TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, PGF; Renaud, MA; Seuntjens, J
Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less
Mixed semiclassical-classical propagators for the Wigner phase space representation
NASA Astrophysics Data System (ADS)
Koda, Shin-ichi
2016-04-01
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
Mixed semiclassical-classical propagators for the Wigner phase space representation.
Koda, Shin-Ichi
2016-04-21
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
NASA Technical Reports Server (NTRS)
Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.
1990-01-01
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
Quantitative phase imaging using grating-based quadrature phase interferometer
NASA Astrophysics Data System (ADS)
Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei
2007-02-01
In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.
Sparse aperiodic arrays for optical beam forming and LIDAR.
Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E
2017-02-06
We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Independence and totalness of subspaces in phase space methods
NASA Astrophysics Data System (ADS)
Vourdas, A.
2018-04-01
The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.
Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device
NASA Technical Reports Server (NTRS)
Florence, James M.; Juday, Richard D.
1991-01-01
A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.
NASA Astrophysics Data System (ADS)
Ritchie, W. J.; Dowlatabadi, H.
2017-12-01
Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future fossil energy combustion and are overly constrained, implying it is likely easier to achieve a 1.5˚ climate policy goal than previously demonstrated.
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
Phase-space methods for the spin dynamics in condensed matter systems
Hurst, Jérôme; Manfredi, Giovanni
2017-01-01
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903
Identifying phase-space boundaries with Voronoi tessellations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
Identifying phase-space boundaries with Voronoi tessellations
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less
Space station group activities habitability module study
NASA Technical Reports Server (NTRS)
Nixon, David
1986-01-01
This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Implementation of a production Ada project: The GRODY study
NASA Technical Reports Server (NTRS)
Godfrey, Sara; Brophy, Carolyn Elizabeth
1989-01-01
The use of the Ada language and design methodologies that encourage full use of its capabilities have a strong impact on all phases of the software development project life cycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The differences observed during the implementation, unit testing, and integration phases of the two projects are described and the lessons learned during the implementation phase of the Ada development are outlined. Included are recommendations for future Ada development projects.
Topology of Collisionless Relaxation
NASA Astrophysics Data System (ADS)
Pakter, Renato; Levin, Yan
2013-04-01
Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.
The Phase Space Structure Near Neptune Resonances in the Kuiper Belt
NASA Technical Reports Server (NTRS)
Malhotra, Renu
1996-01-01
The Solar system beyond Neptune is believed to house a population of small primordial bodies left over from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt) may be the source of the observed short-period comets. In this region, the phase space structure near orbital resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance locations. This paper describes the dynamics of small objects near the major orbital resonances with Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are obtained from the circular, planar restricted three-body model. Although this model does not contain the full complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits in the trans-Neptunian Solar system.
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Generic isolated horizons in loop quantum gravity
NASA Astrophysics Data System (ADS)
Beetle, Christopher; Engle, Jonathan
2010-12-01
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the literature and has since been extended to axisymmetry. This paper extends the quantum theory to horizons of arbitrary shape. Surprisingly, the Hilbert space obtained by quantizing the full phase space of all generic horizons with a fixed area is identical to that originally found in spherical symmetry. The entropy of a large horizon remains one-quarter its area, with the Barbero-Immirzi parameter retaining its value from symmetric analyses. These results suggest a reinterpretation of the intrinsic quantum geometry of the horizon surface.
A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space
NASA Astrophysics Data System (ADS)
Adkins, T.; Schekochihin, A. A.
2018-02-01
A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
Freeing Water from Viruses and Bacteria
NASA Technical Reports Server (NTRS)
2004-01-01
Four years ago, Argonide Corporation, a company focused on the research, production, and marketing of specialty nano materials, was seeking to develop applications for its NanoCeram[R] fibers. Only 2 nanometers in diameter, these nano aluminum oxide fibers possessed unusual bio-adhesive properties. When formulated into a filter material, the electropositive fibers attracted and retained electro-negative particles such as bacteria and viruses in water-based solutions. This technology caught the interest of NASA as a possible solution for improved water filtration in space cabins. NASA's Johnson Space Center awarded Sanford, Florida-based Argonide a Phase I Small Business Innovation Research (SBIR) contract to determine the feasibility of using the company's filter for purifying recycled space cabin water. Since viruses and bacteria can be carried aboard space cabins by space crews, the ability to detect and remove these harmful substances is a concern for NASA. The Space Agency also desired an improved filter to polish the effluent from condensed and waste water, producing potable drinking water. During its Phase I partnership with NASA, Argonide developed a laboratory-size filter capable of removing greater than 99.9999 percent of bacteria and viruses from water at flow rates more than 200 times faster than virus-rated membranes that remove particles by sieving. Since the new filter s pore size is rather large compared to other membranes, it is also less susceptible to clogging by small particles. In September 2002, Argonide began a Phase II SBIR project with Johnson to develop a full-size cartridge capable of serving a full space crew. This effort, which is still ongoing, enabled the company to demonstrate that its filter media is an efficient absorbent for DNA and RNA.
Full-Scale Spacecraft Simulator Design for a 2D Zero Gravity Small Body Surface Sampling Validation
NASA Astrophysics Data System (ADS)
Mongelli, Marco
NASA is developing several Touch-And-Go (TAG) classes of missions. These types of missions like the OSIRIS-REx asteroid sample return [1] or a comet sample return mission (CSSR)[2], consist usually in three phases: propulsive approach to the target, sampling and propulsion to move the spacecraft away from the target. The development of TAG mission, from concept to realization, is usually divided in two phases: Phase I discusses the major trades that could affect the mission architecture; Phase II focuses in detail on the design. This project of a spacecraft emulator fits into phase II and specifically on the way the spacecraft could react in absence of gravity while the Sample Acquisition System (SAS) is collecting the sample. A full-scale spacecraft on a 2D zero-friction environment has been designed. Also a propulsion system has been implemented to re-create the full dynamics of a spacecraft in space.
Gaia: 3-dimensional census of the Milky Way Galaxy
NASA Astrophysics Data System (ADS)
Gilmore, Gerard
2018-04-01
Astrometry from space has unique advantages over ground-based observations: the all-sky coverage, relatively stable, and temperature and gravity invariant, operating environment delivers precision, accuracy and sample volume several orders of magnitude greater than ground-based results. Even more importantly, absolute astrometry is possible. The European Space Agency Cornerstone mission Gaia is delivering that promise. Gaia provides 5-D phase space measurements, 3 spatial coordinates and 2 space motions in the plane of the sky, for a representative sample of the Milky Way's stellar populations (over 2 billion stars, being 1% of the stars over 50% of the radius). Full 6-D phase space data are delivered from line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. A knowledge revolution is underway.
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
Four-dimensional gravity as an almost-Poisson system
NASA Astrophysics Data System (ADS)
Ita, Eyo Eyo
2015-04-01
In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.
Benitez, P; Losada, J C; Benito, R M; Borondo, F
2015-10-01
A study of the dynamical characteristics of the phase space corresponding to the vibrations of the LiNC-LiCN molecule using an analysis based on the small alignment index (SALI) is presented. SALI is a good indicator of chaos that can easily determine whether a given trajectory is regular or chaotic regardless of the dimensionality of the system, and can also provide a wealth of dynamical information when conveniently implemented. In two-dimensional (2D) systems SALI maps are computed as 2D phase space representations, where the SALI asymptotic values are represented in color scale. We show here how these maps provide full information on the dynamical phase space structure of the LiNC-LiCN system, even quantifying numerically the volume of the different zones of chaos and regularity as a function of the molecule excitation energy.
Mycological studies housed in the Apollo 16 microbial ecology evaluation device
NASA Technical Reports Server (NTRS)
Volz, P. A.
1973-01-01
Survival, death, and phenotype count have yielded variation in the number of fungi recovered from the controls and the flight exposed cuvettes during preliminary analysis of postflight first phase data. Also the preliminary analysis was indicative that fungi exposed to specific space flight conditions demonstrated variable survival rates and phenotype counts. Specific space flight conditions included full light space exposure for Chaetomium globosum, exposure at 300- and 254-nanometer wavelengths for Rhodotorula rubra, full light and 280-nanometer wavelength exposure for Trichophyton terrestre, and 254-nanometer wavelength exposure for Saccharomyces cerevisiae. In general, phenotype counts for flight cuvettes and survival rates for control cuvettes were higher compared with the remaining cuvettes.
Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.; Isbister, Dennis J.
2001-02-01
The authors thermostat a qp harmonic oscillator using the two additional control variables ζ and ξ to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional \\{q,p,ζ,ξ\\} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.
Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulat, Falko; Höche, Stefan; Prestel, Stefan
We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.
New science from the phase space of old stellar systems
NASA Astrophysics Data System (ADS)
Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico
2017-06-01
Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-08-22
Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-p T leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3 fb–1 from pp collisions at a center-of-mass energy √s = 8 TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt¯ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied:more » A ℓℓ C based on the selected leptons and A tt¯ C based on the reconstructed tt¯ final state. As a result, the inclusive asymmetries are measured in the full phase space to be A ℓℓ C=0.008±0.006 and Att¯C=0.021±0.016, which are in agreement with the Standard Model predictions of A ℓℓ C=0.0064±0.0003 and A tt¯ C=0.0111±0.0004.« less
Space Station Freedom - Approaching the critical design phase
NASA Technical Reports Server (NTRS)
Kohrs, Richard H.; Huckins, Earle, III
1992-01-01
The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.
NASA's Space Launch System Advanced Booster Development
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.
2014-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.
NASA Astrophysics Data System (ADS)
Arponen, J. S.; Bishop, R. F.
1993-11-01
In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.
Space transportation booster engine configuration study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.
Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E
2011-10-24
We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Davidson, Ronald C.
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...
2016-11-23
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
New 'phase' of quantum gravity.
Wang, Charles H-T
2006-12-15
The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.
Deep Space Habitat Team: HEFT Phase 2 Effects
NASA Technical Reports Server (NTRS)
Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary
2011-01-01
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.
Kinetic solvers with adaptive mesh in phase space
NASA Astrophysics Data System (ADS)
Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.
2013-12-01
An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
Kinetic solvers with adaptive mesh in phase space.
Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A
2013-12-01
An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
NASA Astrophysics Data System (ADS)
Stephans, George S. F.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2002-06-01
The PHOBOS detector, one of the two small experiments at RHIC, focuses on measurements of charged particle multiplicity over almost the full phase space and identified particles near mid-rapidity. Results will be presented from the early RHIC gold--gold runs at nucleon--nucleon center of mass energies of 56 and 130 GeV as well as the recently concluded run at the full RHIC energy of 200 GeV.
NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts
NASA Technical Reports Server (NTRS)
Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.
2012-01-01
The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned advanced booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.
NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts
NASA Technical Reports Server (NTRS)
Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel
2012-01-01
The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an Advanced Booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned Advanced Booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.
NASA Astrophysics Data System (ADS)
Newman, David L.
2006-10-01
Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.
Hartmann test for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Knight, J. Scott; Feinberg, Lee; Howard, Joseph; Acton, D. Scott; Whitman, Tony L.; Smith, Koby
2016-07-01
The James Webb Space Telescope's (JWST) end-to-end optical system will be tested in a cryogenic vacuum environment before launch at NASA Johnson Space Center's (JSC) Apollo-era, historic Chamber A thermal vacuum facility. During recent pre-test runs with a prototype "Pathfinder" telescope, the vibration in this environment was found to be challenging for the baseline test approach, which uses phase retrieval of images created by three sub-apertures of the telescope. To address the vibration, an alternate strategy implemented using classic Hartmann test principles combined with precise mirror mechanisms to provide a testing approach that is insensitive to the dynamics environment of the chamber. The measurements and sensitivities of the Hartmann approach are similar to those using phase retrieval over the original sparse aperture test. The Hartmann test concepts have been implemented on the JWST Test Bed Telescope, which provided the rationale and empirical evidence indicating that this Hartmann style approach would be valuable in supplementing the baseline test approach. This paper presents a Hartmann approach implemented during the recent Pathfinder test along with the test approach that is currently being considered for the full optical system test of JWST. Comparisons are made between the baseline phase retrieval approach and the Hartmann approach in addition to demonstrating how the two test methodologies support each other to reduce risk during the JWST full optical system test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026
In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less
Powersail High Power Propulsion System Design Study
NASA Astrophysics Data System (ADS)
Gulczinski, Frank S., III
2000-11-01
A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.
NASA Astrophysics Data System (ADS)
Erkişi, Aytaç
2018-06-01
The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.
Amateur Radio on the International Space Station - Phase 2 Hardware System
NASA Technical Reports Server (NTRS)
Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.
2003-01-01
The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
2016-01-06
Researchers found likely twins of the giant, erupting star Eta Carinae by comparing infrared images from NASA Spitzer Space Telescope (top) and NASA Hubble Space Telescope (bottom). Astronomers cannot yet explain what caused the titanic eruption of star Eta Carinae in the 1840s. The discovery of likely Eta Carinae "twins" in other galaxies will help scientists better understand this brief phase in the life of a massive star. http://photojournal.jpl.nasa.gov/catalog/PIA20018
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
A work breakdown structure for the Space Station Life Sciences Research Facility (LSRF) is presented up to level 5. The purpose is to provide the framework for task planning and control and to serve as a basis for budgeting, task assignment, cost collection and report, and contractual performance measurement and tracking of the Full Scale Development Phase tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Du; Yang, Weitao
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Zhang, Du; Yang, Weitao
2016-10-13
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Growth in the Number of SSN Tracked Orbital Objects
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.
2004-01-01
The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.
NASA Technical Reports Server (NTRS)
Laeser, R. P.; Textor, G. P.; Kelly, L. B.; Kelly, M.
1972-01-01
The DSN command system provided the capability to enter commands in a computer at the deep space stations for transmission to the spacecraft. The high-rate telemetry system operated at 16,200 bits/sec. This system will permit return to DSS 14 of full-resolution television pictures from the spacecraft tape recorder, plus the other science experiment data, during the two playback periods of each Goldstone pass planned for each corresponding orbit. Other features included 4800 bits/sec modem high-speed data lines from all deep space stations to Space Flight Operations Facility (SFOF) and the Goddard Space Flight Center, as well as 50,000 bits/sec wideband data lines from DSS 14 to the SFOF, thus providing the capability for data flow of two 16,200 bits/sec high-rate telemetry data streams in real time. The TDS performed prelaunch training and testing and provided support for the Mariner Mars 1971/Mission Operations System training and testing. The facilities of the ETR, DSS 71, and stations of the MSFN provided flight support coverage at launch and during the near-earth phase. The DSSs 12, 14, 41, and 51 of the DSN provided the deep space phase support from 30 May 1971 through 4 June 1971.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikkinen, J. A.; Nora, M.
2011-02-15
Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J=
Generalization of the photo process window and its application to OPC test pattern design
NASA Astrophysics Data System (ADS)
Eisenmann, Hans; Peter, Kai; Strojwas, Andrzej J.
2003-07-01
From the early development phase up to the production phase, test pattern play a key role for microlithography. The requirement for test pattern is to represent the design well and to cover the space of all process conditions, e.g. to investigate the full process window and all other process parameters. This paper shows that the current state-of-the-art test pattern do not address these requirements sufficiently and makes suggestions for a better selection of test pattern. We present a new methodology to analyze an existing layout (e.g. logic library, test pattern or full chip) for critical layout situations which does not need precise process data. We call this method "process space decomposition", because it is aimed at decomposing the process impact to a layout feature into a sum of single independent contributions, the dimensions of the process space. This is a generalization of the classical process window, which examines defocus and exposure dependency of given test pattern, e.g. CD value of dense and isolated lines. In our process space we additionally define the dimensions resist effects, etch effects, mask error and misalignment, which describe the deviation of the printed silicon pattern from its target. We further extend it by the pattern space using a product based layout (library, full chip or synthetic test pattern). The criticality of pattern is defined by their deviation due to aerial image, their sensitivity to the respective dimension or several combinations of these. By exploring the process space for a given design, the method allows to find the most critical patterns independent of specific process parameters. The paper provides examples for different applications of the method: (1) selection of design oriented test pattern for lithography development (2) test pattern reduction in process characterization (3) verification/optimization of printability and performance of post processing procedures (like OPC) (4) creation of a sensitive process monitor.
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
Adaptive matching of the iota ring linear optics for space charge compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.; Bruhwiler, D. L.; Cook, N.
Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Space shuttle orbital maneuvering engine platelet injector program
NASA Technical Reports Server (NTRS)
1975-01-01
A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.
