Future Directions for Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2005-01-01
Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes
NASA Astrophysics Data System (ADS)
Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.
The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.
Development of a Computer Vision Technology for the Forest Products Manufacturing Industry
D. Earl Kline; Richard Conners; Philip A. Araman
1992-01-01
The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Bergman, W.
2017-08-25
The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.
NASA Technical Reports Server (NTRS)
Squires, P. K.
1982-01-01
Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.
Testing and Analysis of the First Plastic Melt Waste Compactor Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John W.
2005-01-01
A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.
OTEC riser cable model and prototype testing
NASA Astrophysics Data System (ADS)
Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.
1981-12-01
Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.
Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A
2008-04-01
To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.
Structural Similitude and Scaling Laws
NASA Technical Reports Server (NTRS)
Simitses, George J.
1998-01-01
Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.
NASA Astrophysics Data System (ADS)
Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.
2007-11-01
A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.
Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.
2009-01-01
Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991
Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John
2005-01-01
A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.
WASTE INFORMATION MODELING (WIM) FOR CONSTRUCTION OF THE BUILT ENVIRONMENT
The outcomes will include the construction of full-scale building prototypes. As full-scale pieces are constructed they will be installed throughout the community, and could potentially be used as installations within the local community to demonstrate the use of recycled prod...
A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...
22. Photocopy of photograph (original in the Langley Research Center ...
22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA
Phase I prototype digesters demonstrated the feasibility of biogas generation, using simple materials such as trash cans, oil drums, and polyethylene bags – a full scale digester, based on prototype biogas production volumes, range from 5000 to 9000 liters, depending on ...
NASA Astrophysics Data System (ADS)
Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.
2010-08-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
Tracking a head-mounted display in a room-sized environment with head-mounted cameras
NASA Astrophysics Data System (ADS)
Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry
1990-10-01
This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.
The GlueX central drift chamber: Design and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Haarlem, Y; Barbosa, F; Dey, B
2010-10-01
Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.
Development of Trace Contaminant Control Prototypes for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek; Cosgrove, Joseph E.; Serio, Michael E.; Nalette, Tim; Guerrero, Sandra V.; Papale, William; Wilburn, Monique S.
2017-01-01
Results are presented on the development of Trace Contaminant Control (TCC) Prototypes for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, as well as pressure-drop calculations were used to design and test 1/6-scale and full-scale trace contaminant control system (TCCS) prototypes. Carbon sorbents were fabricated in both the granular and foam-supported forms. Sorbent performance was tested for ammonia sorption and vacuum regeneration in 1/6-scale, and pressure-drop characteristics were measured at flow rates relevant to the PLSS application.
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel
2011-01-01
An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.
Small scale adaptive optics experiment systems engineering
NASA Technical Reports Server (NTRS)
Boykin, William H.
1993-01-01
Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-02-01
Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.
The LHC magnet system and its status of development
NASA Technical Reports Server (NTRS)
Bona, Maurizio; Perin, Romeo; Vlogaert, Jos
1995-01-01
CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.
Prototyping an institutional IAIMS/UMLS information environment for an academic medical center.
Miller, P L; Paton, J A; Clyman, J I; Powsner, S M
1992-07-01
The paper describes a prototype information environment designed to link network-based information resources in an integrated fashion and thus enhance the information capabilities of an academic medical center. The prototype was implemented on a single Macintosh computer to permit exploration of the overall "information architecture" and to demonstrate the various desired capabilities prior to full-scale network-based implementation. At the heart of the prototype are two components: a diverse set of information resources available over an institutional computer network and an information sources map designed to assist users in finding and accessing information resources relevant to their needs. The paper describes these and other components of the prototype and presents a scenario illustrating its use. The prototype illustrates the link between the goals of two National Library of Medicine initiatives, the Integrated Academic Information Management System (IAIMS) and the Unified Medical Language System (UMLS).
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy
2013-12-20
This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less
Simplified Impact Testing of Traffic Barrier Systems (Phase I)
DOT National Transportation Integrated Search
2003-06-01
A simplified impact test configuration was developed to provide a preliminary, economical means of assessing prototype traffic barriers before proceeding to full-scale federal testing. Specifically, the test was configured to assess the federal crite...
Design and Manufacture of Structurally Efficient Tapered Struts
NASA Technical Reports Server (NTRS)
Brewster, Jebediah W.
2009-01-01
Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.
EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL
We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.
NASA Technical Reports Server (NTRS)
Goldfinger, A.
1981-01-01
A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.
The Use of Prototypes in Weapon System Development
1981-03-01
engine to minimize flameouts; experience showed that some uses of composite mate- rials were unwarranted, and other uses were proved valid; and a special... composite structure materials. The YF-16 used a single F100, an engine already developed for the F-15 program. By the time of the YF-16 first flight...lessons learned during the prototype tests led to a reduction in the use of composite materials ir the full scale F-16A program. UTTAS. Because of the
The Galileo PPS expert monitoring and diagnostic prototype
NASA Technical Reports Server (NTRS)
Bahrami, Khosrow
1989-01-01
The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.
NASA Astrophysics Data System (ADS)
Rasco, B. C.
2012-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus
DOT National Transportation Integrated Search
2018-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
Application of full-scale three-dimensional models in patients with rheumatoid cervical spine.
Mizutani, Jun; Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu
2008-05-01
Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results.
F-8 oblique wing structural feasibility study
NASA Technical Reports Server (NTRS)
Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.
1975-01-01
The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.
Packaging of silicon photonic devices: from prototypes to production
NASA Astrophysics Data System (ADS)
Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter
2018-02-01
The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.
NASA Technical Reports Server (NTRS)
1971-01-01
Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.
Structural similitude and design of scaled down laminated models
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Rezaeepazhand, J.
1993-01-01
The excellent mechanical properties of laminated composite structures make them prime candidates for wide variety of applications in aerospace, mechanical and other branches of engineering. The enormous design flexibility of advanced composites is obtained at the cost of large number of design parameters. Due to complexity of the systems and lack of complete design based informations, designers tend to be conservative in their design. Furthermore, any new design is extensively evaluated experimentally until it achieves the necessary reliability, performance and safety. However, the experimental evaluation of composite structures are costly and time consuming. Consequently, it is extremely useful if a full-scale structure can be replaced by a similar scaled-down model which is much easier to work with. Furthermore, a dramatic reduction in cost and time can be achieved, if available experimental data of a specific structure can be used to predict the behavior of a group of similar systems. This study investigates problems associated with the design of scaled models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. Similitude theory is employed to develop the necessary similarity conditions (scaling laws). Scaling laws provide relationship between a full-scale structure and its scale model, and can be used to extrapolate the experimental data of a small, inexpensive, and testable model into design information for a large prototype. Due to large number of design parameters, the identification of the principal scaling laws by conventional method (dimensional analysis) is tedious. Similitude theory based on governing equations of the structural system is more direct and simpler in execution. The difficulty of making completely similar scale models often leads to accept certain type of distortion from exact duplication of the prototype (partial similarity). Both complete and partial similarity are discussed. The procedure consists of systematically observing the effect of each parameter and corresponding scaling laws. Then acceptable intervals and limitations for these parameters and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding response scaling laws that accurately predict the response of prototypes from experimental models is introduced. The examples used include rectangular laminated plates under destabilizing loads, applied individually, vibrational characteristics of same plates, as well as cylindrical bending of beam-plates.
3D PRINTING SUSTAINABLE BUILDING COMPONENTS FOR FAÇADES AND AS WINDOW ELEMENTS
The production of full scale working prototypes that can be installed on site and measured through observation and actual physical measurement are vital. Students will measure mechanical, structural, chemical and optical properties of the walls. Students will do temperature an...
NASA Astrophysics Data System (ADS)
Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.
2012-06-01
A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.
Testing of the Multi-Fluid Evaporator Engineering Development Unit
NASA Technical Reports Server (NTRS)
Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David
2007-01-01
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.
Design of scaled down structural models
NASA Technical Reports Server (NTRS)
Simitses, George J.
1994-01-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
Design of scaled down structural models
NASA Astrophysics Data System (ADS)
Simitses, George J.
1994-07-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
Human Factors and Technical Considerations for a Computerized Operator Support System Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne
2015-09-01
A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg
2009-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.
DOT National Transportation Integrated Search
2015-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
Creating a Computer Adaptive Test Version of the Late-Life Function & Disability Instrument
Jette, Alan M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Moed, Richard
2009-01-01
Background This study applied Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies to develop a prototype function and disability assessment instrument for use in aging research. Herein, we report on the development of the CAT version of the Late-Life Function & Disability instrument (Late-Life FDI) and evaluate its psychometric properties. Methods We employed confirmatory factor analysis, IRT methods, validation, and computer simulation analyses of data collected from 671 older adults residing in residential care facilities. We compared accuracy, precision, and sensitivity to change of scores from CAT versions of two Late-Life FDI scales with scores from the fixed-form instrument. Score estimates from the prototype CAT versus the original instrument were compared in a sample of 40 older adults. Results Distinct function and disability domains were identified within the Late-Life FDI item bank and used to construct two prototype CAT scales. Using retrospective data, scores from computer simulations of the prototype CAT scales were highly correlated with scores from the original instrument. The results of computer simulation, accuracy, precision, and sensitivity to change of the CATs closely approximated those of the fixed-form scales, especially for the 10- or 15-item CAT versions. In the prospective study each CAT was administered in less than 3 minutes and CAT scores were highly correlated with scores generated from the original instrument. Conclusions CAT scores of the Late-Life FDI were highly comparable to those obtained from the full-length instrument with a small loss in accuracy, precision, and sensitivity to change. PMID:19038841
Compliant Robotic Structures. Part 2
1986-07-01
Nonaxially Homogeneous Stresses and Strains 44 Parametric Studies 52 % References 65 III. LARGE DEFLECTIONS OF CONTINUOUS ELASTIC ’- STRUCTURES 66...APPENDIX C: Computer Program for the Element String 133 -° SUMMARY This is the second year report which is a part of a three- year study on compliant...ratios as high as 10/1 for laboratory-scale models and up to 3/1 for full-scale prototype arms. The first two years of this study have involved the
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Smith, C. A.; Johnson, W.
1985-01-01
The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.
2005-05-16
Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.
Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.
DOT National Transportation Integrated Search
2015-05-01
This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and performance in an operation...
DOT National Transportation Integrated Search
1973-04-01
A prototype Uniflo vehicle base with mock-up superstructure was tested on 55 ft. of full-scale track. Sound treatment to meet NCA 60 at 25 ft. from the guideway enclosure and within the vehicle was proposed and the costs determined. A heating and coo...
DOT National Transportation Integrated Search
2003-01-01
The primary objective of this project was to test a full-scale prototype of a bridge deck design containing glass fiber reinforced polymer (GFRP) bars as the top mat of reinforcement. The test deck mimics the design of the deck of one span of the new...
NASA Astrophysics Data System (ADS)
Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.
2015-10-01
The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.
Cosmic Ray Inspection and Passive Tomography for SNM Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armitage, John; Oakham, Gerald; Bryman, Douglas
2009-12-02
The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or amore » subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.« less
Cosmic Ray Inspection and Passive Tomography for SNM Detection
NASA Astrophysics Data System (ADS)
Armitage, John; Bryman, Douglas; Cousins, Thomas; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Noël, Scott; Oakham, Gerald; Stocki, Trevor J.; Waller, David
2009-12-01
The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.
Kushniruk, Andre; Karson, Tom; Moore, Carlton; Kannry, Joseph
2003-01-01
Approaches to the development of information systems in large health care institutions range from prototyping to conventional development of large scale production systems. This paper discusses the development of the SignOut System at Mount Sinai Medical Center, which was designed in 1997 to capture vital resident information. Local need quickly outstripped proposed delays for building a production system and a prototype system quickly became a production system. By the end of 2002 the New SignOut System was built to create an integrated application that was a true production system. In this paper we discuss the design and implementation issues in moving from a prototype to a production system. The production system had a number of advantages, including increased organizational visibility, integration into enterprise resource planning and full time staff for support. However, the prototype allowed for more rapid design and subsequent changes, less training, and equal to or superior help desk support. It is argued that healthcare IT systems may need characteristics of both prototype and production system development to rapidly meet the changing and different needs of healthcare user populations.
NASA Astrophysics Data System (ADS)
Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.
2017-12-01
We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej
New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less
NASA Technical Reports Server (NTRS)
Mullican, R. C.; Hayes, B. C.
1991-01-01
Preliminary results of research conducted in the late 1970's indicate that perceptual qualities of an enclosure can be influenced by the distribution of illumination within the enclosure. Subjective impressions such as spaciousness, perceptual clarity, and relaxation or tenseness, among others, appear to be related to different combinations of surface luminance. A prototype indirect ambient illumination system was developed which will allow crew members to alter surface luminance distributions within an enclosed module, thus modifying perceptual cues to match crew preferences. A traditional lensed direct lighting system was compared to the prototype utilizing the full-scale mockup of Space Station Freedom developed by Marshall Space Flight Center. The direct lensed system was installed in the habitation module with the indirect prototype deployed in the U.S. laboratory module. Analysis centered on the illuminance and luminance distributions resultant from these systems and the implications of various luminaire spacing options. All test configurations were evaluated for compliance with NASA Standard 3000, Man-System Integration Standards.
Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James
2018-07-01
This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Schiefelbusch, Richard L.; Lent, James R.
Presented is the final report for Project MORE (Mediated Operational Research for Education), a program to create a full-scale operational system for developing product prototypes (methods and materials packages) for teaching personal appearance and hygiene skills to the trainable mentally retarded child. Reviewed in part I is the history of the…
Ultrafast holographic technique for 3D in situ documentation of cultural heritage
NASA Astrophysics Data System (ADS)
Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter
2003-10-01
A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.
NASA Astrophysics Data System (ADS)
Haziza, M.
1990-10-01
The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.
Lunar exploration rover program developments
NASA Technical Reports Server (NTRS)
Klarer, P. R.
1994-01-01
The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.
Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.
2015-06-12
This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less
Detection and analysis of part load and full load instabilities in a real Francis turbine prototype
NASA Astrophysics Data System (ADS)
Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme
2017-04-01
Francis turbines operate in many cases out of its best efficiency point, in order to regulate their output power according to the instantaneous energy demand of the grid. Therefore, it is of paramount importance to analyse and determine the unstable operating points for these kind of units. In the framework of the HYPERBOLE project (FP7-ENERGY-2013-1; Project number 608532) a large Francis unit was investigated numerically, experimentally in a reduced scale model and also experimentally and numerically in the real prototype. This paper shows the unstable operating points identified during the experimental tests on the real Francis unit and the analysis of the main characteristics of these instabilities. Finally, it is shown that similar phenomena have been identified on previous research in the LMH (Laboratory for Hydraulic Machines, Lausanne) with the reduced scale model.
Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.
DOT National Transportation Integrated Search
2015-01-01
This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...
Flow measurements in a water tunnel using a holocinematographic velocimeter
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.; Beeler, George B.
1987-01-01
Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.
Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment
NASA Astrophysics Data System (ADS)
Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.
2018-05-01
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.
Modular detector for deep underwater registration of muons and muon groups
NASA Technical Reports Server (NTRS)
Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.
1985-01-01
Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.
Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)
NASA Astrophysics Data System (ADS)
Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo
2016-11-01
A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).
NASA Astrophysics Data System (ADS)
Rea, B.; Evans, D. J. A.; Benn, D. I.; Brennan, A. J.
2012-04-01
Networks of crevasse squeeze ridges (CSRs) preserved on the forelands of many surging glaciers attest to extensive full-depth crevassing. Full-depth connections have been inferred from turbid water up-welling in crevasses and the formation of concertina eskers however, it has not been clearly established if the crevasses formed from the top-down or the bottom-up. A Linear Elastic Fracture Mechanics (LEFM) approach is used to determine the likely propagation direction for Mode I crevasses on seven surging glaciers. Results indicate that, the high extensional surface strain rates are insufficient to promote top-down full-depth crevasses but have sufficient magnitude to penetrate to depths of 4-12 m, explaining the extensive surface breakup accompanying glacier surges. Top-down, full-depth crevassing is only possible when water depth approaches 97% of the crevasse depth. However, the provision of sufficient meltwater is problematic due to the aforementioned extensive shallow surface crevassing. Full-depth, bottom-up crevassing can occur provided basal water pressures are in excess of 80-90% of flotation which is the default for surging and on occasion water pressures may even become artesian. Therefore CSRs, found across many surging glacier forelands and ice margins most likely result from the infilling of basal crevasses formed, for the most part, by bottom-up hydrofracturing. Despite the importance of crevassing for meltwater routing and calving dynamics physically testing numerical crevassing models remains problematic due to technological limitations, changing stress regimes and difficulties associated with working in crevasse zones on glaciers. Mapping of CSR spacing and matching to surface crevasse patterns can facilitate quantitative comparison between the LEFM model and observed basal crevasses provided ice dynamics are known. However, assessing full-depth top-down crevasse propagation is much harder to monitor in the field and no geomorphological record is preserved. An alternative approach is provided by geotechnical centrifuge modelling. By testing scaled models in an enhanced 'gravity' field real-world (prototype) stress conditions can be reproduced which is crucial for problems governed by self-weight stresses, of which glacier crevassing is one. Scaling relationships have been established for stress intensity factors - KI which are key to determining crevasse penetration such that KIp = √N KIm (p = prototype and m = model). Operating specifications of the University of Dundee geotechnical centrifuge (100g) will allow the testing of scaled models equivalent to prototype glaciers of 50 m thickness in order to provide a physical test of the LEFM top-down crevassing model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, R.; Bailey, J.; Virgo, M.
Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack
2005-01-01
An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.
Technical instrumentation R&D for ILD SiW ECAL large scale device
NASA Astrophysics Data System (ADS)
Balagura, V.
2018-03-01
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.
Simulation of pump-turbine prototype fast mode transition for grid stability support
NASA Astrophysics Data System (ADS)
Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.
2017-04-01
The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy.
Lozano, Maria Teresa Ugidos; Haro, Fernando Blaya; Diaz, Carlos Molino; Manzoor, Sadia; Ugidos, Gonzalo Ferrer; Mendez, Juan Antonio Juanes
2017-05-01
The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.
Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development
NASA Astrophysics Data System (ADS)
Mehta, U.
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demaria, N.
