanisms Elicited During Locomotion: Effects Of VOR Adaptation

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Houser, J.; Peters, B.; Miller, C.; Richards, J.; Marshburn, A.; Brady, R.; Cohen, H.; Bloomberg, J. J.

    2004-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. During locomotion the performer must satisfy two performance criteria: maintain stable forward translation and to stabilize gaze (McDonald, et al., 1997). Precise coordination demands integration of multiple sensorimotor subsystems for fulfilling both criteria. In order to test the general hypothesis that the whole body can serve as an integrated gaze stabilization system, we have previously investigated how the multiple, interdependent full-body sensorimotor subsystems respond to changes in gaze stabilization task constraints during locomotion (Mulavara and Bloomberg, 2003). The results suggest that the full body contributes to gaze stabilization during locomotion, and that its different functional elements respond to changes in visual task constraints. The goal of this study was to determine how the multiple, interdependent, full-body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated after the vestibulo-ocular reflex (VOR) gain has been altered. We investigated the potential of adaptive remodeling of the full-body gaze control system following exposure to visual-vestibular conflict known to adaptively reduce the VOR. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X manifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In this study we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results indicate that, following exposure to the 0.5X minifying lenses, there was a significant increase in the duration of stance and stride times, alteration in the amplitude of head movement with respect to space and a significant increase in the amount of knee flexion during the initial stance phase of the gait cycle. This study provides further evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alteration following exposure to visual-vestibular conflict.

  2. Poor school performance.

    PubMed

    Karande, Sunil; Kulkarni, Madhuri

    2005-11-01

    Education is one of the most important aspects of human resource development. Poor school performance not only results in the child having a low self-esteem, but also causes significant stress to the parents. There are many reasons for children to under perform at school, such as, medical problems, below average intelligence, specific learning disability, attention deficit hyperactivity disorder, emotional problems, poor socio-cultural home environment, psychiatric disorders and even environmental causes. The information provided by the parents, classroom teacher and school counselor about the child's academic difficulties guides the pediatrician to form an initial diagnosis. However, a multidisciplinary evaluation by an ophthalmologist, otolaryngologist, counselor, clinical psychologist, special educator, and child psychiatrist is usually necessary before making the final diagnosis. It is important to find the reason(s) for a child's poor school performance and come up with a treatment plan early so that the child can perform up to full potential.

  3. Performance measurement: A tool for program control

    NASA Technical Reports Server (NTRS)

    Abell, Nancy

    1994-01-01

    Performance measurement is a management tool for planning, monitoring, and controlling as aspects of program and project management--cost, schedule, and technical requirements. It is a means (concept and approach) to a desired end (effective program planning and control). To reach the desired end, however, performance measurement must be applied and used appropriately, with full knowledge and recognition of its power and of its limitations--what it can and cannot do for the project manager. What is the potential of this management tool? What does performance measurement do that a traditional plan vs. actual technique cannot do? Performance measurement provides an improvement over the customary comparison of how much money was spent (actual cost) vs. how much was planned to be spent based on a schedule of activities (work planned). This commonly used plan vs. actual comparison does not allow one to know from the numerical data if the actual cost incurred was for work intended to be done.

  4. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.

    PubMed

    Metzger, Ulla; Parasuraman, Raja

    2005-01-01

    Future air traffic management concepts envisage shared decision-making responsibilities between controllers and pilots, necessitating that controllers be supported by automated decision aids. Even as automation tools are being introduced, however, their impact on the air traffic controller is not well understood. The present experiments examined the effects of an aircraft-to-aircraft conflict decision aid on performance and mental workload of experienced, full-performance level controllers in a simulated Free Flight environment. Performance was examined with both reliable (Experiment 1) and inaccurate automation (Experiment 2). The aid improved controller performance and reduced mental workload when it functioned reliably. However, detection of a particular conflict was better under manual conditions than under automated conditions when the automation was imperfect. Potential or actual applications of the results include the design of automation and procedures for future air traffic control systems.

  5. APPLICATION OF EYE TRACKING FOR MEASUREMENT AND EVALUATION IN HUMAN FACTORS STUDIES IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Spielman, Z.; LeBlanc, K.

    An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less

  6. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    NASA Astrophysics Data System (ADS)

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  7. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    PubMed Central

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  8. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-21

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  9. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  10. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  11. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    PubMed

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  12. Supporting the Future Total Force. A Methodology for Evaluating Potential Air National Guard Mission Assignments

    DTIC Science & Technology

    2007-01-01

    force with its primary function —to organize, train, and equip aviation forces primarily for prompt and sustained offen- sive and defensive air...staff. 4 The full warfighter headquarters end-to-end operation was considered in this study to include non -AOC command and control functions performed...representation of RAND intellectual property is provided for non -commercial use only. Unauthorized posting of RAND PDFs to a non -RAND Web site is

  13. Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning

    PubMed Central

    Casanova, Ramon; Saldana, Santiago; Simpson, Sean L.; Lacy, Mary E.; Subauste, Angela R.; Blackshear, Chad; Wagenknecht, Lynne; Bertoni, Alain G.

    2016-01-01

    Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data. PMID:27727289

  14. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    NASA Astrophysics Data System (ADS)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm

    2018-03-01

    The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.

  15. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  16. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2017-10-28

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  17. Current-Voltage and Floating-Potential characteristics of cylindrical emissive probes from a full-kinetic model based on the orbital motion theory

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Sánchez-Arriaga, Gonzalo

    2018-02-01

    To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.

  18. Electricity production from beer brewery wastewater using single chamber microbial fuel cell.

    PubMed

    Wang, X; Feng, Y J; Lee, H

    2008-01-01

    The performance of electricity production from beer brewery wastewater in a single chamber membrane-free microbial fuel cell (MFC) was investigated. Experimental results showed that the MFCs could generate electricity from full-strength wastewater (2,239 mg-COD/L, 50 mM PBS added) with the maximum power density of 483 mW/m2 (12 W/m3) at 30 degrees C and 435 mW/m2 (11 W/m3) at 20 degrees C, respectively. Temperature was found to have bigger impact on cathode potential than anode potential. Results suggested that it is feasible to generate electricity with the treatment of beer brewery wastewater. Copyright IWA Publishing 2008.

  19. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  20. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  1. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  2. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  3. The effect of using a geotextile in a monolithic (evapotranspiration) alternative landfill cover on the resulting water balance.

    PubMed

    Sun, Jianlei; Yuen, Samuel T S; Fourie, Andy B

    2010-11-01

    This paper examines the potential effects of a geotextile layer used in a lysimeter pan experiment conducted in a monolithic (evapotranspiration) soil cover trial on its resulting water balance performance. The geotextile was added to the base of the lysimeter to serve as a plant root barrier in order to delineate the root zone depth. Both laboratory data and numerical modelling results indicated that the geotextile creates a capillary barrier under certain conditions and retains more water in the soil above the soil/geotextile interface than occurs without a geotextile. The numerical modelling results also suggested that the water balance of the soil cover could be affected by an increase in plant transpiration taking up this extra water retained above the soil/geotextile interface. This finding has a practical implication on the full-scale monolithic cover design, as the absence of the geotextile in the full-scale cover may affect the associated water balance and hence cover performance. Proper consideration is therefore required to assess the final monolithic cover water balance performance if its design is based on the lysimeter results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Mining Peripheral Arterial Disease Cases from Narrative Clinical Notes Using Natural Language Processing

    PubMed Central

    Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G.; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J.; Arruda-Olson, Adelaide M.

    2016-01-01

    Objective Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm to billing code algorithms, using ankle-brachial index (ABI) test results as the gold standard. Methods We compared the performance of the NLP algorithm to 1) results of gold standard ABI; 2) previously validated algorithms based on relevant ICD-9 diagnostic codes (simple model) and 3) a combination of ICD-9 codes with procedural codes (full model). A dataset of 1,569 PAD patients and controls was randomly divided into training (n= 935) and testing (n= 634) subsets. Results We iteratively refined the NLP algorithm in the training set including narrative note sections, note types and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP: 91.8%, full model: 81.8%, simple model: 83%, P<.001), PPV (NLP: 92.9%, full model: 74.3%, simple model: 79.9%, P<.001), and specificity (NLP: 92.5%, full model: 64.2%, simple model: 75.9%, P<.001). Conclusions A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. PMID:28189359

  5. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment

    PubMed Central

    del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  6. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment.

    PubMed

    Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.

  7. Supersonic full-potential methods for missile body analysis

    NASA Technical Reports Server (NTRS)

    Pittman, James L.

    1992-01-01

    Accounts are presented of representative applications to missile bodies of arbitrary shape of methods based on the steady form of the full potential equation. The NCOREL and SIMP full-potential codes are compared, and their results are evaluated for the cases of an arrow wing and a wing-body configuration. Attention is given to the effect of cross-sectional and longitudinal geometries. Comparisons of surface pressure and longitudinal force and moment data for circular and elliptic bodies have shown that the full-potential methods yielded excellent results in attached-flow conditions. Results are presented for a conical star body, waveriders, the Shuttle Orbiter, and a highly swept wing-body cruising at Mach 4.

  8. A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis.

    PubMed

    Sin, Gürkan; Van Hulle, Stijn W H; De Pauw, Dirk J W; van Griensven, Ann; Vanrolleghem, Peter A

    2005-07-01

    Modelling activated sludge systems has gained an increasing momentum after the introduction of activated sludge models (ASMs) in 1987. Application of dynamic models for full-scale systems requires essentially a calibration of the chosen ASM to the case under study. Numerous full-scale model applications have been performed so far which were mostly based on ad hoc approaches and expert knowledge. Further, each modelling study has followed a different calibration approach: e.g. different influent wastewater characterization methods, different kinetic parameter estimation methods, different selection of parameters to be calibrated, different priorities within the calibration steps, etc. In short, there was no standard approach in performing the calibration study, which makes it difficult, if not impossible, to (1) compare different calibrations of ASMs with each other and (2) perform internal quality checks for each calibration study. To address these concerns, systematic calibration protocols have recently been proposed to bring guidance to the modeling of activated sludge systems and in particular to the calibration of full-scale models. In this contribution four existing calibration approaches (BIOMATH, HSG, STOWA and WERF) will be critically discussed using a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis. It will also be assessed in what way these approaches can be further developed in view of further improving the quality of ASM calibration. In this respect, the potential of automating some steps of the calibration procedure by use of mathematical algorithms is highlighted.

  9. Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis

    PubMed Central

    Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver

    2014-01-01

    The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256

  10. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.

  11. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors.

    PubMed

    Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua

    2014-03-07

    A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.

  12. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 1 Cooling Season Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Malhotra, Mini; Munk, Jeffrey D.

    This report provides second-year cooling season test results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) System on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).” The purpose of the second-year project was to (1) evaluate the full- and partload performance of VRF systems compared with an existing baseline heating, ventilation, and airconditioning (HVAC) system, which is a conventional rooftop unit (RTU) variable-air-volume (VAV) system with electric resistance heating and (2) use hourly building energy simulation to evaluate the energy savings potential of using VRF systems in major US cities. The second-year project performance period wasmore » from July 2015 through June 2016.« less

  13. Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness

    NASA Technical Reports Server (NTRS)

    Chapman, Andrew J.

    1984-01-01

    Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.

  14. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  15. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn/sub 2/ and ZrV/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, M.; Jansen, H.J.F.; Freeman, A.J.

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn/sub 2/ and ZrV/sub 2/ have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to amore » much higher value of the density of states at E/sub F/ in ZnZr/sub 2/. The most important difference between the materials ZrZn/sub 2/ and ZrV/sub 2/ is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter ..mu../sub sp/. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr/sub 2/.« less

  16. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading-edge thrust are possible at supersonic speeds for certain planforms having the geometry to support the theoretical thrust-distribution potential. The new analytical process employed provides not only the level of leading-edge thrust attainable but also the spanwise distribution of both it and that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  17. Three-dimensional Imaging for Large LArTPCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, C.; Qian, X.; Viren, B.

    2017-12-14

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientic potential. LArTPCs with readout using wire planes provides a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, U. P.; Nayak, V.

    Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.

  19. 2017 Guralp Affinity Digitizer Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  20. Three-dimensional viscous rotor flow calculations using a viscous-inviscid interaction approach

    NASA Technical Reports Server (NTRS)

    Chen, Ching S.; Bridgeman, John O.

    1990-01-01

    A three-dimensional viscous-inviscid interaction analysis was developed to predict the performance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between predictions and test data.

  1. Hydropower Vision: Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Hydropower has provided clean, affordable, reliable, and renewable electricity in the United States for more than a century. Building on hydropower’s historical significance, and to inform the continued technical evolution, energy market value, and environmental performance of the industry, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has led a first-of-its-kind comprehensive analysis focused on a set of potential pathways for the environmentally sustainable expansion of hydropower (hydropower generation and pumped storage) in the United States.

  2. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  3. Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Albertson, Cindy W.

    2016-01-01

    This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.

  4. Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels

    NASA Technical Reports Server (NTRS)

    Moher, Michael L.; Lodge, John H.

    1990-01-01

    A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.

  5. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  6. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests.

    PubMed

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-11-01

    The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2(4) full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors' impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors' influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.

    As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlomore » simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.« less

  8. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  9. Impact of stress on dentists' clinical performance. A systematic review.

    PubMed

    Plessas, A; Delgado, M B; Nasser, M; Hanoch, Y; Moles, D R

    2018-03-01

    Dentistry is recognised as a stressful profession and dentists perceive their profession to be more stressful than other healthcare professions. While earlier studies have shown a link between stress and well-being among dentists, whether stress negatively impacts their clinical performance is an important and open question. We do know, however, that stress is associated with reduced performance in other health (and non-health) related professions. This systematic review aimed to answer the question: how does stress impact on dentists' clinical performance? This systematic review was registered in PROSPERO (CRD42016045756). The CINHAL, Embase, Medline, PsycINFO, EThOS and OpenGrey electronic databases were searched according to PRISMA guidelines. Two reviewers independently screened the citations for relevance. The citation list of potentially eligible papers was also searched. Prospective empirical studies were considered for inclusion. The inclusion criteria were applied at the full-text stage by the two same reviewers independently. The search yielded 3535 titles and abstracts. Twelve publications were considered potentially eligible, eleven of which were excluded as they did not meet the predefined inclusion criteria. This systematic review identified a gap in the literature as it found no empirical evidence quantifying the impact of stress on dentists' clinical performance. Prospective well-designed experimental simulation studies, comparing stress with non-stress situations on clinical performance and decision making, as well studies evaluating prospectively real-life dentists' performance under stress are warranted. Copyright© 2018 Dennis Barber Ltd.

  10. Variation and adaptation: learning from success in patient safety-oriented simulation training.

    PubMed

    Dieckmann, Peter; Patterson, Mary; Lahlou, Saadi; Mesman, Jessica; Nyström, Patrik; Krage, Ralf

    2017-01-01

    Simulation is traditionally used to reduce errors and their negative consequences. But according to modern safety theories, this focus overlooks the learning potential of the positive performance, which is much more common than errors. Therefore, a supplementary approach to simulation is needed to unfold its full potential. In our commentary, we describe the learning from success (LFS) approach to simulation and debriefing. Drawing on several theoretical frameworks, we suggest supplementing the widespread deficit-oriented, corrective approach to simulation with an approach that focusses on systematically understanding how good performance is produced in frequent (mundane) simulation scenarios. We advocate to investigate and optimize human activity based on the connected layers of any setting: the embodied competences of the healthcare professionals, the social and organizational rules that guide their actions, and the material aspects of the setting. We discuss implications of these theoretical perspectives for the design and conduct of simulation scenarios, post-simulation debriefings, and faculty development programs.

  11. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.

    PubMed

    Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2012-08-08

    Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.

  12. Oral surgery in a patient with cirrhosis and thrombocytopenia: a case report.

    PubMed

    Patel, Seena; Perry, Maureen Munnelly; Spolarich, Ann Eshenaur

    2016-01-01

    While most oral surgical procedures can be safely performed in an outpatient setting, certain medical conditions may present a higher chance of postoperative complications. In particular, those predisposing the patient to bleeding abnormalities pose a potential risk when performing such treatments. The authors report a case involving full-mouth extractions in a patient with cirrhosis and thrombocytopenia after obtaining a platelet transfusion. A 62-year-old Caucasian female presented to a university special care dental clinic requiring extractions. Her pertinent medical history was remarkable for cirrhosis and thrombocytopenia, with a platelet count of 32,000/uL. Upon medical consultation, the patient was appointed for a prophylactic platelet transfusion. The surgery was rendered uneventfully, and the patient achieved adequate hemostasis without hospitalization. Patients with cirrhosis pose a potential bleeding risk with dental surgical procedures. Pre-operative medical consultation, review of pertinent laboratory values, and prophylactic platelet transfusion allow these patients to be managed safely in an outpatient setting. © 2015 Special Care Dentistry Association and Wiley Periodicals, Inc.

  13. In-Situ Resource Utilization Experiment for the Asteroid Redirect Crewed Mission

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Fries, M.; Love, S.; Sellar, R. G.; Voecks, G.; Wilson, D.

    2015-10-01

    The Asteroid Redirect Crewed Mission (ARCM) represents a unique opportunity to perform in-situ testing of concepts that could lead to full-scale exploitation of asteroids for their valuable resources [1]. This paper describes a concept for an astronautoperated "suitcase" experiment to would demonstrate asteroid volatile extraction using a solar-heated oven and integral cold trap in a configuration scalable to full-size asteroids. Conversion of liberated water into H2 and O2 products would also be demonstrated through an integral processing and storage unit. The plan also includes development of a local prospecting system consisting of a suit-mounted multi-spectral imager to aid the crew in choosing optimal samples, both for In-Situ Resource Utilization (ISRU) and for potential return to Earth.

  14. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Mengwei; Yang, Yan; Nan, Caiyun; Sun, Genban; Li, Huifeng; Ma, Shulan

    2018-06-01

    The large over-potential during the battery operation is a great obstacle for the application of Li-O2 batteries. The porous structure and electrical conductivity of the electrocatalysts are significant for the electrocatalytic performance of Li-O2 batteries. In this work, a porous Co3O4/GN nanocomposite (Co3O4 nanorods anchored on graphene nanosheets) is prepared via a facile hydrothermal method assisted with heat treatment. The unique structure of Co3O4/GN endows efficient electrocatalystic activity for Li-O2 batteries. In comparison to the Co3O4, the Co3O4/GN demonstrates a better cycle performance showing more than 40 cycles with a 1500 mAh g-1 capacity limit strategy at a current density of 300 mA g-1, and a reduced over-potential of 110 mV at high current density (1200 mA g-1). The Co3O4/GN also displays a high initial specific capacity (7600 mAh g-1) and a good reversibility in full cycle with a coulombic efficiency of 99.8% in the first cycle. The impressed cyclability, specific capacity, rate performance, and low over-potentials indicate that the as-prepared Co3O4/GN nanocomposite is a promising catalyst candidate for reversible Li-O2 batteries.

  15. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary for coupling postsynaptic and presynaptic phenomena, through the activation of group I metabotropic glutamate receptors, and its action lasts only for a short period. If this coupling does not occur, a full and long-lasting potentiation cannot develop.

  16. Renal donors with prostate cancer, no longer a reason to decline.

    PubMed

    Dholakia, S; Johns, R; Muirhead, L; Papalois, V; Crane, J

    2016-01-01

    To fully assess the true risk of prostate cancer transmission in during renal transplantation. A full review of all existing literature relevant to the topic. There has not been a single documented case of transmission of prostate cancer during renal transplant. Prostate cancer in deceased organ donors has an incidence estimated between 3% and 18.5% and over 100 transplants have been performed using organs from donor with proven prostate cancer without issue. Transmission of prostate cancer through kidney transplantation seems very unlikely. The risks of remaining on the waiting list are outweighed by a transmission risk and the potential benefit makes the case to have clear guidelines about donor prostate malignancy when accepting potential organs. Copyright © 2015. Published by Elsevier Inc.

  17. ATLAS and LHC computing on CRAY

    NASA Astrophysics Data System (ADS)

    Sciacca, F. G.; Haug, S.; ATLAS Collaboration

    2017-10-01

    Access and exploitation of large scale computing resources, such as those offered by general purpose HPC centres, is one important measure for ATLAS and the other Large Hadron Collider experiments in order to meet the challenge posed by the full exploitation of the future data within the constraints of flat budgets. We report on the effort of moving the Swiss WLCG T2 computing, serving ATLAS, CMS and LHCb, from a dedicated cluster to the large Cray systems at the Swiss National Supercomputing Centre CSCS. These systems do not only offer very efficient hardware, cooling and highly competent operators, but also have large backfill potentials due to size and multidisciplinary usage and potential gains due to economy at scale. Technical solutions, performance, expected return and future plans are discussed.

  18. Modelling diffusion feedbacks between technology performance, cost and consumer behaviour for future energy-transport systems

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Brand, Christian; Banister, David

    2014-04-01

    Emerging technologies will have important impacts on sustainability objectives. Yet little is known about the explicit feedbacks between consumer behaviour and technological change, and the potential impact on mass market penetration. We use the UK as a case-study to explore the dynamic interactions between technology supply, performance, cost, and heterogeneous consumer behaviour and the resulting influence on long term market diffusion. Simulations of competing vehicle technologies indicate that petrol hybrids (HEVs) dominate the market over the long-term because they benefit from improved performance and are able to reach the steep part of the diffusion curve by 2025 while competing technologies remain in the early stages of growth and are easier to displace in the market. This is due to the cumulative build-up of stock and slow fleet turnover creating inertia in the technological system. Consequently, it will be difficult to displace incumbent technologies because of system inertia, cumulative growth in stock, long operational life, and consumer risk aversion to new unproven technologies. However, when accounting for both technological and behavioural change, simulations indicate that if investment can reach 30-40% per annum growth in supply, combined with steady technology improvements, and more sophisticated agent decision making such as accounting for full technology lifecycle cost and performance, full battery electric vehicles could displace the incumbent system by 2050.