Southern Impact Testing Alliance (SITA)
NASA Technical Reports Server (NTRS)
Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian
2009-01-01
Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.
The Application of Neutron Transport Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.; Armstrong, Hirotatsu; van der Hoeven, Christopher A.
2015-02-01
Radiation detectors provide deterrence and defense against nuclear smuggling attempts by scanning vehicles, ships, and pedestrians for radioactive material. Understanding detector performance is crucial to developing novel technologies, architectures, and alarm algorithms. Detection can be modeled through radiation transport simulations; however, modeling a spanning set of threat scenarios over the full transport phase-space is computationally challenging. Previous research has demonstrated Green's functions can simulate photon detector signals by decomposing the scenario space into independently simulated submodels. This paper presents decomposition methods for neutron and time-dependent transport. As a result, neutron detector signals produced from full forward transport simulations can be efficiently reconstructed by sequential application of submodel response functions.
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
NASA Technical Reports Server (NTRS)
Cramer, B. A.; Davis, J. W.
1975-01-01
Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
Resolving runaway electron distributions in space, time, and energy
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.
2018-05-01
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier
NASA Astrophysics Data System (ADS)
Kotwal, Ashutosh V.; Ramsey-Musolf, Michael J.; No, Jose Miguel; Winslow, Peter
2016-08-01
We study the prospects for probing a gauge singlet scalar-driven strong first-order electroweak phase transition with a future proton-proton collider in the 100 TeV range. Singlet-Higgs mixing enables resonantly enhanced di-Higgs production, potentially aiding discovery prospects. We perform Monte Carlo scans of the parameter space to identify regions associated with a strong first-order electroweak phase transition, analyze the corresponding di-Higgs signal, and select a set of benchmark points that span the range of di-Higgs signal strengths. For the b b ¯γ γ and 4 τ final states, we investigate discovery prospects for each benchmark point for the high-luminosity phase of the Large Hadron Collider and for a future p p collider with √{s }=50 , 100, or 200 TeV. We find that any of these future collider scenarios could significantly extend the reach beyond that of the high-luminosity LHC, and that with √{s }=100 TeV (200 TeV) and 30 ab-1 , the full region of parameter space favorable to strong first-order electroweak phase transitions is almost fully (fully) discoverable.
Finite density two color chiral perturbation theory revisited
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo
2018-06-01
We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.
Tao, Guohua; Miller, William H
2011-07-14
An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.
Multidimensional phase space methods for mass measurements and decay topology determination
NASA Astrophysics Data System (ADS)
Altunkaynak, Baris; Kilic, Can; Klimek, Matthew D.
2017-02-01
Collider events with multi-stage cascade decays fill out the kinematically allowed region in phase space with a density that is enhanced at the boundary. The boundary encodes all available information as regards the spectrum and is well populated even with moderate signal statistics due to this enhancement. In previous work, the improvement in the precision of mass measurements for cascade decays with three visible and one invisible particles was demonstrated when the full boundary information is used instead of endpoints of one-dimensional projections. We extend these results to cascade decays with four visible and one invisible particles. We also comment on how the topology of the cascade decay can be determined from the differential distribution of events in these scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.
Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb –1. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. Furthermore, the differential cross sections are presented at particle level, within a phase space close to the experimental acceptance,more » and at parton level in the full phase space. The results are compared to several standard model predictions.« less
General Overview of the ODC Elimination Effort of the RSRM Program
NASA Technical Reports Server (NTRS)
Evans, Kurt; Golde, Rick; McCool, Alex (Technical Monitor)
2001-01-01
The purpose of the ODC Elimination Program of the Space Shuttle RSRM Program is to eliminate the usage of 1, 1, 1 trichloroethane (TCA) in all RSRM (Reusable Solid Rocket Motor) manufacturing processes. This program consists of the following phases and objectives: Phase 0 - Convert to greaseless shipping of metal components. Phase 1 - Eliminate TCA vapor degreasing and usage in propellant cleaning operations. Phase 2 - Eliminate TCA usage for hand cleaning operations. Each phase reduces peak TCA consumption (about 1.4 million pounds in 1989) by about 29, 61, and 10 percent, respectively. Phase 0 was completed in 1992, Phase 1 in 1997, and Phase 2 is in progress (about 75% complete). TCA replacement objectives are accomplished by are a series of subscale, full-scale, and static testing outlined by the NASA-funded, ODC Elimination Program.
Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications
NASA Technical Reports Server (NTRS)
Penny, M. M.
1975-01-01
Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
NASA Astrophysics Data System (ADS)
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.
2018-05-01
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.
Spatial Factors in the Integration of Speed Information
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.; Hargens, Alan R. (Technical Monitor)
1995-01-01
We reported that, for a 21FC task with multiple Gabor patches in each interval, thresholds for speed discrimination decreased with the number of patches, while simply increasing the area of a single patch produced no such effect. This result could be explained by multiple patches reducing spatial uncertainty. However, the fact that thresholds decrease with number even when the patches are in fixed positions argues against this explanation. We therefore performed additional experiments to explore the lack of an area effect. Three observers did a 21FC speed discrimination task with 6 Gabor patches in each interval, and were asked to pick the interval in which the gratings moved faster. The 50% contrast patches were placed on a circle at 4 deg. eccentricity, either equally spaced and maximally separated (hexagonal array), or closely-spaced, in consecutive positions (string of pearls). For the string-of-pearls condition, the grating phases were either random, or consistent with a full-field grating viewed through multiple Gaussian windows. When grating phases were random, the thresholds for the hexagonal and string-of-pearls layouts were indistinguishable. For the string-of-pearls layout, thresholds in the consistent-phase condition were higher by 15 +/- 6% than in the random-phase condition. (Thresholds increased by 57 +/- 7% in going from 6 patches to a single patch of equivalent area.). For random-phase patches, the lower thresholds for 6 patches does not depend on a specific spacing or spatial layout. Multiple, closely-spaced, consistent-phase patches that can be interpreted as a single grating, result in thresholds closer to that produced by a single patch. Together, our results suggest that object segmentation may play a role in the integration of speed information.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
NASA Technical Reports Server (NTRS)
1976-01-01
Full size Tug LO2 and LH2 tank configurations were defined, based on selected tank geometries. These configurations were then locally modeled for computer stress analysis. A large subscale test tank, representing the selected Tug LO2 tank, was designed and analyzed. This tank was fabricated using procedures which represented production operations. An evaluation test program was outlined and a test procedure defined. The necessary test hardware was also fabricated.
Phase Change Fabrics Control Temperature
NASA Technical Reports Server (NTRS)
2009-01-01
Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.
Doppler imaging with dual-detection full-range frequency domain optical coherence tomography
Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.
2010-01-01
Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488
NASA Astrophysics Data System (ADS)
Coecke, Bob; Kissinger, Aleks
2017-03-01
Preface; 1. Introduction; 2. Guide to reading this textbook; 3. Processes as diagrams; 4. String diagrams; 5. Hilbert space from diagrams; 6. Quantum processes; 7. Quantum measurement; 8. Picturing classical-quantum processes; 9. Picturing phases and complementarity; 10. Quantum theory: the full picture; 11. Quantum foundations; 12. Quantum computation; 13. Quantum resources; 14. Quantomatic; Appendix A. Some notations; References; Index.
Risk management for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Buchbinder, Ben
1993-01-01
Probabilistic Risk Assessment (PRA) is a quantitative engineering process that provides the analytic structure and decision-making framework for total programmatic risk management. Ideally, it is initiated in the conceptual design phase and used throughout the program life cycle. Although PRA was developed for assessment of safety, reliability, and availability risk, it has far greater application. Throughout the design phase, PRA can guide trade-off studies among system performance, safety, reliability, cost, and schedule. These studies are based on the assessment of the risk of meeting each parameter goal, with full consideration of the uncertainties. Quantitative trade-off studies are essential, but without full identification, propagation, and display of uncertainties, poor decisions may result. PRA also can focus attention on risk drivers in situations where risk is too high. For example, if safety risk is unacceptable, the PRA prioritizes the risk contributors to guide the use of resources for risk mitigation. PRA is used in the Space Exploration Initiative (SEI) Program. To meet the stringent requirements of the SEI mission, within strict budgetary constraints, the PRA structure supports informed and traceable decision-making. This paper briefly describes the SEI PRA process.
Wigner phase space distribution via classical adiabatic switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Amartya; Makri, Nancy; Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if themore » perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.« less
UV lifetime demonstrator for space-based applications
NASA Astrophysics Data System (ADS)
Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd
2016-05-01
A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) systems. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100 mJ pulses of 355 nm light at 150 Hz. The laser module build was completed in the third quarter of 2015 at which time a series of life tests were initiated. The first phase of the lifetime testing is a 532 nm only test that is expected to complete in April 2016. The 532 nm lifetest will be followed by a 4 month half power UV life test and then a four month full power UV life test. The lifetime tests will be followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the laser optics module design is at TRL 6.
WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich
2010-07-20
The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuringmore » a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.« less
Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier
Kotwal, Ashutosh V.; Ramsey-Musolf, Michael J.; No, Jose Miguel; ...
2016-08-23
We study the prospects for probing a gauge singlet scalar-driven strong first-order electroweak phase transition with a future proton-proton collider in the 100 TeV range. Singlet-Higgs mixing enables resonantly enhanced di-Higgs production, potentially aiding discovery prospects. We perform Monte Carlo scans of the parameter space to identify regions associated with a strong first-order electroweak phase transition, analyze the corresponding di-Higgs signal, and select a set of benchmark points that span the range of di-Higgs signal strengths. For the bmore » $$\\bar{b}$$γγ and 4τ final states, we investigate discovery prospects for each benchmark point for the high-luminosity phase of the Large Hadron Collider and for a future pp collider with s=50, 100, or 200 TeV. We find that any of these future collider scenarios could significantly extend the reach beyond that of the high-luminosity LHC, and that with s=100 TeV (200 TeV) and 30 ab -1, the full region of parameter space favorable to strong first-order electroweak phase transitions is almost fully (fully) discoverable.« less
Phased array ghost elimination.
Kellman, Peter; McVeigh, Elliot R
2006-05-01
Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.
Phased array ghost elimination
Kellman, Peter; McVeigh, Elliot R.
2007-01-01
Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. PMID:16705636
Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region.
Ozer, Mete; Akdeniz, Berat Serdar; Sumer, Mahmut
2013-12-01
Orthodontic closure of old, edentulous spaces in the mandibular posterior region is a major challenge. In this report, we describe a method of orthodontic closure of edentulous spaces in the mandibular posterior region accelerated by piezoelectric decortication and alveolar ridge expansion. Combined piezosurgical and orthodontic treatments were used to close 14- and 15-mm-wide spaces in the mandibular left and right posterior areas, respectively, of a female patient, aged 18 years and 9 months, diagnosed with skeletal Class III malocclusion, hypodontia, and polydiastemas. After the piezoelectric decortication, segmental and full-arch mechanics were applied in the orthodontic phase. Despite some extent of root resorption and anchorage loss, the edentulous spaces were closed, and adequate function and esthetics were regained without further restorative treatment. Alveolar ridge expansion-assisted orthodontic space closure seems to be an effective and relatively less-invasive treatment alternative for edentulous spaces in the mandibular posterior region.
Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region
Akdeniz, Berat Serdar; Sumer, Mahmut
2013-01-01
Orthodontic closure of old, edentulous spaces in the mandibular posterior region is a major challenge. In this report, we describe a method of orthodontic closure of edentulous spaces in the mandibular posterior region accelerated by piezoelectric decortication and alveolar ridge expansion. Combined piezosurgical and orthodontic treatments were used to close 14- and 15-mm-wide spaces in the mandibular left and right posterior areas, respectively, of a female patient, aged 18 years and 9 months, diagnosed with skeletal Class III malocclusion, hypodontia, and polydiastemas. After the piezoelectric decortication, segmental and full-arch mechanics were applied in the orthodontic phase. Despite some extent of root resorption and anchorage loss, the edentulous spaces were closed, and adequate function and esthetics were regained without further restorative treatment. Alveolar ridge expansion-assisted orthodontic space closure seems to be an effective and relatively less-invasive treatment alternative for edentulous spaces in the mandibular posterior region. PMID:24396740
Quantum work in the Bohmian framework
NASA Astrophysics Data System (ADS)
Sampaio, R.; Suomela, S.; Ala-Nissila, T.; Anders, J.; Philbin, T. G.
2018-01-01
At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising from the variation of the system's initial conditions and its interaction with the environment. The fluctuating work, for example, is characterized by the ensemble of system trajectories in phase space and, by including the probabilities for various trajectories to occur, a work distribution can be constructed. However, without phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the quantum work probability distribution and its properties with an exactly solvable example of a driven quantum harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization of the dynamics of quantum systems, including the measurement process.
Integrated optical phased arrays for quasi-Bessel-beam generation.
Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R
2017-09-01
Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14 mm Bessel length and ∼30 μm power full width at half maximum.
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
POCS-enhanced correction of motion artifacts in parallel MRI.
Samsonov, Alexey A; Velikina, Julia; Jung, Youngkyoo; Kholmovski, Eugene G; Johnson, Chris R; Block, Walter F
2010-04-01
A new method for correction of MRI motion artifacts induced by corrupted k-space data, acquired by multiple receiver coils such as phased arrays, is presented. In our approach, a projections onto convex sets (POCS)-based method for reconstruction of sensitivity encoded MRI data (POCSENSE) is employed to identify corrupted k-space samples. After the erroneous data are discarded from the dataset, the artifact-free images are restored from the remaining data using coil sensitivity profiles. The error detection and data restoration are based on informational redundancy of phased-array data and may be applied to full and reduced datasets. An important advantage of the new POCS-based method is that, in addition to multicoil data redundancy, it can use a priori known properties about the imaged object for improved MR image artifact correction. The use of such information was shown to improve significantly k-space error detection and image artifact correction. The method was validated on data corrupted by simulated and real motion such as head motion and pulsatile flow.
Resolving runaway electron distributions in space, time, and energy
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...
2018-05-01
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
Resolving runaway electron distributions in space, time, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
500 Gb/s free-space optical transmission over strong atmospheric turbulence channels.
Qu, Zhen; Djordjevic, Ivan B
2016-07-15
We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...
2018-05-29
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less
Two-Phase Flow Research on the ISS for Thermal Control Applications
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2013-01-01
With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.
The Potential of Phased Arrays for Planetary Exploration
NASA Astrophysics Data System (ADS)
Pogorzelski, Ronald J.
2000-01-01
Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable many of the planetary missions discussed in this paper and significantly broaden the telecommunications capabilities available to the mission designers of the future.
Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony;
2018-01-01
The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.
Use of the space shuttle to avoid spacecraft anomalies
NASA Technical Reports Server (NTRS)
1972-01-01
An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact.
NASA Astrophysics Data System (ADS)
Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta
2018-03-01
We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Autonomous Satellite Command and Control Through the World Wide Web. Phase 3
NASA Technical Reports Server (NTRS)
Cantwell, Brian; Twiggs, Robert
1998-01-01
The Automated Space System Experimental Testbed (ASSET) system is a simple yet comprehensive real-world operations network being developed. Phase 3 of the ASSET Project was January-December 1997 and is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer. (2) Support prioritized handling of multiple (PIs) Principle Investigators as well as associated payload experimenters. (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft. (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware. (5) Implement a beacon monitoring test. (6) Implement an experimental blackboard controller for space system management. (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals are examined. Significant sections of this report were also published as a conference paper. Several publications produced in support of this grant are included as attachments. Titles include: 1) Experimental Initiatives in Space System Operations; 2) The ASSET Client Interface: Balancing High Level Specification with Low Level Control; 3) Specifying Spacecraft Operations At The Product/Service Level; 4) The Design of a Highly Configurable, Reusable Operating System for Testbed Satellites; 5) Automated Health Operations For The Sapphire Spacecraft; 6) Engineering Data Summaries for Space Missions; and 7) Experiments In Automated Health Assessment And Notification For The Sapphire Microsatellite.
Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.
Chong, See Yenn; Todd, Michael D
2018-05-01
Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.
Study of two-phase flows in reduced gravity
NASA Astrophysics Data System (ADS)
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.
NASA Astrophysics Data System (ADS)
Flores, Christopher E.
2016-12-01
The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-12-01
The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.
Luzanov, A V
2008-09-07
The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.
New physics in the visible final states of B → D(*) τν
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.
We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less
New physics in the visible final states of B → D(*) τν
Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.