This paper is a review of recent progress of RD53 Collaboration. Results obtained on the study of the radiation effects on 65 nm CMOS have matured enough to define first strategies to adopt in the design of analog and digital circuits. Critical building blocks and analog very front end chains have been designed, tested before and after 5–800 Mrad. Small prototypes of 64×64 pixels with complex digital architectures have been produced, and point to address the main issues of dealing with extremely high pixel rates, while operating at very small in-time thresholds in the analog front end. Lastly, the collaborationmore » is now proceeding at full speed towards the design of a large scale prototype, called RD53A, in 65 nm CMOS technology.« less
NASA Astrophysics Data System (ADS)
Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio
2014-06-01
In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulman, Holly; Ross, Nicole
2015-10-30
An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less
1960-05-14
Photographed in 1960. -- Skin Stress Test of the 12-foot satellite built as a prototype of the full-scale Echo satellite. The 12-foot diameter of the sphere was chosen because that was the ceiling height in the Langley model shop. The proposal to build the 12-foot satellite was made in November 1957. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 170-171.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardin, John D; Baca, Allen G
This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
Full parabolic trough qualification from prototype to demonstration loop
NASA Astrophysics Data System (ADS)
Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark
2017-06-01
On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.
Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Michael W; Miner, Kris
The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less
Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoak, A.E.; Zollinger, W.T.
1993-12-31
This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.
Recent Progress on High-Current SRF Cavities at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand
2010-05-01
JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, amore » practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.« less
High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi
2017-12-12
Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prototyping phase of the high heat flux scraper element of Wendelstein 7-X
Boscary, Jean; Greuner, Henri; Ehrke, G.; ...
2016-03-24
The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equippedmore » with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m 2. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. In conclusion, the prototypes are presently under fabrication.« less
Design and fabrication of a high temperature leading edge heating array, phase 1
NASA Technical Reports Server (NTRS)
1972-01-01
Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.
Characterization of a piezo bendable X-ray mirror.
Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald
2016-01-01
A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.
Prototype Salvage Foaming System.
1985-11-04
providing buoyancy to refloat sunken ships, the density and strength of polyurethane foam , combined with its compact pre-blown form , make it a very...is not a true solvent of polyol and MDI, polyurethane foam can form in the presence of DOP. In the full-scale machine, the head flushing chemical is...hose between the foaming machine and foaming gun, standard grade hydraulic hose is used. This type of hose is also much more resistant to kinking than
Test Plan for Cask Identification Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-29
This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
NASA Astrophysics Data System (ADS)
Raskin, Boris
Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.
Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1994-01-01
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
A Knowledge-Based System Developer for aerospace applications
NASA Technical Reports Server (NTRS)
Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.
1993-01-01
A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.
NASA Technical Reports Server (NTRS)
Swanson, T. D.; Mccabe, M. E., Jr.; Grote, M. G.
1987-01-01
The design, fabrication, and testing of full-scale prototype units of a two-phase mounting plate (TPMP), which will be used in a two-phase ammonia-based thermal control system for a large spacecraft, are described. The mounting plate uses an evaporator design in which liquid is mechanically pumped through porous feed tubes within the plate. The prototype TPMPs were tested with ammonia at heat loads over 3000 W (3.2 W/sq cm) and local heat fluxes of up to 4 W/sq cm. Calculated total heat transfer coefficients from these tests were between 0.8 and 1.0 W/sq cm per C. This represents a better than twenty-fold improvement over comparable single-phase heat transfer coefficients. Design diagrams are included.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.
2015-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.
High-Voltage Characterization for the Prototype Induction Cells
NASA Astrophysics Data System (ADS)
Huacen, Wang; Kaizhi, Zhang; Long, Wen; Qinggui, Lai; Linwen, Zhang; Jianjun, Deng
2002-12-01
Two linear induction prototype cells expected to work at 250kV, 3kA,with accelerating voltage flattop (±1%) ⩾ 70ns, have been tested to determine their high-voltage characteristics. Each cell is composed of a ferrite core immersed in oil, a gap with curved stainless steel electrodes, a solenoid magnet, and a insulator. The experiments were carried out with full-scale cells. The high voltage pulses were applied to two cells using a 100ns, 12Ω pulse Blumlein. The tests were performed at various high-voltage levels ranging from -250kV to -350kV. No breakdown was observed during the test at vacuum level (7-10) ṡ10-4 Pa. The cell schematic, the experimental set up, and the measured voltage waveforms are presented in this paper.
NASA Technical Reports Server (NTRS)
Moog, R. D.; Bacchus, D. L.; Utreja, L. R.
1979-01-01
The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.
Prototype Vector Machine for Large Scale Semi-Supervised Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Kwok, James T.; Parvin, Bahram
2009-04-29
Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of themore » kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.« less
NASA Technical Reports Server (NTRS)
Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.
2007-01-01
The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.
Development of an inflatable radiator system. [for space shuttles
NASA Technical Reports Server (NTRS)
Leach, J. W.
1976-01-01
Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.
Jette, Alan M.; McDonough, Christine M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Latham, Nancy; Hambleton, Ronald K.; Felson, David; Kim, Young-jo; Hunter, David
2012-01-01
Objective To develop and evaluate a prototype measure (OA-DISABILITY-CAT) for osteoarthritis research using Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies. Study Design and Setting We constructed an item bank consisting of 33 activities commonly affected by lower extremity (LE) osteoarthritis. A sample of 323 adults with LE osteoarthritis reported their degree of limitation in performing everyday activities and completed the Health Assessment Questionnaire-II (HAQ-II). We used confirmatory factor analyses to assess scale unidimensionality and IRT methods to calibrate the items and examine the fit of the data. Using CAT simulation analyses, we examined the performance of OA-DISABILITY-CATs of different lengths compared to the full item bank and the HAQ-II. Results One distinct disability domain was identified. The 10-item OA-DISABILITY-CAT demonstrated a high degree of accuracy compared with the full item bank (r=0.99). The item bank and the HAQ-II scales covered a similar estimated scoring range. In terms of reliability, 95% of OA-DISABILITY reliability estimates were over 0.83 versus 0.60 for the HAQ-II. Except at the highest scores the 10-item OA-DISABILITY-CAT demonstrated superior precision to the HAQ-II. Conclusion The prototype OA-DISABILITY-CAT demonstrated promising measurement properties compared to the HAQ-II, and is recommended for use in LE osteoarthritis research. PMID:19216052
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2001-01-01
Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.
Biomedical device prototype based on small scale hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali
2018-03-01
This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
IFMIF: overview of the validation activities
NASA Astrophysics Data System (ADS)
Knaster, J.; Arbeiter, F.; Cara, P.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Ibarra, A.; Matsumoto, H.; Mosnier, A.; Serizawa, H.; Sugimoto, M.; Suzuki, H.; Wakai, E.
2013-11-01
The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF), an international collaboration under the Broader Approach Agreement between Japan Government and EURATOM, aims at allowing a rapid construction phase of IFMIF in due time with an understanding of the cost involved. The three main facilities of IFMIF (1) the Accelerator Facility, (2) the Target Facility and (3) the Test Facility are the subject of validation activities that include the construction of either full scale prototypes or smartly devised scaled down facilities that will allow a straightforward extrapolation to IFMIF needs. By July 2013, the engineering design activities of IFMIF matured with the delivery of an Intermediate IFMIF Engineering Design Report (IIEDR) supported by experimental results. The installation of a Linac of 1.125 MW (125 mA and 9 MeV) of deuterons started in March 2013 in Rokkasho (Japan). The world's largest liquid Li test loop is running in Oarai (Japan) with an ambitious experimental programme for the years ahead. A full scale high flux test module that will house ∼1000 small specimens developed jointly in Europe and Japan for the Fusion programme has been constructed by KIT (Karlsruhe) together with its He gas cooling loop. A full scale medium flux test module to carry out on-line creep measurement has been validated by CRPP (Villigen).
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, Ed
2010-01-01
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuuminsulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, E. F.
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Recent progress of RD53 Collaboration towards next generation Pixel Read-Out Chip for HL-LHC
Demaria, N.
2016-12-21
This paper is a review of recent progress of RD53 Collaboration. Results obtained on the study of the radiation effects on 65 nm CMOS have matured enough to define first strategies to adopt in the design of analog and digital circuits. Critical building blocks and analog very front end chains have been designed, tested before and after 5–800 Mrad. Small prototypes of 64×64 pixels with complex digital architectures have been produced, and point to address the main issues of dealing with extremely high pixel rates, while operating at very small in-time thresholds in the analog front end. Lastly, the collaborationmore » is now proceeding at full speed towards the design of a large scale prototype, called RD53A, in 65 nm CMOS technology.« less
National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W J; Moses, E; Warner, B
2000-12-07
The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
The National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W.J.; Moses, E.; Warner, B.
2000-12-07
The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
Fast-neutron/gamma-ray radiography scanner for the detection of contraband in air cargo containers
NASA Astrophysics Data System (ADS)
Eberhardt, J.; Liu, Y.; Rainey, S.; Roach, G.; Sowerby, B.; Stevens, R.; Tickner, J.
2006-05-01
There is a worldwide need for efficient inspection of cargo containers at airports, seaports and road border crossings. The main objectives are the detection of contraband such as illicit drugs, explosives and weapons. Due to the large volume of cargo passing through Australia's airports every day, it is critical that any scanning system should be capable of working on unpacked or consolidated cargo, taking at most 1-2 minutes per container. CSIRO has developed a fast-neutron/gamma-ray radiography (FNGR) method for the rapid screening of air freight. By combining radiographs obtained using 14 MeV neutrons and 60Co gamma-rays, high resolution images showing both density and material composition are obtained. A near full-scale prototype scanner has been successfully tested in the laboratory. With the support of the Australian Customs Service, a full-scale scanner has recently been installed and commissioned at Brisbane International Airport.
1978-03-01
ADWRESS OInclud Zip Code) 10. PROJECTfTASK/WORK UNI1 VO. Same as 9. above. I1. CONTRACT NO. 13. TYPE OF REPORT PERIOD COVERED (inclusive dews ) Meeting...Discussion of basic principles. c. Lists of y-emitling tracers for gas ; for liquid; commercially available radioisotope milking systems; elements easily...factors) - single phase loops, full flow, (2) prototype calibration (a) gas -water loop, (b) geometry effect. (c) scaling. (3) proof testing - simulation of
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Chapter 13 - Perspectives on LANDFIRE Prototype Project Accuracy Assessment
James Vogelmann; Zhiliang Zhu; Jay Kost; Brian Tolk; Donald Ohlen
2006-01-01
The purpose of this chapter is to provide a general overview of the many aspects of accuracy assessment pertinent to the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). The LANDFIRE Prototype formed a large and complex research and development project with many broad-scale data sets and products developed throughout...
NREL: News - Prototype Low-Emissions Natural Gas Engine Saves Fuel
/heavy_vehicle/natgas_pub.html#engine for a copy of the full NREL report, "Development of a Throttleless engines. In testing, the prototype engine operated over the full speed and load range, delivering 250
NASA Astrophysics Data System (ADS)
Andini, S.; Fitriana, L.; Budiyono
2018-04-01
This research is aimed to describe the process and to get product development of learning material using flipbook. The learning material is developed in geometry, especially quadrilateral. This research belongs to Research and Development (R&D). The procedure includes the steps of Budiyono Model such as conducting preliminary research, planning and developing a theoretical and prototype product, and determining product quality (validity, practicality, and effectiveness). The average assessment result of the theoretical product by the experts gets 4,54, while validity result of prototype product by the experts is 4,62. Practicability is obtained by the implementation of flipbook prototype in each meeting of limited-scale try out based on learning observation, with the average score of 4,10 and increasing of 4,50 in wide-scale try out. The effectiveness of the prototype product is obtained by the result from pretest and posttest on a limited-scale and a wide-scale try out. The limited-scale pre-test result showed a significant increase in average score of wide-scale pre-test of 25,2, and there is an increase in the average score of posttest on limited-scale try out and wide-scale try out is 8,16. The result of product quality can be concluded that flipbook media can be used in the geometry learning in elementary school which implemented curriculum 2013.
Scaling of Ion Thrusters to Low Power
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.
1998-01-01
Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.
A comparison of wake characteristics of model and prototype buildings in transverse winds
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Phataraphruk, P.; Chang, J.
1978-01-01
Previously measured mean velocity and turbulence intensity profiles in the wake of a 26.8-m long building 3.2 m high and transverse to the wind direction in an atmospheric boundary layer several hundred meters thick were compared with profiles at corresponding stations downstream of a 1/50-scale model on the floor of a large meteorological wind tunnel in a boundary layer 0.61 m in thickness. The validity of using model wake data to predict full scale data was determined. Preliminary results are presented which indicate that disparities result from differences in relative depth of logarithmic layers, surface roughness, and the proximity of upstream obstacles.
2004-04-15
The wedge-shaped X-33 was a sub-scale technology demonstration prototype of a Reusable Launch Vehicle (RLV). Through demonstration flights and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin (builder of the X-33 Venture Star) to decide by the year 2000 whether to proceed with the development of a full-scale, commercial RLV program. This program would dramatically increase reliability and lower the costs of putting a payload into space. This would in turn create new opportunities for space access and significantly improve U.S. economic competitiveness in the worldwide launch marketplace. NASA would be a customer, not the operator in the commercial RLV. The X-33 program was cancelled in 2001.
High-speed civil transport issues and technology program
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1992-01-01
A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.
NASA Astrophysics Data System (ADS)
Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.
2016-02-01
ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.
DOT National Transportation Integrated Search
2015-06-01
This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...
Application of the 1:2,000,000-scale data base: A National Atlas sectional prototype
Dixon, Donna M.
1985-01-01
A study of the potential to produce a National Atlas sectional prototype from the 1:2,000,000-scale data base was concluded recently by the National Mapping Division, U. S. Geological Survey. This paper discusses the specific digital cartographic production procedures involved in the preparation of the prototype map, as well as the theoretical and practical cartographic framework for the study. Such items as data organization, data classification, digital techniques, data conversions, and modification of traditional design specifications for an automated environment are discussed. The bulk of the cartographic work for the production of the prototype was carried out in raster format on the Scitex Response-250 mapping system.
Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boscary, J.; Greuner, Henri; Ehrke, Gunnar
Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipesmore » of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.« less
From research plots to prototype biomass plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.
1993-12-31
The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.
The Chip-Scale Atomic Clock - Prototype Evaluation
2007-11-01
39th Annual Precise Time and Time Interval (PTTI) Meeting THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION R. Lutwak *, A. Rashed...been supported by the Defense Advanced Research Projects Agency, Contract # NBCHC020050. REFERENCES [1] R. Lutwak , D. Emmons, W. Riley, and...D.C.), pp. 539-550. [2] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, 2004, “The Chip-Scale
2013 R&D 100 Award: âMiniappsâ Bolster High Performance Computing
Belak, Jim; Richards, David
2018-06-12
Two Livermore computer scientists served on a Sandia National Laboratories-led team that developed Mantevo Suite 1.0, the first integrated suite of small software programs, also called "miniapps," to be made available to the high performance computing (HPC) community. These miniapps facilitate the development of new HPC systems and the applications that run on them. Miniapps (miniature applications) serve as stripped down surrogates for complex, full-scale applications that can require a great deal of time and effort to port to a new HPC system because they often consist of hundreds of thousands of lines of code. The miniapps are a prototype that contains some or all of the essentials of the real application but with many fewer lines of code, making the miniapp more versatile for experimentation. This allows researchers to more rapidly explore options and optimize system design, greatly improving the chances the full-scale application will perform successfully. These miniapps have become essential tools for exploring complex design spaces because they can reliably predict the performance of full applications.
Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, D.F.; Primeau, M.F.; Buchanan, C.
1997-08-01
Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less
Materials and Process Activities for NASA's Composite Crew Module
NASA Technical Reports Server (NTRS)
Polis, Daniel L.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.
Rainbow peacock spiders inspire miniature super-iridescent optics.
Hsiung, Bor-Kai; Siddique, Radwanul Hasan; Stavenga, Doekele G; Otto, Jürgen C; Allen, Michael C; Liu, Ying; Lu, Yong-Feng; Deheyn, Dimitri D; Shawkey, Matthew D; Blackledge, Todd A
2017-12-22
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm 2 ) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components.
ERIC Educational Resources Information Center
Petrov, Alexander A.
2011-01-01
Context effects in category rating on a 7-point scale are shown to reverse direction depending on feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were tested using two representative models: ANCHOR…
Status of The General Atomics Low Speed Urban Maglev Technology Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurol, S; Baldi, R; Bever, D
2004-06-16
This paper presents the status of General Atomics Urban Maglev Program. The development provides an innovative approach for low speed transportation suitable for very challenging urban environments. Permanent magnets arranged in a 'Halbach' array configuration produce a relatively stiff magnetic suspension operating with an air gap of 25 mm. The project has progressed from design and prototype hardware testing, to the construction of a 120-meter full-scale test track, located in San Diego, California. Dynamic testing of the levitation, propulsion and guidance systems is being performed.
X-33 Injector Ignition Single Cell Test
NASA Technical Reports Server (NTRS)
1997-01-01
The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.
Engineering behavior of small-scale foundation piers constructed from alternative materials
NASA Astrophysics Data System (ADS)
Prokudin, Maxim Mikhaylovich
Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.
X-33 Reusable Launch Vehicle (RLV) Liftoff
NASA Technical Reports Server (NTRS)
2004-01-01
The wedge-shaped X-33 was a sub-scale technology demonstration prototype of a Reusable Launch Vehicle (RLV). Through demonstration flights and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin (builder of the X-33 Venture Star) to decide by the year 2000 whether to proceed with the development of a full-scale, commercial RLV program. This program would dramatically increase reliability and lower the costs of putting a payload into space. This would in turn create new opportunities for space access and significantly improve U.S. economic competitiveness in the worldwide launch marketplace. NASA would be a customer, not the operator in the commercial RLV. The X-33 program was cancelled in 2001.
Structural Similitude and Scaling Laws for Plates and Shells: A Review
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Starnes, J. H., Jr.; Rezaeepazhand, J.