  19. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry.

    PubMed

    De Dominicis, Emiliano; Commissati, Italo; Gritti, Elisa; Catellani, Dante; Suman, Michele

    2015-01-01

    In addition to 'traditional' multi-residue and multi-contaminant multiple reaction monitoring (MRM) mass spectrometric techniques devoted to quantifying a list of targeted compounds, the global food industry requires non-targeted methods capable of detecting other possible potentially hazardous compounds. Ultra-high-performance liquid chromatography combined with a single-stage Orbitrap high-resolution mass spectrometer (UHPLC-HRMS Exactive™-Orbitrap Technology) was successfully exploited for the complete selective and quantitative determination of 33 target compounds within three major cross categories (pesticides, antibiotics and mycotoxins) in bakery matrices (specifically milk, wheat flour and mini-cakes). Resolution was set at 50 000 full width at half maximum (FWHM) to achieve the right compromise between an adequate scan speed and selectivity, allowing for the limitations related to the necessary generic sample preparation approach. An exact mass with tolerance of 5 ppm and minimum peak threshold of 10 000 units were fixed as the main identification conditions, including retention time and isotopic pattern as additional criteria devoted to greatly reducing the risk of false-positive findings. The full validation for all the target analytes was performed: linearity, intermediate repeatability and recovery (28 analytes within 70-120%) were positively assessed; furthermore, limits of quantification between 5 and 100 µg kg(-1) (with most of the analytes having a limit of detection below 6 µg kg(-1)) indicate good performance, which is compatible with almost all the regulatory needs. Naturally contaminated and fortified mini-cakes, prepared through combined use of industrial and pilot plant production lines, were analysed at two different concentration levels, obtaining good overall quantitative results and providing preliminary indications of the potential of full-scan HRMS cluster analysis. The effectiveness of this analytical approach was also tested in terms of the formulation of hypotheses for the identification of other analytes not initially targeted which can have toxicological implications (e.g. 3-acetyl-deoxynivalenol and deoxynivalenol-3-glucoside), opening a window on retrospective investigation perspectives in food safety laboratories.

  20. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings were controlled by a computer, then this method of charge control could readily be implemented in software.

  1. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less

  3. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.

    PubMed

    Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J; Arruda-Olson, Adelaide M

    2017-06-01

    Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm with billing code algorithms, using ankle-brachial index test results as the gold standard. We compared the performance of the NLP algorithm to (1) results of gold standard ankle-brachial index; (2) previously validated algorithms based on relevant International Classification of Diseases, Ninth Revision diagnostic codes (simple model); and (3) a combination of International Classification of Diseases, Ninth Revision codes with procedural codes (full model). A dataset of 1569 patients with PAD and controls was randomly divided into training (n = 935) and testing (n = 634) subsets. We iteratively refined the NLP algorithm in the training set including narrative note sections, note types, and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP, 91.8%; full model, 81.8%; simple model, 83%; P < .001), positive predictive value (NLP, 92.9%; full model, 74.3%; simple model, 79.9%; P < .001), and specificity (NLP, 92.5%; full model, 64.2%; simple model, 75.9%; P < .001). A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Role of structural relaxations and chemical substitutions on piezoelectric fields and potential lineup in GaN/Al junctions

    NASA Astrophysics Data System (ADS)

    Picozzi, S.; Profeta, G.; Continenza, A.; Massidda, S.; Freeman, A. J.

    2002-04-01

    First-principles full-potential linearized augmented plane wave calculations are performed to clarify the role of the interface geometry on piezoelectric fields and potential lineups in [0001] wurtzite and [111]-zincblende GaN/Al junctions. The electric field (polarity and magnitude) is found to be strongly affected by atomic relaxations in the interface region. A procedure is used to evaluate the Schottky-barrier height in the presence of electric fields, showing that their effect is relatively small (a few tenths of an eV). These calculations assess the rectifying behavior of the GaN/Al contact, in agreement with experimental values for the barrier. We disentangle chemical and structural effects on the relevant properties (such as the potential discontinuity and the electric field) by studying unrelaxed ideal nitride/metal systems. Using simple electronegativity arguments, we outline the leading mechanisms that define the values of the electric field and Schottky barrier in these ideal systems. Finally, the transitivity rule is proved to be well satisfied.

  5. A High‐Voltage and High‐Capacity Li1+xNi0.5Mn1.5O4 Cathode Material: From Synthesis to Full Lithium‐Ion Cells

    PubMed Central

    Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret

    2016-01-01

    Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0

  6. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  7. Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2009-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.

  8. Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2008-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.

  9. Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential based on the pharmacophore modeling assistant with the full factor experimental design.

    PubMed

    Jiang, Long; Li, Yu

    2016-04-15

    In this study, the properties of AhR binding affinity, bio-concentration factor, half-life and vapor pressure were selected as the typical indicators of biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential for polybrominated diphenyl ethers (PBDEs), respectively. A three-dimensional pharmacophore modeling assistant with a full factor experimental design for each property was used to reveal the significant pharmacophore features and the substituent effects to obtain reasonable modified schemes for the selected target PBDEs. Finally, the performances of the persistent organic pollutant (POP) properties, the synthesis feasibility and the fire resistance of the modified compounds were evaluated. The most influential pharmacophore feature for all POP properties was the hydrophobic group, especially the vinyl and propyl groups. Modified compounds with two additional hydrophobic groups exhibited a better regulatory performance. The average reduction in the proportions of the four POP properties for the modified compounds (except for 3-phenyl-BDE-15) was 70.60%, 52.44%, 47.04% and 70.88%. In addition, the energy and the C-Br bond dissociation enthalpy of the four typical PBDEs were higher than those of the modified compounds (except for 3-phenyl-BDE-15), indicating the synthesis feasibility and the lower energy barrier of the modified compounds to release Br free radicals to provide fire resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state

    NASA Astrophysics Data System (ADS)

    Mabrouk, N.; Berriche, H.

    2017-08-01

    Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.

  11. Initial Performance of the Aspect System on the Chandra Observatory: Post-Facto Aspect Reconstruction

    NASA Technical Reports Server (NTRS)

    Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.

    2000-01-01

    The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.

  12. Performance evaluation of public hospital information systems by the information system success model.

    PubMed

    Cho, Kyoung Won; Bae, Sung-Kwon; Ryu, Ji-Hye; Kim, Kyeong Na; An, Chang-Ho; Chae, Young Moon

    2015-01-01

    This study was to evaluate the performance of the newly developed information system (IS) implemented on July 1, 2014 at three public hospitals in Korea. User satisfaction scores of twelve key performance indicators of six IS success factors based on the DeLone and McLean IS Success Model were utilized to evaluate IS performance before and after the newly developed system was introduced. All scores increased after system introduction except for the completeness of medical records and impact on the clinical environment. The relationships among six IS factors were also analyzed to identify the important factors influencing three IS success factors (Intention to Use, User Satisfaction, and Net Benefits). All relationships were significant except for the relationships among Service Quality, Intention to Use, and Net Benefits. The results suggest that hospitals should not only focus on systems and information quality; rather, they should also continuously improve service quality to improve user satisfaction and eventually reach full the potential of IS performance.

  13. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    PubMed

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Hydro Carbon (HC) and Nitrogen Oxide (NO x ) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  15. A New Approximate Chimera Donor Cell Search Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Nixon, David (Technical Monitor)

    1998-01-01

    The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.

  16. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    NASA Astrophysics Data System (ADS)

    Mata Pavia, Juan; Charbon, Edoardo; Wolf, Martin

    2011-07-01

    An imager for optical tomography was designed based on a detector with 128×128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in which scanning of the object is not necessary. This enables one to perform high-resolution optical tomography with much higher acquisition rate, which is fundamental in clinical applications. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new imaging system generated a high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take full advantage of it. Images were generated using a new reconstruction algorithm that combined general inverse problem methods with Fourier transforms in order to reduce the complexity of the problem. Simulations show that the potential resolution of the new setup is in the order of millimeters. Experiments have been performed to confirm this potential. Images derived from the measurements demonstrate that we have already reached a resolution of 5mm.

  17. Prediction of effects of wing contour modifications on low-speed maximum lift and transonic performance for the EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Waggoner, E. G.

    1990-01-01

    Computational predictions of the effects of wing contour modifications on maximum lift and transonic performance were made and verified against low speed and transonic wind tunnel data. This effort was part of a program to improve the maneuvering capability of the EA-6B electronics countermeasures aircraft, which evolved from the A-6 attack aircraft. The predictions were based on results from three computer codes which all include viscous effects: MCARF, a 2-D subsonic panel code; TAWFIVE, a transonic full potential code; and WBPPW, a transonic small disturbance potential flow code. The modifications were previously designed with the aid of these and other codes. The wing modifications consists of contour changes to the leading edge slats and trailing edge flaps and were designed for increased maximum lift with minimum effect on transonic performance. The prediction of the effects of the modifications are presented, with emphasis on verification through comparisons with wind tunnel data from the National Transonic Facility. Attention is focused on increments in low speed maximum lift and increments in transonic lift, pitching moment, and drag resulting from the contour modifications.

  18. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  19. Reduced vision selectively impairs spatial updating in fall-prone older adults.

    PubMed

    Barrett, Maeve M; Doheny, Emer P; Setti, Annalisa; Maguinness, Corrina; Foran, Timothy G; Kenny, Rose Anne; Newell, Fiona N

    2013-01-01

    The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant's return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.

  20. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk.

    PubMed

    Arboleya, Silvia; Ruas-Madiedo, Patricia; Margolles, Abelardo; Solís, Gonzalo; Salminen, Seppo; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2011-09-01

    Most of the current commercial probiotic strains have not been selected for specific applications, but rather on the basis of their technological potential for use in diverse applications. Therefore, by selecting them from appropriate sources, depending on the target population, it is likely that better performing strains may be identified. Few strains have been specifically selected for human neonates, where the applications of probiotics may have a great positive impact. Breast-milk constitutes an interesting source of potentially probiotic bifidobacteria for inclusion in infant formulas and foods targeted to both pre-term and full-term infants. In this study six Bifidobacterium strains isolated from breast-milk were phenotypically and genotypically characterised according to international guidelines for probiotics. In addition, different in vitro tests were used to assess the safety and probiotic potential of the strains. Although clinical data would be needed before drawing any conclusion on the probiotic properties of the strains, our results indicate that some of them may have probiotic potential for their inclusion in products targeting infants. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  2. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-raymore » exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full-field imaging by 259%, 279%, and 145% for SEDR, slot-scan, and full-field with grid, respectively. The average CNR over four regions was found to improve over that for nongrid full-field imaging by 201% for SEDR as compared to 133% for the slot-scan technique and 14% for the antiscatter grid method. Conclusions: Both SEDR and slot-scan techniques outperformed the antiscatter grid method used in standard full-field radiography. For imaging with the same effective exposure, the SEDR technique offers no advantage over the slot-scan method in terms of SPRs and CRs. However, it improves CNRs significantly, especially in heavily attenuating regions. The improvement of low-contrast performance may help improve the detection of the lung nodules or other abnormalities and may offer SEDR the potential for dose reduction in chest radiography.« less

  3. Development of Laser Scanner for Full Cross-Sectional Deformation Monitoring of Underground Gateroads

    PubMed Central

    Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi

    2017-01-01

    The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449

  4. 38 CFR 21.6140 - Evaluation and improvement of rehabilitation potential.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... basis for planning: (i) A program of services and assistance to improve the veteran's potential for.... The duration of services needed to improve rehabilitation potential, furnished on a full-time basis... total program, may not exceed 9 months. If these services are furnished on a less than full-time basis...

  5. Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.

    2015-01-01

    The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.

  6. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics.

    PubMed

    Sun, Lei; Qin, Guoxuan; Seo, Jung-Hun; Celler, George K; Zhou, Weidong; Ma, Zhenqiang

    2010-11-22

    Multigigahertz flexible electronics are attractive and have broad applications. A gate-after-source/drain fabrication process using preselectively doped single-crystal silicon nanomembranes (SiNM) is an effective approach to realizing high device speed. However, further downscaling this approach has become difficult in lithography alignment. In this full paper, a local alignment scheme in combination with more accurate SiNM transfer measures for minimizing alignment errors is reported. By realizing 1 μm channel alignment for the SiNMs on a soft plastic substrate, thin-film transistors with a record speed of 12 GHz maximum oscillation frequency are demonstrated. These results indicate the great potential of properly processed SiNMs for high-performance flexible electronics.

  7. A computer program for the design of optimum catalytic monoliths for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1990-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. The performance criteria and constraints involved in the design of catalyst configurations for use in a closed-cycle laser are discussed, and several design studies performed with a computerized design program that was written are presented. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables are discussed.

  8. Effect of piracetam and nimodipine on full-thickness skin burns in rabbits.

    PubMed

    Sari, Elif; Dincel, Gungor C

    2016-08-01

    The potential of several drugs for full-thickness skin burns has been investigated, but the treatment of such burns remains a challenge in plastic surgery. The present study was designed to determine the effect of systemic and topical administration of piracetam and nimodipine on full-thickness skin burn wound healing. A total of 36 New Zealand male rabbits were divided into six groups. Full-thickness skin burns were produced in all the groups, except the control group. Piracetam was administered systemically (piracetam-IV) and topically (piracetam-C) for 14 days, and nimodipine was administered systemically (nimodipine-IV) and topically (nimodipine-C) over the burn wounds for 14 days. The sham group underwent burn injury but was not administered any drug. After 21 days, gross examination and histopathological analysis were performed and the results were compared statistically. Nimodipine-C and nimodipine-IV had no effect on burn wound healing. However, both piracetam-IV and piracetam-C significantly enhanced the healing of the full-thickness skin burn wounds, although the latter was more effective, useful and practical in burn wound healing. The histopathological features of the wounds in the piracetam-C group were closer to those of the control group than those of the other groups. Piracetam-C rather than piracetam-IV may promote full-thickness burn wound healing in rabbits. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. X-48B Flight Test Progress Overview

    NASA Technical Reports Server (NTRS)

    Risch, Timoth K.; Cosentino, Gary B.; Regan, Christopher D.; Kisska, Michael; Princen, Norman

    2009-01-01

    The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.

  10. Imaging the Anomalous Charge Distribution Inside CsPbBr3 Perovskite Quantum Dots Sensitized Solar Cells.

    PubMed

    Panigrahi, Shrabani; Jana, Santanu; Calmeiro, Tomás; Nunes, Daniela; Martins, Rodrigo; Fortunato, Elvira

    2017-10-24

    Highly luminescent CsPbBr 3 perovskite quantum dots (QDs) have gained huge attention in research due to their various applications in optoelectronics, including as a light absorber in photovoltaic solar cells. To improve the performances of such devices, it requires a deeper knowledge on the charge transport dynamics inside the solar cell, which are related to its power-conversion efficiency. Here, we report the successful fabrication of an all-inorganic CsPbBr 3 perovskite QD sensitized solar cell and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy. Carrier generation, separation, and transport capacity inside the cells are dependent on the light illumination. Large differences in surface potential between electron and hole transport layers with unbalanced carrier separation at the junction have been observed under white light (full solar spectrum) illumination. However, under monochromatic light (single wavelength of solar spectrum) illumination, poor charge transport occurred across the junction as a consequence of less difference in surface potential between the active layers. The outcome of this study provides a clear idea on the carrier dynamic processes inside the cells and corresponding surface potential across the layers under the illumination of different wavelengths of light to understand the functioning of the solar cells and ultimately for the improvement of their photovoltaic performances.

  11. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment.

    PubMed

    Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P

    2001-08-01

    The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.

  12. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    PubMed

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  13. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings ofmore » $$2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $$750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.« less

  14. Spectroscopic and Photometric Survey of Northern Sky for the ESA PLATO space mission

    NASA Astrophysics Data System (ADS)

    Ženovienė, Renata; Bagdonas, Vilius; Drazdauskas, Arnas; Janulis, Rimvydas; Klebonas, Lukas; Mikolaitis, Šarūnas; Pakštienė, Erika; Tautvaišienė, Gražina

    2018-04-01

    The ESA-PLATO 2.0 mission will perform an in-depth analysis of the large part of the sky-sphere searching for extraterrestrial telluric-like planets. At the Molėtai Astronomical Observatory of Vilnius University, we started a spectroscopic and photometric survey of the northern sky fields that potentially will be targeted by the PLATO mission. We aim to contribute in developing the PLATO input catalogue by delivering a long-duration stellar variability information and a full spectroscopic characterization of brightest targets. First results of this survey are overviewed.

  15. Adhesion International 1987. Proceedings of the Annual Meeting of the Adhesion Society, Inc. (10th) Held in Williamsburg, Virginia on 23-27 February 1987

    DTIC Science & Technology

    1987-01-01

    Sons, New York, 1983). The Effect of Electrochemical Potentials on the Durability of Rubber /Metal Bonds in Sea Watert A. STEVENSON Materials...cohesive fracture through the rubber . As a control experiment, a set of new dry testpieces were cut at the bond to various depths-simulating the full...melts are a new class of adhesives. They are created to improve the heat performance of hot melts without losing the advantages of hot melts, for

  16. High-performance space shuttle auxiliary propellant valve system

    NASA Technical Reports Server (NTRS)

    Smith, G. M.

    1973-01-01

    Several potential valve closures for the space shuttle auxiliary propulsion system (SS/APS) were investigated analytically and experimentally in a modeling program. The most promising of these were analyzed and experimentally evaluated in a full-size functional valve test fixture of novel design. The engineering investigations conducted for both model and scale evaluations of the SS/APS valve closures and functional valve fixture are described. Preliminary designs, laboratory tests, and overall valve test fixture designs are presented, and a final recommended flightweight SS/APS valve design is presented.

  17. Raman backscatter measurement research on water vapor systems

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1975-01-01

    Raman backscatter techniques proved to be a useful remote sensing tool, whose full potential has not been realized. The types of information available from laser probes in atmospheric studies are reviewed. Detection levels for known Raman cross sections are calculated using the laser radar equation. Laboratory experiments performed for H2O, N2, SO2, O2 and HCL indicate that accurate wavelength cross sections need to be obtained, as well as more emphasis on obtaining accurate Raman cross sections of molecular species at wavelengths in the ultraviolet spectra.

  18. Evaluation of Two Guralp Preamplifiers for GS13 Seismometer Application.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    Sandia National Laboratories has tested and evaluated a new preamplifier, the Guralp Preamplifier for GS13, manufactured by Guralp. These preamplifiers are used to interface between Guralp digitizers and Geotech GS13 Seismometers. The purpose of the preamplifier evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Guralp GS13 Preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  19. Investigation of the Reverse Water Gas Shift Reaction for Production of Oxygen From Mars Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Meyer, Tom; Zubrin, Robert

    1997-01-01

    The first phase of the research includes a comprehensive analytical study examining the potential applications for engineering subsystems and mission strategies made possible by such RWGS based subsystems, and will include an actual experimental demonstration and performance characterization of a full-scale brassboard RWGS working unit. By the time of this presentation the laboratory demonstration unit will not yet be operational but we will present the results of our analytical studies to date and plans for the ongoing work.

  20. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  1. Realizing the electric-vehicle revolution

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  2. Programming in Vienna Fortran

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Zima, Hans

    1992-01-01

    Exploiting the full performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna Fortran is a language extension of Fortran which provides the user with a wide range of facilities for such mapping of data structures. In contrast to current programming practice, programs in Vienna Fortran are written using global data references. Thus, the user has the advantages of a shared memory programming paradigm while explicitly controlling the data distribution. In this paper, we present the language features of Vienna Fortran for FORTRAN 77, together with examples illustrating the use of these features.

  3. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  4. Wind tunnel tests of four flexible wing ultralight gliders

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1979-01-01

    The aerodynamic lift, drag, and pitching moment characteristics of four full scale, flexible wing, ultralight gliders were measured in the settling chamber of a low speed wind tunnel. The gliders were tested over a wide range of angle of attack and at two different velocities. Particular attention was devoted to the lift and pitching moment behavior at low and negative angles of attack because of the potential loss of longitudinal stability of flexible wing gliders in this regime. The test results were used to estimate the performance and longitudinal control characteristics of the gliders.

  5. Space Station Freedom - Approaching the critical design phase

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  6. Transformative Science for the Next Decade with the Green Bank Observatory

    NASA Astrophysics Data System (ADS)

    O'Neil, Karen; Frayer, David; Ghigo, Frank; Lockman, Felix; Lynch, Ryan; Maddalena, Ronald; minter, Anthony; Prestage, Richard

    2018-01-01

    With new instruments and improved performance, the 100m Green Bank Telescope is now demonstrating its full potential. On this 60th anniversary of the groundbreaking for the Green Bank Observatory, we can look forward to the future of the facility for the next 5, 10, and even 20 years. Here we describe the results from a recent workshop, “Transformative Science for the Next Decade with the Green Bank Observatory: Big Questions, Large Programs, and New Instruments,” and describe the scientific plans for our facility.

  7. Early working memory and maternal communication in toddlers born very low birth weight

    PubMed Central

    Lowe, Jean; Erickson, Sarah J; MacLean, Peggy; Duvall, Susanne W

    2010-01-01

    Aim Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18–22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Methods Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Results Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. Conclusion The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW. PMID:19154525

  8. Early working memory and maternal communication in toddlers born very low birth weight.

    PubMed

    Lowe, Jean; Erickson, Sarah J; Maclean, Peggy; Duvall, Susanne W

    2009-04-01

    Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18-22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW.