2017-01-18
We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less
Largescale Long-term particle Simulations of Runaway electrons in Tokamaks
NASA Astrophysics Data System (ADS)
Liu, Jian; Qin, Hong; Wang, Yulei
2016-10-01
To understand runaway dynamical behavior is crucial to assess the safety of tokamaks. Though many important analytical and numerical results have been achieved, the overall dynamic behaviors of runaway electrons in a realistic tokamak configuration is still rather vague. In this work, the secular full-orbit simulations of runaway electrons are carried out based on a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different timescales spanning 11 orders. A detailed analysis of the collisionless neoclassical scattering is provided when considering the coupling between the rotation of momentum vector and the background field. In large timescale, the initial condition of runaway electrons in phase space globally influences the runaway distribution. It is discovered that parameters and field configuration of tokamaks can modify the runaway electron dynamics significantly. Simulations on 10 million cores of supercomputer using the APT code have been completed. A resolution of 107 in phase space is used, and simulations are performed for 1011 time steps. Largescale simulations show that in a realistic fusion reactor, the concern of runaway electrons is not as serious as previously thought. This research was supported by National Magnetic Connement Fusion Energy Research Project (2015GB111003, 2014GB124005), the National Natural Science Foundation of China (NSFC-11575185, 11575186) and the GeoAlgorithmic Plasma Simulator (GAPS) Project.
Refurbishment cost study of the thermal protection system of a space shuttle vehicle, phase 2
NASA Technical Reports Server (NTRS)
Haas, D. W.
1972-01-01
The labor costs and techniques associated with the refurbishment and maintenance of representative thermal protection system (TPS) components and their attachment concepts suitable for space shuttle application are defined, characterized, and evaluated from the results of an experimental test program. This program consisted of designing selected TPS concepts, fabricating and assembling test hardware, and performing a time and motion study of specific maintenance functions of the test hardware on a full-scale- mockup. Labor requirements and refurbishment techniques, as they relate to the maintenance functions of inspection, repair, removal, and replacement were identified.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.
1989-01-01
The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.
Lee, Danny; Greer, Peter B; Pollock, Sean; Kim, Taeho; Keall, Paul
2016-05-01
The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, W.E.
1977-04-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-05-01
Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb –1. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. Furthermore, the differential cross sections are presented at particle level, within a phase space close to the experimental acceptance,more » and at parton level in the full phase space. The results are compared to several standard model predictions.« less
NASA Technical Reports Server (NTRS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-01-01
The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
Lustre Distributed Name Space (DNE) Evaluation at the Oak Ridge Leadership Computing Facility (OLCF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, James S.; Leverman, Dustin B.; Hanley, Jesse A.
This document describes the Lustre Distributed Name Space (DNE) evaluation carried at the Oak Ridge Leadership Computing Facility (OLCF) between 2014 and 2015. DNE is a development project funded by the OpenSFS, to improve Lustre metadata performance and scalability. The development effort has been split into two parts, the first part (DNE P1) providing support for remote directories over remote Lustre Metadata Server (MDS) nodes and Metadata Target (MDT) devices, while the second phase (DNE P2) addressed split directories over multiple remote MDS nodes and MDT devices. The OLCF have been actively evaluating the performance, reliability, and the functionality ofmore » both DNE phases. For these tests, internal OLCF testbed were used. Results are promising and OLCF is planning on a full DNE deployment by mid-2016 timeframe on production systems.« less
A target recognition method for maritime surveillance radars based on hybrid ensemble selection
NASA Astrophysics Data System (ADS)
Fan, Xueman; Hu, Shengliang; He, Jingbo
2017-11-01
In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.
NASA Technical Reports Server (NTRS)
Black, W. E.
1977-01-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniques succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
A lower bound on the Milky Way mass from general phase-space distribution function models
NASA Astrophysics Data System (ADS)
Bratek, Łukasz; Sikora, Szymon; Jałocha, Joanna; Kutschera, Marek
2014-02-01
We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ≈150-200 kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4 × 1011 M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A134
The next century astrophysics program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1992-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of flagship and intermediate missions that are presently under study for possible launch during the next 20 years. These missions and tentative schedules, referred to as the Astrotech 21 Mission Set, are summarized. The missions are in three groups corresponding to the cognizant science branch within the Astrophysics Division. Phase C/D refers to the pre-launch construction and delivery of the spacecraft, and the Operations Phase refers to the period when the mission is active in space. Approximately 1.5 years before the start of Phase C/D, a non-advocate review (NAR) is held to ensure that the mission/system concept and the requisite technology are at an appropriate stage of readiness for full scale development to begin. Therefore, technology development is frozen (usually) as of the date of a successful NAR. An overview of the technology advances required for each of the three wavelength groups is provided in the following paragraphs, along with a brief description of the individual missions.
Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD
NASA Astrophysics Data System (ADS)
Elliot-Ripley, Matthew
2015-07-01
The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett
2017-12-01
The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.
Space Shuttle Plume and Plume Impingement Study
NASA Technical Reports Server (NTRS)
Tevepaugh, J. A.; Penny, M. M.
1977-01-01
The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.
Hybrid propulsion technology program: Phase 1. Volume 3: Thiokol Corporation Space Operations
NASA Technical Reports Server (NTRS)
Schuler, A. L.; Wiley, D. R.
1989-01-01
Three candidate hybrid propulsion (HP) concepts were identified, optimized, evaluated, and refined through an iterative process that continually forced improvement to the systems with respect to safety, reliability, cost, and performance criteria. A full scale booster meeting Advanced Solid Rocket Motor (ASRM) thrust-time constraints and a booster application for 1/4 ASRM thrust were evaluated. Trade studies and analyses were performed for each of the motor elements related to SRM technology. Based on trade study results, the optimum HP concept for both full and quarter sized systems was defined. The three candidate hybrid concepts evaluated are illustrated.
Phase Space Exchange in Thick Wedge Absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David
The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.
Phase-space topography characterization of nonlinear ultrasound waveforms.
Dehghan-Niri, Ehsan; Al-Beer, Helem
2018-03-01
Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W
2003-10-01
A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.
Variance Analysis of Unevenly Spaced Time Series Data
NASA Technical Reports Server (NTRS)
Hackman, Christine; Parker, Thomas E.
1996-01-01
We have investigated the effect of uneven data spacing on the computation of delta (sub chi)(gamma). Evenly spaced simulated data sets were generated for noise processes ranging from white phase modulation (PM) to random walk frequency modulation (FM). Delta(sub chi)(gamma) was then calculated for each noise type. Data were subsequently removed from each simulated data set using typical two-way satellite time and frequency transfer (TWSTFT) data patterns to create two unevenly spaced sets with average intervals of 2.8 and 3.6 days. Delta(sub chi)(gamma) was then calculated for each sparse data set using two different approaches. First the missing data points were replaced by linear interpolation and delta (sub chi)(gamma) calculated from this now full data set. The second approach ignored the fact that the data were unevenly spaced and calculated delta(sub chi)(gamma) as if the data were equally spaced with average spacing of 2.8 or 3.6 days. Both approaches have advantages and disadvantages, and techniques are presented for correcting errors caused by uneven data spacing in typical TWSTFT data sets.
Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT
NASA Astrophysics Data System (ADS)
Song, Yizhuang; Seo, Jin Keun; Chauhan, Munish; Indahlastari, Aprinda; Ashok Kumar, Neeta; Sadleir, Rosalind
2018-02-01
We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.
NASA Technical Reports Server (NTRS)
Heard, Pamala D.
1998-01-01
The purpose of this research is to explore the development of Marshall Space Flight Center Unique Programs. These academic tools provide the Education Program Office with important information from the Education Computer Aided Tracking System (EDCATS). This system is equipped to provide on-line data entry, evaluation, analysis, and report generation, with full archiving for all phases of the evaluation process. Another purpose is to develop reports and data that is tailored to Marshall Space Flight Center Unique Programs. It also attempts to acquire knowledge on how, why, and where information is derived. As a result, a user will be better prepared to decide which available tool is the most feasible for their reports.
NASA Technical Reports Server (NTRS)
Blunck, R. D.; Krantz, D. E.
1974-01-01
An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.
Nonparaxial wave beams and packets with general astigmatism
NASA Astrophysics Data System (ADS)
Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.
2012-04-01
We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.
How to disentangle the Cosmic Web?
NASA Astrophysics Data System (ADS)
Shandarin, Sergei; Medvedev, Mikhail
2015-04-01
The Cosmic Web is a complicated highly-entangled geometrical object formed from remarkably simple - Gaussian - initial conditions. The full complexity of the Web can be fully appreciated in the six-dimensional phase space only, which study is, however, impractical due to numerous reasons. Instead, we suggest to use Lagrangian submanifold, i.e., the mapping x = x(q) , where x and q are three dimensional vectors representing Eulerian and Lagrangian coordinates. Being fully equivalent in dynamical sense to the phase space, it has the advantage of being a single valued and also metric space. In addition, we propose a new computational paradigm for the analysis of substructure of the Cosmic Web in cosmological cold dark matter (CDM) simulations. We introduce a new data-field - the flip-flop field - which carries wealth of information about the history and dynamics of the structure formation in the universe. The flip-flop (FF) field is an ordered data set in Lagrangian space representing the number of sign reversals of an elementary volume of each collisionless fluid element represented by a computational particle in a N-body simulation. This FF-field is effectively a multi-stream counter of each substructure element of the Cosmic Web. We demonstrate that the very rich subst Partially supported by DOE Grant DE-FG02-07ER54940 and NSF Grant AST-1209665.
From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium
NASA Astrophysics Data System (ADS)
Chastenay, Pierre
2016-02-01
An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.
NASA Astrophysics Data System (ADS)
Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin
2018-06-01
Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.
Liu, Jian; Miller, William H
2007-06-21
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Achieving Space Shuttle ATO Using the Five-Segment Booster (FSB)
NASA Technical Reports Server (NTRS)
Sauvageau, Donald R.; McCool, Alex (Technical Monitor)
2001-01-01
As part of the continuing effort to identify approaches to improve the safety and reliability of the Space Shuttle system, a Five-Segment Booster (FSB) design was conceptualized as a replacement for the current Space Shuttle boosters. The FSB offers a simple, unique approach to improve astronaut safety and increase performance margin. To determine the feasibility of the FSB, a Phase A study effort was sponsored by NASA and directed by the Marshall Space Flight Center. This study was initiated in March of 1999 and completed in December of 2000. The basic objective of this study was to assess the feasibility of the FSB design concept and also estimate the cost and scope of a full-scale development program for the FSB. In order to ensure an effective and thorough evaluation of the FSB concept, four team members were put on contract to support various areas of importance in assessing the overall feasibility of the design approach.
Non-Abelian vortices of higher winding numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Minoru; Konishi, Kenichi; Vinci, Walter
2006-09-15
We make a detailed study of the moduli space of winding number two (k=2) axially symmetric vortices (or equivalently, of coaxial composite of two fundamental vortices), occurring in U(2) gauge theory with two flavors in the Higgs phase, recently discussed by Hashimoto and Tong and by Auzzi, Shifman, and Yung. We find that it is a weighted projective space WCP{sub (2,1,1)}{sup 2}{approx_equal}CP{sup 2}/Z{sub 2}. This manifold contains an A{sub 1}-type (Z{sub 2}) orbifold singularity even though the full moduli space including the relative position moduli is smooth. The SU(2) transformation properties of such vortices are studied. Our results are thenmore » generalized to U(N) gauge theory with N flavors, where the internal moduli space of k=2 axially symmetric vortices is found to be a weighted Grassmannian manifold. It contains singularities along a submanifold.« less
NASA Astrophysics Data System (ADS)
Guerry, Agnes; Moussi, Aurelie; Sartine, Christian; Beaumet, Gregory
2013-09-01
HELIOS1A End Of Live (EOL) operations occurred in the early 2012. Through this EOL operation, CNES wanted to make an example of French Space Act compliance. Because the satellite wasn't natively designed for such an EOL phase, the operation was touchy and risky. It was organized as a real full project in order to assess every scenario details with dedicated Mission Analysis, to secure the operations through detailed risk analysis at system level and to consider the major failures that could occur during the EOL. A short scenario allowing to reach several objectives with benefits was eventually selected. The main objective of this project was to preserve space environment. The operations were led on a "best effort" basis. The French Space Operations Act (FSOA) requirements were met: HELIOS-1A EOL operations had been led successfully.
Nonequilibrium life-cycles in Ocean Heat Content
NASA Astrophysics Data System (ADS)
Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.
2014-03-01
Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
NASA Astrophysics Data System (ADS)
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
NASA Technical Reports Server (NTRS)
1971-01-01
The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.
Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krenkel, Martin; Toepperwien, Mareike; Alves, Frauke
X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining andmore » labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.« less
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime
Krenkel, Martin; Toepperwien, Mareike; Alves, Frauke; ...
2017-06-29
X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining andmore » labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.« less
Edge states and phase diagram for graphene under polarized light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi -Xiang; Li, Fuxiang
2016-03-22
In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
A prospectus on kinetic heliophysics
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2017-05-01
Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future.
A prospectus on kinetic heliophysics
2017-01-01
Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future. PMID:29104421
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Danny; Pollock, Sean; Keall, Paul, E-mail: paul.keall@sydney.edu.au
2016-05-15
Purpose: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. Methods: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale)more » respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. Results: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.« less
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex
2014-10-15
The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less
Observation of dynamical vortices after quenches in a system with topology
NASA Astrophysics Data System (ADS)
Fläschner, N.; Vogel, D.; Tarnowski, M.; Rem, B. S.; Lühmann, D.-S.; Heyl, M.; Budich, J. C.; Mathey, L.; Sengstock, K.; Weitenberg, C.
2018-03-01
Topological phases constitute an exotic form of matter characterized by non-local properties rather than local order parameters1. The paradigmatic Haldane model on a hexagonal lattice features such topological phases distinguished by an integer topological invariant known as the first Chern number2. Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention3-6. Here, we experimentally study the dynamical evolution of the wavefunction using time- and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices7. We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude8, which signal a so-called dynamical phase transition9,10. Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.
Studies of the resonance structure in D0→KS0K±π∓ decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.; LHCb Collaboration
2016-03-01
Amplitude models are applied to studies of resonance structure in D0→KS0K-π+ and D0→KS0K+π- decays using p p collision data corresponding to an integrated luminosity of 3.0 fb-1 collected by the LHCb experiment. Relative magnitude and phase information is determined, and coherence factors and related observables are computed for both the whole phase space and a restricted region of 100 MeV /c2 around the K*(892 )± resonance. Two formulations for the K π S -wave are used, both of which give a good description of the data. The ratio of branching fractions B (D0→KS0K+π- )/B (D0→KS0K-π+ ) is measured to be 0.655 ±0.004 (stat ) ±0.006 (syst ) over the full phase space and 0.370 ±0.003 (stat ) ±0.012 (syst ) in the restricted region. A search for C P violation is performed using the amplitude models and no significant effect is found. Predictions from SU(3) flavor symmetry for K*(892 ) K amplitudes of different charges are compared with the amplitude model results.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Technical Reports Server (NTRS)
1993-01-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Astrophysics Data System (ADS)
1993-10-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Ahren W.; Gruey, Zackery B.; Harding, Lawrence B.
Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities atmore » elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.« less
A cellular automaton for the signed particle formulation of quantum mechanics
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Kapanova, K. G.; Dimov, I.
2017-02-01
Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.
Multifractal characteristics of multiparticle production in heavy-ion collisions at SPS energies
NASA Astrophysics Data System (ADS)
Khan, Shaista; Ahmad, Shakeel
Entropy, dimensions and other multifractal characteristics of multiplicity distributions of relativistic charged hadrons produced in ion-ion collisions at SPS energies are investigated. The analysis of the experimental data is carried out in terms of phase space bin-size dependence of multiplicity distributions following the Takagi’s approach. Yet another method is also followed to study the multifractality which, is not related to the bin-width and (or) the detector resolution, rather involves multiplicity distribution of charged particles in full phase space in terms of information entropy and its generalization, Rényi’s order-q information entropy. The findings reveal the presence of multifractal structure — a remarkable property of the fluctuations. Nearly constant values of multifractal specific heat “c” estimated by the two different methods of analysis followed indicate that the parameter “c” may be used as a universal characteristic of the particle production in high energy collisions. The results obtained from the analysis of the experimental data agree well with the predictions of Monte Carlo model AMPT.
Exploring phase space using smartphone acceleration and rotation sensors simultaneously
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.
2014-07-01
A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.
Xu, X Q
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Phase Imaging: A Compressive Sensing Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.
Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a highmore » stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn = |F[HnΨ(r)]|2, where the matrices Hn encode the mask structure of the aperture. This is a nonlinear inverse problem, but has been shown to be solvable even in the underdetermined case [6]. Since each diffraction pattern yn contains diffraction information from selected regions of the same sample, the differences in each pattern contain local phase information, which can be combined to form a full estimate of the real-space wave-function[7]. References: [1] W. Pauli in “Die allgemeinen Prinzipien der Wellenmechanik“, ed. H Geiger and W Scheel, (Julius Springer, Berlin). [2] A. Tonomura, Rev. Mod. Phys. 59 (1987), p. 639. [3] J. Miao et al, Nature 400 (1999), p. 342. [4] H. Lichte et al, Annu. Rev. Mater. Res. 37 (2007), p. 539. [5] J. Yamasaki et al, Appl. Phys. Lett. 101 (2012), 234105. [6] P Schniter and S Rangan. Signal Proc., IEEE Trans. on. 64(4), (2015), pp. 1043. [7] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.« less
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkelin, S.V.; Sinyukov, Yu.M.
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less
NASA Technical Reports Server (NTRS)
Baer, J. W.; Black, W. E.
1974-01-01
The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.
Measurement-based quantum teleportation on finite AKLT chains
NASA Astrophysics Data System (ADS)
Fujii, Akihiko; Feder, David
In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.
Subscale Diffuser Testing, E-3 produces first steam
2007-10-25
Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.
High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME
NASA Astrophysics Data System (ADS)
Otis, Richard A.; Liu, Zi-Kui
2017-05-01
One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.
Parachute dynamics and stability analysis. [using nonlinear differential equations of motion
NASA Technical Reports Server (NTRS)
Ibrahim, S. K.; Engdahl, R. A.
1974-01-01
The nonlinear differential equations of motion for a general parachute-riser-payload system are developed. The resulting math model is then applied for analyzing the descent dynamics and stability characteristics of both the drogue stabilization phase and the main descent phase of the space shuttle solid rocket booster (SRB) recovery system. The formulation of the problem is characterized by a minimum number of simplifying assumptions and full application of state-of-the-art parachute technology. The parachute suspension lines and the parachute risers can be modeled as elastic elements, and the whole system may be subjected to specified wind and gust profiles in order to assess their effects on the stability of the recovery system.
Subscale Diffuser Testing, E-3 produces first steam
NASA Technical Reports Server (NTRS)
2007-01-01
Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.
Phase space methods in HMD systems
NASA Astrophysics Data System (ADS)
Babington, James
2017-06-01
We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.
Predictions for the Dirac C P -violating phase from sum rules
NASA Astrophysics Data System (ADS)
Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.
2018-05-01
We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.
Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ
NASA Astrophysics Data System (ADS)
Calixto, M.; Peón-Nieto, C.
2018-05-01
We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.
NASA Astrophysics Data System (ADS)
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-01
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn;
2014-01-01
EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).
High-mass diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-05-01
Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.
Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center
NASA Technical Reports Server (NTRS)
Scott, Carl D.
2000-01-01
The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.
Full dyon excitation spectrum in extended Levin-Wen models
NASA Astrophysics Data System (ADS)
Hu, Yuting; Geer, Nathan; Wu, Yong-Shi
2018-05-01
In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.
2008-01-01
High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less
Interplay between topology, gauge fields and gravity
NASA Astrophysics Data System (ADS)
Corichi Rodriguez Gil, Alejandro
In this thesis we consider several physical systems that illustrate an interesting interplay between quantum theory, connections and knot theory. It can be divided into two parts. In the first one, we consider the quantization of the free Maxwell field. We show that there is an important role played by knot theory, and in particular the Gauss linking number, in the quantum theory. This manifestation is twofold. The first occurs at the level of the algebra of observables given by fluxes of electric and magnetic field across surfaces. The commutator of the operators, and thus the basic uncertainty relations, are given in terms of the linking number of the loops that bound the surfaces. Next, we consider the quantization of the Maxwell field based on self-dual connections in the loop representation. We show that the measure which determines the quantum inner product can be expressed in terms of the self linking number of thickened loops. Therefore, the linking number manifests itself at two key points of the theory: the Heisenberg uncertainty principle and the inner product. In the second part, we bring gravity into play. First we consider quantum test particles on certain stationary space-times. We demonstrate that a geometric phase exists for those space-times and focus on the example of a rotating cosmic string. The geometric phase can be explicitly computed, providing a fully relativistic gravitational Aharonov-Bohm effect. Finally, we consider 3-dimensional gravity with non-vanishing cosmological constant in the connection dynamics formulation. We restrict our attention to Lorentzian gravity with positive cosmological constant and Euclidean signature with negative cosmological constant. A complex transformation is performed in phase space that makes the constraints simple. The reduced phase space is characterized as the moduli space of flat complex connections. We construct the quantization of the theory when the initial hyper-surface is a torus. Two important issues relevant to full 3 + 1 gravity are clarified, namely, the incorporation of the 'reality conditions' in the quantum theory and the role played by the signature of the classical metric in the quantum theory.
Exploring Residents’ Communication Learning Process in the Workplace: A Five-Phase Model
Scherpbier, Albert; van Dulmen, Sandra
2015-01-01
Context Competency-based education is a resurgent paradigm in professional medical education. However, more specific knowledge is needed about the learning process of such competencies, since they consist of complex skills. We chose to focus on the competency of skilled communication and want to further explore its learning process, since it is regarded as a main competency in medical education. Objective This study aims to explore in more detail the learning process that residents in general practice go through during workplace-based learning in order to become skilled communicators. Methods A qualitative study was conducted in which twelve GP residents were observed during their regular consultations, and were interviewed in-depth afterwards. Results Analysis of the data resulted in the construction of five phases and two overall conditions to describe the development towards becoming a skilled communicator: Confrontation with (un)desired behaviour or clinical outcomes was the first phase. Becoming conscious of one’s own behaviour and changing the underlying frame of reference formed the second phase. The third phase consisted of the search for alternative behaviour. In the fourth phase, personalization of the alternative behaviour had to occur, this was perceived as difficult and required much time. Finally, the fifth phase concerned full internalization of the new behaviour, which by then had become an integrated part of the residents’ clinical repertoire. Safety and cognitive & emotional space were labelled as overall conditions influencing this learning process. Conclusions Knowledge and awareness of these five phases can be used to adjust medical working and learning environments in such a way that development of skilled medical communication can come to full fruition and its benefits are more fully reaped. PMID:26000767
NASA Astrophysics Data System (ADS)
García-Vela, A.
2000-05-01
A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.
On the stability of the solutions of the general problem of three bodies
NASA Technical Reports Server (NTRS)
Standish, E. M., Jr.
1976-01-01
The extent through which the initial conditions of a given three-body system may be varied without completely changing the qualitative nature of the subsequent system evolution is investigated. It is assumed that the three masses are equal, all initial velocities are zero, the first two bodies initially lie on the x-axis, and the position of the third body is confined to a specific region of space. Analysis of the system evolution for different initial positions of the third body shows that there is a whole area or 'island' in the x-y plane throughout which the initial position of the third body may be moved in a continuous fashion to produce an evolution which also changes in a continuous manner. A Monte Carlo approach is adopted to determine the full extent of this island in the general problem. It is concluded that the stability of a full solution may be directly related to the size of its island in phase space.
NASA Astrophysics Data System (ADS)
Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.
2001-05-01
The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.
Solar dynamic power for Space Station Freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
Solar dynamic power for space station freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
Rehabilitation After International Space Station Flights
NASA Technical Reports Server (NTRS)
Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.
2003-01-01
Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick
2017-07-14
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
An effective method to accurately calculate the phase space factors for β - β - decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neacsu, Andrei; Horoi, Mihai
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. Here, we present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
NASA Technical Reports Server (NTRS)
1984-01-01
The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.
Energy content of stormtime ring current from phase space mapping simulations
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1994-01-01
This progress report documents research and development efforts performed from August 16, 1993 through February 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Following the executive summary are four report sections: Motor Selection, Tests Stand Development, Health Monitoring and Fault Management, and Experiment Planning. Three specific motor types have been considered as prime movers for TVC EMA applications: the brushless dc motor, the permanent magnet synchronous motor, and the induction motor. The fundamental finding was that, in general, the primary performance issues were energy efficiency and thermal dissipation (rotor heating). In terms of all other issues, the three motor types were found to compare quite equally. Among the design changes made to the test stand since the last progress report is the addition of more mounting holes in the side beams. These additional holes allow the movable end beam to be attached in a greater number of positions than previously. With this change the movable end beam can move from full forward to full back in three inch increments. Specific mathematical details on the approach that have been employed for health monitoring and fault management (HMFM) have been reported previously. This approach is based on and adaptive Kalman filter strategy. In general, a bank of filters can be implemented for each primary fault type. Presently under consideration for the brushless dc machine are the following faults: armature winding open-circuits, armature winding short-circuits (phase-to-phase and phase-to-ground), bearing degradation, and rotor flux weakening. The mechanically oriented experiments include transient loading experiments, transverse loading experiment, friction experiment, motor performance experiment, and HMFM experiment.
GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data
NASA Technical Reports Server (NTRS)
Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.;
2016-01-01
The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system will implement a Google-like, full-text search engine using a Service-Oriented Architecture by utilizing publicly available RESTful web services Application Programming Interfaces (e.g., GEO Entrez Programming Utilities) and a Common Metadata Model (CMM) in order to accommodate the different metadata formats between the heterogeneous bioinformatics databases. GLDS Phase 2 completion with fully implemented capabilities will be made available to the general public in September 2017.
NASA Astrophysics Data System (ADS)
Ryblewski, Radoslaw; Strickland, Michael
2015-07-01
We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.
Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-01-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel
2016-10-01
Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Crystalline phases by an improved gradient expansion technique
NASA Astrophysics Data System (ADS)
Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.
2018-02-01
We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.
Advanced Stirling receiver development program, phase 1
NASA Technical Reports Server (NTRS)
Lurio, Charles A.
1990-01-01
Critical technology experiments were designed and developed to evaluate the Stirling cavity heat pipe receiver for a space solar power system. Theoretical criteria were applied to the design of a module for containing energy storage phase change material while avoiding thermal ratcheting. Zero-g drop tower tests, without phase change, were conducted to affirm that the bubble location required to avoid ratcheting could be achieved without the use of container materials that are wetted by the phase change material. A full scale module was fabricated, but not tested. A fabrication method was successfully developed for the sodium evaporator dome, with a sintered screen wick, to be used as the focal point for the receiver. Crushing of the screen during hydroforming was substantially reduced over the results of other researchers by using wax impregnation. Superheating of the sodium in the wick under average flux conditions is expected to be under 10K. A 2000K furnace which will simulate solar flux conditions for testing the evaporator dome was successfully built and tested.
Liquid hydrogen production and economics for NASA Kennedy Space Center
NASA Astrophysics Data System (ADS)
Block, D. L.
1985-12-01
Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.
Phase space quantum mechanics - Direct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less
Classical-Quantum Correspondence by Means of Probability Densities
NASA Technical Reports Server (NTRS)
Vegas, Gabino Torres; Morales-Guzman, J. D.
1996-01-01
Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.
Fabrication of fuel pin assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1972-01-01
Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.
Space Phase III - The commercial era dawns
NASA Technical Reports Server (NTRS)
Allnutt, R. F.
1983-01-01
After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.
Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki
2005-11-08
By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.
Expanding the term "Design Space" in high performance liquid chromatography (I).
Monks, K E; Rieger, H-J; Molnár, I
2011-12-15
The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Efficient characterization of phase space mapping in axially symmetric optical systems
NASA Astrophysics Data System (ADS)
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
NASA Astrophysics Data System (ADS)
Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.
2016-03-01
Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.
Treeby, Bradley E; Tumen, Mustafa; Cox, B T
2011-01-01
A k-space pseudospectral model is developed for the fast full-wave simulation of nonlinear ultrasound propagation through heterogeneous media. The model uses a novel equation of state to account for nonlinearity in addition to power law absorption. The spectral calculation of the spatial gradients enables a significant reduction in the number of required grid nodes compared to finite difference methods. The model is parallelized using a graphical processing unit (GPU) which allows the simulation of individual ultrasound scan lines using a 256 x 256 x 128 voxel grid in less than five minutes. Several numerical examples are given, including the simulation of harmonic ultrasound images and beam patterns using a linear phased array transducer.
Particle Transport through Scattering Regions with Clear Layers and Inclusions
NASA Astrophysics Data System (ADS)
Bal, Guillaume
2002-08-01
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.
NASA Astrophysics Data System (ADS)
Bolzoni, Paolo; Somogyi, Gábor; Trócsányi, Zoltán
2011-01-01
We perform the integration of all iterated singly-unresolved subtraction terms, as defined in ref. [1], over the two-particle factorized phase space. We also sum over the unresolved parton flavours. The final result can be written as a convolution (in colour space) of the Born cross section and an insertion operator. We spell out the insertion operator in terms of 24 basic integrals that are defined explicitly. We compute the coefficients of the Laurent expansion of these integrals in two different ways, with the method of Mellin-Barnes representations and sector decomposition. Finally, we present the Laurent-expansion of the full insertion operator for the specific examples of electron-positron annihilation into two and three jets.
A Defect Structure for 6-Line Ferrihydrite Nanoparticles (Invited)
NASA Astrophysics Data System (ADS)
Gilbert, B.; Spagnoli, D.; Fakra, S.; Petkov, V.; Penn, R. L.; Banfield, J. F.; Waychunas, G.
2010-12-01
Ferrihydrite is an environmental iron oxyhydroxide mineral that is only found in the form of nanoscale particles yet exerts significant impacts on the biogeochemistry of soils, sediments and surface waters. This material has remained poorly characterized due to significant experimental challenges in determining stoichiometry and structure. In a breakthrough, Michel et al., Science 316, 1726 (2007), showed that real-space pair distribution function (PDF) data from ferrihydrite samples with a range of particle sizes could be modeled by a single newly proposed crystal phase. However, ambiguity remained as to the relationship between this model and real ferrihydrite structure because that model does not perfectly reproduce the reciprocal-space X-ray diffraction data (XRD). Subsequently, Michel et al. PNAS 107, 2787 (2010), demonstrated that ferrihydrite could be thermally coarsened to form an annealed nanomaterial for which both XRD and PDF data are reproduced by a refined version of their original structure. These findings confirmed that the Michel et al. structure is a true mineral phase, but do not resolve the question of how to adequately describe the structure of ferrihydrite nanoparticles formed by low-temperature precipitation in surface waters. There is agreement that a model based upon a single unit cell cannot capture the structural diversity present in real nanoparticles, which can include defects, vacancies and disorder, particularly surface strain. However, for the Michel et al. model of ferrihydrite the disagreement between simulated and experimental XRD is significant, indicating either that the underlying structural model is incorrect; that the assumption that a single phase is sufficient to describe the nanomaterial is not valid; or that ferrihydrite nanoparticles possess an unusually large amount of disorder that must be characterized. Thus, quantitative tests of explicit structural configurations are essential to understand the real nanoparticle disorder and to test the correctness of an underlying phase described by a single unit cell. We reviewed the crystal chemistry of the Michel et al. structure and alternatives and developed hypotheses for plausible structural defects. We developed a novel reverse Monte Carlo (RMC) algorithm that generates defects and disorder within full-nanoparticle structural models and simulates the corresponding PDF and wide-angle XRD patterns for comparison with experimental data. This successfully generated full-nanoparticle structures that are in agreement with both real- and reciprocal-space X-ray scattering data. RMC-derived structures may be incorrect, and are not unique, and must therefore be evaluated for chemical plausibility as emphasized by Manceau, Clay Minerals 44, 19 (2009). Nevertheless, the results show that the inclusion of disorder and defects in full-nanoparticle model of ferrihydrite can resolve the discrepancy between XRD and PDF results found for a model based upon a single unit cell.
Three-dimensional imaging using phase retrieval with two focus planes
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev
2016-03-01
This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.
Ghost artifact cancellation using phased array processing.
Kellman, P; McVeigh, E R
2001-08-01
In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples.
Ghost Artifact Cancellation Using Phased Array Processing
Kellman, Peter; McVeigh, Elliot R.
2007-01-01
In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638
Catalytic wet oxidation: mathematical modeling of multicompound destruction.