2000-01-01
This paper deals with the development and use of scaled-down models in order to predict the structural behavior of large prototypes. The concept is fully described and examples are presented which demonstrate its applicability to beam-plates, plates and cylindrical shells of laminated construction. The concept is based on the use of field equations, which govern the response behavior of both the small model as well as the large prototype. The conditions under which the experimental data of a small model can be used to predict the behavior of a large prototype are called scaling laws or similarity conditions and the term that best describes the process is structural similitude. Moreover, since the term scaling is used to describe the effect of size on strength characteristics of materials, a discussion is included which should clarify the difference between "scaling law" and "size effect". Finally, a historical review of all published work in the broad area of structural similitude is presented for completeness.
Computation and analysis of cavitating flow in Francis-class hydraulic turbines
NASA Astrophysics Data System (ADS)
Leonard, Daniel J.
Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new phenomena which are currently unknown.
ERIC Educational Resources Information Center
Iniguez, J.; Raposo, V.
2009-01-01
In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…
CRBR pump water test experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, M.E.; Huber, K.A.
1983-01-01
The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.
Green FLASH: energy efficient real-time control for AO
NASA Astrophysics Data System (ADS)
Gratadour, D.; Dipper, N.; Biasi, R.; Deneux, H.; Bernard, J.; Brule, J.; Dembet, R.; Doucet, N.; Ferreira, F.; Gendron, E.; Laine, M.; Perret, D.; Rousset, G.; Sevin, A.; Bitenc, U.; Geng, D.; Younger, E.; Andrighettoni, M.; Angerer, G.; Patauner, C.; Pescoller, D.; Porta, F.; Dufourcq, G.; Flaischer, A.; Leclere, J.-B.; Nai, A.; Palazzari, P.; Pretet, D.; Rouaud, C.
2016-07-01
The main goal of Green Flash is to design and build a prototype for a Real-Time Controller (RTC) targeting the European Extremely Large Telescope (E-ELT) Adaptive Optics (AO) instrumentation. The E-ELT is a 39m diameter telescope to see first light in the early 2020s. To build this critical component of the telescope operations, the astronomical community is facing technical challenges, emerging from the combination of high data transfer bandwidth, low latency and high throughput requirements, similar to the identified critical barriers on the road to Exascale. With Green Flash, we will propose technical solutions, assess these enabling technologies through prototyping and assemble a full scale demonstrator to be validated with a simulator and tested on sky. With this R&D program we aim at feeding the E-ELT AO systems preliminary design studies, led by the selected first-light instruments consortia, with technological validations supporting the designs of their RTC modules. Our strategy is based on a strong interaction between academic and industrial partners. Components specifications and system requirements are derived from the AO application. Industrial partners lead the development of enabling technologies aiming at innovative tailored solutions with potential wide application range. The academic partners provide the missing links in the ecosystem, targeting their application with mainstream solutions. This increases both the value and market opportunities of the developed products. A prototype harboring all the features is used to assess the performance. It also provides the proof of concept for a resilient modular solution to equip a large scale European scientific facility, while containing the development cost by providing opportunities for return on investment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
Non-Venting Thermal and Humidity Control for EVA Suits
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Bue, Grant
2011-01-01
Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.
The scientific foundation of the LANDFIRE Prototype Project [Chapter 3
Robert E. Keane; Matthew Rollins
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, originated from a recent mapping project that developed a set of coarse-scale spatial data layers for wildland fire management describing fire hazard and ecological status for the conterminous United States (Hardy and others 2001; Schmidt and others 2002; www. fs...
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
Numerical and experimental analysis of an in-scale masonry cross-vault prototype up to failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Michela; Calderini, Chiara; Lagomarsino, Sergio
2015-12-31
A heterogeneous full 3D non-linear FE approach is validated against experimental results obtained on an in-scale masonry cross vault assembled with dry joints, and subjected to various loading conditions consisting on imposed displacement combinations to the abutments. The FE model relies into a discretization of the blocks by means of few rigid-infinitely resistant parallelepiped elements interacting by means of planar four-noded interfaces, where all the deformation (elastic and inelastic) occurs. The investigated response mechanisms of vault are the shear in-plane distortion and the longitudinal opening and closing mechanism at the abutments. After the validation of the approach on the experimentallymore » tested cross-vault, a sensitivity analysis is conducted on the same geometry, but in real scale, varying mortar joints mechanical properties, in order to furnish useful hints for safety assessment, especially in presence of seismic action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faugeras, P.; Couture, J.; Lefort, G.
1961-01-01
The main studies and experiments involved in the development of a cell- assembly for the treatment of irradiated fuels on a semi-industrial scale are described. It must be possible to modify or transform each of these cells without interrupting the rest of the pilot. A full-scale prototype cell ( 3 x 4 x 6 m) was built with an alpha k-protection independent of the gamma - protection. It features all the main characteristics: tightness to gamma losses, dense glass lighting, and ventilation. This cell has made possible trials on transfer, remote-controls and teledismantling, as well as the development of newmore » methods of rapidly connecting hydraulic circuits. The final form is given of the cells selected for the pilot. (auth)« less
Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu
2017-07-10
A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.
MIA - A free and open source software for gray scale medical image analysis
2013-01-01
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed. PMID:24119305
MIA - A free and open source software for gray scale medical image analysis.
Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas
2013-10-11
Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Grape, Ulrik
2014-07-29
The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validatemore » the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.« less
The Imaging Properties of a Silicon Wafer X-Ray Telescope
NASA Technical Reports Server (NTRS)
Joy, M. K.; Kolodziejczak, J. J.; Weisskopf, M. C.; Fair, S.; Ramsey, B. D.
1994-01-01
Silicon wafers have excellent optical properties --- low microroughness and good medium-scale flatness --- which Make them suitable candidates for inexpensive flat-plate grazing-incidence x-ray mirrors. On short spatial scales (less than 3 mm) the surface quality of silicon wafers rivals that expected of the Advanced X-Ray Astrophysics Facility (AXAF) high-resolution optics. On larger spatial scales, however, performance may be degraded by the departure from flatness of the wafer and by distortions induced by the mounting scheme. In order to investigate such effects, we designed and constructed a prototype silicon-wafer x-ray telescope. The device was then tested in both visible light and x rays. The telescope module consists of 94 150-mm-diameter wafers, densely packed into the first stage of a Kirkpatrick-Baez configuration. X-ray tests at three energies (4.5, 6.4, and 8.0 keV) showed an energy-independent line spread function with full width at half maximum (FWHM) of 150 arcseconds, dominated by deviations from large-scale flatness.
NASA Technical Reports Server (NTRS)
Miao, D.; Barber, J. R.; Dewitt, R. L.
1977-01-01
Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.
NASA Technical Reports Server (NTRS)
Mir, L.; Simard, C.; Grana, D.
1973-01-01
Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.
The Gravity-Probe-B relativity gyroscope experiment - An update on progress
NASA Technical Reports Server (NTRS)
Parkinson, Bradford W.; Everitt, C. W. Francis; Turneaure, John P.
1987-01-01
The Gravity-Probe-B (GP-B) relativity gyroscope experiment will test two effects of general relativity: (1) the geodetic precession of a gyroscope due to its Fermi-Walker transport around a massive central body; and (2) the motional or gravitomagnetic precession of the gyroscope due to rotation of the central body itself. The experiment will also provide a determination of the deflection of starlight by the sun and an improved determination of the distance to Rigel. In the Shuttle testing phase of the program, prototype hardware is being developed for a full-scale ground model of the GP-B instrument.
Centrifugation and the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2009-05-01
A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.
Centrifugation and the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2009-04-01
A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.
Airborne electronically steerable phased array
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
Galileo Galilei (GG): the space mission and the prototype
NASA Astrophysics Data System (ADS)
Nobili, A.
"GALILEO GALILEI (GG)" is a proposal to fly a small satellite in low Earth orbit aiming to test the Equivalence Principle of Galileo, Newton and Einstein to 1 part in 1017 at room temperature. Ground tests carried out with artificial test bodies on rotating torsion balances, and tests with celestial bodies based on Lunar Laser Ranging data, have found no violation to about 1 part in 1013 . Competing space pro jects are SCOPE (also at room temperature) aiming to 1 part in 1015 , and STEP (at very low temperature) aiming to 1 part in 1018 . GG is characterized by fast rotation and by the possibility to perform a full scale test on the ground. This talk will present the main features of the GG design, as compared to STEP and SCOPE, and report the experimental results obtained with the first and the second generation laboratory prototypes (natural frequencies, quality factor, stability, sensitivity). Interested scientists are welcome to visit the GG webpage at http://eotvos.dm.unipi.it/nobili.
NASA Astrophysics Data System (ADS)
Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary
2015-09-01
Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.
MAPS development for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.
2015-03-01
Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.
Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development
NASA Technical Reports Server (NTRS)
Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.
2006-01-01
This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
TREMOR: A wireless MEMS accelerograph for dense arrays
Evans, J.R.; Hamstra, R.H.; Kundig, C.; Camina, P.; Rogers, J.A.
2005-01-01
The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ??2 g, or 102 dB between ??4 g. It is linear to ???1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (???1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ???3 km - one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ???75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper. ?? 2005, Earthquake Engineering Research Institute.
Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties
NASA Astrophysics Data System (ADS)
Karp, Jonathan; Torres-Herrera, Jonathan; TáVora, Marco; Santos, Lea
We study the static and dynamical properties of isolated spin 1/2 systems as prototypes of many-body quantum systems and compare the results to those of full random matrices from a Gaussian orthogonal ensemble. Full random matrices do not represent realistic systems, because they imply that all particles interact at the same time, as opposed to realistic Hamiltonians, which are sparse and have only few-body interactions. Nevertheless, with full random matrices we can derive analytical results that can be used as references and bounds for the corresponding properties of realistic systems. In particular, we show that the results for the Shannon information entropy are very similar to those for the von Neumann entanglement entropy, with the former being computationally less expensive. We also discuss the behavior of the survival probability of the initial state at different time scales and show that it contains more information about the system than the entropies. Support from the NSF Grant No. DMR-1147430.
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt
2010-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.
NASA Astrophysics Data System (ADS)
Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele
2015-06-01
The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different controllers essentially provide similar performances in the mitigation of the structural response.
The cosmic ray muon tomography facility based on large scale MRPC detectors
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping
2015-06-01
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David
2011-10-01
A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.
Enabling Microfluidics: From Clean Rooms to Makerspaces
2016-09-30
anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure
Calvo, G; Holden, E; Reid, J; Scott, E M; Firth, A; Bell, A; Robertson, S; Nolan, A M
2014-12-01
To develop a composite measure pain scale tool to assess acute pain in cats and derive an intervention score. To develop the prototype composite measure pain scale-feline, words describing painful cats were collected, grouped into behavioural categories and ranked. To assess prototype validity two observers independently assigned composite measure pain scale-feline and numerical rating scale scores to 25 hospitalised cats before and after analgesic treatment. Following interim analysis the prototype was revised (revised composite measure pain scale-feline). To determine intervention score, two observers independently assigned revised composite measure pain scale-feline and numerical rating scale scores to 116 cats. A further observer, a veterinarian, stated whether analgesia was necessary. Mean ± sd decrease in revised composite measure pain scale-feline and numerical rating scale scores following analgesia were 2 · 4 ± 2 · 87 and 1 · 9 ± 2 · 34, respectively (95% confidence interval for mean change in revised composite measure pain scale-feline between 1 · 21 and 3 · 6). Changes in revised composite measure pain scale-feline and numerical rating scale were significantly correlated (r = 0 · 8) (P < 0001). Intervention level score of ≥4/16 was derived for revised composite measure pain scale-feline (26 · 7% misclassification) and ≥3/10 for numerical rating scale (14 · 5% misclassification). A valid instrument with a recommended analgesic intervention level has been developed to assess acute clinical pain in cats that should be readily applicable in practice. © 2014 British Small Animal Veterinary Association.
Conceptual design and analysis of a dynamic scale model of the Space Station Freedom
NASA Technical Reports Server (NTRS)
Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.
1994-01-01
This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.
Sanabria, Carlos; Lee, Peter J.; Starch, William; ...
2015-06-22
Cables made with Nb 3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force onmore » the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Adams, David L.; Trinidad, P. Paul
1997-01-01
NASA Langley Technical Library has been involved in developing systems for full-text information delivery of NACA/NASA technical reports since 1991. This paper will describe the two prototypes it has developed and the present production system configuration. The prototype systems are a NACA CD-ROM of thirty-three classic paper NACA reports and a network-based Full-text Electronic Reports Documents System (FEDS) constructed from both paper and electronic formats of NACA and NASA reports. The production system is the DigiDoc System (DIGItal Documents) presently being developed based on the experiences gained from the two prototypes. DigiDoc configuration integrates the on-line catalog database World Wide Web interface and PDF technology to provide a powerful and flexible search and retrieval system. It describes in detail significant achievements and lessons learned in terms of data conversion, storage technologies, full-text searching and retrieval, and image databases. The conclusions from the experiences of digitization and full- text access and future plans for DigiDoc system implementation are discussed.
A new ultra-high-accuracy angle generator: current status and future direction
NASA Astrophysics Data System (ADS)
Guertin, Christian F.; Geckeler, Ralf D.
2017-09-01
Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.
Fast Fiber-Coupled Imaging Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockington, Samuel; Case, Andrew; Witherspoon, Franklin Douglas
HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2more » effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was 53.31 dollars, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet collisions onto metal pillars in the path of the plasma jets were recorded in a single shot. This new fast imaging system is an attractive alternative to conventional fast framing cameras for applications and experiments where imaging events using existing techniques are inefficient or impossible. The development of HyperV's new diagnostic was split into two tracks: a next generation camera track, in which HyperV built, tested, and demonstrated a prototype 1024 channel camera at its own facility, and a second plasma community beta test track, where selected plasma physics programs received small systems of a few test pixels to evaluate the expected performance of a full scale camera on their experiments. These evaluations were performed as part of an unfunded collaboration with researchers at Los Alamos National Laboratory and the University of California at Davis. Results from the prototype 1024-pixel camera are discussed, as well as results from the collaborations with test pixel system deployment sites.« less
Optimal output fast feedback in two-time scale control of flexible arms
NASA Technical Reports Server (NTRS)
Siciliano, B.; Calise, A. J.; Jonnalagadda, V. R. P.
1986-01-01
Control of lightweight flexible arms moving along predefined paths can be successfully synthesized on the basis of a two-time scale approach. A model following control can be designed for the reduced order slow subsystem. The fast subsystem is a linear system in which the slow variables act as parameters. The flexible fast variables which model the deflections of the arm along the trajectory can be sensed through strain gage measurements. For full state feedback design the derivatives of the deflections need to be estimated. The main contribution of this work is the design of an output feedback controller which includes a fixed order dynamic compensator, based on a recent convergent numerical algorithm for calculating LQ optimal gains. The design procedure is tested by means of simulation results for the one link flexible arm prototype in the laboratory.
Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1991-01-01
This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.
Categorical prototyping: incorporating molecular mechanisms into 3D printing.
Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J
2016-01-15
We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.
Development of the prototype data management system of the solar H-alpha full disk observation
NASA Astrophysics Data System (ADS)
Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong
2004-06-01
The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.
Size scaling of negative hydrogen ion sources for fusion
NASA Astrophysics Data System (ADS)
Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.
2015-04-01
The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.
ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Mager, M.; ALICE Collaboration
2016-07-01
A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.
OAST space technology accomplishments FY 1991
NASA Technical Reports Server (NTRS)
1992-01-01
The program consists of a continuum of space research and technology activities ranging from initial research to the full scale test of prototype equipment in space. Activities include work that is performed by in-house staff at the NASA Centers, university researchers supported by NASA funded grants and contracts, and industrial aerospace organizations under contract to NASA. These diverse activities provide advances in technology breakthroughs that may revolutionalize a technical discipline or mission concept. The work is managed and coordinated by OAST through a process that integrates the best available talent and capability in NASA, industry, and universities into a National civil space research and technology program.
A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding
Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen
2012-01-01
A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637
Perception, planning, and control for walking on rugged terrain
NASA Technical Reports Server (NTRS)
Simmons, Reid; Krotkov, Eric
1991-01-01
The CMU Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. To gain experience with the problems involved in walking on rugged terrain, a full-scale prototype leg was built and mounted on a carriage that rolls along overhead rails. Issues addressed in developing the software system to autonomously walk the leg through rugged terrain are described. In particular, the insights gained into perceiving and modeling rugged terrain, controlling the legged mechanism, interacting with the ground, choosing safe yet effective footfalls, and planning efficient leg moves through space are described.
HPG operating experience at CEM-UT
NASA Astrophysics Data System (ADS)
Gully, J. H.; Aanstoos, T. A.; Nalty, K.; Walls, W. A.
1986-11-01
Design and functional features are presented for three homopolar generators (HPG) used in experiments during the last decade at the Center for Electromechanics at the University of Texas. The first, a disk-type, 10 MJ HPG, was built in 1973 as a prototype power source for fusion experiments. A second, compact HPG was built in 1980 for opening switch experiments as part of railgun research. The third device is an iron-core, full-scale, high speed bearing and brush test facility for supplying an energy density of 60 MJ/cu m. Engineering data obtained during studies of armature reactions actively cooled brushes morganite-copper graphite rim brushes, and peak currents, are summarized.
On the natural frequency of tidal current power systems—A discussion of sea testing
NASA Astrophysics Data System (ADS)
Li, Ye; Yi, Jin-Hak; Song, Huimin; Wang, Qi; Yang, Zhaoqing; Kelley, Neil D.; Lee, Kwang-Soo
2014-07-01
To study the wet natural frequency (in water) and dry natural frequency (in air) of a tidal current turbine, we conducted a two-year measurement campaign by deploying a full-scale prototype of the system. In this article, a theoretical model is developed and validated with the frequency measurements. It reveals the measured wet natural frequency of the system could approach half that of the dry one. The measurements also show that inflow turbulence is very important in the excitation of system resonances that can lead to system failure. We also briefly discuss how the wet frequency varies over a long period.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1974-01-01
Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.
Rapid prototyping of microbial cell factories via genome-scale engineering.