  9. Finding Coefficients of the Full Array of Motion-Independent N-Body Potentials of Metric Gravity from Gravity's Exterior and Interior Effacement Algebra

    NASA Astrophysics Data System (ADS)

    Nordtvedt, Kenneth

    2018-01-01

    In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.

  10. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation in other potential vehicle architectures. The development program, including test articles, the test facility, and tests and results through early 2011 is discussed.

  11. Introduction on performance analysis and profiling methodologies for KVM on ARM virtualization

    NASA Astrophysics Data System (ADS)

    Motakis, Antonios; Spyridakis, Alexander; Raho, Daniel

    2013-05-01

    The introduction of hardware virtualization extensions on ARM Cortex-A15 processors has enabled the implementation of full virtualization solutions for this architecture, such as KVM on ARM. This trend motivates the need to quantify and understand the performance impact, emerged by the application of this technology. In this work we start looking into some interesting performance metrics on KVM for ARM processors, which can provide us with useful insight that may lead to potential improvements in the future. This includes measurements such as interrupt latency and guest exit cost, performed on ARM Versatile Express and Samsung Exynos 5250 hardware platforms. Furthermore, we discuss additional methodologies that can provide us with a deeper understanding in the future of the performance footprint of KVM. We identify some of the most interesting approaches in this field, and perform a tentative analysis on how these may be implemented in the KVM on ARM port. These take into consideration hardware and software based counters for profiling, and issues related to the limitations of the simulators which are often used, such as the ARM Fast Models platform.

  12. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  13. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory.

    PubMed

    Jia, Weile; Lin, Lin

    2017-10-14

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  14. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.

    PubMed

    Liu, Jia; Shui, Sai-Lan

    2016-12-28

    The advent of site-specific nucleases, particularly CRISPR/Cas9, provides researchers with the unprecedented ability to manipulate genomic sequences. These nucleases are used to create model cell lines, engineer metabolic pathways, produce transgenic animals and plants, perform genome-wide functional screen and, most importantly, treat human diseases that are difficult to tackle by traditional medications. Considerable efforts have been devoted to improving the efficiency and specificity of nucleases for clinical applications. However, safe and efficient delivery methods remain the major obstacle for therapeutic gene editing. In this review, we summarize the recent progress on nuclease delivery methods, highlight their impact on the outcomes of gene editing and discuss the potential of different delivery approaches for therapeutic gene editing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Relaxation dynamics of C60

    NASA Astrophysics Data System (ADS)

    Walsh, Tiffany R.; Wales, David J.

    1998-10-01

    The relaxation dynamics of C60 from high-energy isomers to Buckminsterfullerene is examined using a master equation approach. An exhaustive catalog of the C60 fullerene isomers containing only five- and six-membered rings is combined with knowledge of the Stone-Wales rearrangements that connect all such isomers. Full geometry optimizations have been performed for all the minima and the transition states which connect them up to six Stone-Wales steps away from the global minimum. A density-functional tight-binding potential was employed to provide a quantum mechanical description of the bonding. The resulting picture of the potential energy landscape reveals a "weeping willow" structure which offers a clear explanation for the relatively long relaxation times observed experimentally. We also predict the most important transient local minima on the annealing pathway.

  16. Pure natural orifice transluminal endoscopic surgery (NOTES) with ultrasonography-guided transgastric access and over-the-scope-clip closure: a porcine feasibility and survival study.

    PubMed

    Donatsky, Anders Meller; Andersen, Luise; Nielsen, Ole Lerberg; Holzknecht, Barbara Juliane; Vilmann, Peter; Meisner, Søren; Jørgensen, Lars Nannestad; Rosenberg, Jacob

    2012-07-01

    Most natural orifice transluminal endoscopic surgery (NOTES) procedures to date rely on the hybrid technique with simultaneous laparoscopic access to protect against access-related complications and to achieve adequate triangulation for dissection. This is done at the cost of the potential benefits of this new minimally invasive technique. This study aimed to evaluate the feasibility and safety of a transgastric (TG) pure-NOTES procedure in a diagnostic setting. A TG pure-NOTES procedure with endoscopic ultrasonograpy (EUS)-guided access and over-the-scope-clip (OTSC) closure was performed for 10 pigs in a survival and feasibility study. A full macroscopic necropsy with subsequent histologic evaluation was performed on postoperative day (POD) 14. The outcome parameters were uncomplicated follow-up assessment, survival, intraoperative complications, intraabdominal pathology, macroscopic full-thickness closure, and histology-proven full-thickness healing of the gastrotomy. An uncomplicated postoperative course was reported for 9 of the 10 pigs, and survival was reported for all 10 pigs. For all the pigs, EUS-guided access was performed successfully with a median duration of 25 min (range, 12-62 min) and without intraoperative complications or access-related lesions at necropsy. An OTSC closure was achieved with a median duration of 11 min (range, 3-28 min). The OTSC provided immediate closure, but according to the authors' definition of a full-thickness healing evaluated by histologic examination, this was not achieved in any of the cases. Although all the animals survived until POD 14, intraabdominal chronic abscesses were present in 3 of the 10 pigs at necropsy. The EUS-guided TG access proved to be feasible without access-related complications. Although OTSC provided an immediate closure, the histopathology raised concerns regarding the risk of perforation. Together with the high risk of intraabdominal infection, TG pure-NOTES is not yet ready for routine clinical practice.

  17. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael

    2014-09-01

    The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.

  18. No intracolonial nepotism during colony fissioning in honey bees

    PubMed Central

    Rangel, Juliana; Mattila, Heather R.; Seeley, Thomas D.

    2009-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony whose workers belong to multiple patrilines. This colony genetic structure creates a potential for intracolonial nepotism. One context with great potential for such nepotism arises in species, like honey bees, whose colonies reproduce by fissioning. During fissioning, workers might nepotistically choose between serving a young (sister) queen or the old (mother) queen, preferring the former if she is a full-sister but the latter if the young queen is only a half-sister. We examined three honeybee colonies that swarmed, and performed paternity analyses on the young (immature) queens and samples of workers who either stayed with the young queens in the nest or left with the mother queen in the swarm. For each colony, we checked whether patrilines represented by immature queens had higher proportions of staying workers than patrilines not represented by immature queens. We found no evidence of this. The absence of intracolonial nepotism during colony fissioning could be because the workers cannot discriminate between full-sister and half-sister queens when they are immature, or because the costs of behaving nepotistically outweigh the benefits. PMID:19692398

  19. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Development of a high-specific-speed centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, C.

    1997-07-01

    This paper describes the development of a subscale single-stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full-size application as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high-specific-speed compressors, of which limited information is found in the open literature. Stage and component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions for an exploratory analytical calibration of a very high-specific-speed impellermore » geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% including, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.« less

  1. Significant differences in pediatric psychotropic side effects: Implications for school performance.

    PubMed

    Kubiszyn, Thomas; Mire, Sarah; Dutt, Sonia; Papathopoulos, Katina; Burridge, Andrea Backsheider

    2012-03-01

    Some side effects (SEs) of increasingly prescribed psychotropic medications can impact student performance in school. SE risk varies, even among drugs from the same class (e.g., antidepressants). Knowing which SEs occur significantly more often than others may enable school psychologists to enhance collaborative risk-benefit analysis, medication monitoring, data-based decision-making, and inform mitigation efforts. SE data from Full Prescribing Information (PI) on the FDA website for ADHD drugs, atypical antipsychotics, and antidepressants with pediatric indications were analyzed. Risk ratios (RR) are reported for each drug within a category compared with placebo. RR tables and graphs inform the reader about SE incidence differences for each drug and provide clear evidence of the wide variability in SE incidence in the FDA data. Breslow-Day and Cochran Mantel-Haenszel methods were used to test for drug-placebo SE differences and to test for significance across drugs within each category based on odds ratios (ORs). Significant drug-placebo differences were found for each drug compared with placebo, when odds were pooled across all drugs in a category compared with placebo, and between some drugs within categories. Unexpectedly, many large RR differences did not reach significance. Potential explanations are offered, including limitations of the FDA data sets and statistical and methodological issues. Future research directions are offered. The potential impact of certain SEs on school performance, mitigation strategies, and the potential role of the school psychologist is discussed, with consideration for ethical and legal limitations. (c) 2012 APA, all rights reserved.

  2. Thematic mapper data quality and performance assessment in renewable resource/agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Macdonald, R. B. (Principal Investigator)

    1982-01-01

    A "quick look" investigation of the initial LANDSAT-4, thematic mapper (TM) scene received from Goddard Space Flight Center was performed to gain early insight into the characteristics of TM data. The initial scene, containing only the first four bands of the seven bands recorded by the TM, was acquired over the Detroit, Michigan, area on July 20, 1982. It yielded abundant information for scientific investigation. A wide variety of studies were conducted to assess all aspects of TM data. They ranged from manual analyses of image products to detect obvious optical, electronic, or mechanical defects to detailed machine analyses of the digital data content for evaluation of spectral separability of vegetative/nonvegetative classes. These studies were applied to several segments extracted from the full scene. No attempt was made to perform end-to-end statistical evaluations. However, the output of these studies do identify a degree of positive performance from the TM and its potential for advancing state-of-the-art crop inventory and condition assessment technology.

  3. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes

    PubMed Central

    Ortiz, Gregorio F.; López, María C.; Li, Yixiao; McDonald, Matthew J.; Cabello, Marta; Tirado, José L.; Yang, Yong

    2016-01-01

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol–gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8–1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g−1 at C rate with good cyclic performance at an average potential of 3.1–3.2 V. Thus, the full cell provides an energy density of 472 W h kg−1. This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport. PMID:26879916

  4. Functional Coordination of a Full-Body Gaze Control Mechanisms Elicited During Locomotion

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Cohen, Helen S.

    2003-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. Exposure to the microgravity environment of spaceflight leads to postflight adaptive alterations in these multiple subsystems leading to postural and gait disturbances. Countermeasures designed to mitigate these postflight gait alterations will need to be assessed with a new generation of functional tests that evaluate the interaction of various elements central to locomotor control. The goal of this study is to determine how the multiple, interdependent, full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated. To explore this question two experiments were performed. In the first study (Study 1) we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects (n=9) performed two discreet gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at eye level. The second study (Study 2) investigated the potential of adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X minifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In both studies we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results from Study 1 showed that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movements were on average 22% greater 2) the peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects 3) the knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle. Results from Study 2 indicate that following exposure to visual-vestibular conflict changes in full-body strategies were observed consistent with the requirement to aid gaze stabilization during locomotion.

  5. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  6. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting.

    PubMed

    Carlsson, Anders H; Rose, Lloyd F; Fletcher, John L; Wu, Jesse C; Leung, Kai P; Chan, Rodney K

    2017-02-01

    Current standard of care for full-thickness burn is excision followed by autologous split-thickness skin graft placement. Skin grafts are also frequently used to cover surgical wounds not amenable to linear closure. While all grafts have potential to contract, clinical observation suggests that antecedent thermal injury worsens contraction and impairs functional and aesthetic outcomes. This study evaluates the impact of antecedent full-thickness burn on split-thickness skin graft scar outcomes and the potential mediating factors. Full-thickness contact burns (100°C, 30s) were created on the backs of anesthetized female Yorkshire Pigs. After seven days, burn eschar was tangentially excised and covered with 12/1000th inch (300μm) split-thickness skin graft. For comparison, unburned wounds were created by sharp excision to fat before graft application. From 7 to 120days post-grafting, planimetric measurements, digital imaging and biopsies for histology, immunohistochemistry and gene expression were obtained. At 120days post-grafting, the Observer Scar Assessment Scale, colorimetry, contour analysis and optical graft height assessments were performed. Twenty-nine porcine wounds were analyzed. All measured metrics of clinical skin quality were significantly worse (p<0.05) in burn injured wounds. Histological analysis supported objective clinical findings with marked scar-like collagen proliferation within the dermis, increased vascular density, and prolonged and increased cellular infiltration. Observed differences in contracture also correlated with earlier and more prominent myofibroblast differentiation as demonstrated by α-SMA staining. Antecedent thermal injury worsens split-thickness skin graft quality, likely by multiple mechanisms including burn-related inflammation, microscopically inadequate excision, and dysregulation of tissue remodeling. A valid, reliable, clinically relevant model of full-thickness burn, excision and skin replacement therapy has been demonstrated. Future research to enhance quality of skin replacement therapies should be directed toward modulation of inflammation and assessments for complete excision. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  7. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.

  8. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: manufacture and recovery following simulated digestion.

    PubMed

    Rashidinejad, Ali; Birch, E John; Everett, David W

    2016-07-13

    (+)-Catechin or green tea extract were encapsulated in soy lecithin nanoliposomes and incorporated into a full-fat cheese, then ripened at 8 °C for 90 days. Cheese samples were subjected to simulated gastrointestinal digestion to measure total phenolic content (TPC) and antioxidant activity of the cheese digesta, and to determine the catechin recovery after digestion by high performance liquid chromatography (HPLC). Addition of catechin or green tea extract significantly (P ≤ 0.05) increased TPC and antioxidant activity (measured by ferric reducing antioxidant power and oxygen radical absorbance capacity) of the full-fat cheese without affecting pH or proximate composition. HPLC analysis confirmed retention of encapsulated catechins in the cheese curd; however, individual catechins were recovered in differing amounts (15-52%) from cheese digesta after 6 h of digestion. Transmission electron microscopy and Fourier transform infrared spectroscopy provided evidence for association of nanoliposomes with the surface of milk fat globules inside the cheese matrix. The study shows the potential for using cheese as a delivery vehicle for green tea antioxidants.

  9. Variability in Objective Refraction for Persons with Down Syndrome.

    PubMed

    Marsack, Jason D; Ravikumar, Ayeswarya; Benoit, Julia S; Anderson, Heather A

    2017-05-01

    Down syndrome (DS) is associated with ocular and cognitive sequelae, which both have the potential to influence clinical measures of refractive error. This study compares variability of autorefraction among subjects with and without DS. Grand Seiko autorefraction was performed on 139 subjects with DS (age: 8-55, mean: 25 ± 9 yrs) and 138 controls (age: 7-59, mean: 25 ± 10 yrs). Subjects with three refraction measures per eye (DS: 113, control: 136) were included for analysis. Each refraction was converted to power vector notation (M, J0, J45) and a difference in each component (ΔM, ΔJ0, ΔJ45) was calculated for each refraction pairing. From these quantities, average dioptric strength ((Equation is included in full-text article.): square root of the sum of the squares of M, J0, and J45) and average dioptric difference ((Equation is included in full-text article.): square root of the sum of the squares of ΔM, ΔJ0, and ΔJ45) were calculated. The DS group exhibited a greater median (Equation is included in full-text article.)(1Q: 1.38D M: 2.38D 3Q: 3.41D) than control eyes (1Q: 0.47D M: 0.96D 3Q: 2.75D) (P < .001). Likewise, the DS group exhibited a greater median (Equation is included in full-text article.)in refraction (1Q: 0.27D M: 0.42D 3Q: 0.78D) than control eyes (1Q: 0.11D M: 0.15D 3Q: 0.23D) (P < .001) with 97.1% of control eyes exhibiting (Equation is included in full-text article.)≤0.50D, compared to 59.3% of DS eyes. An effect of (Equation is included in full-text article.)on (Equation is included in full-text article.)was not detected (P = .3009) nor was a significant interaction between (Equation is included in full-text article.)and group detected (P = .49). In the current study, comparing three autorefraction readings, median total dioptric difference with autorefraction in DS was 2.8 times the levels observed in controls, indicating greater potential uncertainty in objective measures of refraction for this population. The analysis demonstrates that J45 is highly contributory to the observed variability.

  10. Asynchronous transfer mode link performance over ground networks

    NASA Technical Reports Server (NTRS)

    Chow, E. T.; Markley, R. W.

    1993-01-01

    The results of an experiment to determine the feasibility of using asynchronous transfer mode (ATM) technology to support advanced spacecraft missions that require high-rate ground communications and, in particular, full-motion video are reported. Potential nodes in such a ground network include Deep Space Network (DSN) antenna stations, the Jet Propulsion Laboratory, and a set of national and international end users. The experiment simulated a lunar microrover, lunar lander, the DSN ground communications system, and distributed science users. The users were equipped with video-capable workstations. A key feature was an optical fiber link between two high-performance workstations equipped with ATM interfaces. Video was also transmitted through JPL's institutional network to a user 8 km from the experiment. Variations in video depending on the networks and computers were observed, the results are reported.

  11. Electronic fitness function for screening semiconductors as thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei

    Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less

  12. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J; Aarnio, M; Grosvenor, A

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a futuremore » full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.« less

  13. 'Design of CO-O2 recombination catalysts for closed-cycle CO2 lasers'

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1989-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. This paper will discuss the performance criteria and constraints involved in the design of monolith catalyst configurations for use in a closed-cycle laser and will present a design study performed with a computerized design program that had been written. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables will be discussed.

  14. Electronic fitness function for screening semiconductors as thermoelectric materials

    DOE PAGES

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...

    2017-11-17

    Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less

  15. Evaluation of a high power inverter for potential space applications

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Lanier, J. R., Jr.

    1976-01-01

    The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.

  16. A Novel Software Platform Extending Advances in Monitoring Technologies to On-demand Decision Support

    NASA Astrophysics Data System (ADS)

    Ormerod, R.; Scholl, M.

    2017-12-01

    Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications for regulatory and industry organisations is described and demonstrated.

  17. Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study

    PubMed Central

    Mokrysz, C; Landy, R; Gage, SH; Munafò, MR; Roiser, JP; Curran, HV

    2016-01-01

    There is much debate about the impact of adolescent cannabis use on intellectual and educational outcomes. We investigated associations between adolescent cannabis use and IQ and educational attainment in a sample of 2235 teenagers from the Avon Longitudinal Study of Parents and Children. By the age of 15, 24% reported having tried cannabis at least once. A series of nested linear regressions was employed, adjusted hierarchically by pre-exposure ability and potential confounds (e.g. cigarette and alcohol use, childhood mental-health symptoms and behavioural problems), to test the relationships between cumulative cannabis use and IQ at the age of 15 and educational performance at the age of 16. After full adjustment, those who had used cannabis ⩾50 times did not differ from never-users on either IQ or educational performance. Adjusting for group differences in cigarette smoking dramatically attenuated the associations between cannabis use and both outcomes, and further analyses demonstrated robust associations between cigarette use and educational outcomes, even with cannabis users excluded. These findings suggest that adolescent cannabis use is not associated with IQ or educational performance once adjustment is made for potential confounds, in particular adolescent cigarette use. Modest cannabis use in teenagers may have less cognitive impact than epidemiological surveys of older cohorts have previously suggested. PMID:26739345

  18. N(2)O in small para-hydrogen clusters: Structures and energetics.

    PubMed

    Zhu, Hua; Xie, Daiqian

    2009-04-30

    We present the minimum-energy structures and energetics of clusters of the linear N(2)O molecule with small numbers of para-hydrogen molecules with pairwise additive potentials. Interaction energies of (p-H(2))-N(2)O and (p-H(2))-(p-H(2)) complexes were calculated by averaging the corresponding full-dimensional potentials over the H(2) angular coordinates. The averaged (p-H(2))-N(2)O potential has three minima corresponding to the T-shaped and the linear (p-H(2))-ONN and (p-H(2))-NNO structures. Optimization of the minimum-energy structures was performed using a Genetic Algorithm. It was found that p-H(2) molecules fill three solvation rings around the N(2)O axis, each of them containing up to five p-H(2) molecules, followed by accumulation of two p-H(2) molecules at the oxygen and nitrogen ends. The first solvation shell is completed at N = 17. The calculated chemical potential oscillates with cluster size up to the completed first solvation shell. These results are consistent with the available experimental measurements. (c) 2009 Wiley Periodicals, Inc.

  19. Frequency-Dependent Selection: The High Potential for Permanent Genetic Variation in the Diallelic, Pairwise Interaction Model

    PubMed Central

    Asmussen, M. A.; Basnayake, E.

    1990-01-01

    A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria. PMID:2341034

  20. Implementation of EAM and FS potentials in HOOMD-blue

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Zhang, Feng; Travesset, Alex; Wang, Caizhuang; Ho, Kaiming

    HOOMD-blue is a general-purpose software to perform classical molecular dynamics simulations entirely on GPUs. We provide full support for EAM and FS type potentials in HOOMD-blue, and report accuracy and efficiency benchmarks, including comparisons with the LAMMPS GPU package. Two problems were selected to test the accuracy: the determination of the glass transition temperature of Cu64.5Zr35.5 alloy using an FS potential and the calculation of pair distribution functions of Ni3Al using an EAM potential. In both cases, the results using HOOMD-blue are indistinguishable from those obtained by the GPU package in LAMMPS within statistical uncertainties. As tests for time efficiency, we benchmark time-steps per second using LAMMPS GPU and HOOMD-blue on one NVIDIA Tesla GPU. Compared to our typical LAMMPS simulations on one CPU cluster node which has 16 CPUs, LAMMPS GPU can be 3-3.5 times faster, and HOOMD-blue can be 4-5.5 times faster. We acknowledge the support from Laboratory Directed Research and Development (LDRD) of Ames Laboratory.

  1. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark.