Yang, J; Hand, D W; Hokanson, D R; Crittenden, J C; Oman, E J
2003-01-01
A mathematical model of a three-phase catalytic reactor, CatReac, was developed for analysis and optimization of a catalytic oxidation reactor that is used in the International Space Station potable water processor. The packed-bed catalytic reactor, known as the volatile reactor assembly (VRA), is operated as a three-phase reactor and contains a proprietary catalyst, a pure-oxygen gas phase, and the contaminated water. The contaminated water being fed to the VRA primarily consists of acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid ranging in concentration from 1 to 10 mg/L. The Langmuir-Hinshelwood Hougen-Watson (L-H) (Hougen, 1943) expression was used to describe the surface reaction rate for these compounds. Single and multicompound short-column experiments were used to determine the L-H rate parameters and calibrate the model. The model was able to predict steady-state multicomponent effluent profiles for short and full-scale reactor experiments.
Project H - A Complete Spaceport Hydrogen Solution
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
This slide presentation reviews Project H, and its importance in the development of Kennedy Space Center (KSC) as a Spaceport capable of multiple launches. It is known that current KSC cryogenic technology results in only approximately 55 % of purchased hydrogen being used. The rest is lost at various points in the process: transfer from transporting vehicle to tank, storage tank boil off, and from the tank to the intended propulsion tanks. Project H's goals would be to have local hydrogen production and liquifaction capability, and to increase the efficiency of hydrogen operations to greater than 80 %. The project envisions two phases: Phase 1 will build a smaller scale demonstration system, and phase 2 will build a full scale spaceport system. This initial project has proposed ideas for local hydrogen production, gaseous distribution, integrated refrigeration and storage, and high efficiency transfer lines that merit further investigation.
Event patterns extracted from top quark-related spectra in proton-proton collisions at 8 TeV
NASA Astrophysics Data System (ADS)
Chen, Ya-Hui; Liu, Fu-Hu; Lacey, Roy A.
2018-02-01
We analyze the transverse momentum (p T) and rapidity (y) spectra of top quark pairs, hadronic top quarks, and top quarks produced in proton-proton (pp) collisions at center-of-mass energy \\sqrt{s}=8 TeV. For {p}{{T}} spectra, we use the superposition of the inverse power-law suggested by the QCD (quantum chromodynamics) calculus and the Erlang distribution resulting from a multisource thermal model. For y spectra, we use the two-component Gaussian function resulting from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured at the detector level, in the fiducial phase-space, and in the full phase-space by the ATLAS Collaboration at the Large Hadron Collider (LHC). Based on the parameter values extracted from p T and y spectra, the event patterns in three-dimensional velocity (βx -βy -βz ), momentum (px -py -pz ), and rapidity (y 1-y 2-y) spaces are obtained, and the probability distributions of these components are also obtained. Supported by National Natural Science Foundation of China (11575103, 11747319), the Shanxi Provincial Natural Science Foundation (201701D121005), the Fund for Shanxi “1331 Project” Key Subjects Construction and the US DOE (DE-FG02-87ER40331.A008)
Longitudinal phase space tomography using a booster cavity at PITZ
NASA Astrophysics Data System (ADS)
Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.
2017-11-01
The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
NASA Astrophysics Data System (ADS)
Hozumi, Shunsuke
1997-10-01
A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem, which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t = 0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform density sphere, the phase-space evolution generated by the current method is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs and does not require any assumptions to be made about the symmetry of the system, success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Evolution of Government and Industrial Partnerships to Open the Space Frontier
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2008-01-01
If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
Probabilistic Risk Assessment for Decision Making During Spacecraft Operations
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2009-01-01
Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn, provide insight into the effect of various faults or failures on the risk and failure drivers of the system and the likelihood of possible end case scenarios, thereby facilitating the decision making process during operations. This paper describes the process of adjusting PRA models based on observed spacecraft data, on one hand, and utilizing the models for insight into the future system behavior on the other hand. While PRA models are typically used as a decision aid during the design phase of a space mission, we advocate adjusting them based on the observed behavior of the spacecraft and utilizing them for decision support during the operations phase.
NASA Astrophysics Data System (ADS)
Vogman, Genia
Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space coordinates present a new development in the field of computational plasma physics. A fourth-order finite-volume method for solving the Vlasov-Maxwell equation system is presented first for Cartesian and then for cylindrical phase space coordinates. Special attention is given to the treatment of the discrete primary variables and to the quadrature rule for evaluating the surface and line integrals that appear in the governing equations. The finite-volume treatment of conducting wall and axis boundaries is particularly nuanced when it comes to phase space coordinates, and is described in detail. In addition to the mechanics of each part of the finite-volume discretization in the two different coordinate systems, the complete algorithm is also presented. The Cartesian coordinate discretization is applied to several well-known test problems. Since even linear analysis of kinetic theory governing equations is complicated on account of velocity being an independent coordinate, few analytic or semi-analytic predictions exist. Benchmarks are particularly scarce for configurations that have magnetic fields and involve more than two phase space dimensions. Ensuring that simulations are true to the physics thus presents a difficulty in the development of robust numerical methods. The research described in this dissertation addresses this challenge through the development of more complete physics-based benchmarks based on the Dory-Guest-Harris instability. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. Furthermore, a specialized form of perturbation is shown to strongly excite the fastest growing mode. The fourth-order finite-volume algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. The Dory-Guest-Harris instability benchmark extends the scope of standard test problems by providing a substantive means of validating continuum kinetic simulations of warm magnetized plasmas in higher-dimensional 3D ( x,vx,vy) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. The cylindrical coordinate finite-volume discretization is applied to model axisymmetric systems. Since mitigating the prohibitive computational cost of simulating six dimensions is another challenge in phase space simulations, the development of a robust means of exploiting symmetry is a major advance when it comes to numerically solving the Vlasov-Maxwell equation system. The discretization is applied to a uniform distribution function to assess the nature of the singularity at the axis, and is demonstrated to converge at fourth-order accuracy. The numerical method is then applied to simulate electrostatic ion confinement in an axisymmetric Z-pinch configuration. To the author's knowledge this presents the first instance of a conservative finite-volume discretization of the cylindrical coordinate Vlasov equation. The computational framework for the Vlasov-Maxwell solver is described, and an outlook for future research is presented.
Models of primary runaway electron distribution in the runaway vortex regime
Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.
2017-11-01
Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less
The initial value problem in Lagrangian drift kinetic theory
NASA Astrophysics Data System (ADS)
Burby, J. W.
2016-06-01
> Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.
Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6
NASA Astrophysics Data System (ADS)
Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.
2014-10-01
The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.
NASA Technical Reports Server (NTRS)
Holder, Donald W.; Parker, David
2000-01-01
The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less
Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K
2013-01-01
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.
Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin
2015-08-24
We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.
Subscale Water Based Phase Change Material Heat Exchanger Development
NASA Technical Reports Server (NTRS)
Sheth, Rubik; Hansen, Scott
2016-01-01
Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.
NASA Astrophysics Data System (ADS)
Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus
2002-01-01
As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali- dation tool for the X-38 re-entry simulation and onboard software. Third, alternate guidance and control algorithms for the re-entry flight phase of X-38, using onboard flight path optimization for the guidance task and dynamic inversion control methods for attitude control have been developed. The resulting alternate guidance and control software shall be flown as a flight experiment onboard the V201 spaceflight test vehicle. Fourth, a fault tolerant computer similar to the one used onboard the ISS is planned to be integrated into the V201 spaceflight test vehicle as a host of the re-entry GNC software mentioned above. This paper will summarize the development and test phases of European guidance and control soft- ware and avionics elements for the different phases of the X-38 mission. Flight test results from the X38 aerial drop test campaigns will be presented and discussed. In addition, the flight experiment of the fault tolerant computer will be described.
Koda, Shin-ichi
2015-12-28
We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.
Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models
NASA Astrophysics Data System (ADS)
Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.
2014-12-01
The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Explicit methods in extended phase space for inseparable Hamiltonian problems
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli
2015-03-01
We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
NASA Technical Reports Server (NTRS)
1983-01-01
Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1992-01-01
Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Psychiatric Presentations During All 4 Phases of the Lunar Cycle.
Francis, Omar J; Kopke, Bryan J; Affatato, Anthony J; Jarski, Robert W
2017-01-01
Context • Anecdotal evidence concerning a relationship between human illnesses and a full moon is frequently claimed by as many as 81% of mental health workers. Previous scientific investigations have studied only the full-moon phase and its possible effect on psychiatric presentations. However, information is limited about all 4 phases of the lunar cycle and their effects on different types of psychiatric disorders. Objective • This study primarily intended to evaluate the number of psychiatric presentations to a hospital's emergency department across all 4 phases of the lunar cycle. The secondary objective was to investigate the statistical differences among 5 categories of common mental disorders in relation to the 4 lunar phases. Design • This study was an observational analytic cohort study. Setting • The study took place in the emergency department of a 140-bed, community-teaching hospital. Participants • Participants were 1857 patients who were aged >17 y and who had had a psychiatric component to a visit to the emergency department. Outcome Measures • Data from electronic medical records were collected for 41 consecutive months. The participants were divided into 5 diagnostic groups based on the Diagnostic and Statistical Manual of Mental Disorders, 5th ed (DSM-5). The study measured the number of psychiatric presentations for each group during the 4 National Aeronautics and Space Administration (NASA)-defined phases of the lunar cycle, and the study was statistically powered to detect small effects. Results • The following psychiatric presentations occurred: (1) 464 during the new moon; (2) 483 during the first quarter; (3) 449 during the full moon; and (4) 461 during the third quarter (4-group overall χ2, P = .89). Differences between the 5 diagnostic categories across the 4 lunar phases were not statistically significant (4-group overall χ2, P = .85 for the 5 diagnostic categories). Conclusions • Although many traditional and nontraditional providers believe in effects caused by the full moon based on casual observation or anecdotal evidence, this perception was not supported in the current study. Furthermore, no evidence demonstrated increased psychiatric presentations during the other 3 phases of the lunar cycle. The study found that the lunar cycle did not have an effect on the incidence of psychiatric presentations or on the DSM-5 categories. If lunar effects exist, they are probably small or infrequent, making them difficult to validate statistically. The current study's results, in concert with those of most other studies on the subject, provide evidence that should help dismiss misconceptions about the magnitude or frequency of lunar effects on psychiatric illnesses.
Real-space Berry phases: Skyrmion soccer (invited)
NASA Astrophysics Data System (ADS)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Hamiltonian flow over saddles for exploring molecular phase space structures
NASA Astrophysics Data System (ADS)
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
Mutually unbiased coarse-grained measurements of two or more phase-space variables
NASA Astrophysics Data System (ADS)
Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz
2018-05-01
Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-13
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text], and [Formula: see text] [Formula: see text] for squared fields, and [Formula: see text] [Formula: see text] for an asymmetric rectangular field. Good agreement in terms of [Formula: see text] formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM's precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-06-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.
NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund
2009-04-01
Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.
The COSMO-SkyMed ground and ILS and OPS segments upgrades for full civilian capacity exploitation
NASA Astrophysics Data System (ADS)
Fasano, L.; De Luca, G. F.; Cardone, M.; Loizzo, R.; Sacco, P.; Daraio, M. G.
2015-10-01
COSMO-SkyMed (CSK), is an Earth Observation joint program between Agenzia Spaziale Italiana (Italian Space Agency, ASI) and Italian Ministry of Defense (It-MoD). It consists of a constellation of four X Band Synthetic Aperture Radar (SAR) whose first satellite of has been launched on June 2007. Today the full constellation is fully qualified and is in an operative phase. The COSMO-SkyMed System includes 3 Segments: the Space Segment, the Ground Segment and the Integrated Logistic Support and Operations Segment (ILS and OPS) As part of a more complex re-engineering process aimed to improve the expected constellation lifetime, to fully exploit several system capabilities, to manage the obsolescence, to reduce the maintenance costs and to exploit the entire constellation capability for Civilian users a series of activities have been performed. In the next months these activities are planned to be completed and start to be operational so that it will be possible the programming, planning, acquisition, raw processing and archiving of all the images that the constellation can acquire.
BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra
NASA Astrophysics Data System (ADS)
Dayi, O. F.
1994-01-01
BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B; Kim, S; Kim, T
Purpose: To develop a novel method that enables 4D MR imaging in near real-time for continuous monitoring of tumor motion in MR-guided radiotherapy. Methods: This method is mainly based on an idea of expanding dynamic keyhole to full volumetric imaging acquisition. In the VDK approach introduced in this study, a library of peripheral volumetric k-space data is generated in given number of phases (5 and 10 in this study) in advance. For 4D MRI at any given time, only volumetric central k-space data are acquired in real-time and combined with pre-acquired peripheral volumetric k-space data in the library corresponding tomore » the respiratory phase (or amplitude). The combined k-space data are Fourier-transformed to MR images. For simulation study, an MRXCAT program was used to generate synthetic MR images of the thorax with desired respiratory motion, contrast levels, and spatial and temporal resolution. 20 phases of volumetric MR images, with 200 ms temporal resolution in 4 s respiratory period, were generated using balanced steady-state free precession MR pulse sequence. The total acquisition time was 21.5s/phase with a voxel size of 3×3×5 mm{sup 3} and an image matrix of 128×128×56. Image similarity was evaluated with difference maps between the reference and reconstructed images. The VDK, conventional keyhole, and zero filling methods were compared for this simulation study. Results: Using 80% of the ky data and 70% of the kz data from the library resulted in 12.20% average intensity difference from the reference, and 21.60% and 28.45% difference in threshold pixel difference for conventional keyhole and zero filling, respectively. The imaging time will be reduced from 21.5s to 1.3s per volume using the VDK method. Conclusion: Near real-time 4D MR imaging can be achieved using the volumetric dynamic keyhole method. That makes the possibility of utilizing 4D MRI during MR-guided radiotherapy.« less
Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights
NASA Technical Reports Server (NTRS)
Wedge, T. E.; Williamson, R. P.
1973-01-01
Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.
Vectoring of parallel synthetic jets: A parametric study
NASA Astrophysics Data System (ADS)
Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram
2016-11-01
The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).
Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)
NASA Technical Reports Server (NTRS)
Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.
1998-01-01
Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.
Applications of massively parallel computers in telemetry processing
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon
1994-01-01
Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).
Evaluation of a high power inverter for potential space applications
NASA Technical Reports Server (NTRS)
Guynes, B. V.; Lanier, J. R., Jr.
1976-01-01
The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.
Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, K.; Parker, D.; Martin, E.
The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits duringmore » August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: a) Supplemental mini-split heat pump (MSHP) (6 homes); b) Ducted and space coupled Heat Pump Water Heater (8 homes); c) Exterior insulation finish system (EIFS) (1 homes); d) Window retrofit (3 homes); e) Smart thermostat (21 homes: 19 NESTs; 2 Lyrics); f) Heat pump clothes dryer (8 homes); g) Variable speed pool pump (5 homes).« less
Space Station - An integrated approach to operational logistics support
NASA Technical Reports Server (NTRS)
Hosmer, G. J.
1986-01-01
Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1973-01-01
The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.
Wavelets and the squeezed states of quantum optics
NASA Technical Reports Server (NTRS)
Defacio, B.
1992-01-01
Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.
Surface Wave Propagation on a Laterally Heterogeneous Earth
NASA Astrophysics Data System (ADS)
Tromp, Jeroen
1992-01-01
Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.
Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf
2006-07-05
We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.
Ab - initio study of rare earth magnesium alloy: TbMg
NASA Astrophysics Data System (ADS)
Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-05-01
The structural, electronic and magnetic properties of TbMg were analyzed by using full-potential linearized augmented plane wave method. This intermetallic is stable in structure CsCl (B2 phase) with space group Pm-3m. In electronic properties, we show the electronic band structure and density of states plots. These plots show that this alloy have metallic character because there is no band gap between the valance band and conduction band at Fermi level. The structural properties, i.e. equilibrium lattice constant, bulk modulus and its pressure derivative, energy and volume show good agreement with available data. In this paper, we also present the total magnetic moment along with the magnetic moment on the atomic and interstitial sites of TbMg intermetallic in B2 phase.
Autonomous Satellite Command and Control through the World Wide Web: Phase 3
NASA Technical Reports Server (NTRS)
Cantwell, Brian; Twiggs, Robert
1998-01-01
NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.
NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
The U.S. Space Grant College and Fellowship Program
NASA Technical Reports Server (NTRS)
Dasch, E. Julius; Schwartz, Elaine T.; Keffer, Lynne
1990-01-01
The U.S. NASA Space Grant College and Fellowship Program, congressionally mandated in 1987, consists of two phases. Phase I consisted of the designation of 21 university consortia as 'Space Grant Colleges/Consortia' which received support from NASA to conduct programs to achieve, maintain, and advance a balanced program of research capability, curriculum, and public service. Program descriptions for phase II are given. This phase is designed to broaden participation in the Space Grant Program by targeting states that currently are not as involved in NASA programs as are the states for which phase I was constructed. Under phase II, states will compete in either the Programs Grants or the Capability Enhancement Grants category. Only one proposal per state will be accepted with the state determining in which category it will compete. The amount of total award, $150,000, is the same in both categories and includes funds for university-administered fellowship programs.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Disequilibrium condensation environments in space - A frontier in thermodynamics
NASA Technical Reports Server (NTRS)
De, B. R.
1979-01-01
The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less
NASA Astrophysics Data System (ADS)
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, F.; Nie, Z.; Wu, Y. P.
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Solid-solid phase change thermal storage application to space-suit battery pack
NASA Astrophysics Data System (ADS)
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
Li, F.; Nie, Z.; Wu, Y. P.; ...
2018-02-22
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1977-01-01
Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.
Results from the HARP Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catanesi, M. G.
2008-02-21
Hadron production is a key ingredient in many aspects of {nu} physics. Precise prediction of atmospheric {nu} fluxes, characterization of accelerator {nu} beams, quantification of {pi} production and capture for {nu}-factory designs, all of these would profit from hadron production measurements. HARP at the CERN PS was the first hadron production experiment designed on purpose to match all these requirements. It combines a large, full phase space acceptance with low systematic errors and high statistics. HARP was operated in the range from 3 GeV to 15 GeV. We briefly describe here the most recent results.
Explaining Gibbsean phase space to second year students
NASA Astrophysics Data System (ADS)
Vesely, Franz J.
2005-03-01
A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Gaudin; Boucher; Petricek; Taulelle; Evain
2000-06-01
The crystal structures of two of the three polymorphic forms of the Cu7PSe6 argyrodite compound are determined by means of single-crystal X-ray diffraction. In the high-temperature form, at 353 K, i.e. 33 K above the first phase transition, gamma-Cu7PSe6 crystallizes in cubic symmetry, space group F43m. The full-matrix least-squares refinement of the structure leads to the residual factors R = 0.0201 and wR = 0.0245 for 31 parameters and 300 observed independent reflections. In the intermediate form, at room temperature, beta-Cu7PSe6 crystallizes again in cubic symmetry, but with space group P2(1)3. Taking into account a merohedric twinning, the refinement of the beta-Cu7PSe6 structure leads to the residual factors R = 0.0297 and wR = 0.0317 for 70 parameters and 874 observed, independent reflections. The combination of a Gram-Charlier development of the Debye-Waller factor and a split model for copper cations reveals the possible diffusion paths of the d10 species in the gamma-Cu7PSe6 ionic conducting phase. The partial ordering of the Cu+ d10 element at the phase transition is found in concordance with the highest probability density sites of the high-temperature phase diffusion paths. A comparison between the two Cu7PSe6 and Ag7PSe6 analogues is carried out, stressing the different mobility of Cu+ and Ag+ and their relative stability in low-coordination chalcogenide environments.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Remarks on entanglement entropy in string theory
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Parrikar, Onkar
2018-03-01
Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Liu, Yu-Xiao
2014-08-01
We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).
Jang, J C; Jin, X H; Hong, J S; Kim, Y Y
2017-12-01
This experiment was conducted to evaluate the optimal space allowance on growth performance, blood profile and pork quality of growing-finishing pigs. A total of ninety crossbred pigs [(Yorkshire×Landrace)×Duroc, 30.25±1.13 kg] were allocated into three treatments (0.96: four pigs/pen, 0.96 m2/pig; 0.80: five pigs/pen, 0.80 m2/pig; 0.69: six pigs/pen, 0.69 m2/pig) in a randomized complete block design. Pigs were housed in balanced sex and had free access to feed in all phases for 14 weeks (growing phase I, growing phase II, finishing phase I, and finishing phase II). There was no statistical difference in growing phase, but a linear decrease was observed on average daily gain (ADG, p<0.01), average daily feed intake (ADFI, p<0.01), and body weight (BW, p<0.01) with decreasing space allowance in late finishing phase. On the other hand, a quadratic effect was observed on gain to feed ratio in early finishing phase (p<0.03). Consequently, overall ADG, ADFI, and final BW linearly declined in response to decreased space allowance (p<0.01). The pH of pork had no significant difference in 1 hour after slaughter, whereas there was a linear decrease in 24 h after slaughter with decreasing space allowance. Floor area allowance did not affect pork colors, but shear force linearly increased as floor space decreased (p<0.01). There was a linear increase in serum cortisol concentration on 14 week (p<0.05) with decreased space allocation. Serum IgG was linearly ameliorated as space allowance increased on 10 week (p<0.05) and 14 week (p<0.01). Data from current study indicated that stress derived from reduced space allowance deteriorates the immune system as well as growth performance of pigs, resulting in poor pork quality. Recommended adequate space allowance in a grow-to-finish production system is more than 0.80 m2/pig for maximizing growth performance and production efficiency.
Multispacecraft Observations and 3D Structure of Electromagnetic Electron Phase-Space Holes
NASA Astrophysics Data System (ADS)
Holmes, J.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Newman, D. L.; Le Contel, O.; Torbert, R. B.; Burch, J. L.
2017-12-01
Electron phase-space holes are nonlinear plasma structures characterized by a unipolar trapping potential with a radial electric field. They commonly form from beam instabilities and other turbulent processes in many plasma environments. Due to their strong fields and long lifetimes, it has been hypothesized that phase-space holes can carry energy over long distances, contribute to large-scale currents, and accelerate individual particles to high energies. With electromagnetic field measurements at high cadence and precision on more than two spacecraft, we can compare the real 3D structure of electron phase-space holes to the models suggested by Andersson et al. (2009) and Treumann and Baumjohann (2012). In this case study, we consider a train of correlated electron phase-space holes observed by all four MMS spacecraft on the dusk flank within the magnetosphere. A number of the holes appear to pass directly through the 7 km tetrahedron formation. We use this data to compute the holes' phase velocity vector relative to the background magnetic field, and quantify their internal currents and associated magnetic moments. For these weak magnetic signatures, we find that the contribution from internal E×B0 currents is comparable to the v×E effect. This study will be interesting to compare with MMS observations in the magnetotail, which are expected to capture large, semi-relativistic phase-space holes with a strong magnetic component.
General post-Minkowskian expansion and application of the phase function
NASA Astrophysics Data System (ADS)
Qin, Cheng-Gang; Shao, Cheng-Gang
2017-07-01
The phase function is a useful tool to study all observations of space missions, since it can give all the information about light propagation in a gravitational field. For the extreme accuracy of the modern space missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian gravitational constant. Any n th-order perturbation of the phase function can be determined by the integral along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the phase function outside a static, spherically symmetric body up to the order of G2. Then, we develop a precise relativistic model that is able to calculate the phase function and the derivatives of the phase function in the gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler, radio science, and astrometric observables of the space missions in the Solar System. With the development of space technology, the relativistic corrections due to the motion of a planet's spin must be considered in the high-precision space missions in the near future. As an example, we give the estimates of the relativistic corrections on the observables about the space missions TianQin and BEACON.
NASA Astrophysics Data System (ADS)
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km
NASA Astrophysics Data System (ADS)
Xing, Z.; Beghein, C.; Yuan, K.
2012-12-01
This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.
NASA Astrophysics Data System (ADS)
Jones, T.; Wang, X.; Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Dressler, A.; Henry, A. L.; Malkan, M. A.; Pentericci, L.; Trenti, M.
2015-03-01
We present spatially resolved gas-phase metallicity for a system of three galaxies at z = 1.85 detected in the Grism Lens-Amplified Survey from Space (GLASS). The combination of Hubble Space Telescope (HST’s) diffraction limit and strong gravitational lensing by the cluster MACS J0717+3745 results in a spatial resolution of ≃200-300 pc, enabling good spatial sampling despite the intrinsically small galaxy sizes. The galaxies in this system are separated by ≃50-200 kpc in projection and are likely in an early stage of interaction, evidenced by relatively high specific star formation rates. Their gas-phase metallicities are consistent with larger samples at similar redshift, star formation rate (SFR), and stellar mass. We obtain a precise measurement of the metallicity gradient for one galaxy and find a shallow slope compared to isolated galaxies at high redshift, consistent with a flattening of the gradient due to gravitational interaction. An alternative explanation for the shallow metallicity gradient and elevated SFR is rapid recycling of metal-enriched gas, but we find no evidence for enhanced gas-phase metallicities which should result from this effect. Notably, the measured stellar masses log {{M}*}/{{M}} = 7.2-9.1 probe to an order of magnitude below previous mass-metallicity studies at this redshift. The lowest mass galaxy has properties similar to those expected for Fornax at this redshift, indicating that GLASS is able to directly study the progenitors of local group dwarf galaxies on spatially resolved scales. Larger samples from the full GLASS survey will be ideal for studying the effects of feedback, and the time evolution of metallicity gradients. These initial results demonstrate the utility of HST spectroscopy combined with gravitational lensing for characterizing resolved physical properties of galaxies at high redshift.
A reflective-type, quasi-optical metasurface filter
NASA Astrophysics Data System (ADS)
Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader
2017-08-01
We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.
3D imaging of translucent media with a plenoptic sensor based on phase space optics
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun
2015-05-01
Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.
ERIC Educational Resources Information Center
Nicolaides, Cleanthes A.; Constantoudis, Vasilios
2009-01-01
In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberland, Marc; Taylor, Randle E.P.; Rogers, Da
2016-08-15
Purpose: egs-brachy is a fast, new EGSnrc user-code for brachytherapy applications. This study characterizes egs-brachy features that enhance simulation efficiency. Methods: Calculations are performed to characterize efficiency gains from various features. Simulations include radionuclide and miniature x-ray tube sources in water phantoms and idealized prostate, breast, and eye plaque treatments. Features characterized include voxel indexing of sources to reduce boundary checks during radiation transport, scoring collision kerma via tracklength estimator, recycling photons emitted from sources, and using phase space data to initiate simulations. Bremsstrahlung cross section enhancement (BCSE), uniform bremsstrahlung splitting (UBS), and Russian Roulette (RR) are considered for electronicmore » brachytherapy. Results: Efficiency is enhanced by a factor of up to 300 using tracklength versus interaction scoring of collision kerma and by up to 2.7 and 2.6 using phase space sources and particle recycling respectively compared to simulations in which particles are initiated within sources. On a single 2.5 GHz Intel Xeon E5-2680 processor cor, simulations approximating prostate and breast permanent implant ((2 mm){sup 3} voxels) and eye plaque ((1 mm){sup 3}) treatments take as little as 9 s (prostate, eye) and up to 31 s (breast) to achieve 2% statistical uncertainty on doses within the PTV. For electronic brachytherapy, BCSE, UBS, and RR enhance efficiency by a factor >2000 compared to a factor of >10{sup 4} using a phase space source. Conclusion: egs-brachy features provide substantial efficiency gains, resulting in calculation times sufficiently fast for full Monte Carlo simulations for routine brachytherapy treatment planning.« less
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
NASA Technical Reports Server (NTRS)
Griner, D. B.
1979-01-01
The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.
Space Environments and Effects Concept: Transitioning Research to Operations and Applications
NASA Technical Reports Server (NTRS)
Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.
"Pink" Full Moon and Partial Lunar Eclipse on April 25, 2013
2017-12-08
Share YOUR pink moon and/or partial lunar eclipse images in our Flickr Group here: www.flickr.com/groups/pinkmoon/ TimeThursday, April 25, 2013, 21:00 UT Phase 100.0% Diameter - 1962.6 arcseconds Distance - 365185 km (28.66 Earth diameters There is a special lunar name for every full moon in a year. The April 25 full moon is known as the “Full Pink Moon” because of the grass pink – or wild ground phlox – flower, which is one of the earliest widespread flowers to bloom in the spring. This month’s full moon is also known as the Sprouting Grass moon and the Egg moon. The first lunar eclipse of 2013 occurs at the Moon's ascending node in southern Virgo about 12° east of Spica (mv = +1.05). It is visible primarily from the Eastern Hemisphere. This event will not be visible in North America, it will only be visible from Eastern Europea, Africa, Asia, and Western Australia. April’s full moon, which is set to rise tonight, is known as a pink moon. And this year it coincides with the partial lunar eclipse. This NASA animation shows elevation measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Current interactions from the one-form sector of nonlinear higher-spin equations
NASA Astrophysics Data System (ADS)
Gelfond, O. A.; Vasiliev, M. A.
2018-06-01
The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.
Jackowski, Konrad; Krawczyk, Bartosz; Woźniak, Michał
2014-05-01
Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.
Grassmann phase space theory and the Jaynes–Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less
THOR Fluxgate Magnetometer (MAG)
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.
Reis, C Q M; Nicolucci, P
2016-02-01
The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.
2006-11-01
Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).
NASA Astrophysics Data System (ADS)
Singh, Amresh; Shivani; Misra, Alka; Tandon, Poonam
2014-03-01
The interstellar medium, filling the vast space between stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as vinylcyanide, methylcyanodiaccetylene, cyanoallene, etc. Interstellar molecular cyanoallene is one of the most stable isomers of methylcynoacetylene. An attempt has been made to explore the possibility of forming cyanoallene in interstellar space by radical-radical and radical-molecule interaction schemes in the gaseous phase. The formation of cyanoallene starting from some simple, neutral interstellar molecules and radicals has been studied using density functional theory. The reaction energies and structures of the reactants and products show that the formation of cyanoallene is possible in the gaseous phase. Both of the considered reaction paths are totally exothermic and barrierless, thus giving rise to a high probability of occurrence. Rate constants for each step in the formation process of cyanoallene in both the reaction paths are estimated. A full vibrational analysis has been attempted for cyanoallene in the harmonic and anharmonic approximations. Anharmonic spectroscopic parameters such as rotational constants, rotation-vibration coupling constants and centrifugal distortion constants have been calculated.
Zou, Longfang; Cryan, Martin; Klemm, Maciej
2014-10-06
The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.
Partially chaotic orbits in a perturbed cubic force model
NASA Astrophysics Data System (ADS)
Muzzio, J. C.
2017-11-01
Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.
Quantum phase space with a basis of Wannier functions
NASA Astrophysics Data System (ADS)
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases
NASA Astrophysics Data System (ADS)
Thorngren, Ryan; Else, Dominic V.
2018-01-01
We put the theory of interacting topological crystalline phases on a systematic footing. These are topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means to "gauge" such symmetries. We introduce the notion of a crystalline topological liquid and argue that most (and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are in one-to-one correspondence with topological phases protected by the same symmetry G , but acting internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in (3 +1 ) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond group cohomology, so we conjecture that our classification is complete.
Phase operator problem and macroscopic extension of quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, M.
1997-06-01
To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less
1969-01-01
This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
NASA Technical Reports Server (NTRS)
Cobb, Sharon
2017-01-01
NASA has a phased approach to ensure our nation's leadership in space exploration, beginning in Earth orbit, developing our skills in lunar space, and extending those skills and technologies to a human mission to Mars. We're currently in Phase 0, using the ISS to better understand living and working in space. You may have heard about our "twin study" with astronauts Scott and Mike Kelly that's giving us valuable information on the effects of microgravity environments on the human body during long stays in LEO. During Phase 1 in the 2020s, SLS will be used to lift the pieces of a "deep space gateway" outpost to lunar orbit. Developing and operating the gateway will get us to Mars in a step-by-step fashion, with lessons learned in each phase of the process informing the next steps. First step of moving humans farther into the solar system is completing and flying SLS and Orion.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
The Fizeau Interferometer Testbed
NASA Technical Reports Server (NTRS)
Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory
2003-01-01
The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.
Geometric phase of mixed states for three-level open systems
NASA Astrophysics Data System (ADS)
Jiang, Yanyan; Ji, Y. H.; Xu, Hualan; Hu, Li-Yun; Wang, Z. S.; Chen, Z. Q.; Guo, L. P.
2010-12-01
Geometric phase of mixed state for three-level open system is defined by establishing in connecting density matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions of three-level open system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz, Juan Pablo; Roncaglia, Augusto Jose; Theoretical Division, LANL, MSB213, Los Alamos, New Mexico 87545
2005-07-15
We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2{sup n}). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2{sup n}) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-spacemore » representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem.« less
Scientific management of Space Telescope
NASA Technical Reports Server (NTRS)
Odell, C. R.
1981-01-01
A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.
HST Astrometry of Saturn's Small Satellites
NASA Astrophysics Data System (ADS)
French, R. G.; McGhee, C. A.