Si, Tong; Xiao, Han; Zhao, Huimin
2015-11-15
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
X-33 Simulation Flown by Steve Ishmael
NASA Technical Reports Server (NTRS)
1997-01-01
Steve Ishmael flies a simulation of the X-33 Advanced Technology Demonstrator at NASA's Dryden Flight Research Center, Edwards, California. This simulation was used to provide flight trajectory data while flight control laws were being designed and developed, as well as to provide aerodynamic design information to X-33 developer Lockheed Martin. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to have demonstrated in flight the new technologies needed for the proposed Lockheed Martin full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
X-33 Simulation Lab and Staff Engineers
NASA Technical Reports Server (NTRS)
1997-01-01
X-33 program engineers at NASA's Dryden Flight Research Center, Edwards, California, monitor a flight simulation of the X-33 Advanced Technology Demonstrator as a 'flight' unfolds. The simulation provided flight trajectory data while flight control laws were being designed and developed. It also provided information which assisted X-33 developer Lockheed Martin in aerodynamic design of the vehicle. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to demonstrate in flight the new technologies needed for Lockheed Martin's proposed full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was intended to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was intended to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to reach altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to be launched from a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
Testing of a prototype Web based intervention for adolescent mothers on postpartum depression.
Logsdon, M Cynthia; Barone, Michael; Lynch, Tania; Robertson, Ashley; Myers, John; Morrison, David; York, Sara; Gregg, Jennifer
2013-08-01
This article describes testing of a prototype Web site for adolescent mothers with postpartum depression; providing proof of concept. Participants (N=138) were recruited from a public school-based program for adolescent parents and completed the Mental Health Acceptability Scale, Stigma Scale for Receiving Psychological Help, and Attitudes Towards Seeking Professional Psychological Help Scale before, and after, the Web site intervention. They also provided feedback on the usability of the Web site. Attitudes related to depression and treatment (ATSPPH) improved after viewing the Web site (p=.023). Feedback on the Web site indicated that it was easy to use (77%), reflecting highly acceptable score for product usability. The data provide the foundation for the launch of the Web site from prototype to product and more comprehensive testing. The creation and testing of informational text messages will be added to the Web site to increase the interactivity and dose of the intervention. Copyright © 2013 Elsevier Inc. All rights reserved.
Laser Direct Routing for High Density Interconnects
NASA Astrophysics Data System (ADS)
Moreno, Wilfrido Alejandro
The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral Diffused Link. A high density Laser Vertical Link with resistance values below 10 ohms was developed, studied and tested using design of experiment methodologies. The vertical link offers excellent advantages in the area of quick prototyping of electronic circuits, but even more important, due to having similar characteristics to a foundry produced via, it gives quick transfer from the prototype system verification stage to the mass production stage.
The energy performance of prototype holographic glazings
NASA Astrophysics Data System (ADS)
Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.
1993-02-01
We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.
Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines
Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram
2014-01-01
When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002
8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment
NASA Astrophysics Data System (ADS)
Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.
2017-02-01
SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.
Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany
2016-01-01
The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.
Testing of SMA-enabled Active Chevron Prototypes under Representative Flow Conditions
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cabell,Randolph H.; Cano, Roberto J.; Silcox, Richard J.
2008-01-01
Control of jet noise continues to be an important research topic. Exhaust-nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from active chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and secondarily for technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). SMA actuators are embedded on one side of the neutral axis of the structure such that thermal excitation, via joule heating, generates a moment and deflects the structure. The performance of two active chevron concepts is demonstrated in the presence of representative flow conditions. One of the concepts is shown to possess significant advantages for the proposed application and is selected for further development. Fabrication and design changes are described and shown to produce a chevron prototype that meets the performance objectives.
Smart systems and personalized health: the real challenge of bridging the innovation gap.
Lymberis, Andreas
2014-01-01
Smart miniaturized systems, emerging from the integration of heterogeneous technologies like micro- and nano electronics, photonics, biotechnology, materials and information & communication technologies are considered today, after two decades of intensive public support, proven concepts and functional prototypes, as key enablers opening up new opportunities for healthcare and in particular personalized health. They offer an enhanced ability to sense, detect, analyze, communicate, respond, and monitor phenomena from macro (e.g. body, tissues) to nano scale (e.g. molecules, genes). For the majority of these projects, planning for the next phase of prototype validation, product design, supply chain, user targeting, clinical validation and commercial roll-out are now taking full attention. The new EU Framework Program for Research and Innovation, Horizon 2020, is focusing on technology transfer support and building ecosystems and value chains to ensure better time to market and higher impact of knowledge-based technologies. The state-of-the-art and upcoming challenges for the implementation of H2020 and new opportunities in smart systems for pHealth are discussed in the paper.
Status of the NectarCAM camera project
NASA Astrophysics Data System (ADS)
Glicenstein, J.-F.; Barcelo, M.; Barrio, J.-A.; Blanch, O.; Boix, J.; Bolmont, J.; Boutonnet, C.; Brun, P.; Chabanne, E.; Champion, C.; Colonges, S.; Corona, P.; Courty, B.; Delagnes, E.; Delgado, C.; Diaz, C.; Ernenwein, J.-P.; Fegan, S.; Ferreira, O.; Fesquet, M.; Fontaine, G.; Fouque, N.; Henault, F.; Gascón, D.; Giebels, B.; Herranz, D.; Hermel, R.; Hoffmann, D.; Horan, D.; Houles, J.; Jean, P.; Karkar, S.; Knödlseder, J.; Martinez, G.; Lamanna, G.; LeFlour, T.; Lévêque, A.; Lopez-Coto, R.; Louis, F.; Moudden, Y.; Moulin, E.; Nayman, P.; Nunio, F.; Olive, J.-F.; Panazol, J.-L.; Pavy, S.; Petrucci, P.-O.; Punch, M.; Prast, Julie; Ramon, P.; Rateau, S.; Ribó, M.; Rosier-Lees, S.; Sanuy, A.; Sizun, P.; Sieiro, J.; Sulanke, K.-H.; Tavernet, J.-P.; Tejedor, L. A.; Toussenel, F.; Vasileiadis, G.; Voisin, V.; Waegebert, V.; Zurbach, C.
2014-07-01
NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014.
Antideuteron based dark matter search with GAPS: Current progress and future prospects
NASA Astrophysics Data System (ADS)
Hailey, C. J.; Aramaki, T.; Boggs, S. E.; Doetinchem, P. v.; Fuke, H.; Gahbauer, F.; Koglin, J. E.; Madden, N.; Mognet, S. A. I.; Ong, R.; Yoshida, T.; Zhang, T.; Zweerink, J. A.
2013-01-01
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.
NASA Astrophysics Data System (ADS)
Watson, Brett; Yeo, Leslie; Friend, James
2010-06-01
Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.
The GCT camera for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium
2017-12-01
The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.
Tests of a two-color interferometer and polarimeter for ITER density measurements
NASA Astrophysics Data System (ADS)
Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.
2017-12-01
A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.
High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-01-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440
Experimental testing of prototype face gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Handschuh, R.; Lewicki, D.; Bossler, R.
1992-01-01
An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.
A New Event Builder for CMS Run II
NASA Astrophysics Data System (ADS)
Albertsson, K.; Andre, J.-M.; Andronidis, A.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.
2015-12-01
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.
A new event builder for CMS Run II
Albertsson, K.; Andre, J-M; Andronidis, A.; ...
2015-12-23
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Innibandmore » FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. In conclusion, ee present performance measurements from small-scale prototypes and from the full-scale production system.« less
High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-11-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.
Design and characterization of very high frequency pulse tube prototypes
NASA Astrophysics Data System (ADS)
Lopes, Diogo; Duval, Jean-Marc; Charles, Ivan; Butterworth, James; Trollier, Thierry; Tanchon, Julien; Ravex, Alain; Daniel, Christophe
2012-06-01
Weight and size are important features of a cryocooler when it comes to space applications. Given their reliability and low level of exported vibrations (due to the absence of moving cold parts), pulse tubes are good candidates for spatial purposes and their miniaturization has been the focus of many studies. We report on the design and performance of a small-scale very high frequency pulse tube prototype, modeled after two previous prototypes which were optimized with a numerical code.
Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade
NASA Astrophysics Data System (ADS)
Benítez, V.; Ullán, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.; Sperlich, D.; Hauser, M.; Wonsak, S.; Parzefall, U.; Mahboubi, K.; Kuehn, S.; Mori, R.; Jakobs, K.; Bernabeu, J.; García, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.; Ariza, D.; Bloch, I.; Diez, S.; Gregor, I. M.; Keller, J.; Lohwasser, K.; Peschke, R.; Poley, L.; Brenner, R.; Affolder, A.
2016-10-01
The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-in stereo angle. In order to investigate these specific problems, the "petalet" prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITk strip community acquiring the necessary expertise to develop the full End-cap structure, the petal.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
SuperCDMS Prototype Detector Design and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Allison Blair
A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less
Structural similitude and scaling laws for laminated beam-plates
NASA Technical Reports Server (NTRS)
Simitses, George J.; Rezaeepazhand, Jalil
1992-01-01
The establishment of similarity conditions between two structural systems is discussed. Similarity conditions provide the relationship between a scale model and its prototype and can be used to predict the behavior of the prototype by extrapolating the experimental data of the corresponding small-scale model. Since satisfying all the similarity conditions simultaneously is difficult or even impossible, distorted models with partial similarity (with at least one similarity condition relaxed) are more practical. Establishing similarity conditions based on both dimensional analysis and direct use of governing equations is discussed, and the possibility of designing distorted models is investigated. The method is demonstrated through analysis of the cylindrical bending of orthotropic laminated beam-plates subjected to transverse line loads.
Terrestrial Testing of the CapiBRIC, a Microgravity Optimized Brine Processor
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.; Callahan, Michael R.; Weislogel, Mark M.
2016-01-01
Utilizing geometry based static phase separation exhibited in the radial vaned capillary drying tray, a system was conceived to recover water from brine. This technology has been named the Capillary BRIC; abbreviated CapiBRIC. The CapiBRIC utilizes a capillary drying tray within a drying chamber. Water is recovered from clean water vapor evaporating from the free surface leaving waste brine solids behind. A novel approach of optimizing the containment geometry to support passive capillary flow and static phase separation provides the opportunity for a low power system that is not as susceptible to fouling as membranes or other technologies employing physical barriers across the free brine surface to achieve phase separation in microgravity. Having been optimized for operation in microgravity, full-scale testing of the CapiBRIC as designed cannot be performed on the ground as the force of gravity would dominate over the capillary forces. However, subscale units relevant to full-scale design were used to characterize fill rates, containment stability, and interaction with a variable volume reservoir in the PSU Dryden Drop Tower (DDT) facility. PSU also using tested units scaled such that capillary forces dominated in a 1-g environment to characterize evaporation from a free-surface in 1-g upward, sideways and downward orientations. In order to augment the subscale testing performed by PSU, a full scale 1-g analogue of the CapiBRIC drying unit was initiated to help validate performance predictions regarding expected water recovery ratio, estimated processing time, and interface definitions for inlets, outlets, and internal processes, including vent gas composition. This paper describes the design, development and test of the terrestrial CapiBRIC prototypes.
NASA Astrophysics Data System (ADS)
Rountree, S. Derek
2013-04-01
The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.
NASA Astrophysics Data System (ADS)
Urbahs, A.; Urbaha, M.; Carjova, K.
2017-10-01
The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.
Air injection test on a Kaplan turbine: prototype - model comparison
NASA Astrophysics Data System (ADS)
Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.
2016-11-01
Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.
Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Lauer, Frank
This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less
Rivard, C J; Duff, B W; Dickow, J H; Wiles, C C; Nagle, N J; Gaddy, J L; Clausen, E C
1998-01-01
Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems. Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
Design, qualification, manufacturing and integration of IXV Ablative Thermal Protection System
NASA Astrophysics Data System (ADS)
Cioeta, Mario; Di Vita, Gandolfo; Signorelli Maria, Teresa; Bianco, Gianluca; Cutroni, Maurizio; Damiani, Francesco; Ferretti, Viviana; Rotondo, Adriano
2016-07-01
In the present paper, all the activities carried out by Avio S.p.A in order to define, qualify, manufacture and integrate the IXV Ablative TPS will be presented. In particular the extensive numerical simulation in both small and full scale testing activities will be overviewed. Wide-ranging testing activity has been carried out in order to verify, confirm and correlate the numerical models used for TPS sizing. Tests ranged from classical thermo-mechanical characterization traction specimens to tests in plasma wind tunnels on dedicated prototypes. Finally manufacturing and integration activities will be described emphasizing technological aspects solved in order to meet the stringent requirements in terms of shape accuracy and integration tolerances.
A Fault-Oblivious Extreme-Scale Execution Environment (FOX)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hensbergen, Eric; Speight, William; Xenidis, Jimi
IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: • collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes • operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS • IBM Research also participated in an advisory capacity with themore » Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating Systems/Runtime program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendon, Vrushali V.; Taylor, Zachary T.
ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less
Prototype of an in vitro model of the microcirculation.
Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W
2003-03-01
We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.
Dayer, Mohammad Reza
2016-05-01
Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.
Developing and Evaluating Prototype of Waste Volume Monitoring Using Internet of Things
NASA Astrophysics Data System (ADS)
Fathhan Arief, Mohamad; Lumban Gaol, Ford
2017-06-01
In Indonesia, especially Jakarta have a lot of garbage strewn that can be an eyesore and also cause pollution that can carry diseases. Garbage strewn can cause many things, one of her dues is bins are overflowing due to the full so it can not accommodate the waste dumped from other people. Thus, the author created a new method for waste disposal more systematic. In creating new method requires a technology to supports, then the author makes a prototype for waste volume monitoring. By using the internet of things prototype of waste volume monitoring may give notification to the sanitary agency that waste in the trash bin needs to be disposal. In this study, conducted the design and manufactured of prototype waste volume monitoring using LinkItONE board based by Arduino and an ultrasonic sensor for appliance senses. Once the prototype is completed, evaluation in order to determine whether the prototype will function properly. The result showed that the expected function of a prototype waste volume monitoring can work well.
Demand driven decision support for efficient water resources allocation in irrigated agriculture
NASA Astrophysics Data System (ADS)
Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens
2014-05-01
Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.
The moving-ring field-reversed mirror prototype reactor
NASA Astrophysics Data System (ADS)
Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.
1981-03-01
A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.
NASA Astrophysics Data System (ADS)
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
2017-01-01
Background Information to the patient about the long-term prognosis of symptom burden and functioning is an integrated part of clinical practice, but relies mostly on the clinician’s personal experience. Relevant prognostic models based on patient-reported outcome (PRO) data with repeated measurements are rarely available. Objective The aim was to describe a generic method for individual long-term prognosis of symptom burden and functioning that implied few statistical presumptions, to evaluate an implementation for prognosis of depressive symptoms in stroke patients and to provide open access to a Web-based prototype of this implementation for individual use. Methods The method used to describe individual prognosis of a PRO outcome was based on the selection of a specific subcohort of patients who have the same score as the patient in question at the same time (eg, after diagnosis or treatment start), plus or minus one unit of minimal clinically important difference. This subcohort’s experienced courses were then used to provide quantitative measures of prognosis over time. A cohort of 1404 stroke patients provided data for a simulation study and a prototype for individual use. Members of the cohort answered questionnaires every 6 months for 3.5 years. Depressive symptoms were assessed by the Hospital Anxiety and Depression Scale (HADS) and a single item from the SF-12 (MH4) health survey. Four approaches were compared in a simulation study in which the prognosis for each member of the cohort was individually assessed. Results The mean standard deviations were 40% to 70% higher in simulated scores. Mean errors were close to zero, and mean absolute errors were between 0.46 and 0.66 SD in the four approaches. An approach in which missing HADS scores were estimated from the single-item SF-12 MH4 performed marginally better than methods restricted to questionnaires with a genuine HADS score, which indicates that data collected with shorter questionnaires (eg, in clinical practice) may be used together with longer versions with the full scale, given that the design includes at least two simultaneous measurements of the full scale and the surrogate measure. Conclusions This is the first description and implementation of a nonparametric method for individual PRO-based prognosis. Given that relevant PRO data have been collected longitudinally, the method may be applied to other patient groups and to any outcome related to symptom burden and functioning. This initial implementation has been deliberately made simple, and further elaborations as well as the usability and clinical validity of the method will be scrutinized in clinical practice. An implementation of the prototype is available online at www.prognosis.dk. PMID:28765099
Zhang, Xindi; Warren, Jim; Corter, Arden; Goodyear-Smith, Felicity
2016-01-01
This paper describes development of a prototype data analytics portal for analysis of accumulated screening results from eCHAT (electronic Case-finding and Help Assessment Tool). eCHAT allows individuals to conduct a self-administered lifestyle and mental health screening assessment, with usage to date chiefly in the context of primary care waiting rooms. The intention is for wide roll-out to primary care clinics, including secondary school based clinics, resulting in the accumulation of population-level data. Data from a field trial of eCHAT with sexual health questions tailored to youth were used to support design of a data analytics portal for population-level data. The design process included user personas and scenarios, screen prototyping and a simulator for generating large-scale data sets. The prototype demonstrates the promise of wide-scale self-administered screening data to support a range of users including practice managers, clinical directors and health policy analysts.
Development of Prototype Outcomes-Based Training Modules for Aesthetic Dentistry
ERIC Educational Resources Information Center
Andres, Maricar Joy T.; Borabo, Milagros L.
2015-01-01
The objective of the study is to know the essential components of Aesthetic Dentistry that will be a basis for prototype Outcomes-based training modules. Using a 5-point Likert scale, the researcher-made questionnaire assessed the different elements of Aesthetic Dentistry which are needed in the designing of the training module, the manner of…
A superconducting levitation vehicle prototype
NASA Astrophysics Data System (ADS)
Stephan, R. M.; Nicolsky, R.; Neves, M. A.; Ferreira, A. C.; de Andrade, R.; Cruz Moreira, M. A.; Rosário, M. A.; Machado, O. J.
2004-08-01
This paper presents a small scale MAGLEV vehicle prototype which is under development at UFRJ. The levitation is done by Y-Ba-Cu-O superconducting blocks refrigerated by liquid nitrogen in the presence of Nd-Fe-B magnets. A long primary linear synchronous motor gives the traction. Design considerations and experimental results show the characteristics and performance of this system.
The chip-scale atomic clock : prototype evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mescher, Mark; Varghese, Mathew; Lutwak, Robert
2007-12-01
The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.
Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.
Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe
2017-01-11
We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.
Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials
NASA Astrophysics Data System (ADS)
Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe
2017-01-01
We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.
Results from a scaled reactor cavity cooling system with water at steady state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.
We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less
Advanced gas turbine systems program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeh, C.M.
1995-06-01
The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less
NASA Astrophysics Data System (ADS)
Penmetcha, Anirudh Raju
Significant efficiency increases are being made for bulk heterojunction organic photovoltaic prototype devices with world records at 11%. However the chlorinated solvents most frequently used in prototype manufacture would cause local health and safety concerns or large scale environmental pollution upon expansion of these techniques for commercialization. Moreover, research to bridge prototype and large-scale production of these solar cells is still in its infancy. Most prototype devices are made in inert glove box environments using spin-coating. There is a need to develop a non-toxic ink and incorporate it into a material deposition system that can be used in mass production. In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet printing. P3HT:PCBM blends were dissolved in organic solvent systems, and this solution was used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing parameters on film formation were highlighted - thus the inkjet printing method was validated as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll manufacturing. To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using the miniemulsion method. The nanoparticles were characterized for their size, as well as the blending between the P3HT and PCBM within the nanoparticle. These dispersions were then converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. Based on the results obtained here, tentative "next steps" have been outlined in order to improve upon this research work, in the future.
Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.
MEMS Stirling Cooler Development Update
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle
2003-01-01
This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.
Nanosatellite optical downlink experiment: design, simulation, and prototyping
NASA Astrophysics Data System (ADS)
Clements, Emily; Aniceto, Raichelle; Barnes, Derek; Caplan, David; Clark, James; Portillo, Iñigo del; Haughwout, Christian; Khatsenko, Maxim; Kingsbury, Ryan; Lee, Myron; Morgan, Rachel; Twichell, Jonathan; Riesing, Kathleen; Yoon, Hyosang; Ziegler, Caleb; Cahoy, Kerri
2016-11-01
The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
Mu2e transport solenoid prototype tests results
Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; ...
2016-02-08
The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went throughmore » an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.« less
Algorithmic design for 3D printing at building scale
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew; ...
2017-01-01
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Algorithmic design for 3D printing at building scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Green Liquid Monopropellant Thruster
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.
2015-01-01
Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.
NASA Technical Reports Server (NTRS)
Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb
2015-01-01
Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.
Comprehensive monitoring for heterogeneous geographically distributed storage
Ratnikova, Natalia; Karavakis, E.; Lammel, S.; ...
2015-12-23
Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then.more » In this study, we discuss the functionality and our experience of system deployment and operation on the full CMS scale.« less
Space station full-scale docking/berthing mechanisms development
NASA Technical Reports Server (NTRS)
Burns, Gene C.; Price, Harold A.; Buchanan, David B.
1988-01-01
One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.
Syrdal, Dag Sverre; Dautenhahn, Kerstin; Koay, Kheng Lee; Ho, Wan Ching
2014-01-01
This article describes the prototyping of human-robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenario.
The Full Scale Seal Experiment - A Seal Industrial Prototype for Cigeo - 13106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebon, P.; Bosgiraud, J.M.; Foin, R.
2013-07-01
The Full Scale Seal (FSS) Experiment is one of various experiments implemented by Andra, within the frame of the Cigeo (the French Deep Geological Repository) Project development, to demonstrate the technical construction feasibility and performance of seals to be constructed, at time of Repository components (shafts, ramps, drifts, disposal vaults) progressive closure. FSS is built inside a drift model fabricated on surface for the purpose. Prior to the scale 1:1 seal construction test, various design tasks are scheduled. They include the engineering work on the drift model to make it fit with the experimental needs, on the various work sequencesmore » anticipated for the swelling clay core emplacement and the concrete containment plugs construction, on the specialized handling tools (and installation equipment) manufactured and delivered for the purpose, and of course on the various swelling clay materials and low pH (below 11) concrete formulations developed for the application. The engineering of the 'seal-as-built' commissioning means (tools and methodology) must also be dealt with. The FSS construction experiment is a technological demonstrator, thus it is not focused on the phenomenological survey (and by consequence, on the performance and behaviour forecast). As such, no hydration (forced or natural) is planned. However, the FSS implementation (in particular via the construction and commissioning activities carried out) is a key milestone in view of comforting phenomenological extrapolation in time and scale. The FSS experiment also allows for qualifying the commissioning methods of a real sealing system in the Repository, as built, at time of industrial operations. (authors)« less
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
NASA Technical Reports Server (NTRS)
Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.
2009-01-01
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald
2013-03-01
The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less
Transformation toughened ceramics for the heavy duty diesel engine technology program
NASA Technical Reports Server (NTRS)
Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.
1984-01-01
The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.
A Platform for Scalable Satellite and Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.
2017-12-01
At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.
Expanded Owens Valley Solar Array (EOVSA) Testbed and Prototype
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Nita, G. M.; Sane, N.
2012-05-01
NJIT is engaged in constructing a new solar-dedicated radio array, the Expanded Owens Valley Solar Array (EOVSA), which is slated for completion in late 2013. An initial 3-antenna array, the EOVSA Subsystem Testbed (EST), is now in operation from 1-9 GHz based on three of the old OVSA antennas, to test certain design elements of the new array. We describe this instrument and show some results from recent solar flares observed with it. We also describe plans for an upcoming prototype of EOVSA, which will use three antennas of the new design over the full 1-18 GHz signal chain of the entirely new system. The EOVSA prototype will be in operation by late 2012. Highlights of the new design are ability to cover the entire 1-18 GHz in less than 1 s, simultaneous dual polarization, and improved sensitivity and stability. We discuss what can be expected from the prototype, and how it will compare with the full 13-antenna EOVSA. This work was supported by NSF grants AGS-0961867 and AST-0908344, and NASA grant NNX11AB49G to New Jersey Institute of Technology.
NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen
2006-01-01
The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.
Terrain interaction with the quarter scale beam walker
NASA Technical Reports Server (NTRS)
Chun, Wendell H.; Price, S.; Spiessbach, A.
1990-01-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
Terrain Interaction With The Quarter Scale Beam Walker
NASA Astrophysics Data System (ADS)
Chun, Wendell H.; Price, R. S.; Spiessbach, Andrew J.
1990-03-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
NASA Astrophysics Data System (ADS)
Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.
2017-08-01
The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.
NASA Technical Reports Server (NTRS)
Messitt, Don G.; Myrabo, Leik N.
1991-01-01
Rensselaer Polytechnic Institute has been developing a transatmospheric 'Lightcraft' technology which uses beamed laser energy to propel advanced shuttle craft to orbit. In the past several years, Rensselaer students have analyzed the unique combined-cycle Lightcraft engine, designed a small unmanned Lightcraft Technology Demonstrator, and conceptualized larger manned Lightcraft - to name just a few of the interrelated design projects. The 1990-91 class carried out preliminary and detailed design efforts for a one-person 'Mercury' Lightcraft, using computer-aided design and finite-element structural modeling techniques. In addition, they began construction of a 2.6 m-diameter, full-scale engineering prototype mockup. The mockup will be equipped with three robotic legs that 'kneel' for passenger entry and exit. More importantly, the articulated tripod gear is crucial for accurately pointing at, and tracking the laser relay mirrors, a maneuver that must be performed just prior to liftoff. Also accomplished were further design improvements on a 6-inch-diameter Lightcraft model (for testing in RPI's hypersonic tunnel), and new laser propulsion experiments. The resultant experimental data will be used to calibrate Computational Fluid Dynamic (CFD) codes and analytical laser propulsion models that can simulate vehicle/engine flight conditions along a transatmospheric boost trajectory. These efforts will enable the prediction of distributed aerodynamic and thruster loads over the entire full-scale spacecraft.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
Development of a patient decision aid prototype for adults with obstructive sleep apnea.
Trenaman, Logan; Munro, Sarah; Almeida, Fernanda; Ayas, Najib; Hicklin, James; Bansback, Nick
2016-05-01
To describe the development and assess the usability of a patient decision aid (PtDA) prototype designed for newly diagnosed, treatment-naïve, obstructive sleep apnea (OSA) patients. A web-based PtDA was developed which focuses on two first-line treatment options: continuous positive airway pressure (CPAP) and mandibular advancement splints (MAS). Development was guided by the International Patient Decision Aid Standards (IPDAS). Usability was assessed in individuals at high risk for OSA based on the STOP-Bang questionnaire, the patient acceptance of decision aid, the System Usability Scale (SUS), and content analysis of open-ended user feedback. Eighty eligible participants completed the survey. The mean age was 54 years (SD = 8.9), 60 % of the sample was male, 78 % were university-educated, and 64 % were employed full-time. Participants took an average of 13.7 min (SD = 9.6) to complete the PtDA, with 39 participants choosing CPAP, 25 choosing MAS, and 16 choosing no treatment. The mean SUS score was 78.22 (SD = 15.13). The majority of individuals thought the PtDA was useful in making a decision (n = 77, 96 %) and would recommend it to others (n = 77, 96 %), while a third (n = 26, 33 %) thought it was slanted towards CPAP. The SUS indicated that the PtDA was acceptable and useful for participants. And useful for participants. User feedback has been used to improve the prototype, which will now undergo further testing in patients at the Vancouver Sleep Disorders Clinic.
The thin-wall tube drift chamber operating in vacuum (prototype)
NASA Astrophysics Data System (ADS)
Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.
2013-08-01
The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.
CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY
Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...
The Catalytic Pellet: A Rich Prototype for Engineering Up-Scaling
ERIC Educational Resources Information Center
Arce, Pedro E.; Oyanader, Mario; Whitaker, Stephen
2007-01-01
This paper focuses on the use of scaling aspects for understanding transport processes with reaction in catalytic pores and pellets. The idea is to identify a systematic up-scaling approach in the learning process to help students with several concepts related to the transport-reaction process and the mathematical description associated with them.…
Prototype part task trainer: A remote manipulator system simulator
NASA Technical Reports Server (NTRS)
Shores, David
1989-01-01
The Part Task Trainer program (PTT) is a kinematic simulation of the Remote Manipulator System (RMS) for the orbiter. The purpose of the PTT is to supply a low cost man-in-the-loop simulator, allowing the student to learn operational procedures which then can be used in the more expensive full scale simulators. PTT will allow the crew members to work on their arm operation skills without the need for other people running the simulation. The controlling algorithms for the arm were coded out of the Functional Subsystem Requirements Document to ensure realistic operation of the simulation. Relying on the hardware of the workstation to provide fast refresh rates for full shaded images allows the simulation to be run on small low cost stand alone work stations, removing the need to be tied into a multi-million dollar computer for the simulation. PTT will allow the student to make errors which in full scale mock up simulators might cause failures or damage hardware. On the screen the user is shown a graphical representation of the RMS control panel in the aft cockpit of the orbiter, along with a main view window and up to six trunion and guide windows. The dials drawn on the panel may be turned to select the desired mode of operation. The inputs controlling the arm are read from a chair with a Translational Hand Controller (THC) and a Rotational Hand Controller (RHC) attached to it.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
User ratings of prosthetic usability and satisfaction in VA study to optimize DEKA arm.
Resnik, Linda; Borgia, Matthew
2014-01-01
The Department of Veterans Affairs study to optimize the DEKA Arm provided feedback to inform optimization of the gen 2 (second-generation) prototype and evaluate the gen 3 (third-generation) prototype. This article summarizes recommendations to improve gen 2 and reports satisfaction and usability ratings of gen 2 and gen 3. Data were collected from 39 subjects; 37 subjects were included in this analysis. Of the subjects, 24 were fit with gen 2 (8 radial configuration [RC], 6 humeral configuration [HC], and 10 shoulder configuration [SC]), 13 were fit with gen 3 (4 RC, 5 HC, and 4 SC), and 5 were fit with both. Usability and satisfaction were evaluated using the Trinity Amputation and Prosthesis Experience Scale (TAPES) and study-specific usability and satisfaction scales. Descriptive statistics were examined and prototypes compared using Wilcoxon rank-sum. Results were stratified by configuration level and outcomes compared by prototype. Satisfaction and usability were greater for gen 3 than gen 2. Overall TAPES scores were similar; however, scores of the TAPES aesthetic satisfaction subscale were higher for gen 3. Compared with gen 2 users, gen 3 users were more satisfied with appearance, grips, and doffing and rated overall usability higher. Features of gen 3, including weight, external cables and wires, hand covering, and fingernails, would benefit from further optimization.
Setoh, Yin Xiang; Amarilla, Alberto A; Peng, Nias Y; Slonchak, Andrii; Periasamy, Parthiban; Figueiredo, Luiz T M; Aquino, Victor H; Khromykh, Alexander A
2018-01-01
Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).
Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Yu, Wenhua; Zhao, Weihuan
Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less
Meikle, Mary B; Henry, James A; Griest, Susan E; Stewart, Barbara J; Abrams, Harvey B; McArdle, Rachel; Myers, Paula J; Newman, Craig W; Sandridge, Sharon; Turk, Dennis C; Folmer, Robert L; Frederick, Eric J; House, John W; Jacobson, Gary P; Kinney, Sam E; Martin, William H; Nagler, Stephen M; Reich, Gloria E; Searchfield, Grant; Sweetow, Robert; Vernon, Jack A
2012-01-01
Chronic subjective tinnitus is a prevalent condition that causes significant distress to millions of Americans. Effective tinnitus treatments are urgently needed, but evaluating them is hampered by the lack of standardized measures that are validated for both intake assessment and evaluation of treatment outcomes. This work was designed to develop a new self-report questionnaire, the Tinnitus Functional Index (TFI), that would have documented validity both for scaling the severity and negative impact of tinnitus for use in intake assessment and for measuring treatment-related changes in tinnitus (responsiveness) and that would provide comprehensive coverage of multiple tinnitus severity domains. To use preexisting knowledge concerning tinnitus-related problems, an Item Selection Panel (17 expert judges) surveyed the content (175 items) of nine widely used tinnitus questionnaires. From those items, the Panel identified 13 separate domains of tinnitus distress and selected 70 items most likely to be responsive to treatment effects. Eliminating redundant items while retaining good content validity and adding new items to achieve the recommended minimum of 3 to 4 items per domain yielded 43 items, which were then used for constructing TFI Prototype 1.Prototype 1 was tested at five clinics. The 326 participants included consecutive patients receiving tinnitus treatment who provided informed consent-constituting a convenience sample. Construct validity of Prototype 1 as an outcome measure was evaluated by measuring responsiveness of the overall scale and its individual items at 3 and 6 mo follow-up with 65 and 42 participants, respectively. Using a predetermined list of criteria, the 30 best-functioning items were selected for constructing TFI Prototype 2.Prototype 2 was tested at four clinics with 347 participants, including 155 and 86 who provided 3 and 6 mo follow-up data, respectively. Analyses were the same as for Prototype 1. Results were used to select the 25 best-functioning items for the final TFI. Both prototypes and the final TFI displayed strong measurement properties, with few missing data, high validity for scaling of tinnitus severity, and good reliability. All TFI versions exhibited the same eight factors characterizing tinnitus severity and negative impact. Responsiveness, evaluated by computing effect sizes for responses at follow-up, was satisfactory in all TFI versions.In the final TFI, Cronbach's alpha was 0.97 and test-retest reliability 0.78. Convergent validity (r = 0.86 with Tinnitus Handicap Inventory [THI]; r = 0.75 with Visual Analog Scale [VAS]) and discriminant validity (r = 0.56 with Beck Depression Inventory-Primary Care [BDI-PC]) were good. The final TFI was successful at detecting improvement from the initial clinic visit to 3 mo with moderate to large effect sizes and from initial to 6 mo with large effect sizes. Effect sizes for the TFI were generally larger than those obtained for the VAS and THI. After careful evaluation, a 13-point reduction was considered a preliminary criterion for meaningful reduction in TFI outcome scores. The TFI should be useful in both clinical and research settings because of its responsiveness to treatment-related change, validity for scaling the overall severity of tinnitus, and comprehensive coverage of multiple domains of tinnitus severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less
A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Haglin, David J.; Gillen, David S.
We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less
Surface water, groundwater, and social science measurements in a prototype hydrologic observatory
NASA Astrophysics Data System (ADS)
Genereux, D.; Duffy, C.; Famiglietti, J.; Helly, J.; Hooper, R.; Krajewski, W.; McKnight, D.; Ogden, F.; Reckhow, K.; Scanlon, B.; Shabmasn, L.
2003-12-01
We convened in late April 2003 to begin work on the design for a "paper" prototype hydrologic observatory (HO) in the watershed of the Neuse estuary in North Carolina. This design example was to specify what would be measured in the HO, why, where, how, how often, and how much it would cost. This presentation focuses on aspects of the design related to stream and river measurements (discharge, water quality, fluvial geomorphology and sediment), groundwater measurements, and groundwater interaction with streams, rivers, and the estuary. Also considered is the collection of social sciences data to support multidisciplinary studies of land and water use and the consequences for flooding, water supply, and water quality. A second presentation in this session (Scanlon et al.) covers atmospheric and land surface aspects of the HO design, including recharge and ET. The design calls for measurements to quantify surface and subsurface hydrologic fluxes (water, solutes, sediment) into the Neuse estuary, and internally within the watershed at a wide range of spatial scales (about 5 orders of magnitude, roughly 0.1-10,000 square km). One hydrologic goal is to construct reliable water budgets for watersheds spanning this full range of scales, from the smallest to the full Neuse estuary watershed. A linked water quality goal is a strong quantitative characterization of the hydrologic storage and transport of nitrogen, a major water quality issue in this and many other large watersheds with major agricultural operations. Geomorphological observations will target the effects of physiographic and anthropogenic factors on rates of erosion, residence times of sediment in the fluvial system, and the role of wetlands and channel sources on the discharge of sediment and sorbed nutrients to the Neuse estuary during extreme events. Measurements will span the entire Neuse watershed but be more concentrated in a subset of 6 intermediate-size watersheds (averaging about 500 square km) that represent zones of different geology, land use, and topography within the larger watershed. We do not claim that the design is "optimal" in a rigorous statistical sense, but believe the reasoning used in the design is sound and applicable to other sites. The design and its staged implementation plan are flexible and allow the reasonably full coverage of the hydrologic cycle (and reasonable core) necessary to yield new insights and to make the HO an attractive site for individual studies.