    PubMed

    Grinter, Sam Z; Yan, Chengfei; Huang, Sheng-You; Jiang, Lin; Zou, Xiaoqin

    2013-08-26

    In this study, we use the recently released 2012 Community Structure-Activity Resource (CSAR) data set to evaluate two knowledge-based scoring functions, ITScore and STScore, and a simple force-field-based potential (VDWScore). The CSAR data set contains 757 compounds, most with known affinities, and 57 crystal structures. With the help of the script files for docking preparation, we use the full CSAR data set to evaluate the performances of the scoring functions on binding affinity prediction and active/inactive compound discrimination. The CSAR subset that includes crystal structures is used as well, to evaluate the performances of the scoring functions on binding mode and affinity predictions. Within this structure subset, we investigate the importance of accurate ligand and protein conformational sampling and find that the binding affinity predictions are less sensitive to non-native ligand and protein conformations than the binding mode predictions. We also find the full CSAR data set to be more challenging in making binding mode predictions than the subset with structures. The script files used for preparing the CSAR data set for docking, including scripts for canonicalization of the ligand atoms, are offered freely to the academic community.

  2. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  3. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  4. Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob

    2003-01-01

    The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

  5. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  6. The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq

    1998-01-01

    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.

  7. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less

  8. Full-dimensional quantum calculations of the vibrational states of H5(+).

    PubMed

    Song, Hongwei; Lee, Soo-Ying; Yang, Minghui; Lu, Yunpeng

    2013-03-28

    Full-dimensional quantum calculations of the vibrational states of H5(+) have been performed on the accurate potential energy surface developed by Xie et al. [J. Chem. Phys. 122, 224307 (2005)]. The zero point energies of H5(+), H4D(+), D4H(+), and D5(+) and their ground-state geometries are presented and compared with earlier theoretical results. The first 10 low-lying excited states of H5(+) are assigned to the fundamental, overtone, and combination of the H2-H3(+) stretch, the shared proton hopping and the out-of-plane torsion. The ground-state torsional tunneling splitting, the fundamental of the photon hopping mode and the first overtone of the torsion mode are 87.3 cm(-1), 354.4 cm(-1), and 444.0 cm(-1), respectively. All of these values agree well with the diffusion Monte Carlo and multi-configuration time-dependent Hartree results where available.

  9. Stochastic sensitivity measure for mistuned high-performance turbines

    NASA Technical Reports Server (NTRS)

    Murthy, Durbha V.; Pierre, Christophe

    1992-01-01

    A stochastic measure of sensitivity is developed in order to predict the effects of small random blade mistuning on the dynamic aeroelastic response of turbomachinery blade assemblies. This sensitivity measure is based solely on the nominal system design (i.e., on tuned system information), which makes it extremely easy and inexpensive to calculate. The measure has the potential to become a valuable design tool that will enable designers to evaluate mistuning effects at a preliminary design stage and thus assess the need for a full mistuned rotor analysis. The predictive capability of the sensitivity measure is illustrated by examining the effects of mistuning on the aeroelastic modes of the first stage of the oxidizer turbopump in the Space Shuttle Main Engine. Results from a full analysis mistuned systems confirm that the simple stochastic sensitivity measure predicts consistently the drastic changes due to misturning and the localization of aeroelastic vibration to a few blades.

  10. Selected inversion as key to a stable Langevin evolution across the QCD phase boundary

    NASA Astrophysics Data System (ADS)

    Bloch, Jacques; Schenk, Olaf

    2018-03-01

    We present new results of full QCD at nonzero chemical potential. In PRD 92, 094516 (2015) the complex Langevin method was shown to break down when the inverse coupling decreases and enters the transition region from the deconfined to the confined phase. We found that the stochastic technique used to estimate the drift term can be very unstable for indefinite matrices. This may be avoided by using the full inverse of the Dirac operator, which is, however, too costly for four-dimensional lattices. The major breakthrough in this work was achieved by realizing that the inverse elements necessary for the drift term can be computed efficiently using the selected inversion technique provided by the parallel sparse direct solver package PARDISO. In our new study we show that no breakdown of the complex Langevin method is encountered and that simulations can be performed across the phase boundary.

  11. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  12. A systematic review on the quality of measurement techniques for the assessment of burn wound depth or healing potential.

    PubMed

    Jaspers, Mariëlle E H; van Haasterecht, Ludo; van Zuijlen, Paul P M; Mokkink, Lidwine B

    2018-06-22

    Reliable and valid assessment of burn wound depth or healing potential is essential to treatment decision-making, to provide a prognosis, and to compare studies evaluating different treatment modalities. The aim of this review was to critically appraise, compare and summarize the quality of relevant measurement properties of techniques that aim to assess burn wound depth or healing potential. A systematic literature search was performed using PubMed, EMBASE and Cochrane Library. Two reviewers independently evaluated the methodological quality of included articles using an adapted version of the Consensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A synthesis of evidence was performed to rate the measurement properties for each technique and to draw an overall conclusion on quality of the techniques. Thirty-six articles were included, evaluating various techniques, classified as (1) laser Doppler techniques; (2) thermography or thermal imaging; (3) other measurement techniques. Strong evidence was found for adequate construct validity of laser Doppler imaging (LDI). Moderate evidence was found for adequate construct validity of thermography, videomicroscopy, and spatial frequency domain imaging (SFDI). Only two studies reported on the measurement property reliability. Furthermore, considerable variation was observed among comparator instruments. Considering the evidence available, it appears that LDI is currently the most favorable technique; thereby assessing burn wound healing potential. Additional research is needed into thermography, videomicroscopy, and SFDI to evaluate their full potential. Future studies should focus on reliability and measurement error, and provide a precise description of which construct is aimed to measure. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  13. Measurements of the potential ozone production rate in a forest

    NASA Astrophysics Data System (ADS)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  14. Surface calculations with asymptotically long-ranged potentials in the full-potential linearized augmented plane-wave method

    NASA Astrophysics Data System (ADS)

    Ye, Lin-Hui

    2015-09-01

    Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.

  15. Combined Space and Water Heating: Next Steps to Improved Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Schoenbauer; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage andmore » hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.« less

  16. Achieving the full performance of highly efficient columns by optimizing conventional benchmark high-performance liquid chromatography instruments.

    PubMed

    Gritti, Fabrice; Sanchez, Carl A; Farkas, Tivadar; Guiochon, Georges

    2010-04-30

    A series of experiments and measurements demonstrate the importance of minimizing the extra-column band broadening contribution of the instrument used. The combination of several measures allowed the achievement of the full potential efficiency of three Kinetex-C(18) columns, using a conventional liquid chromatograph. The first measure consists in minimizing the extra-column volume of the instrument, without increasing much its back pressure contribution, by changing the needle seat volume, the inner diameter and length of the capillary connectors, and the volume of the detector cell of a standard instrument (Agilent 1100). The second measure consists in injecting a volume of weak eluent (less than half the elution strength of the mobile phase) right after the sample, before the sample had time to reach the column. Experimental results show that these changes could provide most of the resolution expected from the true column performance. After the changes were made, the resolutions of the 2.1 mm x 50 mm, 4.6 mm x 50 mm, and 4.6 mm x 100 mm Kinetex-C(18) columns for compounds having retention factors close to 1 were increased by about 180, 35, and 30%, respectively. The resolutions obtained are then similar to those measured with advanced instruments like the Agilent 1200, the Agilent 1290 Infinity HPLC, and the Acquity chromatographs. 2010 Elsevier B.V. All rights reserved.

  17. Plantar Fascia Release Through a Single Lateral Incision in the Operative Management of a Cavovarus Foot: A Cadaver Model Analysis of the Operative Technique.

    PubMed

    Kiskaddon, Eric M; Meeks, Brett D; Roberts, Joseph G; Laughlin, Richard T

    2018-04-04

    Plantar fascia release and calcaneal slide osteotomy are often components of the surgical management for cavovarus deformities of the foot. In this setting, plantar fascia release has traditionally been performed through an incision over the medial calcaneal tuberosity, and the calcaneal osteotomy through a lateral incision. Two separate incisions can potentially increase the operative time and morbidity. The purpose of the present study was threefold: to describe the operative technique, use cadaveric dissection to analyze whether a full release of the plantar fascia was possible through the lateral incision, and examine the proximity of the medial neurovascular structures to both the plantar fascia release and calcaneal slide osteotomy when performed together. In our cadaveric dissections, we found that full release of the plantar fascia is possible through the lateral incision with no obvious damage to the medial neurovascular structures. We also found that the calcaneal branch of the tibial nerve reliably crossed the osteotomy in all specimens. We have concluded that both the plantar fascia release and the calcaneal osteotomy can be safely performed through a lateral incision, if care is taken when completing the calcaneal osteotomy to ensure that the medial neurovascular structures remain uninjured. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Rear Seat Occupant Thorax Protection in Near Side Impacts

    PubMed Central

    Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola

    2009-01-01

    Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828

  19. Advanced film-forming gel formula vs spring thermal water and white petrolatum as primary dressings after full-face ablative fractional CO2 laser resurfacing: a comparative split-face pilot study.

    PubMed

    Marini, L

    2018-01-01

    Aesthetically pleasing results and fast, uneventful recovery are highly desirable after rejuvenating ablative laser procedures. Wound dressings following ablative laser procedures should ideally improve and optimize the wound healing environment. The purpose of this comparative split-face, single-blinded, prospective observational study was to assess the efficacy and acceptability of two primary wound dressings immediately after a full-face fractional CO 2 laser resurfacing procedure. The assessments of an innovative film-forming dressing called Stratacel (SC) vs spring thermal water + Vaseline (V+) were conducted after a standardized, single-pass, full-face ablative fractional CO 2 laser skin resurfacing procedure. Clinical parameters, such as haemoglobin - HB; surface temperature - ST; micro-textural modifications - MT; superficial melanin - M; intrafollicular porphyrins - P, were assessed at different phases of the healing process using standardized, non-invasive technologies. Five female volunteers were enrolled in this inpatient, controlled pilot study. Most of the clinical parameters considered, including 3D surface texture analysis, revealed a better performance of SC vs. V+ during the early, more delicate phases of the healing process. This preliminary study, even if performed on a small number of volunteers, confirmed a definite advantage of the tested semipermeable film-forming formula (SC) over a more conventional postoperative skin care regime (V+). Clinical results could be explained by a better uniformity of distribution of SC over the micro-irregularities induced by ablative fractional CO 2 laser resurfacing. Its thin, semipermeable film might, in fact, act as an efficient, perfectly biocompatible, full contact, temporary skin barrier, able to protect extremely delicate healing surfaces from potential environmental irritations. © 2017 European Academy of Dermatology and Venereology.

  20. Broad screening of illicit ingredients in cosmetics using ultra-high-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry with customized accurate-mass database and mass spectral library.

    PubMed

    Meng, Xianshuang; Bai, Hua; Guo, Teng; Niu, Zengyuan; Ma, Qiang

    2017-12-15

    Comprehensive identification and quantitation of 100 multi-class regulated ingredients in cosmetics was achieved using ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). A simple, efficient, and inexpensive sample pretreatment protocol was developed using ultrasound-assisted extraction (UAE), followed by dispersive solid-phase extraction (dSPE). The cosmetic samples were analyzed by UHPLC-Q-Orbitrap HRMS under synchronous full-scan MS and data-dependent MS/MS (full-scan MS 1 /dd-MS 2 ) acquisition mode. The mass resolution was set to 70,000 FWHM (full width at half maximum) for full-scan MS 1 and 17,500 FWHM for dd-MS 2 stage with the experimentally measured mass deviations of less than 2ppm (parts per million) for quasi-molecular ions and 5ppm for characteristic fragment ions for each individual analyte. An accurate-mass database and a mass spectral library were built in house for searching the 100 target compounds. Broad screening was conducted by comparing the experimentally measured exact mass of precursor and fragment ions, retention time, isotopic pattern, and ionic ratio with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The developed methodology was evaluated and validated in terms of limits of detection (LODs), limits of quantitation (LOQs), linearity, stability, accuracy, and matrix effect. The UHPLC-Q-Orbitrap HRMS approach was applied for the analysis of 100 target illicit ingredients in 123 genuine cosmetic samples, and exhibited great potential for high-throughput, sensitive, and reliable screening of multi-class illicit compounds in cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    PubMed Central

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  2. Delta Electroproduction in 12-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLauchlan, Steven

    2003-01-01

    The Δ-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q 2 dependence of the Δ mass indicating that this potential is dependent on the momentum of the Δ. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the Δ resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4π acceptance detector CLAS that enables the detection of the full reactionmore » final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q 2 range 0.175-0.475 (GeV/c) 2. A Q 2 dependence of the Δ mass was only observed in the exclusive measurements indicating that the Δ-nucleus potential is affected by the momentum of the Δ.« less

  3. Advanced Ultrasound Technologies for Diagnosis and Therapy.

    PubMed

    Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian

    2018-05-01

    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Transferable atomistic model to describe the energetics of zirconia

    NASA Astrophysics Data System (ADS)

    Wilson, Mark; Schönberger, Uwe; Finnis, Michael W.

    1996-10-01

    We have investigated the energies of a number of phases of ZrO2 using models of an increasing degree of sophistication: the simple ionic model, the polarizable ion model, the compressible ion model, and finally a model including quadrupole polarizability of the oxygen ions. The three structures which are observed with increasing temperatures are monoclinic, tetragonal, and cubic (fluorite). Besides these we have studied some hypothetical structures which certain potentials erroneously predict or which occur in other oxides with this stoichiometry, e.g., the α-PbO2 structure and rutile. We have also performed ab initio density functional calculations with the full-potential linear combination of muffin-tin orbitals method to investigate the cubic-tetragonal distortion. A detailed comparison is made between the results using classical potentials, the experimental data, and our own and other ab initio results. The factors which stabilize the various structure are analyzed. We find the only genuinely transferable model is the one including compressible ions and anion polarizability to the quadrupole level.

  5. Full wave characterization of microstrip open end discontinuities patterned on anisotropic substrates using potential theory

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Collin, R. E.; Bhasin, K. B.

    1993-01-01

    A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.

  6. Inclusion of emergency department patients in early stages of sepsis in a quality improvement programme has the potential to improve survival: a prospective dual-centre study.

    PubMed

    De Groot, Bas; Struyk, Bastiaan; Najafi, Rashed; Halma, Nieke; Pelser, Loekie; Vorst, Denise; Mertens, Bart; Ansems, Annemieke; Rijpsma, Douwe

    2017-09-01

    Sepsis quality improvement programmes typically focus on severe sepsis (ie, with acute organ failure). However, quality of ED care might be improved if these programmes included patients whose progression to severe sepsis could still be prevented (ie, infection without acute organ failure). We compared the impact on mortality of implementing a quality improvement programme among ED patients with a suspected infection with or without acute organ failure. This prospective observational study among ED patients hospitalised with suspected infection was conducted in two hospitals in the Netherlands. After stratification by sepsis category (with or without organ failure), in-hospital mortality was compared between a full compliance ( all quality performance measures achieved) and an incomplete compliance group. Multivariable logistic regression analysis was used to quantify the impact of full compliance on in-hospital mortality, adjusting for disease severity, disposition and hospital. There were 1732 ED patients and 130 deaths. Full compliance was independently associated with approximately two-thirds reduction in the odds of hospital mortality ( adjusted OR of 0.30 (95% CI 0.19 to 0.47), which was similar in patients with and without organ failure. Among the 1379 patients with suspected infection without acute organ failure, there were 64 deaths, 15 (1.1%) in the full compliance group and 49 (3.6%) in the incomplete compliance group (mortality difference 2.5% (95% CI 1.6% to 3.3%)). Among 353 patients with organ failure, there were 66 deaths, 12 (3.4%) in the full compliance compared with 54 (15.3%) in the incomplete compliance group (mortality difference 11.9% (95% CI 8.5% to 15.3%)). Thus, there was a difference of 76 deaths between full and incomplete compliance groups, and 34 (45%) who benefited were those without acute organ failure. Sepsis quality improvement programmes should incorporate ED patients in earlier stages of sepsis given the potential to reduce in-hospital mortality among this population. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Strategic Technologies for Deep Space Transport

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  8. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  9. Thermal phase transition with full 2-loop effective potential

    NASA Astrophysics Data System (ADS)

    Laine, M.; Meyer, M.; Nardini, G.

    2017-07-01

    Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; in particular those influencing the strength of a phase transition may be large. Large couplings compromise perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, but they are moderate, whereby a strong transition remains an option.

  10. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less

  11. Biological nitrate removal processes from drinking water supply-a review.

    PubMed

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  12. Commissioning Results of the 2nd 3.5 Cell SRF Gun for ELBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, A; Freitag, M; Murcek, Petr

    As in 2007 the first 3.5 cell superconducting radio frequency (SRF) gun was taken into operation, it turned out that the specified performance has not been achieved. However, to demonstrate the full potential of this new type of electron source, a second and slightly modified SRF gun II was built in collaboration with Thomas Jefferson National Accelerator Facility (TJNAF). We will report on commissioning and first results of the new gun, which includes in particular the characterization of the most important RF properties as well as their comparison with previous vertical test results.

  13. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  14. Calculations of transonic boattail flow at small angle of attack

    NASA Technical Reports Server (NTRS)

    Nakayama, A.; Chow, W. L.

    1979-01-01

    A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.

  15. Applying new AICPA accounting rules on special reports.

    PubMed

    Reinstein, A; Dery, R J

    1998-04-01

    Two new standards on agreed-upon procedures, issued by the American Institute of Certified Public Accountants, provide healthcare organizations and associated decision makers with new flexibility in acquiring professional accounting services. Effective January 1, 1996, these procedures allow organizations to target the type and volume of services performed by accountants and potentially avoid the time and expense involved in completing a full financial statement audit. As with any other accounting engagement, both the healthcare organization and the accounting firm need to establish what procedures will be conducted, who will be allowed to use the resulting report, and how the procedures will be conducted.

  16. Homogeneous illusion device exhibiting transformed and shifted scattering effect

    NASA Astrophysics Data System (ADS)

    Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue

    2016-06-01

    Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.

  17. Aerodynamic drag reduction tests on a full-scale tractor-trailer combination with several add-on devices

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.

    1974-01-01

    Aerodynamic drag tests were performed on a conventional cab-over-engine tractor with a 45-foot trailer and five commercially available or potentially available add-on devices using the coast-down method. The tests ranged in velocity from approximately 30 miles per hour to 65 miles per hour and included some flow visualization. A smooth, level runway at Edwards Air Force Base was used for the tests, and deceleration measurements were taken with both accelerometers and stopwatches. An evaluation of the drag reduction results obtained with each of the five add-on devices is presented.

  18. Interrogative suggestibility, confabulation, and acquiescence in people with mild learning disabilities (mental handicap): implications for reliability during police interrogations.

    PubMed

    Clare, I C; Gudjonsson, G H

    1993-09-01

    In order to assess a criminal suspect's ability to make a reliable statement, performance on three measures--interrogative suggestibility, confabulation and acquiescence--may be used. This paper presents preliminary data on these measures for people with mild learning disabilities (Full Scale IQ [FSIQ]: 57-75). It was found that they were more suggestible than their average ability counterparts (FSIQ: 83-111) because they were much more susceptible to 'leading questions'. They also confabulated more and were more acquiescent. Overall, the data emphasized their potential vulnerability to giving erroneous testimony during interrogations.

  19. Analysis of Bioprocesses. Dynamic Modeling is a Must.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramkrishna, Doraiswami; Song, Hyun-Seob

    2016-01-01

    The goal of this paper is to report on the performance of a promising dynamic framework based on the cybernetic concepts which have evolved over three decades. We present case studies of successful dynamic simulations of wild-type strains as well as specific KO mutants on bacteria and yeast. An extensive metabolic engineering effort, including genome scale networks, is called for to secure the methodology and realize its full potential. Towards this end, the software AUMIC is under active further development to enable speedy applications. Its wide use will be enabled by a publication that is shortly due.

  20. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yichao; Yuan, Jun; Yin, Ge

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  1. Biological nitrate removal processes from drinking water supply-a review

    PubMed Central

    2013-01-01

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time. PMID:24355262

  2. A simple procedure for synthesizing Charpy impact energy transition curves from limited test data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfeld, M.J.

    1996-12-31

    The importance of Charpy V-notch testing of pipe has been well established in the pipeline industry. Until now, it has been necessary to perform a number of tests in order to develop the toughness transition curve. A method is described which makes possible forecasting the full-scale toughness transition from a single subsize test datum to an acceptable degree of accuracy. This is potentially useful where historical test results or material samples available for testing are limited in quantity. Worked examples illustrating the use of the relationships are given.

  3. Earth-orbit mission considerations and Space Tug requirements.

    NASA Technical Reports Server (NTRS)

    Huber, W. G.

    1973-01-01

    The reusable Space Tug is a major system planned to augment the Space Shuttle's capability to deliver, retrieve, and support automated payloads. The Space Tug will be designed to perform round-trip missions from low earth orbit to geosynchronous orbit. Space Tug goals and requirements are discussed together with the characteristics of the full capability Tug. The Tug is to be operated in an unmanned 'teleoperator' fashion. Details of potential teleoperator applications are considered, giving attention to related systems studies, candidate Tug mission applications, Tug 'end-effector' alternatives, technical issues associated with Tug payload retrieval, and Tug/payload accommodations.

  4. Workshop III: Improving the Workplace Environment

    NASA Astrophysics Data System (ADS)

    Gledhill, Igle; Butcher, Gillian

    2015-12-01

    Research has shown that companies with more diversity and a better workplace perform better. So what makes a good workplace in physics, where women and men can work to their full potential? In the Improving the Workplace Environment workshop of the 5th IUPAP International Conference on Women in Physics, participants heard about initiatives taking place in Canada, the UK, Japan, and India to improve the workplace environment and shared good practices from around the world. Some of the less tangible aspects of the workplace environment, such as unconscious bias and accumulation of advantage and disadvantage, were explored.