2003-08-01
As part of a long-term program to study Saturn's rings over the full range of inclination and phase angles accessible from Earth, we have accumulated over 300 high resolution images of Saturn and its rings with the Hubble Space Telescope's WFPC2 from 1996-2002. Using these images, we have obtained highly accurate measurements of the positions of Saturn's small moons, primarily with the PC chip of the WFPC2. A major result of these investigations is that Pandora and Prometheus are wandering chaotically from their Voyager-based ephemerides, in roughly equal and opposite directions. They seem clearly to be exchanging orbital angular momentum and energy. These results were published in French et al. 2003 Icarus 162, 143-170. In that paper, we compared the astrometric measurements to orbital predictions by R. Jacobson (personal communication), and showed that the typical astrometric accuracy of our measurements is about 0.02 arcsec. There was not room in that paper for the full set of measurements for all satellites, which we present here, and which will be submitted to the NASA Planetary Data System Rings Node. These will be useful for construction of accurate orbital models for all of the observed satellites, and for planning for the upcoming Cassini mission to Saturn. This work was supported in part by the NASA Geology and Geophysics Program, Massachusetts Space Grant, the Keck Northeast Astronomy Consortium, and the Space Telescope Science Institute.
NASA Astrophysics Data System (ADS)
Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.
2015-12-01
A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).
NASA Astrophysics Data System (ADS)
Tsubouchi, K.; LembèGe, B.
2004-02-01
Dynamics of SLAMS (short large-amplitude magnetic structures) is investigated by the use of one-dimensional, full particle electromagnetic simulations. As previous hybrid simulations and analysis of experimental observations suggested, present results confirm that the SLAMS patterns result from the steepening of long wavelength magnetosonic waves which are excited by diffuse ions (representing the field-aligned reflected ion beam) interacting with the upstream ambient plasma. Five successive phases have been identified in the SLAMS dynamics: ULF wave growth and symmetric, asymmetric, spiky, and late SLAMS. The present accessibility to high-resolution (electron) scales leads to the following new features: (1) the leading edge of the SLAMS steepens over a spatial scale from which a large-amplitude whistler precursor is emitted; (2) this whistler departs from the SLAMS edge and behaves as a new shock front; (3) the spiky SLAMS phase is characterized by the build-up of a strong spiky electrostatic field (its width is about 0.5 ion inertial length) within the whistler precursor and is intermittent with a lifetime less than one inverse ion gyroperiod; (4) the new shock front suffers a local self-reformation typical of a quasi-perpendicular shock in supercritical regime during the late-SLAMS phase. The features of the spiky SLAMS phase can be used as a typical signature in the time history of the SLAMS dynamics. Spatial/time scales of SLAMS have been measured throughout the different phases and are found in good agreement with results issued from previous hybrid simulations and with experimental measurements made by AMPTE UKS/IRM satellites; these are also compared with recent results from Cluster-2 space mission.
Space station program phase B definition: Nuclear reactor-powered space station cost and schedules
NASA Technical Reports Server (NTRS)
1971-01-01
Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.
Momentum space topology of QCD
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2018-06-01
We discuss the possibility to consider quark matter as the topological material. We consider hadronic phase (HP), the quark-gluon plasma phase (QGP), and the hypothetical color-flavor locking (CFL) phase. In those phases we identify the relevant topological invariants in momentum space. The formalism is developed, which relates those invariants and massless fermions that reside on vortices and at the interphases. This formalism is illustrated by the example of vortices in the CFL phase.
Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces
Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun
2013-01-01
The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034
Controlling quantum interference in phase space with amplitude.
Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun
2017-05-23
We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.
A phase space approach to imaging from limited data
NASA Astrophysics Data System (ADS)
Testorf, Markus E.
2015-09-01
The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.
An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues. The methodology is two-fold: first, capture the heuristics developed by human analysts over their many years of experience; and secondly, leverage the power of modern computing to evaluate multiple trajectories simultaneously and therefore enable the exploration of the trajectory's design space early during the pre- conceptual and conceptual phases of design. This methodology is coupled with design of experiments in order to train surrogate models, which enables trajectory design space visualization and parametric optimal ascent trajectory information to be available when early design decisions are being made.
NASA Astrophysics Data System (ADS)
Mohagheghi, Samira; Şerefoğlu, Melis
2017-07-01
In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
NASA Astrophysics Data System (ADS)
Kawabata, Kiyoshi
2018-01-01
We have established an iterative scheme to calculate with 15-digit accuracy the numerical values of Ambartsumian-Chandrasekhar's H-functions for anisotropic scattering characterized by the four-term phase function: the method incorporates some advantageous features of the iterative procedure of Kawabata (Astrophys. Space Sci. 358:32, 2015) and the double-exponential integration formula (DE-formula) of Takahashi and Mori (Publ. Res. Inst. Math. Sci. Kyoto Univ. 9:721, 1974), which proved highly effective in Kawabata (Astrophys. Space Sci. 361:373, 2016). Actual calculations of the H-functions have been carried out employing 27 selected cases of the phase function, 56 values of the single scattering albedo π0, and 36 values of an angular variable μ(= cosθ), with θ being the zenith angle specifying the direction of incidence and/or emergence of radiation. Partial results obtained for conservative isotropic scattering, Rayleigh scattering, and anisotropic scattering due to a full four-term phase function are presented. They indicate that it is important to simultaneously verify accuracy of the numerical values of the H-functions for μ<0.05, the domain often neglected in tabulation. As a sample application of the isotropic scattering H-function, an attempt is made in Appendix to simulate by iteratively solving the Ambartsumian equation the values of the plane and spherical albedos of a semi-infinite, homogeneous atmosphere calculated by Rogovtsov and Borovik (J. Quant. Spectrosc. Radiat. Transf. 183:128, 2016), who employed their analytical representations for these quantities and the single-term and two-term Henyey-Greenstein phase functions of appreciably high degrees of anisotropy. While our results are in satisfactory agreement with theirs, our procedure is in need of a faster algorithm to routinely deal with problems involving highly anisotropic phase functions giving rise to near-conservative scattering.
Strongly first-order electroweak phase transition and classical scale invariance
NASA Astrophysics Data System (ADS)
Farzinnia, Arsham; Ren, Jing
2014-10-01
In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space. Many of these predictions lie within the reach of the next LHC run.
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.
Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.
1990-01-01
During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.
Peaks in Phase Space Density: A Survey of the Van Allen Probes Era
NASA Astrophysics Data System (ADS)
Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.
2017-12-01
One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.
Evaluating Trauma Sonography for Operational Use in the Microgravity Environment
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew W.; Jones, Jeffrey A.; Sargsyan, Ashot; Hamilton, Douglas; Melton, Shannon; Beck, George; Nicolaou, Savvas; Campbell, Mark; Dulchavsky, Scott
2007-01-01
Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.
A pilot study of river flow prediction in urban area based on phase space reconstruction
NASA Astrophysics Data System (ADS)
Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md
2017-08-01
River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2015-04-14
Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less
NASA Astrophysics Data System (ADS)
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
Full-Duplex Digital Communication on a Single Laser Beam
NASA Technical Reports Server (NTRS)
Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.
2006-01-01
A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.
From phase space to integrable representations and level-rank duality
NASA Astrophysics Data System (ADS)
Chattopadhyay, Arghya; Dutta, Parikshit; Dutta, Suvankar
2018-05-01
We explicitly find representations for different large N phases of Chern-Simons matter theory on S 2 × S 1. These representations are characterised by Young diagrams. We show that no-gap and lower-gap phase of Chern-Simons-matter theory correspond to integrable representations of SU( N) k affine Lie algebra, where as upper-cap phase corresponds to integrable representations of SU( k - N) k affine Lie algebra. We use phase space description of [1] to obtain these representations and argue how putting a cap on eigenvalue distribution forces corresponding representations to be integrable. We also prove that the Young diagrams corresponding to lower-gap and upper-cap representations are related to each other by transposition under level-rank duality. Finally we draw phase space droplets for these phases and show how information about eigenvalue and Young diagram descriptions can be captured in topologies of these droplets in a unified way.
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2016-01-01
NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.
Streamlined design and self reliant hardware for active control of precision space structures
NASA Technical Reports Server (NTRS)
Hyland, David C.; King, James A.; Phillips, Douglas J.
1994-01-01
Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt
2016-02-01
Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
NASA Astrophysics Data System (ADS)
Kouletsis, I.; Kuchař, K. V.
2002-06-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map
NASA Astrophysics Data System (ADS)
Friedland, Lazar; Fajans, Joel; Bertsche, Will; Wurtele, Jonathan
2003-10-01
We study excitation and control of BGK modes in pure electron plasmas in a Penning trap. We apply an oscillating external potential with a negatively chirped frequency. This drive resonates with, and phase-locks to, a group of axially bouncing electrons in the trap. All initially phase-locked electrons remain phase-locked during the chirp (the autoresonance phenomenon), while some new particles are added to the resonant group, as the bucket moves through the phase space. This creates an oscillating in space and slowly evolving in energy hole in the phase space distribution of the electrons. The electron density perturbation associated with this evolving hole yields a BGK mode synchronized with the drive. The local depth of the hole in phase space, and, thus, the amplitude of the mode are controlled by the external parameter (the driving frequency). The process is reversible, so that the BGK mode can be returned to its nearly initial state, by reversing the direction of variation of the driving frequency. A kinetic theory of this excitation process is developed. The theory uses results on passage through, and capture into, bounce resonance in the system from Monte Carlo simulations of resonant bucket dynamics. We discuss the dependence of the excited BGK mode on the drive frequency chirp rate and other plasma parameters and compare these predictions with experiments.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
SNC’s Dream Chaser Achieves Successful Free Flight at NASA Armstrong
2017-11-17
Sierra Nevada Corporation's Dream Chaser® spacecraft underwent a successful free-flight test on November 11, 2017 at NASA’s Armstrong Flight Research Center, Edwards, California. The test verified and validated the performance of the Dream Chaser in the critical final approach and landing phase of flight, meeting expected models for a future return from the International Space Station. The full-scale Dream Chaser test vehicle was lifted to 12,400 feet altitude by a 234-UT Chinook helicopter, released and flew a pre-planned flight path ending with a successful autonomous landing.
Mapa MEGNO para satélites irregulares de Satuno
NASA Astrophysics Data System (ADS)
Moyano, M. M.; Leiva, A. M.
By implementing the elliptic restricted three-body model we obtain high resolution dynamical maps in the phase space region corresponding to that where Saturn's irregular satellites are currently found. The nature of the trajectories is characterized by the MEGNO chaos indicator (Cincotta P. and Simó C., 2000), which allows to identify regions of chaotic and quasi- periodic trajectories much faster than with other indicators (e.g. Lyapunov exponents). The results obtained allow to identify with great detail the boundaries of the regions of regular motion, chaotic motion, and substruc- tures associated to mean motion resonances. FULL TEXT IN SPANISH
Simplicity constraints: A 3D toy model for loop quantum gravity
NASA Astrophysics Data System (ADS)
Charles, Christoph
2018-05-01
In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.
International Space Station (ISS)
1995-04-17
This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
Wigner functions for evanescent waves.
Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George
2012-09-01
We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.
Molecular quantum control landscapes in von Neumann time-frequency phase space
NASA Astrophysics Data System (ADS)
Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J.
2010-10-01
Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.
Molecular quantum control landscapes in von Neumann time-frequency phase space.
Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J
2010-10-28
Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grillo, L.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.
2012-10-01
We report a measurement of the bottom-strange meson mixing phase βs using the time evolution of Bs0→J/ψ(→μ+μ-)ϕ(→K+K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at s=1.96TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of βs and the Bs0 decay-width difference ΔΓs and measure βs∈[-π/2,-1.51]∪[-0.06,0.30]∪[1.26,π/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of βs, we also determine ΔΓs=0.068±0.026(stat)±0.009(syst)ps-1 and the mean Bs0 lifetime τs=1.528±0.019(stat)±0.009(syst)ps, which are consistent and competitive with determinations by other experiments.
Pimkumwong, Narongrit; Wang, Ming-Shyan
2018-02-01
This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Measurement of the bottom-strange meson mixing phase in the full CDF data set.
Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grillo, L; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S
2012-10-26
We report a measurement of the bottom-strange meson mixing phase β(s) using the time evolution of B(s)(0)→J/ψ(→μ(+)μ(-))φ(→K(+)K(-)) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at √s=1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb(-1) of integrated luminosity. We report confidence regions in the two-dimensional space of β(s) and the B(s)(0) decay-width difference ΔΓ(s) and measure β(s)∈[-π/2,-1.51]∪[-0.06,0.30]∪[1.26,π/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of β(s), we also determine ΔΓ(s)=0.068±0.026(stat)±0.009(syst) ps(-1) and the mean B(s)(0) lifetime τ(s)=1.528±0.019(stat)±0.009(syst) ps, which are consistent and competitive with determinations by other experiments.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
The space station assembly phase: Flight telerobotic servicer feasibility, volume 1
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.
1987-01-01
The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.
Cost effective management of space venture risks
NASA Technical Reports Server (NTRS)
Giuntini, Ronald E.; Storm, Richard E.
1986-01-01
The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.
Development Status of the Rad-Tolerant TTEthernet Controller
NASA Astrophysics Data System (ADS)
Fidi, Christian; van Masar, Ivan
2016-08-01
The use of switched networking technologies for aerospace and more recently automotive brings additional advantages for space applications like the increase in performance of the overall avionics of a spacecraft. These networks are characterized by a central device (switch) and a point-to-point structure between switch and terminal devices that eases electrical and logical insulation.However, for a use in highly-reliable or highly-available applications as in launchers or satellites systems, these network technologies need to provide built-in determinism and redundancy to fulfill the tight latency and jitter requirements of the avionics control loops and the respective hardware redundancy. Therefore a state of the art networking technology already provides these features and allows the modularity and scalability to be used for the different space applications and would allow combining the deterministic avionics with the high speed payload network in a spacecraft [1].Introducing the time-triggered principle to Ethernet allows combining the open industry standard IEE802.3 Ethernet currently use in almost all GSE platforms, with full control of latency and jitter of the time-triggered approach. To allow the time-triggered data flow over Ethernet, a network- wide synchronization time-base has to be established to allow deriving all network events on a globally known time which is typically done in software in almost all spacecrafts. The additional synchronization service of Time-triggered Ethernet has been implemented as additional quality of service (QoS) on layer 2 of the ISO/OSI network model and been standardized in the SAE AS6802 [3].Within a launcher, the communication system ensured the data exchanges between avionic functions during all phases of the launcher lifecycle which is composed of three areas: AIT operations, ground phase and flight phase. To ensure the use of a single network for the different phases, the network needs to support features like the handling of different traffic classes (critical traffic and non-critical traffic, i.e. TT, RC and BE [2]). Also the compatibility to the IEEE1588 synchronization protocol can be used to connect legacy IEEE1588 equipment for GSE equipment.However this commercially available technology currently used in the aviation-, the industrial- and the automotive market needs to be matured for the use in space applications. Therefore a development of the necessary space-grade components, mainly the switch and the end system is needed.This paper presents the current development status of a radiation tolerant integrated circuit for the use in different space applications. It outlines the different steps needed to be performed to ensure the usability of this digital chip in highly reliable as well as in highly available space applications.
NASA Astrophysics Data System (ADS)
Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.
2017-12-01
Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.
Parton shower and NLO-matching uncertainties in Higgs boson pair production
NASA Astrophysics Data System (ADS)
Jones, Stephen; Kuttimalai, Silvan
2018-02-01
We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method
NASA Astrophysics Data System (ADS)
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
2018-03-01
The detection of the (semi)metal-insulator phase transition can be extremely difficult if the local order parameter which characterizes the ordered phase is unknown. In some cases, it is even impossible to define a local order parameter: the most prominent example of such system is the spin liquid state. This state was proposed to exist in the Hubbard model on the hexagonal lattice in a region between the semimetal phase and the antiferromagnetic insulator phase. The existence of this phase has been the subject of a long debate. In order to detect these exotic phases we must use alternative methods to those used for more familiar examples of spontaneous symmetry breaking. We have modified the Backus-Gilbert method of analytic continuation which was previously used in the calculation of the pion quasiparticle mass in lattice QCD. The modification of the method consists of the introduction of the Tikhonov regularization scheme which was used to treat the ill-conditioned kernel. This modified Backus-Gilbert method is applied to the Euclidean propagators in momentum space calculated using the hybrid Monte Carlo algorithm. In this way, it is possible to reconstruct the full dispersion relation and to estimate the mass gap, which is a direct signal of the transition to the insulating state. We demonstrate the utility of this method in our calculations for the Hubbard model on the hexagonal lattice. We also apply the method to the metal-insulator phase transition in the Hubbard-Coulomb model on the square lattice.