Rapid prototyping and stereolithography in dentistry
Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor
2015-01-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715
Rapid prototyping and stereolithography in dentistry.
Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor
2015-04-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.
Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica
2015-01-01
We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this technology in busy inpatient settings.
Scale factor management in the studies of affine models of shockproof garment elements
NASA Astrophysics Data System (ADS)
Denisov, Oleg; Pleshko, Mikhail; Ponomareva, Irina; Merenyashev, Vitaliy
2018-03-01
New samples of protective garment for performing construction work at height require numerous tests in conditions close to real conditions of extreme vital activity. The article presents some results of shockproof garment element studies and a description of a patented prototype. The tests were carried out on a model which geometric dimensions were convenient for manufacturing it in a limited batch. In addition, the used laboratory equipment (for example, a unique power pendulum), blanks made of a titanium-nickel alloy with a shape memory effect also imposed their limitations. The problem of the adequacy of the obtained experimental results transfer to mass-produced products was solved using tools of the classical similarity theory. Scale factor management influence in the affine modeling of the shockproof element, studied on the basis of the equiatomic titanium-nickel alloy with the shape memory effect, allowed us to assume, with a sufficient degree of reliability, the technical possibility of extrapolating the results of experimental studies to full-scale objects for the formation of the initial data of the mathematical model of shockproof garment dynamics elastoplastic deformation (while observing the similarity of the features of external loading).
Optimal crop selection and water allocation under limited water supply in irrigation
NASA Astrophysics Data System (ADS)
Stange, Peter; Grießbach, Ulrike; Schütze, Niels
2015-04-01
Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.
Wireless optical network for a home network
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric
2010-08-01
During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.
Timing and tracking for the Crystal Barrel detector
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer
2017-01-01
The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.
NASA Astrophysics Data System (ADS)
Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.
2018-06-01
This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.
High-temperature seals and lubricants for geothermal rock bits. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, R.R.; Winzenried, R.W.; Jones A.H.
1981-04-01
High temperature seals (elastomeric and mechanical) and lubricants were developed specifically for journal-type rock bits to be used in geothermal well drilling. Results at simulated downhole conditions indicate that five selected elastomeric seals (L'Garde No. 267, Utex Nos. 227, 231 and HTCR, and Sandia Glow Discharge Coated Viton) are capable of 288/sup 0/C (500/sup 0/F) service. Two prototype mechanical seals did not achieve the life determined for the elastomeric seals. Six lubricants (Pacer PLX-024 oil, PLX-043 oil, PLX-045 oil, Geobond Oil, and Geobond Grease) demonstrated 316/sup 0/C (600/sup 0/F) capability. Recommendation is made for full-scale simulated geothermal drilling tests utilizingmore » the improved elastomeric seals and lubricants.« less
Structural Test and Analysis of a Hybrid Inflatable Antenna
NASA Technical Reports Server (NTRS)
Gaspar, James L.; Mann, Troy; Sreekantamurthy, Tham; Behun, Vaughn
2007-01-01
NASA is developing ultra-lightweight structures technology for communication antennas for space missions. One of the research goals is to evaluate the structural characteristics of inflatable and rigidizable antennas through test and analysis. Being able to test and analyze the structural characteristics of a full scale antenna is important to enable the simulation of various mission scenarios to determine system performance in space. Recent work completed to evaluate a Hybrid Inflatable Antenna concept will be discussed. Tests were completed on a 2-m prototype to optimize its static shape and identify its modal dynamics that are important for analytical model validation. These test results were used to evaluate a preliminary finite element model of the antenna, and this model development and correlation activity is also described in the paper.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
Deep Space Habitat Concept Demonstrator
NASA Technical Reports Server (NTRS)
Bookout, Paul S.; Smitherman, David
2015-01-01
This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Consorzio RFX, Corso Stati Uniti 4, Padova 35127; Sartori, E.
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models.more » The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.« less
Ocean Renewable Energy Research at U. New Hampshire
NASA Astrophysics Data System (ADS)
Wosnik, M.; Baldwin, K.; White, C.; Carter, M.; Gress, D.; Swift, R.; Tsukrov, I.; Kraft, G.; Celikkol, B.
2008-11-01
The University of New Hampshire (UNH) is strategically positioned to develop and evaluate wave and tidal energy extraction technologies, with much of the required test site infrastructure in place already. Laboratory facilities (wave/tow tanks, flumes, water tunnels) are used to test concept validation models (scale 1:25--100) and design models (scale 1:10--30). The UNH Open Ocean Aquaculture (OOA) site located 1.6 km south of the Isles of Shoals (10 km off shore) and the General Sullivan Bridge testing facility in the Great Bay Estuary are used to test process models (scale 1:3--15) and prototype/demonstration models (scale 1:1-- 4) of wave energy and tidal energy extraction devices, respectively. Both test sites are easily accessible and in close proximity of UNH, with off-the-shelf availability. The Great Bay Estuary system is one of the most energetic tidally driven estuaries on the East Coast of the U.S. The current at the General Sullivan bridge test facility reliably exceeds four knots over part of the tidal cycle. The OOA site is a ten year old, well established offshore test facility, and is continually serviced by a dedicated research vessel and operations/diving crew. In addition to an overview of the physical resources, results of recent field testing of half- and full-scale hydrokinetic turbines, and an analysis of recent acoustic Doppler surveys of the tidal estuary will be presented.
Wearable Wireless Sensor for Multi-Scale Physiological Monitoring
2015-10-01
clothes with different colors and patterns. The developed algorithm can still detect the chest movements even if single color clothes are worn...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT One of the aims of Year 2 of the project was to complete development of a prototype multi...this aim, we have developed a prototype 6-photodetector reflectance-based pulse oximeter and results to date show that good signals can be obtained in
SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades
NASA Astrophysics Data System (ADS)
Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.
2017-04-01
This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.
Clinical validity of prototype personality disorder ratings in adolescents.
Defife, Jared A; Haggerty, Greg; Smith, Scott W; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith
2015-01-01
A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure-Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients' individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median intraclass correlation coefficient =.75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning.
Pressure pulsation in Kaplan turbines: Prototype-CFD comparison
NASA Astrophysics Data System (ADS)
Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.
2012-11-01
Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.
Clinical Validity of Prototype Personality Disorder Ratings in Adolescents
DeFife, Jared A.; Haggerty, Greg; Smith, Scott W.; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith
2015-01-01
A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure – Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients’ individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median ICC = .75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning. PMID:25457971
NASA Astrophysics Data System (ADS)
Berthomier, M.; Techer, J. D.
2017-12-01
Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez
2011-07-01
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez; /NIU
2011-08-18
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golwala, Sunil R.
2013-12-20
The eventual full-size, radiopure BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. We expect that the prototype BetaCage already developed will be an excellent screener of alpha particles. Both the prototype and final BetaCage will provide new infrastructure for rare-event science.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Gamma-Ray Focusing Optics for Small Animal Imaging
NASA Technical Reports Server (NTRS)
Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.
2004-01-01
There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.
Accelerated discovery of new magnets in the Heusler alloy family
Sanvito, Stefano; Oses, Corey; Xue, Junkai; Tiwari, Anurag; Zic, Mario; Archer, Thomas; Tozman, Pelin; Venkatesan, Munuswamy; Coey, Michael; Curtarolo, Stefano
2017-01-01
Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed. PMID:28439545
Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
Hernández-Montes, Maria del Socorro; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza
2009-01-01
Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. This paper presents advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full-field-of-view characterization of nanometer scale sound-induced displacements of the surface of the TM at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical-research environment to address basic-science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad-frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and cadaveric human samples are shown, and their potential utility discussed. PMID:19566316
Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
NASA Astrophysics Data System (ADS)
Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza
2009-05-01
Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.
NASA Astrophysics Data System (ADS)
Nishimura, K.; Dey, B.; Aston, D.; Leith, D. W. G. S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G. S.; Va'vra, J.
2013-02-01
We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from 384 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of Emuon> 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of reconstruction ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.
Judgments of subtle facial expressions of emotion.
Matsumoto, David; Hwang, Hyisung C
2014-04-01
Most studies on judgments of facial expressions of emotion have primarily utilized prototypical, high-intensity expressions. This paper examines judgments of subtle facial expressions of emotion, including not only low-intensity versions of full-face prototypes but also variants of those prototypes. A dynamic paradigm was used in which observers were shown a neutral expression followed by the target expression to judge, and then the neutral expression again, allowing for a simulation of the emergence of the expression from and then return to a baseline. We also examined how signal and intensity clarities of the expressions (explained more fully in the Introduction) were associated with judgment agreement levels. Low-intensity, full-face prototypical expressions of emotion were judged as the intended emotion at rates significantly greater than chance. A number of the proposed variants were also judged as the intended emotions. Both signal and intensity clarities were individually associated with agreement rates; when their interrelationships were taken into account, signal clarity independently predicted agreement rates but intensity clarity did not. The presence or absence of specific muscles appeared to be more important to agreement rates than their intensity levels, with the exception of the intensity of zygomatic major, which was positively correlated with agreement rates for judgments of joy.
NASA Astrophysics Data System (ADS)
Hampton, Francis Patrick
Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3--6 were achieved for all concrete elements tested. To study the long-term behavior of DHFRP, the creep-rupture strength of 5-mm bars was tested. This was conducted first on individual bar specimens and is important in the life-cycle design and performance of DHFRP reinforced concrete.
Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices
Shen, Caiwei; Wang, Xiaohong; Zhang, Wenfeng; Kang, Feiyu
2013-01-01
Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems. PMID:23887486
Advanced optical disk storage technology
NASA Technical Reports Server (NTRS)
Haritatos, Fred N.
1996-01-01
There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.
Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn
2015-04-15
A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reachesmore » 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.« less
Li, Xin; Jordan, Matthew B; Ayari, Taha; Sundaram, Suresh; El Gmili, Youssef; Alam, Saiful; Alam, Muhbub; Patriarche, Gilles; Voss, Paul L; Paul Salvestrini, Jean; Ougazzaden, Abdallah
2017-04-11
Practical boron nitride (BN) detector applications will require uniform materials over large surface area and thick BN layers. To report important progress toward these technological requirements, 1~2.5 µm-thick BN layers were grown on 2-inch sapphire substrates by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties were carefully characterized and discussed. The thick layers exhibited strong band-edge absorption near 215 nm. A highly oriented two-dimensional h-BN structure was formed at the film/sapphire interface, which permitted an effective exfoliation of the thick BN film onto other adhesive supports. And this structure resulted in a metal-semiconductor-metal (MSM) device prototype fabricated on BN membrane delaminating from the substrate. MSM photodiode prototype showed low dark current of 2 nA under 100 V, and 100 ± 20% photoconductivity yield for deep UV light illumination. These wafer-scale MOVPE-grown thick BN layers present great potential for the development of deep UV photodetection applications, and even for flexible (opto-) electronics in the future.
Prototype ultrasonic instrument for quantitative testing
NASA Technical Reports Server (NTRS)
Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.
1972-01-01
A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.
Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)
2015-02-01
Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype
Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype
NASA Technical Reports Server (NTRS)
Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.
Sherrod, Brandon A; Dew, Dustin A; Rogers, Rebecca; Rimmer, James H; Eberhardt, Alan W
2017-01-01
Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) of weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and five power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R 2 = 0.997) with absolute differences of 1.4 ± 2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype's estimated commercial price range, $500-$600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition.
The mechanical design and simulation of a scaled H⁻ Penning ion source.
Rutter, T; Faircloth, D; Turner, D; Lawrie, S
2016-02-01
The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
The mechanical design and simulation of a scaled H- Penning ion source
NASA Astrophysics Data System (ADS)
Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.
2016-02-01
The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A
2015-01-01
Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580
Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing
NASA Technical Reports Server (NTRS)
Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus
2010-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.; Sancaktar, Erol; Roberts, Gary D. (Technical Monitor)
2002-01-01
An effective design methodology was established for composite jet engine containment structures. The methodology included the development of the full and reduced size prototypes, and FEA models of the containment structure, experimental and numerical examination of the modes of failure clue to turbine blade out event, identification of materials and design candidates for future industrial applications, and design and building of prototypes for testing and evaluation purposes.
STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)
2017-03-01
STAR operation in the presence of 1 kW EIRP power , independently of the choice of transmitter in use. The paper reports on the status of the SPEAR...prototype will be presented. To the authors’ knowledge , the measured results from the prototype already demonstrate state-of-the-art STAR performance...self-generated high power interferers. SPEAR is an innovative approach to the full duplex challenge that meets the high demands of military systems
Adaptive-passive vibration control systems for industrial applications
NASA Astrophysics Data System (ADS)
Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.
2015-04-01
Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.
Hicks, C R; Chirila, T V; Dalton, P D; Clayton, A B; Vijayasekaran, S; Crawford, G J; Constable, I J
1996-08-01
To develop a prototype artificial cornea and evaluate it in the rabbit model. Hydrogel core-and-skirt keratoprostheses were made and were inserted as full-thickness implants covered with conjunctival flaps in the right eyes of eight rabbits. Peroperative complications related to inadequate mechanical strength led to failure in the early postoperative period in three animals, one was euthanased for an unrelated reason and the remaining four have been successful for up to 16 weeks' follow-up. Full-thickness implantation of an artificial cornea, analogous to penetrating keratoplasty, has been achieved in the rabbit model. Histological findings confirm that integration of the prosthesis with host tissue occurs. The main complications encountered in this preliminary series were related to inadequate strength of the sponge skirt of this prototype device. Work in our laboratories is now concentrated upon improving the mechanical qualities of the hydrogel skirt and on the enhancement of biointegration.
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn
2005-01-01
Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.
Design of rehabilitation robot hand for fingers CPM training
NASA Astrophysics Data System (ADS)
Zhou, Hongfu; Chan, T. W.; Tong, K. Y.; Kwong, K. K.; Yao, Xifan
2008-10-01
This paper presents a low-cost prototype for rehabilitation robot aide patient do hands CPM (continuous passive motion) training. The design of the prototype is based on the principle of Rutgers Master II glove, but it is better in performance for more improvement made. In the design, it uses linear motors to replace pneumatic actuators to make the product more portable and mobile. It increases finger training range to 180 degree for the full range training of hand finger holding and extension. Also the prototype can not only be wearing on palm and fore arm do training for face to face with finger move together, but also be put in the opposite hand glove wear direction for hand rehabilitation training. During the research, Solidworks is used as the tool for mechanical design and movement simulation. It proved through experiment that the prototype made in the research is appropriate for hand do CPM training.
Sanabria, Charlos; Lee, Peter J.; Starch, William; ...
2015-10-14
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlos; Lee, Peter J.; Starch, William
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
Katz, Michael; Hilsenroth, Mark J
2017-11-01
The Social Anxiety/Avoidance Scale was recently added to the Shedler Westen Assessment Procedure (SWAP), and requires independent validation. This study used data drawn from a larger ongoing project in order to retrospectively examine its convergent validity with two self-report attachment measures: Relationship Questionnaire (RQ) and Experiences in Close Relationships Questionnaire-Revised (ECR-R). Fifty-two patients completed the RQ and the ECR-R before beginning psychotherapy treatment. Clinicians rated the patients on the SWAP after six sessions. The SWAP Social Anxiety/Avoidance Scale (SWAP-SAAS) was negatively related to the RQ secure attachment prototype scale and positively related to the ECR-R attachment anxiety scale. Our findings provide initial support for the use of the SWAP-SAAS as a therapist-rated measure associated with lower patient-reported levels of fit with a secure attachment prototype and with higher patient-reported levels of attachment anxiety. Implications and suggestions for future research on the SWAP-SAAS, as well as for clinical work with socially anxious and avoidant patients, are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
Drag and Side Force Reduction for Cyclicsts in Echelon Formation
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Cunningham, Alec; Lovell, Adam
2017-11-01
When riding directly behind another cyclist (drafting), a rider can use up to 30% less energy. This technique is often used during competitions, yet drafting in the presence of a cross wind has not been studied extensively. To investigate the effect of side-wind on drafting, 1:11 scale models of two different cyclists were rapid-prototyped and tested in a wind tunnel. The drag and side forces were measured in formations of up to 4 models. The results suggest that there is a significant decrease in both drag and side force when a cyclist is riding in another cyclist's wake. Positioning with no off-stream-wise offset result in the largest reduction of forces. When riding in a group of four cyclists, the second and third cyclist experience the largest force reduction. The size of the leading cyclist affects the reduction of forces, particularly when the leading cyclist is smaller. The results are dependent on the Reynolds number, but appear to be independent at higher Reynolds numbers. Initial full scale tests were conducted at the UNH Flow Physics Facility.
ITER-FEAT vacuum vessel and blanket design features and implications for the R&D programme
NASA Astrophysics Data System (ADS)
Ioki, K.; Dänner, W.; Koizumi, K.; Krylov, V. A.; Cardella, A.; Elio, F.; Onozuka, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
A configuration in which the vacuum vessel (VV) fits tightly to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the toroidal field ripple. The blanket modules are supported directly by the VV. A full scale VV sector model has provided critical information related to fabrication technology and for testing the magnitude of welding distortions and achievable tolerances. This R&D validated the fundamental feasibility of the double wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and robustness of solid hot isostatic pressing joining were demonstrated in the R&D by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal.
High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles
2012-08-26
we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT -5H bimorph actuator. Several LionFly prototypes were fabricated...in the literature, using PZT thin film actuators directly coupled to a 2.5 mm SiO2/Si3N4/T i-Au wing that produces large flapping angle at resonance...for larger scale mechanisms [17, 9]. For PAVs, linear electromagnetic ac- tuation [21] and bulk PZT bimorph actuators [8], and thin film PZT unimorph
Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system
NASA Astrophysics Data System (ADS)
Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin
2007-08-01
The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.
Continuous stacking computational approach based automated microscope slide scanner
NASA Astrophysics Data System (ADS)
Murali, Swetha; Adhikari, Jayesh Vasudeva; Jagannadh, Veerendra Kalyan; Gorthi, Sai Siva
2018-02-01
Cost-effective and automated acquisition of whole slide images is a bottleneck for wide-scale deployment of digital pathology. In this article, a computation augmented approach for the development of an automated microscope slide scanner is presented. The realization of a prototype device built using inexpensive off-the-shelf optical components and motors is detailed. The applicability of the developed prototype to clinical diagnostic testing is demonstrated by generating good quality digital images of malaria-infected blood smears. Further, the acquired slide images have been processed to identify and count the number of malaria-infected red blood cells and thereby perform quantitative parasitemia level estimation. The presented prototype would enable cost-effective deployment of slide-based cyto-diagnostic testing in endemic areas.