  5. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  6. Crystal growth in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.

    1977-01-01

    Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.

  7. Relaxation and approximate factorization methods for the unsteady full potential equation

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.

    1984-01-01

    The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.

  8. Rapid computational identification of the targets of protein kinase inhibitors.

    PubMed

    Rockey, William M; Elcock, Adrian H

    2005-06-16

    We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in order to identify potential new targets; the predicted targets of SB203580 were compared with those identified in recent proteomics-based experiments. These kinome-wide screens, performed within a day on a small cluster of PCs, indicate that explicit computation of inhibitor-receptor binding affinities has the potential to promote rapid discovery of new therapeutic targets for existing inhibitors.

  9. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.

  10. Full-dimensional quantum mechanics calculations for the spectroscopic characterization of the isomerization transition states of HOCO/DOCO systems.

    PubMed

    Ma, Dandan; Ren, Haisheng; Ma, Jianyi

    2018-02-14

    Full-dimensional quantum mechanics calculations were performed to determine the vibrational energy levels of HOCO and DOCO based on an accurate potential energy surface. Almost all of the vibrational energy levels up to 3500 cm -1 from the vibrational ground state were assigned, and the calculated energy levels in this work are well in agreement with the reported results by Bowman. The corresponding full dimensional wavefunctions present some special features. When the energy level approaches the barrier height, the trans-HOCO and cis-HOCO states strongly couple through tunneling interactions, and the tunneling interaction and Fermi resonance were observed in the DOCO system. The energy level patterns of trans-HOCO, cis-HOCO and trans-DOCO provide a reasonable fitted barrier height using the fitting formula of Field et al., however, a discrepancy exists for the cis-DOCO species which is considered as a random event. Our full-dimensional calculations give positive evidence for the accuracy of the spectroscopic characterization model of the isomerization transition state reported by Field et al., which was developed from one-dimensional model systems. Furthermore, the special case of cis-DOCO in this work means that the isotopic substitution can solve the problem of the accidental failure of Field's spectroscopic characterization model.

  11. A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools

    PubMed Central

    2012-01-01

    Background We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. Results Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. Conclusions The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. PMID:22901054

  12. Figure Text Extraction in Biomedical Literature

    PubMed Central

    Kim, Daehyun; Yu, Hong

    2011-01-01

    Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search. PMID:21249186

  13. Figure text extraction in biomedical literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2011-01-13

    Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search.

  14. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2010-01-01

    A full-scale wind tunnel test was recently conducted (March 2009) in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-FootWind Tunnel to evaluate the potential of an individual blade control (IBC) system to improve rotor performance and reduce vibrations, loads, and noise for a UH-60A rotor system [1]. This test was the culmination of a long-termcollaborative effort between NASA, U.S. Army, Sikorsky Aircraft Corporation, and ZF Luftfahrttechnik GmbH (ZFL) to demonstrate the benefits of IBC for a UH-60Arotor. Figure 1 shows the UH-60Arotor and IBC system mounted on the NFAC Large Rotor Test Apparatus (LRTA). The IBC concept used in the current study utilizes actuators placed in the rotating frame, one per blade. In particular, the pitch link of the rotor blade was replacedwith an actuator, so that the blade root pitch can be changed independently. This concept, designed for a full-scale UH-60A rotor, was previously tested in the NFAC 80- by 120-FootWind Tunnel in September 2001 at speeds up to 85 knots [2]. For the current test, the same UH-60A rotor and IBC system were tested in the 40- by 80-FootWind Tunnel at speeds up to 170 knots. Figure 2 shows the servo-hydraulic IBC actuator installed between the swashplate and the blade pitch horn. Although previous wind tunnel experiments [3, 4] and analytical studies on IBC [5, 6] have shown the promise to improve the rotor s performance, in-depth correlation studies have not been performed. Thus, the current test provides a unique resource that can be used to assess the accuracy and reliability of prediction methods and refine theoretical models, with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. In this paper, rotor performance and loads calculations are carried out using the analyses CAMRAD II and coupled OVERFLOW-2/CAMRAD II and the results are compared with these UH-60A/IBC wind tunnel test data.

  15. Association between hemodynamic activity and motor performance in six-month-old full-term and preterm infants: a functional near-infrared spectroscopy study.

    PubMed

    de Oliveira, Suelen Rosa; de Paula Machado, Ana Carolina Cabral; de Paula, Jonas Jardim; de Moraes, Paulo Henrique Paiva; Nahin, Maria Juliana Silvério; Magalhães, Lívia de Castro; Novi, Sergio L; Mesquita, Rickson C; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez

    2018-01-01

    This study aimed to assess task-induced activation in motor cortex and its association with motor performance in full-term and preterm born infants at six months old. A cross-sectional study of 73 six-month-old infants was conducted (35 full-term and 38 preterm infants). Motor performance was assessed using the Bayley Scales of Infant Development third edition-Bayley-III. Brain hemodynamic activity during motor task was measured by functional near-infrared spectroscopy (fNIRS). Motor performance was similar in full-term and preterm infants. However, differences in hemodynamic response were identified. Full terms showed a more homogeneous unilateral and contralateral activated area, whereas in preterm-born the activation response was predominantly bilateral. The full-term group also exhibited a shorter latency for the hemodynamic response than the preterm group. Hemodynamic activity in the left sensorimotor region was positively associated with motor performance measured by Bayley-III. The results highlight the adequacy of fNIRS to assess differences in task-induced activation in sensorimotor cortex between groups. The association between motor performance and the hemodynamic activity require further investigation and suggest that fNIRS can become a suitable auxiliary tool to investigate aspects of neural basis on early development of motor abilities.

  16. A Modular Aerospike Engine Design Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Garcia, Chance; Burkhardt, Wendel

    2014-01-01

    A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.

  17. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W.; Laird, Daniel

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less

  18. Measured daylighting potential of a static optical louver system under real sun and sky conditions

    DOE PAGES

    Konis, Kyle; Lee, Eleanor S.

    2015-05-04

    Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less

  19. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  20. A Practical Guide To Developing Effective Web-based Learning

    PubMed Central

    Cook, David A; Dupras, Denise M

    2004-01-01

    OBJECTIVE Online learning has changed medical education, but many “educational” websites do not employ principles of effective learning. This article will assist readers in developing effective educational websites by integrating principles of active learning with the unique features of the Web. DESIGN Narrative review. RESULTS The key steps in developing an effective educational website are: Perform a needs analysis and specify goals and objectives; determine technical resources and needs; evaluate preexisting software and use it if it fully meets your needs; secure commitment from all participants and identify and address potential barriers to implementation; develop content in close coordination with website design (appropriately use multimedia, hyperlinks, and online communication) and follow a timeline; encourage active learning (self-assessment, reflection, self-directed learning, problem-based learning, learner interaction, and feedback); facilitate and plan to encourage use by the learner (make website accessible and user-friendly, provide time for learning, and motivate learners); evaluate learners and course; pilot the website before full implementation; and plan to monitor online communication and maintain the site by resolving technical problems, periodically verifying hyperlinks, and regularly updating content. CONCLUSION Teaching on the Web involves more than putting together a colorful webpage. By consistently employing principles of effective learning, educators will unlock the full potential of Web-based medical education. PMID:15209610

  1. Recombinant production and film properties of full-length hornet silk proteins.

    PubMed

    Kambe, Yusuke; Sutherland, Tara D; Kameda, Tsunenori

    2014-08-01

    Full-length versions of the four main components of silk cocoons of Vespa simillima hornets, Vssilk1-4, were produced as recombinant proteins in Escherichia coli. In shake flasks, the recombinant Vssilk proteins yielded 160-330mg recombinant proteinl(-1). Films generated from solutions of single Vssilk proteins had a secondary structure similar to that of films generated from native hornet silk. The films made from individual recombinant hornet silk proteins had similar or enhanced mechanical performance compared with films generated from native hornet silk, possibly reflecting the homogeneity of the recombinant proteins. The pH-dependent changes in zeta (ζ) potential of each Vssilk film were measured, and isoelectric points (pI) of Vssilk1-4 were determined as 8.9, 9.1, 5.0 and 4.2, respectively. The pI of native hornet silk, a combination of the four Vssilk proteins, was 4.7, a value similar to that of Bombyx mori silkworm silk. Films generated from Vssilk1 and 2 had net positive charge under physiological conditions and showed significantly higher cell adhesion activity. It is proposed that recombinant hornet silk is a valuable new material with potential for cell culture applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    PubMed

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  3. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  4. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution,more » and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.« less

  5. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution,more » and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.« less

  6. Dynamics and Hall-edge-state mixing of localized electrons in a two-channel Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Bellentani, Laura; Beggi, Andrea; Bordone, Paolo; Bertoni, Andrea

    2018-05-01

    We present a numerical study of a multichannel electronic Mach-Zehnder interferometer, based on magnetically driven noninteracting edge states. The electron path is defined by a full-scale potential landscape on the two-dimensional electron gas at filling factor 2, assuming initially only the first Landau level as filled. We tailor the two beamsplitters with 50 % interchannel mixing and measure Aharonov-Bohm oscillations in the transmission probability of the second channel. We perform time-dependent simulations by solving the electron Schrödinger equation through a parallel implementation of the split-step Fourier method, and we describe the charge-carrier wave function as a Gaussian wave packet of edge states. We finally develop a simplified theoretical model to explain the features observed in the transmission probability, and we propose possible strategies to optimize gate performances.

  7. Metallized coatings for corrosion control of Naval ship structures and components

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.

  8. High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Wieser, Wolfgang; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk; European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund; Theil Kuhn, Luise

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experimentsmore » successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  10. A Literature Survey and Experimental Evaluation of the State-of-the-Art in Uplift Modeling: A Stepping Stone Toward the Development of Prescriptive Analytics.

    PubMed

    Devriendt, Floris; Moldovan, Darie; Verbeke, Wouter

    2018-03-01

    Prescriptive analytics extends on predictive analytics by allowing to estimate an outcome in function of control variables, allowing as such to establish the required level of control variables for realizing a desired outcome. Uplift modeling is at the heart of prescriptive analytics and aims at estimating the net difference in an outcome resulting from a specific action or treatment that is applied. In this article, a structured and detailed literature survey on uplift modeling is provided by identifying and contrasting various groups of approaches. In addition, evaluation metrics for assessing the performance of uplift models are reviewed. An experimental evaluation on four real-world data sets provides further insight into their use. Uplift random forests are found to be consistently among the best performing techniques in terms of the Qini and Gini measures, although considerable variability in performance across the various data sets of the experiments is observed. In addition, uplift models are frequently observed to be unstable and display a strong variability in terms of performance across different folds in the cross-validation experimental setup. This potentially threatens their actual use for business applications. Moreover, it is found that the available evaluation metrics do not provide an intuitively understandable indication of the actual use and performance of a model. Specifically, existing evaluation metrics do not facilitate a comparison of uplift models and predictive models and evaluate performance either at an arbitrary cutoff or over the full spectrum of potential cutoffs. In conclusion, we highlight the instability of uplift models and the need for an application-oriented approach to assess uplift models as prime topics for further research.

  11. High-resolution imaging of biological tissue with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  12. SNM detection with an optimized water Cherenkov neutron detector

    NASA Astrophysics Data System (ADS)

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-11-01

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype [1]—a technology that could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions [2], demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In this paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. Our simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.

  13. SNM Detection with an Optimized Water Cherenkov Neutron Detector

    DOE PAGES

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-07-23

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less

  14. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  15. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.

    2015-11-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  16. Single-Scale Retinex Using Digital Signal Processors

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2005-01-01

    The Retinex is an image enhancement algorithm that improves the brightness, contrast and sharpness of an image. It performs a non-linear spatial/spectral transform that provides simultaneous dynamic range compression and color constancy. It has been used for a wide variety of applications ranging from aviation safety to general purpose photography. Many potential applications require the use of Retinex processing at video frame rates. This is difficult to achieve with general purpose processors because the algorithm contains a large number of complex computations and data transfers. In addition, many of these applications also constrain the potential architectures to embedded processors to save power, weight and cost. Thus we have focused on digital signal processors (DSPs) and field programmable gate arrays (FPGAs) as potential solutions for real-time Retinex processing. In previous efforts we attained a 21 (full) frame per second (fps) processing rate for the single-scale monochromatic Retinex with a TMS320C6711 DSP operating at 150 MHz. This was achieved after several significant code improvements and optimizations. Since then we have migrated our design to the slightly more powerful TMS320C6713 DSP and the fixed point TMS320DM642 DSP. In this paper we briefly discuss the Retinex algorithm, the performance of the algorithm executing on the TMS320C6713 and the TMS320DM642, and compare the results with the TMS320C6711.

  17. Turning workplace anger and anxiety into peak performance. Strategies for enhancing employee health and productivity.

    PubMed

    Helge, D

    2001-08-01

    Traditional corporate approaches toward anger and anxiety in the workplace have ignored or exacerbated the problem. Human emotions are not only essential for job performance, they are a free resource that can be harnessed in ethical ways to enhance job productivity. Most of the causes and costs of workplace anger and anxiety can be prevented. In an ideal workplace, employees are internally motivated and self regulating because they are hired with care, placed in jobs serving them as well as the company, and supported with the required resources to accomplish their jobs. When companies treat employees with dignity and make efforts to empower them, employee self confidence and performance grows. Occupational and environmental health nurses are in positions to alter dysfunctional aspects of corporate culture while simultaneously working with individual employees who are angry or anxious. Successful companies are those that nurture their workers while achieving their mission. They treat employees with dignity and respect while challenging them to reach their full potential.

  18. Antimisting kerosene JT3 engine fuel system integration study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  19. Radiology operations: what you don't know could be costing you millions.

    PubMed

    Joffe, Sam; Drew, Donna; Bansal, Manju; Hase, Michael

    2007-01-01

    Rapid growth in advanced imaging procedures has left hospital radiology departments struggling to keep up with demand, resulting in loss of patients to facilities that can offer service more quickly. While the departments appear to be working at full capacity, an operational analysis of over 400 hospital radiology departments in the US by GE Healthcare has determined that, paradoxically, many departments are in fact underutilized and operating for below their potential capacity. While CT cycle time in hospitals that were studied averaged 35 minutes, top performing hospitals operated the same equipment at a cycle time of 15 minutes, yielding approximately double the throughput volume. Factors leading to suboptimal performance include accounting metrics that mask true performance, leadership focus on capital investment rather than operations, under staffing, under scheduling, poorly aligned incentives, a fragmented view of operations, lack of awareness of latent opportunities, and lack of sufficient skills and processes to implement improvements. The study showed how modest investments in radiology operations can dramatically improve access to services and profitability.

  20. Solar rocket system concept analysis

    NASA Technical Reports Server (NTRS)

    Boddy, J. A.

    1980-01-01

    The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.

  1. HO2 rovibrational eigenvalue studies for nonzero angular momentum

    NASA Astrophysics Data System (ADS)

    Wu, Xudong T.; Hayes, Edward F.

    1997-08-01

    An efficient parallel algorithm is reported for determining all bound rovibrational energy levels for the HO2 molecule for nonzero angular momentum values, J=1, 2, and 3. Performance tests on the CRAY T3D indicate that the algorithm scales almost linearly when up to 128 processors are used. Sustained performance levels of up to 3.8 Gflops have been achieved using 128 processors for J=3. The algorithm uses a direct product discrete variable representation (DVR) basis and the implicitly restarted Lanczos method (IRLM) of Sorensen to compute the eigenvalues of the polyatomic Hamiltonian. Since the IRLM is an iterative method, it does not require storage of the full Hamiltonian matrix—it only requires the multiplication of the Hamiltonian matrix by a vector. When the IRLM is combined with a formulation such as DVR, which produces a very sparse matrix, both memory and computation times can be reduced dramatically. This algorithm has the potential to achieve even higher performance levels for larger values of the total angular momentum.

  2. Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Bronner, C.; Ross, E.; Rabideau, A. J.

    2009-05-01

    Experimental and modeling studies have been initiated to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Preliminary column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Variations of the column configurations addressed the effects of particle size and flow rates on removal efficiency. In general, kinetic effects were not significant for the test conditions. Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The results of the performance assessment will support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.

  3. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less

  4. ATLAS fast physics monitoring: TADA

    NASA Astrophysics Data System (ADS)

    Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.

  5. Comparisons of the Impact Responses of a 1/5-Scale Model and a Full-Scale Crashworthy Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.

    2003-01-01

    A 25-fps vertical drop test of a 1/5-scale model composite fuselage section was conducted to replicate a previous test of a full-scale fuselage section. The purpose of the test was to obtain experimental data characterizing the impact response of the 1/5-scale model fuselage section for comparison with the corresponding full-scale data. This comparison is performed to assess the scaling procedures and to determine if scaling effects are present. For the drop test, the 1/5-scale model fuselage section was configured in a similar manner as the full-scale section, with lead masses attached to the floor through simulated seat rails. Scaled acceleration and velocity responses are compared and a general assessment of structural damage is made. To further quantify the data correlation, comparisons of the average acceleration data are made as a function of floor location and longitudinal position. Also, the percentage differences in the velocity change (area under the acceleration curve) and the velocity change squared (proportional to kinetic energy) are compared as a function of floor location. Finally, correlation coefficients are calculated for corresponding 1/5- and full-scale data channels and these values are plotted versus floor location. From a scaling perspective, the differences between the 1/5- and full-scale tests are relatively small, indicating that appropriate scaling procedures were used in fabricating the test specimens and in conducting the experiments. The small differences in the scaled test data are attributed to minor scaling anomalies in mass, potential energy, and impact attitude.

  6. Investigating the viscous interaction and its role in generating the ionospheric potential during the Whole Heliosphere Interval

    NASA Astrophysics Data System (ADS)

    Bruntz, R.; Lopez, R. E.; Bhattarai, S. K.; Pham, K. H.; Deng, Y.; Huang, Y.; Wiltberger, M.; Lyon, J. G.

    2012-07-01

    The Whole Heliosphere Interval (WHI), comprising March 20-April 16, 2008 (DOY 80-107), is a single Carrington Rotation (2068) designated for intense study through observations and simulations. We used solar wind data from the WHI to run the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) and stand-alone Lyon-Fedder-Mobarry (LFM) models. The LFM model was also run with the WHI solar wind plasma parameters but with zero interplanetary magnetic field (IMF). With no IMF, we expect that the cross-polar cap potential (CPCP) is due entirely to the viscous interaction. Comparing the LFM runs with and without the IMF, we found that during strong driving with southward IMF Bz, the viscous potential could be a significant fraction of the total CPCP. During times of northward IMF Bz, the CPCP was generally lower than the CPCP value from the IMF=0 run. LFM tends to produce high polar cap potentials, but by using the Bruntz et al. (2012) viscous potential formula (ΦV=μn0.439V1.33, where μ=0.00431) and the IMF=0 LFM run, we calculated a scaling factor γ=1.54, which can be used to scale the LFM CPCP during the WHI down to realistic values. The Newell et al. (2008) viscous merging term can similarly be used to predict the viscous potential using the formula: ΦV=νn1/2V2, where the value ν=6.39×10-5 was also found using the zero IMF run. Both formulas were found to perform better when V (solar wind)=Vx, rather than Vtotal, yielding similar, accurate predictions of the LFM viscous potential, with R2>0.91 for both formulas. The γ factor was also used to scale down the LFM CPCP from the full solar wind run, with most of the resultant values matching the CPCP from the Weimer05 model well, even though γ was derived independent of the Weimer05 model or the full LFM data. We interpret this to be an indication that the conductivity model in LFM is producing values that are too low, thus elevating the CPCP values.

  7. Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first rainfall because of the difference between infiltration and percolation rates.

  8. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    NASA Astrophysics Data System (ADS)

    Romano, Paul Kollath

    Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  9. Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M=Fe, Ru, Os) compounds with first principle calculations

    NASA Astrophysics Data System (ADS)

    Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.

    2016-05-01

    The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.

  10. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    USGS Publications Warehouse

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  11. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    PubMed

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  12. Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.

    2007-01-01

    In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.

  13. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    PubMed

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  14. Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecular-Mechanical Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lin, Hai

    2009-05-01

    Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.

  15. Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    2009-12-01

    We present the results of a first-principle full-potential linearized augmented plane wave (FLAPW) method to study the effect of defects on the electronic structure of SrTiO3. In addition, the relaxation of nearest neighbor atoms around those defects were calculated self-consistently. The calculations were performed using the local (spin) density approximations (L(S)DA), for the exchange-correlation potential. SrTiO3 was found to experience an insulator-to-metal transition upon the formation of oxygen vacancies or the substitution of Nb at the Ti site. The formation of oxygen divacancy disclosed additional states below the conduction band edge. The crystalline lattice relaxation showed displacements of atoms in rather large defective region. The magnitudes of atomic movements, however, were not large, normally not exceeding 0.15 Å. Our results were compared to the available experimental observations.

  16. Effect of diode-laser and AC magnetic field of bovine serum albumin nanospheres loaded with phthalocyanine and magnetic particles.

    PubMed

    Simioni, Andreza Ribeiro; Rodrigues, Marcilene M A; Primo, Fernando L; Morais, Paulo C; Tedesco, Antonio Claudio

    2011-04-01

    This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material's evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.

  17. Comments on the feasibility of developing gas core nuclear reactors. [for manned interplanetary spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1969-01-01

    Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.