UV lifetime laser demonstrator for space-based applications
NASA Astrophysics Data System (ADS)
Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd
2015-09-01
A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) system. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100mJ pulses of 355nm light at 150 Hz. After completing the laser module build in the third quarter of 2015 we will initiate lifetime testing, followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the design is at TRL 6.
Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin
2000-02-01
Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion of oxygen octahedra was derived.
Neutral line chaos and phase space structure
NASA Technical Reports Server (NTRS)
Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.
1991-01-01
Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.
Quantum mechanics on phase space and the Coulomb potential
NASA Astrophysics Data System (ADS)
Campos, P.; Martins, M. G. R.; Vianna, J. D. M.
2017-04-01
Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033
2016-09-15
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less
Evolution of axis ratios from phase space dynamics of triaxial collapse
NASA Astrophysics Data System (ADS)
Nadkarni-Ghosh, Sharvari; Arya, Bhaskar
2018-04-01
We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.
Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M
2014-01-31
Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.
Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples
NASA Astrophysics Data System (ADS)
Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.
2012-12-01
Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.
A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.
Sciumè, G; Boso, D P; Gray, W G; Cobelli, C; Schrefler, B A
2014-11-01
A new computational model, based on the thermodynamically constrained averaging theory, has been recently proposed to predict tumor initiation and proliferation. A similar mathematical approach is proposed here as an aid in diabetic ulcer prevention. The common aspects at the continuum level are the macroscopic balance equations governing the flow of the fluid phase, diffusion of chemical species, tissue mechanics, and some of the constitutive equations. The soft plantar tissue is modeled as a two-phase system: a solid phase consisting of the tissue cells and their extracellular matrix, and a fluid one (interstitial fluid and dissolved chemical species). The solid phase may become necrotic depending on the stress level and on the oxygen availability in the tissue. Actually, in diabetic patients, peripheral vascular disease impacts tissue necrosis; this is considered in the model via the introduction of an effective diffusion coefficient that governs transport of nutrients within the microvasculature. The governing equations of the mathematical model are discretized in space by the finite element method and in time domain using the θ-Wilson Method. While the full mathematical model is developed in this paper, the example is limited to the simulation of several gait cycles of a healthy foot. Copyright © 2014 John Wiley & Sons, Ltd.
System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications
NASA Technical Reports Server (NTRS)
Windyka, John A.; Zablocki, Ed G.
1997-01-01
This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.
LCA in space - current status and future development
NASA Astrophysics Data System (ADS)
Ko, Nathanael; Betten, Thomas; Schestak, Isabel; Gantner, Johannes
2018-06-01
This paper represents the first stage of extending the scope of LCA to space and is intended as a discussion starter. Based on the assumption, that the future and outlast of humanity lies within the exploration and colonisation of space, the LCA methodology as of today, is discussed with regards to its capabilities to cover the impact of human activities in space. Based on this assessment, ideas whether and how LCA can be extended are outlined. Initially, an understanding of additional environmental impacts which occur in space compared to Earth is built up by the means of literature research. The state of the art of space regulations and availability of LCAs in space and for astronautics is clarified as well. Further literature research was conducted on the LCA subtopic of regionalization. Based on this and assumptions regarding future space travel, the suitability of LCA as an assessment method is validated. Afterwards, different potential development phases of LCA towards its applicability in space are defined. For activities in space, the regarded environmental impacts have to be expanded (e.g. space debris, extra-terrestrial life toxicity, etc.). Space regulations, if in place, cover only impacts of space activities on Earth so far. LCAs for space activities are not widespread yet. One reason for this is that the state of the art LCA methodology has not been expanded and existing regionalisation approaches are not easily transferable to space. Critical issues are faced in all phases of an LCA and include widening of boundaries, definition of space regions, finding suitable reference units and ethical problems. As a result, four LCA development phases are suggested: Earth-bound, solar system-bound, transition phase and intergalactic. Each phase involves different activities and goals, which result in different system boundaries and impact categories and widen the scope of LCA subsequently. It is a long way for humanity to populate space and so, it is for enabling LCA to assess these activities. The methodology of LCA is flexible and capable to make this adaptation. This paper can be seen as a starting point of a discussion opening up many questions. Some of these questions can only be answered in the future with more certainty about the development of space colonialization.
Advanced Stirling Convertor Update
NASA Astrophysics Data System (ADS)
Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.
2006-01-01
This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.
Earth-to-Orbit Rocket Propulsion
NASA Technical Reports Server (NTRS)
Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III
2003-01-01
The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.
Resonance controlled transport in phase space
NASA Astrophysics Data System (ADS)
Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton
2018-02-01
We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.
Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.
2004-09-01
We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.
Rocket experiment METS Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.
Rocket experiment METS - Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.
Time-domain full waveform inversion using instantaneous phase information with damping
NASA Astrophysics Data System (ADS)
Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun
2018-06-01
In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.
Full length view of the Spacelab module
2016-08-12
STS083-312-031 (4-8 April 1997) --- Payload specialist Gregory T. Linteris (left) is seen at the Mid Deck Glove Box (MGBX), while astronaut Donald A. Thomas, mission specialist, works at the Expedite the Processing of Experiments to Space Station (EXPRESS) rack. MGBX is a facility that allows scientists the capability of doing tests on hardware and materials that are not approved to be handled in the open Spacelab. It is equipped with photographic, video and data recording capability, allowing a complete record of experiment operations. Experiments performed on STS-83 were Bubble Drop Nonlinear Dynamics and Fiber Supported Droplet Combustion. EXPRESS is designed to provide accommodations for Sub-rack payloads on Space Station. For STS-83, it held two payloads. The Physics of Hard Colloidal Spheres (PHaSE) and ASTRO-Plant Generic Bioprocessing Apparatus (ASTRO-PGBA), a facility with light and atmospheric controls which supports plant growth for commercial research.
Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).
Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerri, S. S.; Kunz, M. W.; Califano, F.
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less
Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence
Cerri, S. S.; Kunz, M. W.; Califano, F.
2018-03-23
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence
NASA Astrophysics Data System (ADS)
Cerri, S. S.; Kunz, M. W.; Califano, F.
2018-03-01
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time, we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.
Space transfer concepts and analysis for exploration missions
NASA Technical Reports Server (NTRS)
1991-01-01
Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.
Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study
NASA Astrophysics Data System (ADS)
Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya
2016-12-01
We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.
Phase change references for in-flight recalibration of orbital thermometry
NASA Astrophysics Data System (ADS)
Topham, T. S.; Latvakoski, H.; Watson, M.
2013-09-01
Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.
Constellation Program Thermal and Environmental Control and Life Support System Status: 2009 - 2010
NASA Technical Reports Server (NTRS)
Williams, David E.; Carrasquillo, Robyn L.; Bagdigian, Robert M.
2009-01-01
The Constellation Program (CxP) consists of spacecrafts, launch vehicles, and support systems to execute the Exploration Architecture. The Program is currently divided into three distinct phases. The first phase is to develop a vehicle to provide limited cargo resupply capability and allow crew member rotation to the International Space Station (ISS). The second phase is to support the return of humans to the moon. The final phase is currently envisioned to allow the delivery of humans and cargo to Mars for an extended time. To implement this phased approach the CxP is currently working on the first vehicle and support systems to replace the Space Shuttle and allow continued access to space. This paper provides a summary of the CxP Thermal and Environmental Control and Life Support (ECLS) work that that has occurred across the different parts of the Program in support of these three phases over the past year.
Reliability and the design process at Honeywell Avionics Division
NASA Technical Reports Server (NTRS)
Bezat, A.
1981-01-01
The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.
A phase one AR/C system design
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises
1991-01-01
The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.
New phases of osmium carbide from evolutionary algorithm and ab initio computations
NASA Astrophysics Data System (ADS)
Fadda, Alessandro; Fadda, Giuseppe
2017-09-01
New crystal phases of osmium carbide are presented in this work. These results were found with the CA code, an evolutionary algorithm (EA) presented in a previous paper which takes full advantage of crystal symmetry by using an ad hoc search space and genetic operators. The new OsC2 and Os2C structures have a lower enthalpy than any known so far. Moreover, the layered pattern of OsC2 serves as a blueprint for building new crystals by adding or removing layers of carbon and/or osmium and generating many other Os + C structures like Os2C, OsC, OsC2 and OsC4. These again have a lower enthalpy than all the investigated structures, including those of the present work. The mechanical, vibrational and electronic properties are discussed as well.
Planar Holographic Metasurfaces for Terahertz Focusing
Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel
2015-01-01
Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565
3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain
NASA Astrophysics Data System (ADS)
Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.
Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.
The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.
2011-01-01
A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.
The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.
2010-01-01
A celestial reference frame at X/Kaband (8.4/32 GHz) has been constructed using fiftyone 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec ( mu as) in alpha cos delta and 290 mu as in delta. There is evidence for zonal errors at the 100 mu as level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.
Modeling and control of fuel cell based distributed generation systems
NASA Astrophysics Data System (ADS)
Jung, Jin Woo
This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J.
2008-05-01
The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
Tsai, Cheng-Tao; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521
Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v x,v y) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuummore » finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v r,v z) phase space are presented.« less
NASA Astrophysics Data System (ADS)
Wrochna, Michał; Zahn, Jochen
We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.
Formation and interaction of multiple coherent phase space structures in plasma
NASA Astrophysics Data System (ADS)
Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu
2017-06-01
The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
NASA Astrophysics Data System (ADS)
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; ...
2015-10-12
A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi 2Sr 2CaCu 2Omore » 8+δ and demonstrate that nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less
NASA's commercial research plans and opportunities
NASA Technical Reports Server (NTRS)
Arnold, Ray J.
1992-01-01
One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.
NASA's commercial research plans and opportunities
NASA Astrophysics Data System (ADS)
Arnold, Ray J.
One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.
NASA Technical Reports Server (NTRS)
Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.
2018-01-01
The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh
2010-01-01
With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours. Extension of the ISS through 2020 and beyond will insure that the benefits of research will be achievable for the International Partnership.
NASA Technical Reports Server (NTRS)
Low, George M.
1994-01-01
This article's concern is regarding the high costs of space travel and the need to minimize or reduce these costs in order to effectively provide the continuation of the space programs and space exploration needs of the future. Discussed is the possibility and need to optimize payloads in order to lower the costs associated with them. Design phase principles and implementation phase points are discussed.
Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
NASA Astrophysics Data System (ADS)
Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.
2014-12-01
We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev
2017-02-01
Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Natural environment design criteria for the space station program definition phase
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1984-01-01
The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.
Structure of gel phase DMPC determined by X-ray diffraction.
Tristram-Nagle, Stephanie; Liu, Yufeng; Legleiter, Justin; Nagle, John F
2002-01-01
The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A). PMID:12496100
Image domain propeller fast spin echo☆
Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland
2013-01-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683
Image domain propeller fast spin echo.
Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland
2013-04-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.
Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L
2011-10-05
Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.
Wigner Functions for the Bateman System on Noncommutative Phase Space
NASA Astrophysics Data System (ADS)
Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong
2010-09-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2015-01-01
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
NASA Technical Reports Server (NTRS)
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Phase A design study of microgravity fluoride fiber puller
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.; Kosten, Susan
1994-01-01
Improved transmission properties for fluoride fibers due to space processing has great potential for commercial benefits. Phase A design study will determine conceptual feasibility and provide initial definition of the technical requirements and design issues for space.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
Space transfer vehicle concepts and requirements study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, Marvin; /SLAC
It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for themore » behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will turn to tunneling problems and show that the instanton can also be though of in the same way. I will do this for the classic problem of a double well potential in the extreme limit when the splitting between the two lowest levels is extremely small and the tunneling rate from one well to another is also very small.« less
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
Next generation: In-space transportation system(s)
NASA Technical Reports Server (NTRS)
Huffaker, Fredrick; Redus, Jerry; Kelley, David L.
1991-01-01
The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.
NASA Astrophysics Data System (ADS)
Saraceno, Marcos; Ermann, Leonardo; Cormick, Cecilia
2017-03-01
The problem of finding symmetric informationally complete positive-operator-valued-measures (SIC-POVMs) has been solved numerically for all dimensions d up to 67 [A. J. Scott and M. Grassl, J. Math. Phys. 51, 042203 (2010), 10.1063/1.3374022], but a general proof of existence is still lacking. For each dimension, it was shown that it is possible to find a SIC-POVM that is generated from a fiducial state upon application of the operators of the Heisenberg-Weyl group. We draw on the numerically determined fiducial states to study their phase-space features, as displayed by the characteristic function and the Wigner, Bargmann, and Husimi representations, adapted to a Hilbert space of finite dimension. We analyze the phase-space localization of fiducial states, and observe that the SIC-POVM condition is equivalent to a maximal delocalization property. Finally, we explore the consequences in phase space of the conjectured Zauner symmetry. In particular, we construct a Hermitian operator commuting with this symmetry that leads to a representation of fiducial states in terms of eigenfunctions with definite semiclassical features.
NASA Astrophysics Data System (ADS)
Saha, P. K.; Shobuda, Y.; Hotchi, H.; Hayashi, N.; Takayanagi, T.; Harada, H.; Irie, Y.
2009-04-01
The 3 GeV Rapid Cycling Synchrotron (RCS) at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM) in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2016-01-01
NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.
Fundamental Principles of Proper Space Kinematics
NASA Astrophysics Data System (ADS)
Wade, Sean
It is desirable to understand the movement of both matter and energy in the universe based upon fundamental principles of space and time. Time dilation and length contraction are features of Special Relativity derived from the observed constancy of the speed of light. Quantum Mechanics asserts that motion in the universe is probabilistic and not deterministic. While the practicality of these dissimilar theories is well established through widespread application inconsistencies in their marriage persist, marring their utility, and preventing their full expression. After identifying an error in perspective the current theories are tested by modifying logical assumptions to eliminate paradoxical contradictions. Analysis of simultaneous frames of reference leads to a new formulation of space and time that predicts the motion of both kinds of particles. Proper Space is a real, three-dimensional space clocked by proper time that is undergoing a densification at the rate of c. Coordinate transformations to a familiar object space and a mathematical stationary space clarify the counterintuitive aspects of Special Relativity. These symmetries demonstrate that within the local universe stationary observers are a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and Uncertainty the use of the imaginary number i is restricted for application to the labeling of mass as either material or immaterial. This material phase difference accounts for both the perceived constant velocity of light and its apparent statistical nature. The application of Proper Space Kinematics will advance more accurate representations of microscopic, oscopic, and cosmological processes and serve as a foundation for further study and reflection thereafter leading to greater insight.
Standard spacecraft economic analysis. Volume 2: Findings and conclusions
NASA Technical Reports Server (NTRS)
Harris, E. D.; Large, J. P.
1976-01-01
The comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle were studied in two phases. In the first phase, a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and an Air Force standard spacecraft design were considered. The second phase dealt with additional procurement options using an upgraded version of an existing NASA design. The results of both phases are discussed.
Grain growth and phase transformations induced by shock waves on alpha-GeO2 powder
NASA Astrophysics Data System (ADS)
Rosales, Ivonne; Thions-Renero, Claude; Martinez, Erendira; Bucio, Lauro; Orozco, Eligio
2011-09-01
An impact experiment on a mixture of water and microcrystalline alpha-GeO2 powder was performed with a single-stage gas gun. The recovered sample contained micrometer-scale crystals of different sizes and morphologies that correspond to 88% of alpha-GeO2, 6.0% of monoclinic phase (P21/c, space group No. 14), 4.9% of orthorhombic phase (Pnnm, space group No. 58) and 1.1% of rutile-type phase.
Berry phase for spin-1/2 particles moving in a space-time with torsion
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shariati, A.
Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks.
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.
2015-11-15
The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.
Phase C/D program development plan. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1971-01-01
The Phase C/D definition of the Modular Space Station has been developed. The modular approach selected during the option period was evaluated, requirements were defined, and program definition and preliminary design were accomplished. The Space Station Project is covered in depth, the research applications module is limited to a project-level definition, and the shuttle operations are included for interface requirements identification, scheduling, and costing. Discussed in detail are: (1) baseline program and project descriptions; (2) phase project planning; (3) modular space station program schedule; (4) program management plan; (5) operations; (6) facilities; (7) logistics; and (8) manpower.
Semiclassical propagator of the Wigner function.
Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis
2006-02-24
Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.
Development of a passive phase separator for space and earth applications
Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785