The mechanical design and simulation of a scaled H{sup −} Penning ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.
2016-02-15
The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.
Ambler - An autonomous rover for planetary exploration
NASA Technical Reports Server (NTRS)
Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom
1989-01-01
The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.
ROBOCAL: An automated NDA (nondestructive analysis) calorimetry and gamma isotopic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Powell, W.D.; Ostenak, C.A.
1989-11-01
ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisitionmore » and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices.« less
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-01-01
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.
Turbokon scientific and production implementation company—25 years of activity
NASA Astrophysics Data System (ADS)
Favorskii, O. N.; Leont'ev, A. I.; Milman, O. O.
2016-05-01
The main results of studies performed at ZAO Turbokon NPVP in cooperation with leading Russian scientific organizations during 25 years of its activity in the field of development of unique ecologically clean electric power and heat production technologies are described. They include the development and experimental verification using prototypes and full-scale models of highly efficient air-cooled condensers for steam turbines, a high temperature gas steam turbine for stationary and transport power engineering, a nonfuel technology of electric power production using steam turbine installations with a unit power of 4-20 MW at gas-main pipelines and industrial boiler houses and heat stations. The results of efforts in the field of reducing vibroactivity of power equipment for transport installations are given. Basic directions of further research for increasing the efficiency and ecological safety of home power engineering are discussed.
NASA Astrophysics Data System (ADS)
Jain, Shilpi
The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
NASA Astrophysics Data System (ADS)
Song, Ge; Tang, Xi; Zhu, Feng
2018-05-01
Traditional university maps, taking campus as the principal body, mainly realize the abilities of space localization and navigation. They don't take full advantage of map, such as multi-scale representations and thematic geo-graphical information visualization. And their inherent propaganda functions have not been entirely developed. Therefore, we tried to take East China Normal University (ECNU) located in Shanghai as an example, and integrated various information related to university propaganda need (like spatial patterns, history and culture, landscape ecology, disciplinary constructions, cooperation, social services, development plans and so on). We adopted the frontier knowledge of `information design' as well as kinds of information graphics and visualization solutions. As a result, we designed and compiled a prototype atlas of `ECNU Impression' to provide a series of views of ECNU, which practiced a new model of `narrative campus map'. This innovative propaganda product serves as a supplement to typical shows with official authority, data maturity, scientificity, dimension diversity, and timing integrity. The university atlas will become a usable media for university overall figure shaping.
Scalability of Several Asynchronous Many-Task Models for In Situ Statistical Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille; Kolla, Hemanth
This report is a sequel to [PB16], in which we provided a first progress report on research and development towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system. This earlier work included a prototype implementation of a proposed solution, using a proxy mini-application as a surrogate for a full-scale scientific simulation code. The first scalability studies were conducted with the above on modestly-sized experimental clusters. In contrast, in the current work we have integrated our in situ analysis engines with a full-size scientific application (S3D, using the Legion-SPMD model), and have conducted nu- mericalmore » tests on the largest computational platform currently available for DOE science ap- plications. We also provide details regarding the design and development of a light-weight asynchronous collectives library. We describe how this library is utilized within our SPMD- Legion S3D workflow, and compare the data aggregation technique deployed herein to the approach taken within our previous work.« less
Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2000-01-01
We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.
Recent progress of flexible AMOLED displays
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Rajan, Kamala; Silvernail, Jeff; Mandlik, Prashant; Ma, Ruiqing; Hack, Mike; Brown, Julie J.; Yoo, Juhn S.; Jung, Sang-Hoon; Kim, Yong-Cheol; Byun, Seung-Chan; Kim, Jong-Moo; Yoon, Soo-Young; Kim, Chang-Dong; Hwang, Yong-Kee; Chung, In-Jae; Fletcher, Mark; Green, Derek; Pangle, Mike; McIntyre, Jim; Smith, Randal D.
2011-03-01
Significant progress has been made in recent years in flexible AMOLED displays and numerous prototypes have been demonstrated. Replacing rigid glass with flexible substrates and thin-film encapsulation makes displays thinner, lighter, and non-breakable - all attractive features for portable applications. Flexible AMOLEDs equipped with phosphorescent OLEDs are considered one of the best candidates for low-power, rugged, full-color video applications. Recently, we have demonstrated a portable communication display device, built upon a full-color 4.3-inch HVGA foil display with a resolution of 134 dpi using an all-phosphorescent OLED frontplane. The prototype is shaped into a thin and rugged housing that will fit over a user's wrist, providing situational awareness and enabling the wearer to see real-time video and graphics information.
Detector evaluation of a prototype amorphous selenium-based full field digital mammography system
NASA Astrophysics Data System (ADS)
Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.
2005-04-01
This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.
Roadside Tracker Portal-less Portal Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig
2013-07-01
This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.
Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector
Hasegawa, S.
2016-04-23
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
EVA Suit R and D for Performance Optimization
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2014-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations
Age differences in alcohol prototype perceptions and willingness to drink in U.K. adolescents.
Davies, Emma L; Martin, Jilly; Foxcroft, David R
2016-01-01
Using the prototype willingness model (PWM) as a framework, this study sought to explore the relationship between prototype perceptions, willingness and alcohol consumption in a sample of adolescents in the United Kingdom (UK). Adolescents aged 11-17 were asked about their alcohol prototype perceptions, willingness to drink, intentions, alcohol consumption, drunkenness and harms using a cross-sectional online survey. Participants were recruited through opportunity sampling via schools and parents. The survey was completed by 178 respondents (51% female; 91 aged 11-15, 87 aged 16-17). Multivariate analysis revealed significant differences between participants aged 11-15 and 16-17 on PWM measures, even when experience with drinking was accounted for (p < .001). There were significant interactions (p < .001) between age and prototype perceptions; younger participants rated non-drinker prototypes as more favourable and more similar to the self than 16- and 17-year-old participants. Willingness and intentions interacted with age; both measures were similar in 16- and 17-year-olds, whereas younger participants scored significantly higher on willingness than intentions (p < .001). Three distinct scales of prototype descriptions were identified in principal components analysis. Characteristics related to sociability significantly predicted willingness to drink alcohol in the sample (p < .001). This study extends previous research by demonstrating that the PWM can provide a theoretical explanation of adolescent drinking in the UK. The results suggest that 11- to 15-year-olds may be the most suitable age for an intervention that targets alcohol prototypes, with a focus on sociability characteristics.
Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.
2016-01-01
Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404
Hengsbach, Stefan; Lantada, Andrés Díaz
2014-08-01
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Herault, J; Rincon, F; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y
2011-09-01
The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.
Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toy, Lora; Choi, Young Chul; Hendren, Zachary
In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade wastemore » heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m 2·h) for flat-sheet membranes and >20 L/(m 2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data, numerical modeling was performed on the FO and MD processes to estimate engineering parameters for a larger-scale pilot unit. Based on the experimental studies and modeling results, a pilot-scale, integrated FO-MD prototype unit was designed and built for trailer-mounted operation. This prototype system was fed real industrial wastewater, which could not be further treated by conventional technologies, from an oil production facility and was successfully operated for over 15 weeks without major stoppage. About 90% water recovery was possible, while concentrating the TDS from 12,000 ppm up to 190,500 ppm. The FO-MD prototype rejected most wastewater contaminants while producing water with <300 ppm TDS, even when the feed TDS was higher than 150,000 ppm. No chemical cleaning was necessary during the pilot testing period. Flushing the system with dechlorinated tap water was sufficient to reset the membranes for the next set of test conditions. Pilot performance and membrane autopsy showed that, even though the feed was concentrated more than 10 times, membrane fouling was unnoticeable and no defects were detected on the FO and MD membrane surfaces. This project demonstrated the technical feasibility of the hybrid FO-MD process by taking water already treated to the limit with the highest level of current technologies and further concentrating it 10-fold by using mostly low-cost materials. Because no membranes suitable for full-scale plant applications are available at present, economical feasibility of the hybrid technology is still uncertain, but it is expected that broader industry participation can further reduce FO-MD process costs.« less
Physical Test Prototypes Based on Microcontroller
NASA Astrophysics Data System (ADS)
Paramitha, S. T.
2017-03-01
The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.
Status of E-ELT M5 scale-one demonstrator
NASA Astrophysics Data System (ADS)
Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick
2014-07-01
The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.
Development of a Prototype Nickel Optic for the Constellation-X Hard-X-Ray Telescope
NASA Technical Reports Server (NTRS)
Basso, S.; Bruni, R. J.; Citerio, O.; Engelhaupt, D.; Ghigo, M.; Gorenstien, P.; Mazzoleni, F.; ODell, S. L.; Pareschi, G.; Ramsey, B. D.
2003-01-01
The Constellation-X mission, planned for launch in 2011, will feature an array of hard-x ray telescopes with a total collecting area goal of 1500 square centimeters at 40 keV. Various technologies are currently being investigated for the optics of these telescopes including multilayer-coated Eletroformed-Nickel-Replicated (ENR) shells. The attraction of the ENR process is that the resulting full-shell optics are inherently stable and offer the promise of good angular resolution and enhanced instrument sensitivity. The challenge for this process is to meet a relatively tight weight budget with a relatively dense material (rho nickel = 9 grams per cubic centimeters.) To demonstrate the viability of the ENR process we are fabricating a prototype HXT mirror module to be tested against a competing segmented-glass-shell optic. The ENR prototype will consist of 5 shells of diameters from 150 mm to 280 mm and of 426 mm total length. To meet the stringent weight budget for Con-X, the shells will be only 150 micron thick. The innermost of these will be coated with Iridium, while the remainder will be coated with graded-density multilayers. Mandrels for these shells are currently under fabrication (Jan 03), with the first shells scheduled for production in February 03. A tentative date of late Summer has been set for prototype testing. Issues currently being addressed are the control of stresses in the multiplayer coating and ways of mitigating their effects on the figure of the necessarily thin shells. Also, the fabrication, handling and mounting of these shells without inducing permanent figure distortions. A full status report on the prototype optic will be presented along with test results as available.
Usefulness of temporal bone prototype for drilling training: A prospective study.
Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D
2017-12-01
Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.
Design of the protoDUNE raw data management infrastructure
Fuess, S.; Illingworth, R.; Mengel, M.; ...
2017-10-01
The Deep Underground Neutrino Experiment (DUNE) will employ a set of Liquid Argon Time Projection Chambers (LArTPC) with a total mass of 40 kt as the main components of its Far Detector. In order to validate this technology and characterize the detector performance at full scale, an ambitious experimental program (called “protoDUNE”) has been initiated which includes a test of the large-scale prototypes for the single-phase and dual-phase LArTPC technologies, which will run in a beam at CERN. The total raw data volume that is slated to be collected during the scheduled 3-month beam run is estimated to be inmore » excess of 2.5 PB for each detector. This data volume will require that the protoDUNE experiment carefully design the DAQ, data handling and data quality monitoring systems to be capable of dealing with challenges inherent with peta-scale data management while simultaneously fulfilling the requirements of disseminating the data to a worldwide collaboration and DUNE associated computing sites. Here in this paper, we present our approach to solving these problems by leveraging the design, expertise and components created for the LHC and Intensity Frontier experiments into a unified architecture that is capable of meeting the needs of protoDUNE.« less
Design of the protoDUNE raw data management infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuess, S.; Illingworth, R.; Mengel, M.
The Deep Underground Neutrino Experiment (DUNE) will employ a set of Liquid Argon Time Projection Chambers (LArTPC) with a total mass of 40 kt as the main components of its Far Detector. In order to validate this technology and characterize the detector performance at full scale, an ambitious experimental program (called “protoDUNE”) has been initiated which includes a test of the large-scale prototypes for the single-phase and dual-phase LArTPC technologies, which will run in a beam at CERN. The total raw data volume that is slated to be collected during the scheduled 3-month beam run is estimated to be inmore » excess of 2.5 PB for each detector. This data volume will require that the protoDUNE experiment carefully design the DAQ, data handling and data quality monitoring systems to be capable of dealing with challenges inherent with peta-scale data management while simultaneously fulfilling the requirements of disseminating the data to a worldwide collaboration and DUNE associated computing sites. Here in this paper, we present our approach to solving these problems by leveraging the design, expertise and components created for the LHC and Intensity Frontier experiments into a unified architecture that is capable of meeting the needs of protoDUNE.« less
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-11-01
Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.
A prototype retinal prosthesis for visual stimulation.
Abu-Faraj, Ziad O; Rjeily, Dany M Abou; Nasreddine, Rayan W; Andari, Majid A; Taok, Habib H
2007-01-01
Vision loss has severe impacts on its victims, carrying with it physiological, psychological, social, and economic consequences thereby degrading the quality of life and depriving the individual from performing many of the daily living activities. This article describes the design and development of a prototype retinal prosthesis for visual stimulation. The system consists of a webcam, a notebook computer, and a prototype excitatory circuit. The system is driven by a MATLAB-based custom-built software. Live webcam images are converted to an 8 x 8 mosaic of 256 gray scale shades. Subsequently, electrical impulses are generated by the excitatory circuit in real-time to topographically stimulate the corresponding epiretinal cells. Following their conversion to gray scale, recorded data from the central pixel of the mosaic yielded: 36.24 nC for black, 48.48 nC for red, 55.68 nC for green, 67.68 nC for blue, and 91.92 nC for white. These results correlate well with data reported in the literature. The hallmark of this work is in the potential of partial restoration of sight that would add quality to the life of individuals with vision loss.
Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slocum, Alex
The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test amore » second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean uRanium Extraction (SMORE). Next, the results of the 1/10th scale physical scale prototype of a highly feasible symbiotic uranium harvester are presented. The report then details the design and results of an experiment to examine the hydrodynamic effects of a uranium harvester on the offshore wind turbine it is attached to using a 1/150th Froude scale tow tank test. Finally, the report details the results of an initial cost-analysis for the production of uranium from seawater from such a symbiotic device.« less
Public Key-Based Need-to-Know Authorization Engine Final Report CRADA No. TSB-1553-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark, R.; Williams, R.
The goals of this project were to develop a public key-based authentication service plug-in based on LLNL's requirements, integrate the public key-based authentication with the Intra Verse authorization service adn the LLNL NTK server by developing a full-featured version of the prototyped Intra Verse need-to-know plug in; and to test the authorization and need-to-know plug-in in a secured extranet prototype among selected national Labs.
Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber
NASA Technical Reports Server (NTRS)
Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.
1994-01-01
The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.
Scaling with System Size of the Lyapunov Exponents for the Hamiltonian Mean Field Model
NASA Astrophysics Data System (ADS)
Manos, Thanos; Ruffo, Stefano
2011-12-01
The Hamiltonian Mean Field model is a prototype for systems with long-range interactions. It describes the motion of N particles moving on a ring, coupled with an infinite-range potential. The model has a second-order phase transition at the energy density Uc =3/4 and its dynamics is exactly described by the Vlasov equation in the N→∞ limit. Its chaotic properties have been investigated in the past, but the determination of the scaling with N of the Lyapunov Spectrum (LS) of the model remains a challenging open problem. Here we show that the N -1/3 scaling of the Maximal Lyapunov Exponent (MLE), found in previous numerical and analytical studies, extends to the full LS; scaling is "precocious" for the LS, meaning that it becomes manifest for a much smaller number of particles than the one needed to check the scaling for the MLE. Besides that, the N -1/3 scaling appears to be valid not only for U>Uc , as suggested by theoretical approaches based on a random matrix approximation, but also below a threshold energy Ut ≈0.2. Using a recently proposed method (GALI) devised to rapidly check the chaotic or regular nature of an orbit, we find that Ut is also the energy at which a sharp transition from weak to strong chaos is present in the phase-space of the model. Around this energy the phase of the vector order parameter of the model becomes strongly time dependent, inducing a significant untrapping of particles from a nonlinear resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakdale, James S.; Ye, Jianchao; Smith, William L.
Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.
Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...
2016-11-28
Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.
Designing an Integrated System of Databases: A Workstation for Information Seekers.
ERIC Educational Resources Information Center
Micco, Mary; Smith, Irma
1987-01-01
Proposes a framework for the design of a full function workstation for information retrieval based on study of information seeking behavior. A large amount of local storage of the CD-ROM jukebox variety and full networking capability to both local and external databases are identified as requirements of the prototype. (MES)
Testing of a Natural Language Retrieval System for a Full Text Knowledge Base.
ERIC Educational Resources Information Center
Bernstein, Lionel M.; Williamson, Robert E.
1984-01-01
The Hepatitis Knowledge Base (text of prototype information system) was used for modifying and testing "A Navigator of Natural Language Organized (Textual) Data" (ANNOD), a retrieval system which combines probabilistic, linguistic, and empirical means to rank individual paragraphs of full text for similarity to natural language queries…
A simple, low-cost conductive composite material for 3D printing of electronic sensors.
Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
NASA Technical Reports Server (NTRS)
Clements, Anna L.; Stinson, Richard G.; VanWie, Michael; Warren, Eric
2009-01-01
The second generation International Space Station (ISS) Total Organic Carbon Analyzer s (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components. The ISS TOCA was designed as a non-toxic TOC analyzer that could be deployed in a flight ready package. This basic concept was developed through laboratory component level testing, two moderate fidelity integrated system breadboard prototypes, a flight-like full scale prototype, as well as lessons learned from the inadequacies of the first unit. The result: a new TOCA unit that is robust in design and includes special considerations to microgravity and the on-orbit ISS environment. TOCA meets the accuracy needs of the ISS Program with a 1,000 to 25,000 g/L range, accurate to within +/-25%.
In Situ Resource Utilization For Mobility In Mars Exploration
NASA Astrophysics Data System (ADS)
Hartman, Leo
There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.
The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles
2017-10-01
We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.; Fowley, M. D.; Miller, D. H.
2016-05-01
The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less
NASA Astrophysics Data System (ADS)
Moskvin, L. N.; Rakov, V. T.
2015-06-01
The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.
ProtoMD: A prototyping toolkit for multiscale molecular dynamics
NASA Astrophysics Data System (ADS)
Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.