  18. Theoretical band structure of the superconducting antiperovskite oxide Sr3-xSnO

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsutoshi; Fukumoto, Toshiyuki; Oudah, Mohamed; Hausmann, Jan Niklas; Yonezawa, Shingo; Kobayashi, Shingo; Sato, Masatoshi; Tassel, Cédric; Takeiri, Fumitaka; Takatsu, Hiroshi; Kageyama, Hiroshi; Maeno, Yoshiteru

    2018-05-01

    In order to investigate the position of the strontium deficiency in superconductive Sr3-xSnO, we synthesized and measured X-ray-diffraction patterns of Sr3-xSnO (x ∼ 0.5). Because no clear peaks originating from superstructures were observed, strontium deficiency is most likely to be randomly distributed. We also performed first-principles band-structure calculations on Sr3-xSnO (x = 0, 0.5) using two methods: full-potential linearized-augmented plane-wave plus local orbitals method and the Korringa-Kohn-Rostoker Green function method combined with the coherent potential approximation. We revealed that the Fermi energy of Sr3-xSnO in case of x ∼ 0.5 is about 0.8 eV below the original Fermi energy of the stoichiometric Sr3SnO, where the mixing of the valence p and conduction d orbitals are considered to be small.

  19. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  20. 3D printing of a wearable personalized oral delivery device: A first-in-human study

    PubMed Central

    Brambilla, Davide

    2018-01-01

    Despite the burgeoning interest in three-dimensional (3D) printing for the manufacture of customizable oral dosage formulations, a U.S. Food and Drug Administration–approved tablet notwithstanding, the full potential of 3D printing in pharmaceutical sciences has not been realized. In particular, 3D-printed drug-eluting devices offer the possibility for personalization in terms of shape, size, and architecture, but their clinical applications have remained relatively unexplored. We used 3D printing to manufacture a tailored oral drug delivery device with customizable design and tunable release rates in the form of a mouthguard and, subsequently, evaluated the performance of this system in the native setting in a first-in-human study. Our proof-of-concept work demonstrates the immense potential of 3D printing as a platform for the development and translation of next-generation drug delivery devices for personalized therapy. PMID:29750201

  1. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  2. Surgical robotics for patient safety in the perioperative environment: realizing the promise.

    PubMed

    Fuji Lai; Louw, Deon

    2007-06-01

    Surgery is at a crossroads of complexity. However, there is a potential path toward patient safety. One such course is to leverage computer and robotic assist techniques in the reduction and interception of error in the perioperative environment. This white paper attempts to facilitate the road toward realizing that promise by outlining a research agenda. The paper will briefly review the current status of surgical robotics and summarize any conclusions that can be reached to date based on existing research. It will then lay out a roadmap for future research to determine how surgical robots should be optimally designed and integrated into the perioperative workflow and process. Successful movement down this path would involve focused efforts and multiagency collaboration to address the research priorities outlined, thereby realizing the full potential of surgical robotics to augment human capabilities, enhance task performance, extend the reach of surgical care, improve health care quality, and ultimately enhance patient safety.

  3. Gravitational effective action at second order in curvature and gravitational waves

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel

    2017-09-01

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.

  4. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects.

    PubMed

    Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul

    2018-03-06

    Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.

  5. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  6. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  7. Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study.

    PubMed

    Mokrysz, C; Landy, R; Gage, S H; Munafò, M R; Roiser, J P; Curran, H V

    2016-02-01

    There is much debate about the impact of adolescent cannabis use on intellectual and educational outcomes. We investigated associations between adolescent cannabis use and IQ and educational attainment in a sample of 2235 teenagers from the Avon Longitudinal Study of Parents and Children. By the age of 15, 24% reported having tried cannabis at least once. A series of nested linear regressions was employed, adjusted hierarchically by pre-exposure ability and potential confounds (e.g. cigarette and alcohol use, childhood mental-health symptoms and behavioural problems), to test the relationships between cumulative cannabis use and IQ at the age of 15 and educational performance at the age of 16. After full adjustment, those who had used cannabis ⩾ 50 times did not differ from never-users on either IQ or educational performance. Adjusting for group differences in cigarette smoking dramatically attenuated the associations between cannabis use and both outcomes, and further analyses demonstrated robust associations between cigarette use and educational outcomes, even with cannabis users excluded. These findings suggest that adolescent cannabis use is not associated with IQ or educational performance once adjustment is made for potential confounds, in particular adolescent cigarette use. Modest cannabis use in teenagers may have less cognitive impact than epidemiological surveys of older cohorts have previously suggested. © The Author(s) 2016.

  8. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Bender, G.; Bethune, K.; Rocheleau, R.

    2014-02-01

    The effects of temperature on sulfur dioxide (SO2) contamination in PEMFCs are investigated by operating single cells with 2 ppm SO2 in the cathode at different temperatures. Cell performance response shows that voltage degradation was delayed and appears a transition of multiple processes at low temperatures; a similar performance loss is observed when performances reached steady state. The restored performance from the reversible and the irreversible degradations highly depends on temperature. At low temperature, the performance recovery is only negligible with neat air operation (self-recovery), while full recovery is observed after cyclic voltammetry (CV) scanning. As temperature increased, so did the self-recovery performance. However, the total recovery performance decreased. Electrochemical impedance spectroscopy analysis indicates that the potential-dependent poisoning process was delayed at low temperature, and the removal of the sulfur species from Pt/C was inhibited during the self-recovery. Water balance analysis implies that the delay could be attributed to the effect of liquid water scavenging and the mass transport of SO2 in the membrane electrode assemblies. The CV analysis confirms that the decomposition/desorption of the sulfur adsorbates was inhibited and indicates that the SO2 crossover from the cathode to the anode side was also mitigated at low temperature.

  9. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  10. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function ofmore » pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.« less

  11. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  12. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant

    PubMed Central

    Zachariades, Costas; Heshula, Lelethu U.; Hill, Martin P.

    2018-01-01

    Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect folivore performance in ways that are not linear. PMID:29304104

  13. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant.

    PubMed

    Uyi, Osariyekemwen O; Zachariades, Costas; Heshula, Lelethu U; Hill, Martin P

    2018-01-01

    Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect folivore performance in ways that are not linear.

  14. Performance of Arrowroot (Marantha arundinacea) in various light intensities

    NASA Astrophysics Data System (ADS)

    Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.

    2018-03-01

    Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.

  15. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of rehabilitation potential: Full-time only 374.93 465.08 548.05 39.95 3/4 time 281.71 349.32 409.76... exceed the difference between the monthly training wage, not including overtime, and the entrance....44 456.88 29.71 Improvement of rehabilitation potential: Full-time only 374.93 465.08 548.05 39.95 3...

  16. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of rehabilitation potential: Full-time only 374.93 465.08 548.05 39.95 3/4 time 281.71 349.32 409.76... exceed the difference between the monthly training wage, not including overtime, and the entrance....44 456.88 29.71 Improvement of rehabilitation potential: Full-time only 374.93 465.08 548.05 39.95 3...

  17. A nebulized gelatin nanoparticle-based CpG formulation is effective in immunotherapy of allergic horses.

    PubMed

    Klier, John; Fuchs, Sebastian; May, Anna; Schillinger, Ulrike; Plank, Christian; Winter, Gerhard; Coester, Conrad; Gehlen, Heidrun

    2012-06-01

    In the recent years, nanotechnology has boosted the development of potential drug delivery systems and material engineering on nanoscale basis in order to increase drug specificity and reduce side effects. A potential delivery system for immunostimulating agents such as cytosine-phosphate-guanine-oligodeoxynucleotides (CpG-ODN) needs to be developed to maximize the efficacy of immunotherapy against hypersensitivity. In this study, an aerosol formulation of biodegradable, biocompatible and nontoxic gelatin nanoparticle-bound CpG-ODN 2216 was used to treat equine recurrent airway obstruction in a clinical study. Bronchoalveolar lavage fluid was obtained from healthy and allergic horses to quantify Th1/Th2 cytokine levels before and after inhalation regimen. Full clinical examinations were performed to evaluate the therapeutic potential of this nebulized gelatin nanoparticle-based CpG formulation. Most remarkable was that regulatory anti-inflammatory and anti-allergic cytokine IL-10 expression was significantly triggered by five consecutive inhalations. Thorough assessment of clinical parameters following nanoparticle treatment indicated a partial remission of the allergic condition. Thus this study, for the first time, showed effectiveness of colloidal nanocarrier-mediated immunotherapy in food-producing animals with potential future applicability to other species including humans.

  18. Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products.

    PubMed

    Oberson, Jean-Marie; Campos-Giménez, Esther; Rivière, Johann; Martin, Frédéric

    2018-06-01

    In the present manuscript, we describe a fully optimized and validated method suitable to analyse nine compounds (retinyl acetate, retinyl palmitate, retinol, α-tocopherol, α-tocopheryl acetate, cholecalciferol, ergocalciferol, phylloquinone, menaquinone-4) representing the major contributors to the fat-soluble vitamin activity of selected food products (infant formulas, adult nutritionals, infant cereals and mixed meals). Sample preparation involves direct solvent extraction using enzyme-assisted matrix disintegration and methanolic protein precipitation. Direct injection of the extract allows quantification of vitamins A, E and K in only 7 min, while vitamin D is determined after fast derivatization of the extract. Separation is achieved by supercritical fluid chromatography and detection performed by tandem mass spectrometry in positive Atmospheric Pressure Chemical Ionization mode. Results on a Standard Reference Material (SRM 1849a Infant/Adult Nutritional) were not statistically different from reference values. Full validation of the method showed excellent overall performance. Average recovery rate was between 90 and 110% for all vitamins and matrixes. The methodology shows enhanced safety and reduced cost as compared with previously published methods, together with potential for application to more complex matrixes. The full procedure can be easily applied in control laboratories dramatically increasing sample throughput and reducing solvent consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  20. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.

    PubMed

    Zhang, Jianwei; Shi, Gang; Jiang, Cai; Ju, Su; Jiang, Dazhi

    2015-12-01

    Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full-carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high-power electronics and stretchable/foldable devices as high-performance lateral heat spreader materials. This full-carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  2. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  3. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance

    NASA Astrophysics Data System (ADS)

    Hermann, John K.; Ravikumar, Madhumitha; Shoffstall, Andrew J.; Ereifej, Evon S.; Kovach, Kyle M.; Chang, Jeremy; Soffer, Arielle; Wong, Chun; Srivastava, Vishnupriya; Smith, Patrick; Protasiewicz, Grace; Jiang, Jingle; Selkirk, Stephen M.; Miller, Robert H.; Sidik, Steven; Ziats, Nicholas P.; Taylor, Dawn M.; Capadona, Jeffrey R.

    2018-04-01

    Objective. Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. Approach. Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. Main results. The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. Significance. Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.

  4. Shifting attention among working memory representations: testing cue type, awareness, and strategic control.

    PubMed

    Berryhill, Marian E; Richmond, Lauren L; Shay, Cara S; Olson, Ingrid R

    2012-01-01

    It is well known that visual working memory (VWM) performance is modulated by attentional cues presented during encoding. Interestingly, retrospective cues presented after encoding, but prior to the test phase also improve performance. This improvement in performance is termed the retro-cue benefit. We investigated whether the retro-cue benefit is sensitive to cue type, whether participants were aware of their improvement in performance due to the retro-cue, and whether the effect was under strategic control. Experiment 1 compared the potential cueing benefits of abrupt onset retro-cues relying on bottom-up attention, number retro-cues relying on top-down attention, and arrow retro-cues, relying on a mixture of both. We found a significant retro-cue effect only for arrow retro-cues. In Experiment 2, we tested participants' awareness of their use of the informative retro-cue and found that they were aware of their improved performance. In Experiment 3, we asked whether participants have strategic control over the retro-cue. The retro-cue was difficult to ignore, suggesting that strategic control is low. The retro-cue effect appears to be within conscious awareness but not under full strategic control.

  5. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion.

    PubMed

    Magnussen, Synnove Norvoll; Hadler-Olsen, Elin; Costea, Daniela Elena; Berg, Eli; Jacobsen, Cristiane Cavalcanti; Mortensen, Bente; Salo, Tuula; Martinez-Zubiaurre, Inigo; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjorg

    2017-05-19

    Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.

  6. An expert opinion on safinamide in Parkinson's disease.

    PubMed

    Onofrj, Marco; Bonanni, Laura; Thomas, Astrid

    2008-07-01

    Dopamine replacement therapies (levodopa, dopamine receptor agonists, anticholinergics, monoamine oxidase B inhibitors, and catechol-O-methyltransferase inhibitors) remain the cornerstones of therapeutic interventions for Parkinson's disease (PD). Despite the treatment options for PD symptoms, a cure remains elusive. An optimal treatment would be one that combined relief in both motor and nonmotor symptoms with neuroprotective properties. Safinamide is an investigational drug for PD currently in development as add-on therapy to both dopamine agonists and levodopa. Safinamide is a unique molecule with a novel mode of action, targeting both dopaminergic and glutaminergic systems, and potentially provides motor symptom control. Preliminary results from experimental models suggest potential neuroprotective effects. Studies on the potential effects on nonmotor symptoms are ongoing. To review the mechanism of action and pharmacokinetics, and to evaluate the available clinical safety and efficacy results of safinamide. A search of the electronic database MEDLINE (PubMed, no time limits) was performed on 14 December 2007. The full text of all citations was obtained for review. Furthermore, two abstracts on safinamide published as proceedings of a European conference were reviewed. Safinamide is a promising investigational drug for PD with a novel mode of action. Early reports confirm the potential efficacy of safinamide in PD. Further studies on potential effects on cognition and neuroprotection are needed.

  7. Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Thingna, Juzar; Wang, Jian

    2018-04-01

    We provide a thermodynamically consistent description of energy, charge, and spin transfers in a thermoelectric quantum-dot spin valve in the collinear configuration based on nonequilibrium Green's function and full counting statistics. We use the fluctuation theorem symmetry and the concept of entropy production to characterize the efficiency with which thermal gradients can transduce charges or spins against their chemical potentials, arbitrary far from equilibrium. Close to equilibrium, we recover the Onsager reciprocal relations and the connection to linear response notions of performance such as the figure of merit. We also identify regimes where work extraction is more efficient far then close from equilibrium.

  8. Computer-generated, calligraphic, full-spectrum color system for visual simulation landing approach maneuvers

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1975-01-01

    The calligraphic chromatic projector described was developed to improve the perceived realism of visual scene simulation ('out-the-window visuals'). The optical arrangement of the projector is illustrated and discussed. The device permits drawing 2000 vectors in as many as 500 colors, all above critical flicker frequencies, and use of high scene resolution and brightness at an acceptable level to the pilot, with the maximum system capabilities of 1000 lines and 1000 fL. The device for generating the colors is discussed, along with an experiment conducted to demonstrate potential improvements in performance and pilot opinion. Current research work and future research plans are noted.

  9. Two-Dimensional Air-Flow Tests of the Effect of ITA Flowliner Slot Modification by Grinding/Polishing on Edge Tone Generation Potential

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L. (Technical Monitor); Walker, Bruce E.

    2004-01-01

    Hersh Walker Acoustics (HWA) has performed a series of wind tunnel tests to support crack-repair studies for ITA flowliner vent slots. The overall goal of these tests is to determine if slot shape details have a significant influence on the propensity of the flowliner to produce aero-acoustic oscillations that could increase unsteady stresses on the flowliner walls. The test series, conducted using a full-scale two-dimensional model of a six-slot segment of the 38 slot liner, was intended to investigate the effects of altering slot shape by grinding away cracked portions.

  10. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  11. New control strategies for longwall armored face conveyors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1998-03-01

    This paper investigates a new control approach for longwall armored face conveyors (AFC`s) using variable-speed drives (VSD`s). Traditionally, AFC`s have used fixed-speed or two-speed motors, with various mechanical solutions employed to try to solve the problems that this causes. The VSD approach to the control problem promises to solve all the significant problems associated with the control of AFC`s. This paper will present the control algorithms developed for a VSD-based AFC drive system and demonstrate potential performance via computer simulation. A full discussion of the problems involved with the control of AFC`s can be found in the companion paper.

  12. F-14A aircraft high-speed flow simulations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Rosen, B. S.

    1985-01-01

    A model of the Grumman/Navy F-14A aircraft was developed for analyses using the NASA/Grumman Transonic Wing-Body Code. Computations were performed for isolated wing and wing fuselage glove arrangements to determine the extent of aerodynamic interference effects which propagate outward onto the main wing outer panel. Additional studies were conducted using the full potential analysis, FLO 22, to calibrate any inaccuracies that might accrue because of small disturbance code limitations. Comparisons indicate that the NASA/Grumman code provides excellent flow simulations for the range of wing sweep angles and flow conditions that will be of interest for the upcoming F-14 Variable Sweep Flight Transition Experiment.

  13. Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned polyimide shadow masks

    NASA Astrophysics Data System (ADS)

    Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany

    2014-02-01

    A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.

  14. Scan-Based Implementation of JPEG 2000 Extensions

    NASA Technical Reports Server (NTRS)

    Rountree, Janet C.; Webb, Brian N.; Flohr, Thomas J.; Marcellin, Michael W.

    2001-01-01

    JPEG 2000 Part 2 (Extensions) contains a number of technologies that are of potential interest in remote sensing applications. These include arbitrary wavelet transforms, techniques to limit boundary artifacts in tiles, multiple component transforms, and trellis-coded quantization (TCQ). We are investigating the addition of these features to the low-memory (scan-based) implementation of JPEG 2000 Part 1. A scan-based implementation of TCQ has been realized and tested, with a very small performance loss as compared with the full image (frame-based) version. A proposed amendment to JPEG 2000 Part 2 will effect the syntax changes required to make scan-based TCQ compatible with the standard.

  15. On Directly Solving SCHRÖDINGER Equation for H+2 Ion by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saha, Rajendra; Bhattacharyya, S. P.

    Schrödinger equation (SE) is sought to be solved directly for the ground state of H+2 ion by invoking genetic algorithm (GA). In one approach the internuclear distance (R) is kept fixed, the corresponding electronic SE for H+2 is solved by GA at each R and the full potential energy curve (PEC) is constructed. The minimum of the PEC is then located giving Ve and Re. Alternatively, Ve and Re are located in a single run by allowing R to vary simultaneously while solving the electronic SE by genetic algorithm. The performance patterns of the two strategies are compared.

  16. Amélioration des performances du procédé de soudage TIG sur un acier au carbone et un alliage d'aluminium par dépôt de silice

    NASA Astrophysics Data System (ADS)

    Sire, Stéphane; Marya, Surendar

    This Note presents ways to improve the weld penetration potential of TIG process by optimising silica application around the joints in a plain carbon steel and an aluminium alloy 5086. Whereas for plain carbon steels, full coverage of joint improves penetration, the presence of a blank zone around the joint in the flux coating on aluminium 5086 using AC-TIG seems to be the best solution for cosmetic and deep welds. To cite this article: S. Sire, S. Marya, C. R. Mecanique 330 (2002) 83-89.

  17. Design and development of an active Gurney flap for rotorcraft

    NASA Astrophysics Data System (ADS)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  18. Advancement of technology towards developing Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  19. Performance of full-sib families of Douglas-fir in pure-family and mixed-family deployments

    Treesearch

    Peter J. Gould; J. Bradley St.Clair; Paul D. Anderson

    2011-01-01

    A major objective of tree improvement programs is to identify genotypes that will perform well in operational deployments. Relatively little is known, however, about how the competitive environment affects performance in different types of deployments. We tested whether the genetic composition and density of deployments affect the performance of full-sib families of...

  20. Understanding the Barriers to Hiring and Promoting Women in Surgical Subspecialties.

    PubMed

    Valsangkar, Nakul; Fecher, Alison M; Rozycki, Grace S; Blanton, Cassie; Bell, Teresa M; Freischlag, Julie; Ahuja, Nita; Zimmers, Teresa A; Koniaris, Leonidas G

    2016-08-01

    The objective of this study was to characterize potential disparities in academic output, NIH-funding, and academic rank between male and female surgical faculty and identify subspecialties in which these differences may be more pronounced. Eighty metrics for 4,015 faculty members at the top-55 NIH-funded departments of surgery were collected. Demographic characteristics, NIH funding details, and scholarly output were analyzed. A new metric, academic velocity (V), reflecting recent citations is defined. Overall, 21.5% of surgical faculty are women. The percentage of female faculty is highest in science/research (41%) and surgical oncology (34%), and lowest in cardiothoracic surgery (9%). Female faculty are less likely to be full professors (22.7% vs 41.2%) and division chiefs (6.2% vs 13.6%). The fraction of women who are full professors is lowest in cardiothoracic surgery. Overall median numbers of publications/citations are lower for female faculty compared with male surgical faculty (21 of 364 vs 43 of 723, p < 0.001), and these differences are more pronounced for assistant professors. Current/previous NIH funding (21.3% vs 24%, p = NS) rates are similar between women and men, and surgical departments with more female full professors have higher NIH funding ranking (R(2) = 0.14, p < 0.05). In certain subspecialties, female associate and full professors outperform male counterparts. Overall, female authors have higher numbers of more recent citations. Subspecialty involvement and academic performance differences by sex vary greatly by subspecialty type and are most pronounced at the assistant professor level. Identification of potential barriers for entry of women into certain subspecialties, causes for the observed lower number of publications/citations among female assistant professors, and obstacles for attaining leadership roles need to be determined. We propose a new metric for assessment of publications/citations that can offset the effects of seniority differences between male and female faculty members. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  1. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  2. Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil.

    PubMed

    Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos

    2015-01-01

    This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.

  3. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  4. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy.

    PubMed

    Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A

    2015-05-01

    Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.

  5. Executive functioning during full and partial remission (positive and negative symptomatic remission) of schizophrenia.

    PubMed

    Braw, Yoram; Benozio, Avi; Levkovitz, Yechiel

    2012-12-01

    Despite the upsurge of research regarding cognitive impairment in schizophrenia we still lack adequate understanding of the executive functioning of patients in symptomatic remission. Moreover, the cognitive functioning of patients in partial remission has not been studied previously although they comprise a significant proportion of schizophrenia patients. The current study therefore examined the executive functioning of patients in full symptomatic remission and for the first time assessed two sub-groups of patients in partial remission. Executive functioning of five groups was compared; symptomatic patients, patients in positive symptomatic remission, negative symptomatic remission, full symptomatic remission (SP, PSR, NSR, and FSR; N=101) and healthy controls (N=37). A graded cognitive profile was evident between the groups. SP patients exhibited widespread executive dysfunction while the performance of FSR patients was comparable to that of the healthy controls. Both PSR and NSR patients had working memory deficits, with PSR patients showing additional deficits in cognitive planning. The findings are encouraging, tentatively suggesting intact executive functioning among patients in full symptomatic remission. The graded cognitive profile of the patient groups strengthens earlier findings indicating the significant role of negative symptoms in determining executive dysfunction in schizophrenia. The findings point toward potential targets for therapeutic efforts and emphasize the need for further research of sub-groups of schizophrenia patients in partial remission. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Investigation on bending failure to characterize crashworthiness of 6xxx-series aluminium sheet alloys with bending-tension test procedure

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2018-05-01

    As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.

  7. A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Eppel, Joseph C.

    1987-01-01

    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

  8. A robust and effective time-independent route to the calculation of Resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects

    PubMed Central

    Egidi, Franco; Bloino, Julien; Cappelli, Chiara; Barone, Vincenzo

    2015-01-01

    We present an effective time-independent implementation to model vibrational resonance Raman (RR) spectra of medium-large molecular systems with the inclusion of Franck-Condon (FC) and Herzberg-Teller (HT) effects and a full account of the possible differences between the harmonic potential energy surfaces of the ground and resonant electronic states. Thanks to a number of algorithmic improvements and very effective parallelization, the full computations of fundamentals, overtones, and combination bands can be routinely performed for large systems possibly involving more than two electronic states. In order to improve the accuracy of the results, an effective inclusion of the leading anharmonic effects is also possible, together with environmental contributions under different solvation regimes. Reduced-dimensionality approaches can further enlarge the range of applications of this new tool. Applications to imidazole, pyrene, and chlorophyll a1 in solution are reported, as well as comparisons with available experimental data. PMID:26550003

  9. Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Minh; Onishi, Tsubasa; Carey, James William

    In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO 2 storage at Kevin Dome, Montana. Geologic CO 2 sequestration in saline aquifers poses certain risks including CO 2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a largemore » number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.« less

  10. Application and performance of an ML-EM algorithm in NEXT

    NASA Astrophysics Data System (ADS)

    Simón, A.; Lerche, C.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2017-08-01

    The goal of the NEXT experiment is the observation of neutrinoless double beta decay in 136Xe using a gaseous xenon TPC with electroluminescent amplification and specialized photodetector arrays for calorimetry and tracking. The NEXT Collaboration is exploring a number of reconstruction algorithms to exploit the full potential of the detector. This paper describes one of them: the Maximum Likelihood Expectation Maximization (ML-EM) method, a generic iterative algorithm to find maximum-likelihood estimates of parameters that has been applied to solve many different types of complex inverse problems. In particular, we discuss a bi-dimensional version of the method in which the photosensor signals integrated over time are used to reconstruct a transverse projection of the event. First results show that, when applied to detector simulation data, the algorithm achieves nearly optimal energy resolution (better than 0.5% FWHM at the Q value of 136Xe) for events distributed over the full active volume of the TPC.

  11. Quantum and classical dynamics of water dissociation on Ni(111): A test of the site-averaging model in dissociative chemisorption of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bin; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026; Guo, Hua, E-mail: hguo@unm.edu

    Recently, we reported the first highly accurate nine-dimensional global potential energy surface (PES) for water interacting with a rigid Ni(111) surface, built on a large number of density functional theory points [B. Jiang and H. Guo, Phys. Rev. Lett. 114, 166101 (2015)]. Here, we investigate site-specific reaction probabilities on this PES using a quasi-seven-dimensional quantum dynamical model. It is shown that the site-specific reactivity is largely controlled by the topography of the PES instead of the barrier height alone, underscoring the importance of multidimensional dynamics. In addition, the full-dimensional dissociation probability is estimated by averaging fixed-site reaction probabilities with appropriatemore » weights. To validate this model and gain insights into the dynamics, additional quasi-classical trajectory calculations in both full and reduced dimensions have also been performed and important dynamical factors such as the steering effect are discussed.« less

  12. Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species

    PubMed Central

    Yang, Xiping; Wang, Jianping

    2016-01-01

    The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classification, genome organization, evolution, expression, and regulation of these NBS-LRR genes using sorghum as a representative of grass species. In general, the full-length NBS-LRR genes are highly clustered and duplicated in sorghum genome mainly due to local duplications. NBS-LRR genes have basal expression levels and are highly potentially targeted by miRNA. The number of NBS-LRR genes in the four grass species is positively correlated with the gene clustering rate. The results provided a valuable genomic resource and insights for functional and evolutionary studies of NBS-LRR genes in grass species. PMID:26792976

  13. How to Help Children with Learning Differences Reach Their Full Potential

    ERIC Educational Resources Information Center

    Lavoie, Theresa

    2008-01-01

    This article is the third part of a 10-part series that explores Attention Deficit Hyperactivity Disorder (ADHD). It offers and discusses tips on how to help children with learning differences reach their full potential. These include: (1) start with good nutrition; (2) be sure your child is exercising; (3) make sure your child is getting enough…

  14. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    PubMed

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Advanced Plasmonic Materials for Dynamic Color Display.

    PubMed

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Technology integration performance assessment using lean principles in health care.

    PubMed

    Rico, Florentino; Yalcin, Ali; Eikman, Edward A

    2015-01-01

    This study assesses the impact of an automated infusion system (AIS) integration at a positron emission tomography (PET) center based on "lean thinking" principles. The authors propose a systematic measurement system that evaluates improvement in terms of the "8 wastes." This adaptation to the health care context consisted of performance measurement before and after integration of AIS in terms of time, utilization of resources, amount of materials wasted/saved, system variability, distances traveled, and worker strain. The authors' observations indicate that AIS stands to be very effective in a busy PET department, such as the one in Moffitt Cancer Center, owing to its accuracy, pace, and reliability, especially after the necessary adjustments are made to reduce or eliminate the source of errors. This integration must be accompanied by a process reengineering exercise to realize the full potential of AIS in reducing waste and improving patient care and worker satisfaction. © The Author(s) 2014.

  17. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  18. High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, G.; Kanchana, V.; Kumar, Ravhi S.; Cornelius, A. L.; Nicol, M. F.; Svane, A.; Delin, A.; Johansson, B.

    2007-07-01

    The high-pressure structural behavior of the fluoroperovskite KMgF3 is investigated by theory and experiment. Density functional calculations were performed within the local density approximation and the generalized gradient approximation for exchange and correlation effects, as implemented within the full-potential linear muffin-tin orbital method. In situ high-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 40GPa using synchrotron radiation. We find that the cubic Pm3¯m crystal symmetry persists throughout the pressure range studied. The calculated ground state properties—the equilibrium lattice constant, bulk modulus, and elastic constants—are in good agreement with experimental results. By analyzing the ratio between the bulk and shear moduli, we conclude that KMgF3 is brittle in nature. Under ambient conditions, KMgF3 is found to be an indirect gap insulator, with the gap increasing under pressure.

  19. Improved Doubly Robust Estimation when Data are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout

    PubMed Central

    Tsiatis, Anastasios A.; Davidian, Marie; Cao, Weihua

    2010-01-01

    Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. PMID:20731640

  20. CEA SMAD 2016 Digitizer Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hzmore » for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).« less

  1. Low-Temperature Thermoelectric Properties of Fe2VAl with Partial Cobalt Doping

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2012-06-01

    Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300 K to 850 K were reported. In this research, efforts were made to extend the investigation on (Fe1- x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80 K to room temperature. The effects of cobalt doping on the material's electronic and thermal properties are discussed.

  2. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  3. qF-SSOP: real-time optical property corrected fluorescence imaging

    PubMed Central

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  4. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  5. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  7. A structured framework improves clinical patient assessment and nontechnical skills of early career emergency nurses: a pre-post study using full immersion simulation.

    PubMed

    Munroe, Belinda; Curtis, Kate; Murphy, Margaret; Strachan, Luke; Considine, Julie; Hardy, Jennifer; Wilson, Mark; Ruperto, Kate; Fethney, Judith; Buckley, Thomas

    2016-08-01

    The aim of this study was to evaluate the effect of the new evidence-informed nursing assessment framework HIRAID (History, Identify Red flags, Assessment, Interventions, Diagnostics, reassessment and communication) on the quality of patient assessment and fundamental nontechnical skills including communication, decision making, task management and situational awareness. Assessment is a core component of nursing practice and underpins clinical decisions and the safe delivery of patient care. Yet there is no universal or validated system used to teach emergency nurses how to comprehensively assess and care for patients. A pre-post design was used. The performance of thirty eight emergency nurses from five Australian hospitals was evaluated before and after undertaking education in the application of the HIRAID assessment framework. Video recordings of participant performance in immersive simulations of common presentations to the emergency department were evaluated, as well as participant documentation during the simulations. Paired parametric and nonparametric tests were used to compare changes from pre to postintervention. From pre to postintervention, participant performance increases were observed in the percentage of patient history elements collected, critical indicators of urgency collected and reported to medical officers, and patient reassessments performed. Participants also demonstrated improvement in each of the four nontechnical skills categories: communication, decision making, task management and situational awareness. The HIRAID assessment framework improves clinical patient assessments performed by emergency nurses and has the potential to enhance patient care. HIRAID should be considered for integration into clinical practice to provide nurses with a systematic approach to patient assessment and potentially improve the delivery of safe patient care. © 2016 John Wiley & Sons Ltd.

  8. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  9. The relationship between cell phone use and management of driver fatigue: It's complicated.

    PubMed

    Saxby, Dyani Juanita; Matthews, Gerald; Neubauer, Catherine

    2017-06-01

    Voice communication may enhance performance during monotonous, potentially fatiguing driving conditions (Atchley & Chan, 2011); however, it is unclear whether safety benefits of conversation are outweighed by costs. The present study tested whether personalized conversations intended to simulate hands-free cell phone conversation may counter objective and subjective fatigue effects elicited by vehicle automation. A passive fatigue state (Desmond & Hancock, 2001), characterized by disengagement from the task, was induced using full vehicle automation prior to drivers resuming full control over the driving simulator. A conversation was initiated shortly after reversion to manual control. During the conversation an emergency event occurred. The fatigue manipulation produced greater task disengagement and slower response to the emergency event, relative to a control condition. Conversation did not mitigate passive fatigue effects; rather, it added worry about matters unrelated to the driving task. Conversation moderately improved vehicle control, as measured by SDLP, but it failed to counter fatigue-induced slowing of braking in response to an emergency event. Finally, conversation appeared to have a hidden danger in that it reduced drivers' insights into performance impairments when in a state of passive fatigue. Automation induced passive fatigue, indicated by loss of task engagement; yet, simulated cell phone conversation did not counter the subjective automation-induced fatigue. Conversation also failed to counter objective loss of performance (slower braking speed) resulting from automation. Cell phone conversation in passive fatigue states may impair drivers' awareness of their performance deficits. Practical applications: Results suggest that conversation, even using a hands-free device, may not be a safe way to reduce fatigue and increase alertness during transitions from automated to manual vehicle control. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  10. The Royal Australian and New Zealand College of Radiologists (RANZCR) relative value unit workload model, its limitations and the evolution to a safety, quality and performance framework.

    PubMed

    Pitman, A; Jones, D N; Stuart, D; Lloydhope, K; Mallitt, K; O'Rourke, P

    2009-10-01

    The study reports on the evolution of the Australian radiologist relative value unit (RVU) model of measuring radiologist reporting workloads in teaching hospital departments, and aims to outline a way forward for the development of a broad national safety, quality and performance framework that enables value mapping, measurement and benchmarking. The Radiology International Benchmarking Project of Queensland Health provided a suitable high-level national forum where the existing Pitman-Jones RVU model was applied to contemporaneous data, and its shortcomings and potential avenues for future development were analysed. Application of the Pitman-Jones model to Queensland data and also a Victorian benchmark showed that the original recommendation of 40,000 crude RVU per full-time equivalent consultant radiologist (97-98 baseline level) has risen only moderately, to now lie around 45,000 crude RVU/full-time equivalent. Notwithstanding this, the model has a number of weaknesses and is becoming outdated, as it cannot capture newer time-consuming examinations particularly in CT. A significant re-evaluation of the value of medical imaging is required, and is now occurring. We must rethink how we measure, benchmark, display and continually improve medical imaging safety, quality and performance, throughout the imaging care cycle and beyond. It will be necessary to ensure alignment with patient needs, as well as clinical and organisational objectives. Clear recommendations for the development of an updated national reporting workload RVU system are available, and an opportunity now exists for developing a much broader national model. A more sophisticated and balanced multidimensional safety, quality and performance framework that enables measurement and benchmarking of all important elements of health-care service is needed.

  11. Lateral load performance of SIP walls with full bearing

    Treesearch

    Boren Yeh; Tom Skaggs; Xiping Wang; Tom Williamson

    2018-01-01

    The purpose of this study was to develop test data needed to characterize lateral load performance of structural insulated panel (SIP) walls with full bearing (restrained). The research program involved structural testing of 29 full-size SIP walls (8 ft tall by 8 ft long) of various configurations that bracket a range of SIP wall configurations commonly used in the...

  12. The Effect of a Full-Day Kindergarten on the Student's Academic Performance.

    ERIC Educational Resources Information Center

    Greer-Smith, Sandra

    The purpose of this study was to determine whether the length of the school day has an effect on kindergarten students' academic performance. Ten full-day and ten half-day kindergarten teachers were asked to complete a questionnaire regarding the effects of full-day kindergarten on students. A majority of the half-day teachers were concerned that:…

  13. The Impact of Employment and Physical Activity on Academic Performance

    ERIC Educational Resources Information Center

    Andreopoulos, Giuliana Campanelli; Antoniou, Eliana; Panayides, Alexandros; Vassiliou, Evros

    2008-01-01

    Over the last twenty years, many contributions appeared on the relationship between working during school and academic performance using both quantitative and qualitative research methods. The obvious assumption is that a full time working student will show a lower academic performance relatively to a part time working student or a full time…

  14. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.

    PubMed

    Mackay, Christopher E; Vivanco, Stephanie N; Yeboah, George; Vercellone, Jeff

    2016-09-01

    There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9μmol/cm(2) for the cotton/nylon, to 12μmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Path-oriented early reaction to approaching disruptions in ASDEX Upgrade and TCV in view of the future needs for ITER and DEMO

    NASA Astrophysics Data System (ADS)

    Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team

    2018-01-01

    Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for these cases. For the H-mode density limit sensors used so far react too late. Thus a plasma-state boundary is proposed, that can serve as an adequate early sensor for avoiding density limit disruptions in H-modes and for recovery to full performance.

  16. [Radiology in managed care environment: opportunities for cost savings in an HMO].

    PubMed

    Schmidt, C; Mohr, A; Möller, J; Levin-Scherz, J; Heller, M

    2003-09-01

    A large regional health plan in the Northeastern United States noted that its radiology costs were increasing more than it anticipated in its pricing, and noted further that other similar health plans in markets with high managed care penetration had significantly lower expenses for radiology services. This study describes the potential areas of improvement and managed care techniques that were implemented to reduce costs and reform processes. We performed an in-depth analysis of financial data, claims logic, contracting with provider units and conducted interviews with employees, to identify potential areas of improvement and cost reduction. A detailed market analysis of the environment, competitors and vendors was accompanied by extensive literature, Internet and Medline search for comparable projects. All data were docu-mented in Microsoft Excel(R) and analyzed by non-parametric tests using SPSS(R) 8.0 (Statistical Package for the Social Sciences) for Windows(R). The main factors driving the cost increases in radiology were divided into those internal or external to the HMO. Among the internal factors, the claims logic was allowing overpayment due to limitations of the IT system. Risk arrangements between insurer and provider units (PU) as well as the extent of provider unit management and administration showed a significant correlation with financial performance in terms of variance from budget. Among the external factors, shared risk arrangements between HMO and provider unit were associated with more efficient radiology utilization and overall improvement in financial performance. PU with full-time management had significantly less variance from their budget than those without. Finally, physicians with imaging equipment in their offices ordered up to 4 to 5 times more imaging procedures than physicians who did not perform imaging studies themselves. We identified initiatives with estimated potential savings of approximately $ 5.5 million. Some of these initiatives are similar to the reforms to reduce cost and improve quality that are already implemented or proposed within the German healthcare system.

  17. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.

  18. Full Empirical Potential Curves and Improved Dissociation Energies for the X ^1Σ^+ and a ^1Π States of CH^+

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Le Roy, Robert

    2014-06-01

    CH^+ has been a species of interest since the dawn of molecular astrophysics,and it is an important intermediate in combustion processes. In the domain of `conventional' spectroscopy there have been a number of studies of low v' and v" portions of the A ^1Π-X ^1Σ^+ band system of various isotopologues, and Amano recently reported microwave measurements of the ground-state R(0) lines of 12CH^+, 13CH^+ and 12CD^+. used photodissociation spectroscopy to observe transitions to very high-J' tunneling-predissociation levels (shape resonances) involving v(A)=0-10, for many of which they also measured the photo-fragment kinetic energy release. More recently Hechtfischer et al. used photodissociation spectroscopy of `Feschbach resonance' levels at very high v'(A) and low J' to obtain the first direct measurement of the 12CH^+ dissociation energy with near-spectroscopic accuracy (± 1.1 cm-1). However, to date, all analyses of the data for this system had been performed using traditional band-constant or Dunham-expansion fits to data for the lowest vibrational levels, and there have been no attempts to combine the `conventional' low-v data with the high-J' and high-v' photodissociation data in a single treatment. The present work has addressed this problem by performing a Direct-Potential-Fit (DPF) analysis that obtains full analytic potential energy functions for the X ^1Σ^+ and A ^1Π states of CH^+ that are able to account for all of the available data (on average) within their uncertainties. A.E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941). T. Amano, Astrophys. J. Lett. {716}, L1 (2010) H. Helm, P.C. Crosby, M.M. Graff and J.T. Mosley, Phys. Rev. A 25, 304 (1982) U. Hechtfischer and C. J. Williams, M. Lange, J. Linkemann, D. Schwalm, R. Wester, A. Wolf and D. Zajfman, J.Chem.Phys. 117, 8754 (2002). H.S.P. Müller, Astron. Astrophys. 514, L7 (2010)

  19. Comparison of answer-until-correct and full-credit assessments in a team-based learning course.

    PubMed

    Farland, Michelle Z; Barlow, Patrick B; Levi Lancaster, T; Franks, Andrea S

    2015-03-25

    To assess the impact of awarding partial credit to team assessments on team performance and on quality of team interactions using an answer-until-correct method compared to traditional methods of grading (multiple-choice, full-credit). Subjects were students from 3 different offerings of an ambulatory care elective course, taught using team-based learning. The control group (full-credit) consisted of those enrolled in the course when traditional methods of assessment were used (2 course offerings). The intervention group consisted of those enrolled in the course when answer-until-correct method was used for team assessments (1 course offering). Study outcomes included student performance on individual and team readiness assurance tests (iRATs and tRATs), individual and team final examinations, and student assessment of quality of team interactions using the Team Performance Scale. Eighty-four students enrolled in the courses were included in the analysis (full-credit, n=54; answer-until-correct, n=30). Students who used traditional methods of assessment performed better on iRATs (full-credit mean 88.7 (5.9), answer-until-correct mean 82.8 (10.7), p<0.001). Students who used answer-until-correct method of assessment performed better on the team final examination (full-credit mean 45.8 (1.5), answer-until-correct 47.8 (1.4), p<0.001). There was no significant difference in performance on tRATs and the individual final examination. Students who used the answer-until-correct method had higher quality of team interaction ratings (full-credit 97.1 (9.1), answer-until-correct 103.0 (7.8), p=0.004). Answer-until-correct assessment method compared to traditional, full-credit methods resulted in significantly lower scores for iRATs, similar scores on tRATs and individual final examinations, improved scores on team final examinations, and improved perceptions of the quality of team interactions.

  20. Hospital nurse job attitudes and performance: the impact of employment status.

    PubMed

    Chu, Cheng-I; Hsu, Yao-Feng

    2011-03-01

    According to the 2007 Taiwan Labor Front Human Resources Report, as much as 47.6% of nurses at some public hospitals were contracted rather than full time. Furthermore, turnover rates for contract nurses were found to be as high as five to eight times of those for full-time nurses. Because high turnover rates are likely to induce negative impacts on the stability of care provided in the absence of staffing continuity, the association between nursing employment arrangement and nursing care quality is attracting greater attention. This study was designed to investigate the work status of contract versus full-time nurses at a public hospital in Taiwan and to examine the impact of such on work-related attitudes, organizational citizenship behavior, and job performance. Samples were recruited from a public hospital in Taiwan. In addition to self-rated items, researchers used supervisor-rated structured questionnaires for job performance to attenuate the possible effect of common method bias. The study investigated the impact of hospital nurse employment status on work-related attitudes, organizational citizenship behavior, and job performance using a regression model that included the critical work-related attitudes variables of job satisfaction and organizational commitment. Study findings included the following: (a) organizational commitment, job satisfaction, organizational citizenship behavior, and job performance correlate positively with one another. (b) No significant difference between contract and full-time nurses was found in terms of organizational commitment, job satisfaction, organizational citizenship behavior, and self-rated job performance. However, when rated by supervisors, reported job performance levels for full-time nurses were significantly higher than those of contract nurses. (c) Organizational citizenship behavior exhibited a mediating effect between job satisfaction, organizational commitment, and job performance. In this study, supervisors gave higher job performance ratings to full-time nurses than to contract nurses. This result deserves further investigation.

  1. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strömberg, Sten, E-mail: sten.stromberg@biotek.lu.se; Nistor, Mihaela, E-mail: mn@bioprocesscontrol.com; Liu, Jing, E-mail: jing.liu@biotek.lu.se

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the currentmore » study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.« less

  2. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    PubMed

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetic and developmental factors in spontaneous selective attention: a study of normal twins.

    PubMed

    Myles-Worsley, M; Coon, H

    1997-08-08

    The Spontaneous Selective Attention Task (SSAT) is a visual word identification task designed to measure the type of selective attention that occurs spontaneously when there are multiple stimuli, all potentially relevant, and insufficient time to process each of them fully. These are conditions which are common in everyday life. SSAT performance is measured by word identification accuracy, first under a baseline divided attention condition with no predictability, then under a selective attention condition with partial predictability introduced via word repetition. Accuracy to identify novel words in the upper location which becomes partially predictable (P words) vs. the lower location which remains non-predictable (N words) can be used to calculate a baseline performance index and a P/N ratio measure of selective attention. The SSAT has been shown to identify an attentional abnormality that may be useful in the development of an attentional endophenotype for family-genetic studies of schizophrenia. This study examined age and genetic effects on SSAT performance in normal children in order to evaluate whether the SSAT has the potential to qualify as a candidate endophenotype for schizophrenia in studies of at-risk children. A total of 59 monozygotic twin pairs and 33 same-sex dizygotic twin pairs ranging from 10 to 18 years of age were tested on the SSAT, a Continuous Performance Test. (CPT), a Span of Apprehension Test (SPAN) and a full-scale IQ test. Baseline performance on the SSAT, which was correlated with verbal IQ and SPAN performance, improved with age but showed no significant heritability. The P/N selectivity ratio was stable over the 10-18-year age range, was not significantly correlated with IQ, CPT, or SPAN performance, and its heritability was estimated to be 0.41. These findings suggest that the P/N selectivity ratio measured by the SSAT may be useful as a vulnerability marker in studies of children born into families segregating schizophrenia.

  4. Rec.2100 color gamut revelation using spectrally ultranarrow emitters

    NASA Astrophysics Data System (ADS)

    Genc, Sinan; Uguz, Mustafa; Yilmaz, Osman; Mutlugun, Evren

    2017-11-01

    We theoretically simulate the performance of ultranarrow emitters for the first time to achieve record high coverage for the International Telecommunication Union Radiocommunication Sector BT.2100 (Rec.2100) and National Television System Committee (NTSC) color gamut. Our results, employing more than 130-m parameter sets, include the investigation into peak emission wavelength and full width at half maximum (FWHM) values for three primaries that show ultranarrow emitters, i.e., nanoplatelets are potentially promising materials to fully cover the Rec.2100 color gamut. Using ultranarrow emitters having FWHM as low as 6 nm can provide the ability to attain 99.7% coverage area of the Rec.2100 color gamut as well as increasing the NTSC triangle to 133.7% with full coverage. The parameter set that provides possibility to fully reach Rec.2100 also has been shown to match with D65 white light by making use of the correct combination of those three primaries. Furthermore, we investigate the effect of the fourth color component on the CIE 1931 color space without sacrificing the achieved coverage percentages. The investigation into the fourth color component, cyan, is shown for the first time to enhance the Rec.2100 gamut area to 127.7% with 99.9% coverage. The fourth color component also provides an NTSC coverage ratio of 171.5%. The investigation into the potential of emitters with ultranarrow emission bandwidth holds great promise for future display applications.

  5. Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model.

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša

    2017-12-01

    Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Examining the Potential Impact of Full Tuition Fees on Mature Part-Time Students in English Higher Education

    ERIC Educational Resources Information Center

    Shaw, Angela

    2014-01-01

    This paper examines current part-time mature learners' views on the potential impact upon future students as full fees are introduced from 2012. It investigates the problems which part-time mature learners may face with the advent of student loans and subsequent debt, given that they are usually combining complex lives with their studies, with…

  7. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    DOE PAGES

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO 2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO 2. Despite significant losses in capacity uponmore » cycling, neither cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO 2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO 2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less

  8. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Gu, L.; Tho, C. H.; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.

  9. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less

  10. Relationships of multitasking, physicians' strain, and performance: an observational study in ward physicians.

    PubMed

    Weigl, Matthias; Müller, Andreas; Sevdalis, Nick; Angerer, Peter

    2013-03-01

    Simultaneous task performance ("multitasking") is common in hospital physicians' work and is implicated as a major determinant for enhanced strain and detrimental performance. The aim was to determine the impact of multitasking by hospital physicians on their self reported strain and performance. A prospective observational time-and-motion study in a Community Hospital was conducted. Twenty-seven hospital physicians (surgical and internal specialties) were observed in 40 full-shift observations. Observed physicians reported twice on their self-monitored strain and performance during the observation time. Associations of observed multitasking events and subsequent strain and performance appraisals were calculated. About 21% of the working time physicians were engaged in simultaneous activities. The average time spent in multitasking activities correlated significantly with subsequently reported strain (r = 0.27, P = 0.018). The number of instances of multitasking activities correlated with self-monitored performance to a marginally significant level (r = 0.19, P = 0.098). Physicians who engage in multitasking activities tend to self-report better performance but at the cost of enhanced psychophysical strain. Hence, physicians do not perceive their own multitasking activities as a source for deficient performance, for example, medical errors. Readjustment of workload, improved organization of work for hospital physicians, and training programs to improve physicians' skills in dealing with multiple clinical demands, prioritization, and efficient task allocation may be useful avenues to explore to reduce the potentially negative impact of simultaneous task performance in clinical settings.

  11. Evaluation of full depth asphaltic concrete pavements : final report.

    DOT National Transportation Integrated Search

    1982-10-01

    the aim of this study was to evaluate the full depth asphaltic concrete pavement design concept by observing the performance characteristics of two 13-inch pavements constructed in 1970. Pavement performance measurements, over an 11-year period, incl...

  12. Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results

    NASA Astrophysics Data System (ADS)

    Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.

    2011-05-01

    We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.

  13. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  14. Malnutrition risk predicts recovery of full oral intake among older adult stroke patients undergoing enteral nutrition: Secondary analysis of a multicentre survey (the APPLE study).

    PubMed

    Nishioka, Shinta; Okamoto, Takatsugu; Takayama, Masako; Urushihara, Maki; Watanabe, Misuzu; Kiriya, Yumiko; Shintani, Keiko; Nakagomi, Hiromi; Kageyama, Noriko

    2017-08-01

    Whether malnutrition risk correlates with recovery of swallowing function of convalescent stroke patients is unknown. This study was conducted to clarify whether malnutrition risks predict achievement of full oral intake in convalescent stroke patients undergoing enteral nutrition. We conducted a secondary analysis of 466 convalescent stroke patients, aged 65 years or over, who were undergoing enteral nutrition. Patients were extracted from the "Algorithm for Post-stroke Patients to improve oral intake Level; APPLE" study database compiled at the Kaifukuki (convalescent) rehabilitation wards. Malnutrition risk was determined by the Geriatric Nutritional Risk Index as follows: severe (<82), moderate (82 to <92), mild (92 to <98), and no malnutrition risks (≥98). Swallowing function was assessed by Fujishima's swallowing grade (FSG) on admission and discharge. The primary outcome was achievement of full oral intake, indicated by FSG ≥ 7. Binary logistic regression analysis was performed to identify predictive factors, including malnutrition risk, for achieving full oral intake. Estimated hazard risk was computed by Cox's hazard model. Of the 466 individuals, 264 were ultimately included in this study. Participants with severe malnutrition risk showed a significantly lower proportion of achievement of full oral intake than lower severity groups (P = 0.001). After adjusting for potential confounders, binary logistic regression analysis showed that patients with severe malnutrition risk were less likely to achieve full oral intake (adjusted odds ratio: 0.232, 95% confidence interval [95% CI]: 0.047-1.141). Cox's proportional hazard model revealed that severe malnutrition risk was an independent predictor of full oral intake (adjusted hazard ratio: 0.374, 95% CI: 0.166-0.842). Compared to patients who did not achieve full oral intake, patients who achieved full oral intake had significantly higher energy intake, but there was no difference in protein intake and weight change. Severe malnutrition risk independently predicts the achievement of full oral intake in convalescent stroke patients undergoing enteral nutrition. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Potentiation and recovery following low- and high-speed isokinetic contractions in boys.

    PubMed

    Chaouachi, Anis; Haddad, Monoem; Castagna, Carlo; Wong, Del P; Kaouech, Fathi; Chamari, Karim; Behm, David G

    2011-02-01

    The objective of this study was to examine the response and recovery to a single set of maximal, low and high angular velocity isokinetic leg extension-flexion contractions with boys. Sixteen boys (11-14 yrs) performed 10 isokinetic contractions at 60°.s-1 (Isok60) and 300°.s-1 (Isok300). Three contractions at both velocities, blood lactate and ratings of perceived exertion were monitored pretest and at 2, 3, 4, and 5 min of recovery (RI). Participants were tested in a random counterbalanced order for each velocity and recovery period. Only a single contraction velocity (300°.s-1 or 60°.s-1) was tested during recovery at each session to remove confounding influences between the recovery intervals. Recovery results showed no change in quadriceps' power at 300°.s-1, quadriceps' power, work and torque at 60°.s-1 and hamstrings' power and work with 60°.s-1. There was an increase during the 2 min RI in hamstrings' power, work and torque and quadriceps' torque with isokinetic contractions at 300°.s-1 suggesting a potentiating effect. Performance impairments during recovery occurred for the hamstrings torque at 60°.s-1 and quadriceps work with 300°.s-1. In conclusion, 10 repetitions of either low or high velocity isokinetic contractions (Isok60 or Isok300) resulted in full recovery or potentiation of most measures within 2 min in boys. The potentiation effect predominantly occurred following the hamstrings Isok300 which might be attributed to a greater agonist-antagonist torque balance and less metabolic stress associated with the shorter duration higher velocity contractions.

  16. Reliability and validity analysis of the transfer assessment instrument.

    PubMed

    McClure, Laura A; Boninger, Michael L; Ozawa, Haishin; Koontz, Alicia

    2011-03-01

    To describe the development and evaluate the reliability and validity of a newly created outcome measure, the Transfer Assessment Instrument (TAI), to assess the quality of transfers performed by full-time wheelchair users. Repeated measures. 2009 National Veterans Wheelchair Games in Spokane, WA. A convenience sample of full-time wheelchair users (N=40) who perform sitting pivot or standing pivot transfers. Not applicable. Intraclass correlation coefficients (ICCs) for reliability and Spearman correlation coefficients for concurrent validity between the TAI and a global assessment scale (0-100 visual analog scale [VAS]). No adverse events occurred during testing. Intrarater ICCs for 3 raters ranged between .35 and .89, and the interrater ICC was .642. Correlations between the TAI and a global assessment VAS ranged between .19 (P=.285) and .69 (P>.000). Item analyses of the tool found a wide range of results, from weak to good reliability. Evaluators found the TAI to be safe and able to be completed in a short time. The TAI is a safe, quick outcome measure that uses equipment typically found in a clinical setting and does not ask participants to perform new skills. Reliability and validity testing found the TAI to have acceptable interrater and a wide range of intrarater reliability. Future work indicates the need for continued refinement including removal or modification of items found to have low reliability, improved education for clinicians, and further reliability and validity analysis with a more diverse subject population. The TAI has the potential to fill a void in assessment of transfers. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Patient Litter System Response in a Full-Scale CH-46 Crash Test.

    PubMed

    Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph

    2017-03-01

    U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  18. Knotless single-row rotator cuff repair: a comparative biomechanical study of 2 knotless suture anchors.

    PubMed

    Efird, Chad; Traub, Shaun; Baldini, Todd; Rioux-Forker, Dana; Spalazzi, Jeffrey P; Davisson, Twana; Hawkins, Monica; McCarty, Eric

    2013-08-01

    The purpose of this study was to compare the gap formation during cyclic loading, maximum repair strength, and failure mode of single-row full-thickness supraspinatus repairs performed using 2 knotless suture anchors with differing internal suture-retention mechanisms in a human cadaver model. Nine matched pairs of cadaver shoulders were used. Full-thickness tears were induced by detaching the supraspinatus tendon from the greater tuberosity. Single-row repairs were performed with either type I (Opus Magnum PI; ArthroCare, Austin, Texas) or type II (ReelX STT; Stryker, Mahwah, New Jersey) knotless suture anchors. The repaired tendon was cycled from 10 to 90 N for 500 cycles, followed by load to failure. Gap formation was measured at 5, 100, 200, 300, 400, and 500 cycles with a video digitizing system. Anchor type or location (anterior or posterior) had no effect on gap formation during cyclic loading regardless of position (anterior, P=.385; posterior, P=.389). Maximum load to failure was significantly greater (P=.018) for repairs performed with type II anchors (288±62 N) compared with type I anchors (179±39 N). Primary failure modes were anchor pullout and tendon tearing for type II anchors and suture slippage through the anchor for type I anchors. The internal ratcheting suture-retention mechanism of type II anchors may have helped this anchor outperform the suture-cinching mechanism of type I anchors by supporting significantly higher loads before failure and minimizing suture slippage, potentially leading to stronger repairs clinically. Copyright 2013, SLACK Incorporated.

  19. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  20. Experimental investigation of a multicylinder unmodified diesel engine performance, emission, and heat loss characteristics using different biodiesel blends: rollout of B10 in Malaysia.

    PubMed

    Abedin, M J; Masjuki, H H; Kalam, M A; Varman, M; Arbab, M I; Fattah, I M Rizwanul; Masum, B M

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  1. Experimental Investigation of a Multicylinder Unmodified Diesel Engine Performance, Emission, and Heat Loss Characteristics Using Different Biodiesel Blends: Rollout of B10 in Malaysia

    PubMed Central

    Abedin, M. J.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Arbab, M. I.; Fattah, I. M. Rizwanul; Masum, B. M.

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ‘‘energy flows” across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper. PMID:25162046

  2. What works with worked examples: Extending self-explanation and analogical comparison to synthesis problems

    NASA Astrophysics Data System (ADS)

    Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.

    2017-12-01

    The ability to solve physics problems that require multiple concepts from across the physics curriculum—"synthesis" problems—is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. Across three experiments with students from introductory calculus-based physics courses, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time on task.

  3. 40 CFR Table 8 to Subpart Bbbb of... - Model Rule-Requirements for Stack Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at full load. 2. Metals Cadmium Method 1 Method 29 a Compliance testing must be performed while the... be performed while the municipal waste combustion unit is operating at full load. Mercury Method 1...

  4. The impact of uphill cycling and bicycle suspension on downhill performance during cross-country mountain biking.

    PubMed

    Macdermid, Paul W; Fink, Philip W; Miller, Matthew C; Stannard, Stephen

    2017-07-01

    Non-propulsive work demand has been linked to reduced energetic economy of cross-country mountain biking. The purpose of this study was to determine mechanical, physiological and performance differences and observe economy while riding a downhill section of a cross-country course prior to and following the metabolic "load" of a climb at race pace under two conditions (hardtail and full suspension) expected to alter vibration damping mechanics. Participants completed 1 lap of the track incorporating the same downhill section twice, under two conditions (hardtail and full suspension). Performance was determined by time to complete overall lap and specific terrain sections. Power, cadence, heart rate and oxygen consumption were sampled and logged every second while triaxial accelerometers recorded accelerations (128 Hz) to quantify vibration. No differences between performance times (P = 0.65) or power outputs (P = 0.61) were observed while physiological demand of loaded downhill riding was significantly greater (P < 0.0001) than unloaded. Full suspension decreased total vibrations experienced (P < 0.01) but had no effect on performance (P = 0.97) or physiological (P > 0.05) measures. This study showed minimal advantage of a full suspension bike in our trial, with further investigations over a full race distance warranted.

  5. Flexure bearing compressor in the one watt linear (OWL) envelope

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Wiedmann, Th.; Rosenhagen, C.

    2007-04-01

    For high performance IR detectors the split linear cooler is a preferred solution. High reliability, low induced vibration and low audible noise are major benefits of such coolers. Today, most linear coolers are qualified for MTTF of 8,000h or above. It is a strong customer desire to further reduce the maintenance costs on system level with significantly higher cooler lifetime. Increased cooler MTTF figures are also needed for IR applications with high lifetime requirements like missile warning applications, border surveillance or homeland security applications. AIM developed a Moving Magnet Flexure Bearing compressor to meet a MTTF of minimum 20,000h. The compressor has a full flexure bearing support on both sides of the driving mechanism. In the assembly process of the compressor an automated alignment process is used to achieve the necessary accuracy. Thus, side-forces on the pistons are minimized during operation, which significantly reduces the wear-out. In order to reduce the outgassing potential most of the internal junctions are welded and the use of all non-metallic components is minimized. The outline dimensions comply with the SADA2 requirements in length and diameter. Further, when operated with a 1/2" SADA type coldfinger, the cooler meets all specified performance data for SADA2. The compressor can be combined with different Stirling type coldfingers and also with the AIM Pulse Tube coldfinger, which gives increased lifetime potential up to 50,000h MTTF. Technical details and performance data of the new compressor are shown.

  6. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the wind tunnel data from the experiments performed by Mr. Bob Englar at the GTRI. Relevant data was identified and manipulated based on the required format of the analysis tools utilized. Propulsive, aerodynamic, duct sizing, and vehicle sizing investigations were performed and information supplied to a detailed takeoff and landing tool, From the assessments, CC was shown to improve the low speed performance metrics, which were previously not satisfied. An HSCT with CC augmentation does show potential for full-scale application. Yet, an economic assessment of an HSCT with and without CC showed that a moderate penalty was incurred from the increased RDT&E costs associated with developing the CC technology and slight increases in empty weight.

  7. Supportive Measures: An Analysis of the Trio Program--Student Support Services at East Tennessee State University from 2001-2004

    ERIC Educational Resources Information Center

    Strode, Christopher N.

    2013-01-01

    The purpose of this study was to examine the academic performance of the first-time, full-time, traditional-aged students in the Student Support Services program at East Tennessee State University. This was accomplished by comparing their academic performance with the academic performance of first-time, full-time, traditional-aged non-SSS…

  8. Comparison of Full and Partial Admission Flow Fields in the Simplex Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Griffin, Lisa W.; Sondak, Douglas L.

    2001-01-01

    The objectives of this project were to: (1) determine the effects of partial admission flow on rotor performance as a function of circumferential location and on unsteady rotor loading; and (2) Provide an efficient technique for determining turbine performance. Full admission simulation ws performed for the Simplex turbine and partial admission simulation is underway for the Simplex turbine.

  9. Perspective on Clinical Application of Biomarkers in AKI

    PubMed Central

    Mansour, Sherry G.

    2017-01-01

    Several biomarkers of renal injury have been identified but the utility of these biomarkers is largely confined to research studies, whereas widespread clinical applicability is limited. This is partly because the use of serum creatinine as the comparator has several limitations and restricts the full interpretation of biomarker performance. To highlight the potential for clinical application of biomarkers, the most pertinent biomarker data are summarized here, using clinically relevant scenarios in which biomarkers could assist with diagnostic and management dilemmas. The paradigms proposed in this review aim to enhance the clinical diagnosis, management, and prognosis of AKI through the combined use of available clinical markers and novel inflammatory, injury, and repair biomarkers. PMID:28220028

  10. Status of molten carbonate fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  11. Updates in venous thromboembolism management: evidence published in 2017.

    PubMed

    Bartlett, Matthew A; Bierle, Dennis M; Saadiq, Rayya A; Mauck, Karen F; Daniels, Paul R

    2018-06-20

    Venous thromboembolism (VTE) management is rapidly evolving and staying up-to-date is challenging. We identified the most practice-informing articles published in 2017 relevant to the nonspecialist provider managing VTE. We performed a systematic search of the literature (Appendix A), limiting the search to a publication date of 2017. Two reviewers screened the 2735 resulting abstracts to identify high-quality, clinically relevant publications related to VTE management. One-hundred and six full-text articles were considered for inclusion. The five authors used a modified Delphi method to reach consensus on inclusion of seven articles for in-depth appraisal, following predetermined criteria of clinical relevance to nonspecialist providers, potential for practice change, and strength of the evidence.

  12. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  13. Low-loss ultracompact optical power splitter using a multistep structure.

    PubMed

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  14. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  15. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; hide

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  16. Combining Simulation Tools for End-to-End Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min

    2015-01-01

    Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.

  17. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  18. Verification of nonlinear dynamic structural test results by combined image processing and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Tene, Yair; Tene, Noam; Tene, G.

    1993-08-01

    An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.

  19. The Case of Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.

  20. Three-dimensional imaging for large LArTPCs

    NASA Astrophysics Data System (ADS)

    Qian, X.; Zhang, C.; Viren, B.; Diwan, M.

    2018-05-01

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. The resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables the true power of 3D tracking calorimetry in LArTPCs.

Top