2016-05-01
ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.
A Scalable proxy cache for Grid Data Access
NASA Astrophysics Data System (ADS)
Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan
2012-12-01
We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.
Laser-absorption sensing of gas composition of products from coal gasification
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.
2014-06-01
A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, L.G.; Witzke, E.L.
This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.
NASA Astrophysics Data System (ADS)
Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.
2016-08-01
The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.
Design of a solar concentrator considering arbitrary surfaces
NASA Astrophysics Data System (ADS)
Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino
2017-10-01
We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.
Nelson, Scott D; Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R
2016-01-01
Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.
NASA Astrophysics Data System (ADS)
Timm, S.; Cooper, G.; Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Grassano, D.; Tiradani, A.; Krishnamurthy, R.; Vinayagam, S.; Raicu, I.; Wu, H.; Ren, S.; Noh, S.-Y.
2017-10-01
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores. This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.
Browning, J. R.; Jonkman, J.; Robertson, A.; ...
2014-12-16
In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, S.; Cooper, G.; Fuess, S.
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores.more » This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.« less
Huebner-Bloder, Gudrun; Duftschmid, Georg; Kohler, Michael; Rinner, Christoph; Saboor, Samrend; Ammenwerth, Elske
2012-01-01
Cross-institutional longitudinal Electronic Health Records (EHR), as introduced in Austria at the moment, increase the challenge of information overload of healthcare professionals. We developed an innovative cross-institutional EHR query prototype that offers extended query options, including searching for specific information items or sets of information items. The available query options were derived from a systematic analysis of information needs of diabetes specialists during patient encounters. The prototype operates in an IHE-XDS-based environment where ISO/EN 13606-structured documents are available. We conducted a controlled study with seven diabetes specialists to assess the feasibility and impact of this EHR query prototype on efficient retrieving of patient information to answer typical clinical questions. The controlled study showed that the specialists were quicker and more successful (measured in percentage of expected information items found) in finding patient information compared to the standard full-document search options. The participants also appreciated the extended query options. PMID:23304308
2012-03-13
Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The
Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)
NASA Astrophysics Data System (ADS)
Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.
2015-05-01
The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.
1989-01-01
ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric andmore » gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.« less
Micromechanical torsional digital-to-analog converter for open-loop angular positioning applications
NASA Astrophysics Data System (ADS)
Zhou, Guangya; Tay, Francis E. H.; Chau, Fook Siong; Zhao, Yi; Logeeswaran, VJ
2004-05-01
This paper reports a novel micromechanical torsional digital-to-analog converter (MTDAC), operated in open-loop with digitally controlled precise multi-level tilt angles. The MTDAC mechanism presented is analogous to that of an electrical binary-weighted-input digital-to-analog converter (DAC). It consists of a rigid tunable platform, an array of torsional microactuators, each operating in a two-state (on/off) mode, and a set of connection beams with binary-weighted torsional stiffnesses that connect the actuators to the platform. The feasibility of the proposed MTDAC mechanism was verified numerically by finite element simulations and experimentally with a commercial optical phase-shifting interferometric system. A prototype 2-bit MTDAC was implemented using the poly-MUMPS process achieving a full-scale output tilt angle of 1.92° with a rotation step of 0.64°. This mechanism can be configured for many promising applications, particularly in beam steering-based OXC switches.
Latest developments in the Advanced Photovoltaic Solar Array Program
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1990-01-01
In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.
Aerodynamic design of electric and hybrid vehicles: A guidebook
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1980-01-01
A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Lonnie J.
This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generatedmore » considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.« less
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
Multi-Center Traffic Management Advisor Operational Field Test Results
NASA Technical Reports Server (NTRS)
Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.
2005-01-01
The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.
Mu2e transport solenoid prototype design and manufacturing
Fabbricatore, P.; Ambrosio, G.; Cheban, S.; ...
2016-02-08
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
3D laptop for defense applications
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, T. Danny
2013-05-22
US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferredmore » to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have six (6) technical tasks plus one (1) reporting task, as described below: Task 1 Scale-up and optimize the SPS process; Task 2 Coating design and fabrication with desired microstructure; Task 3 Evaluate microstructure and physical properties; Task 4 Test performance of long-term corrosion and erosion; Task 5 Test mechanical property and reliability; Task 6 Coating of a prototype boiler tube for evaluation; Task 7 Reporting task. To date, we have already completed all the technical tasks of 1 through 6. Major Phase II Achievements: In this four (4) year working period, Inframat had spent great effort to complete the proposed tasks. The project had been completed; the goals have been accomplished. Major achievements obtained include: (1). Developed a prototype scale-up slurry feedstock delivery system for thermal spray coatings; (2). Successfully coated high performance coatings using this scale-up slurry delivery system; (3). Commercial applications in energy efficiency and clean energy components have been developed using this newly fabricated slurry feedstock delivery system.« less
A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.
Schmack, Mario; Ho, Goen; Anda, Martin
2016-01-01
This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.
Microwave-based navigation of femtosatellites using on-off keying
NASA Astrophysics Data System (ADS)
Kamte, Namrata Jagdish
The objective of this research is to validate that a custom-built microchip-scale satellite transmitting a signal modulated with a Pseudo Random Noise code using On-Off Keying, can be tracked. The weak GPS satellite signal is modulated with a Pseudo Random Noise (PRN) code that provides a mathematical gain. Our signal is modulated with the same PRN code using On-Off Keying (OOK) unlike Phase Shift Keying used in GPS satellites. Our goal is to obtain timing and positioning information from the microchip-scale satellite via a ground station using the concepts of PRN encoding and the OOK modulation technique. Decimeter scale satellites, with a mass of 2--6 kilograms, referred to as picosatellites, have been tracked successfully by ground stations. The microchip-scale satellite, called the femtosatellite is smaller with even less mass, at most 100 grams. At this size the satellite can take advantage of small-scale physics to perform maneuver, such as solar pressure, which only slightly perturb large spacecraft. Additionally, the reduced size decreases the cost of launch as compared to the picosatellites. A swarm of such femtosatellites can serve as environmental probes, interplanetary chemists or in-orbit inspectors of the parent spacecraft. In May 2011, NASA's last space shuttle mission STS-134 carried femtosatellites developed by Cornell researchers called "Sprites". The sprites were deployed from the International Space Station but ground stations on Earth failed to track them. In an effort to develop an alternative femtosatellite design, we have built our own femtosatellite prototype. Our femtosatellite prototype contains the AVR microcontroller on an Arduino board. This assembly is connected to a radio transmitter and a custom antenna transmitting a 433 Mhz radio frequency signal. The prototype transmits a PRN code modulated onto the signal using OOK. Our ground station consists of a Universal Software Radio Peripheral (USRP) with a custom antenna for reception of the 433 MHz signal. The USRP is driven by an open source software-defined radio application called GNU Radio. The required components of the signal are extracted from GNU Radio and processed in order to plot the received data. Benchtop testing of these OOK signals has yielded a reception sensitivity of upto 1 microsecond, which translates into a ranging capability similar to that of GPS satellites. We have correlated the received and replica PRN sequences and demonstrated that they match. The correlation can be used to obtain the identity and position of the femtosatellite prototype. This demonstrates the ability to track a femtosatellite signal that is lower than ambient noise, just like the signals broadcast from GPS satellites. Further, we have performed a system analysis and recognized key system behavioral problems. Thus we have determinately developed an optimum femtosatellite prototype and designed a novel positioning signal, providing a stepping- stone in the journey of successful femtosatellite communication.
A Quantitative Analysis of the Benefits of Prototyping Fixed-Wing Aircraft
2012-06-14
in then-year dollars. The RDT&E costs through FSD were provided in then-year dollars as a lump sum. Additionally, the cost of full capability ...development was available in then-year dollars as a lump sum. Full capability development was the RDT&E that continued after the completion of the FSD...contract, which ended in July 1984. In [31] [31], the authors stated that full capability development occurred through approximately 1990
Chaney, Beth; Chaney, Don; Paige, Samantha; Payne-Purvis, Caroline; Tennant, Bethany; Walsh-Childers, Kim; Sriram, PS; Alber, Julia
2015-01-01
Background Patients with chronic obstructive pulmonary disease (COPD) often report inadequate access to comprehensive patient education resources. Objective The purpose of this study was to incorporate community-engagement principles within a mixed-method research design to evaluate the usability and acceptability of a self-tailored social media resource center for medically underserved patients with COPD. Methods A multiphase sequential design (qual → QUANT → quant + QUAL) was incorporated into the current study, whereby a small-scale qualitative (qual) study informed the design of a social media website prototype that was tested with patients during a computer-based usability study (QUANT). To identify usability violations and determine whether or not patients found the website prototype acceptable for use, each patient was asked to complete an 18-item website usability and acceptability questionnaire, as well as a retrospective, in-depth, semistructured interview (quant + QUAL). Results The majority of medically underserved patients with COPD (n=8, mean 56 years, SD 7) found the social media website prototype to be easy to navigate and relevant to their self-management information needs. Mean responses on the 18-item website usability and acceptability questionnaire were very high on a scale of 1 (strongly disagree) to 5 (strongly agree) (mean 4.72, SD 0.33). However, the majority of patients identified several usability violations related to the prototype’s information design, interactive capabilities, and navigational structure. Specifically, 6 out of 8 (75%) patients struggled to create a log-in account to access the prototype, and 7 out of 8 patients (88%) experienced difficulty posting and replying to comments on an interactive discussion forum. Conclusions Patient perceptions of most social media website prototype features (eg, clickable picture-based screenshots of videos, comment tools) were largely positive. Mixed-method stakeholder feedback was used to make design recommendations, categorize usability violations, and prioritize potential solutions for improving the usability of a social media resource center for COPD patient education. PMID:25630449
NASA Astrophysics Data System (ADS)
Wüest, Robert; Nebiker, Stephan
2018-05-01
In this paper we present an app framework for augmenting large-scale walkable maps and orthoimages in museums or public spaces using standard smartphones and tablets. We first introduce a novel approach for using huge orthoimage mosaic floor prints covering several hundred square meters as natural Augmented Reality (AR) markers. We then present a new app architecture and subsequent tests in the Swissarena of the Swiss National Transport Museum in Lucerne demonstrating the capabilities of accurately tracking and augmenting different map topics, including dynamic 3d data such as live air traffic. The resulting prototype was tested with everyday visitors of the museum to get feedback on the usability of the AR app and to identify pitfalls when using AR in the context of a potentially crowded museum. The prototype is to be rolled out to the public after successful testing and optimization of the app. We were able to show that AR apps on standard smartphone devices can dramatically enhance the interactive use of large-scale maps for different purposes such as education or serious gaming in a museum context.
The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument
NASA Technical Reports Server (NTRS)
Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.
1989-01-01
The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen
In the NO A experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NO A experiment. The application of CSS for the DCS of the NO A experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) smallmore » scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NO A online software and the alarm handling logic for the Front-End electronics.« less
A regional estimate of convective transport of CO from biomass burning
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Scala, John R.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne
1992-01-01
A regional-scale estimate of the fraction of biomass burning emissions that are transported to the free troposphere by deep convection is presented. The focus is on CO and the study region is a part of Brazil that underwent intensive deforestation in the 1980s. The method of calculation is stepwise, scaling up from a prototype convective event, the dynamics of which are well-characterized, to the vertical mass flux of carbon monoxide over the region. Given uncertainties in CO emissions from biomass burning and the representativeness of the prototype event, it is estimated that 10-40 percent of CO emissions from the burning region may be rapidly transported to the free troposphere over the burning region. These relatively fresh emissions will produce O3 efficiently in the free troposphere where O3 has a longer lifetime than in the boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.
2002-03-07
This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
A process for prototyping onboard payload displays for Space Station Freedom
NASA Technical Reports Server (NTRS)
Moore, Loretta A.
1992-01-01
Significant advances have been made in the area of Human-Computer Interface design. However, there is no well-defined process for going from user interface requirements to user interface design. Developing and designing a clear and consistent user interface for medium to large scale systems is a very challenging and complex task. The task becomes increasingly difficult when there is very little guidance and procedures on how the development process should flow from one stage to the next. Without a specific sequence of development steps each design becomes difficult to repeat, to evaluate, to improve, and to articulate to others. This research contributes a process which identifies the phases of development and products produced as a result of each phase for a rapid prototyping process to be used to develop requirements for the onboard payload displays for Space Station Freedom. The functional components of a dynamic prototyping environment in which this process can be carried out is also discussed. Some of the central questions which are answered here include: How does one go from specifications to an actual prototype? How is a prototype evaluated? How is usability defined and thus measured? How do we use the information from evaluation in redesign of an interface? and Are there techniques which allow for convergence on a design?
Integrating multisource land use and land cover data
Wright, Bruce E.; Tait, Mike; Lins, K.F.; Crawford, J.S.; Benjamin, S.P.; Brown, Jesslyn F.
1995-01-01
As part of the U.S. Geological Survey's (USGS) land use and land cover (LULC) program, the USGS in cooperation with the Environmental Systems Research Institute (ESRI) is collecting and integrating LULC data for a standard USGS 1:100,000-scale product. The LULC data collection techniques include interpreting spectrally clustered Landsat Thematic Mapper (TM) images; interpreting 1-meter resolution digital panchromatic orthophoto images; and, for comparison, aggregating locally available large-scale digital data of urban areas. The area selected is the Vancouver, WA-OR quadrangle, which has a mix of urban, rural agriculture, and forest land. Anticipated products include an integrated LULC prototype data set in a standard classification scheme referenced to the USGS digital line graph (DLG) data of the area and prototype software to develop digital LULC data sets.This project will evaluate a draft standard LULC classification system developed by the USGS for use with various source material and collection techniques. Federal, State, and local governments, and private sector groups will have an opportunity to evaluate the resulting prototype software and data sets and to provide recommendations. It is anticipated that this joint research endeavor will increase future collaboration among interested organizations, public and private, for LULC data collection using common standards and tools.
Spacesuit Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott
2011-01-01
For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.
US Efforts in Support of Examinations at Fukushima Daiichi – 2016 Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amway, P.; Andrews, N.; Bixby, Willis
Although it is clear that the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limitedmore » full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings (TEPCO) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document reports recent results from the US Forensics Effort to use information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. This Forensics Effort, which is sponsored by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of US experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO information from Daiichi that address these needs. Examples presented in this report demonstrate that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities.« less
Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María
2016-01-01
This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10−5 °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results. PMID:27128924
Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María
2016-04-27
This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10(-5) °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results.
NASA Astrophysics Data System (ADS)
Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo
2014-07-01
The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.
The TORCH detector R&D: Status and perspectives
NASA Astrophysics Data System (ADS)
Gys, T.; Brook, N.; García, L. Castillo; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; García, A. Ros; van Dijk, M.
2017-12-01
TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single photons, and high-quality quartz radiator and focussing optics minimizing photon losses. The present paper reports on the TORCH results successfully achieved in the laboratory and in charged particle beam tests. It will also introduce the latest developments towards a final full-scale module prototype.
Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.
Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang
2017-06-01
Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prototype design for a predictive model to improve evacuation operations : technical report.
DOT National Transportation Integrated Search
2011-08-01
Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...
Development of TMA-based imaging system for hyperspectral application
NASA Astrophysics Data System (ADS)
Choi, Young-Wan; Yang, Seung-Uk; Kang, Myung-Seok; Kim, Ee-Eul
2017-11-01
Funded by the Ministry of Commerce, Industry, and Energy of Korea, SI initiated the development of the prototype model of TMA-based electro-optical system as part of the national space research and development program. Its optical aperture diameter is 120 mm, the effective focal length is 462 mm, and its full field-of-view is 5.08 degrees. The dimension is of about 600 mm × 400 mm × 400 mm and the weight is less than 15 kg. To demonstrate its performance, hyper-spectral imaging based on linear spectral filter is selected for the application of the prototype. The spectral resolution will be less than 10 nm and the number of channels will be more than 40 in visible and nearinfrared region. In this paper, the progress made so far on the prototype development will be presented
NASA Technical Reports Server (NTRS)
Zagrodnik, Jeffrey P.; Jones, Kenneth R.
1991-01-01
Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliwell, Stephen
2012-07-01
At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
Cimino, James J.; Bakken, Suzanne
2012-01-01
Objectives (1) To develop a prototype Continuity of Care Record (CCR) with context-specific links to electronic HIV information resources; and (2) to assess case managers’ perceptions regarding the usability of the prototype. Methods We integrated context-specific links to HIV case management information resources into a prototype CCR using the Infobutton Manager and Librarian Infobutton Tailoring Environment (LITE). Case managers (N=9) completed a think-aloud protocol and the Computer System Usability Questionnaire (CSUQ) to evaluate the usability of the prototype. Verbalizations from the think-aloud protocol were summarized using thematic analysis. CSUQ data were analyzed with descriptive statistics. Results Although participants expressed positive comments regarding the usability of the prototype, the think-aloud protocol also identified the need for improvement in resource labels and for additional resources. On a scale ranging from 1 (strongly agree) to 7 (strongly disagree), the average CSUQ overall satisfaction was 2.25 indicating that users (n=9) were generally satisfied with the system. Mean CSUQ factor scores were: System Usefulness (M=2.13), Information Quality (M=2.46), and Interface Quality (M=2.26). Conclusion Our novel application of the Infobutton Manager and LITE in the context of case management for persons living with HIV in community-based settings resulted in a prototype CCR with infobuttons that met the majority of case managers’ information needs and received relatively positive usability ratings. Findings from this study inform future integration of context-specific links into CCRs and electronic health records and support their use for meeting end-users information needs. PMID:22632821
Straight scaling FFAG beam line
NASA Astrophysics Data System (ADS)
Lagrange, J.-B.; Planche, T.; Yamakawa, E.; Uesugi, T.; Ishi, Y.; Kuriyama, Y.; Qin, B.; Okabe, K.; Mori, Y.
2012-11-01
Fixed field alternating gradient (FFAG) accelerators are recently subject to a strong revival. They are usually designed in a circular shape; however, it would be an asset to guide particles with no overall bend in this type of accelerator. An analytical development of a straight FFAG cell which keeps zero-chromaticity is presented here. A magnetic field law is thus obtained, called "straight scaling law", and an experiment has been conducted to confirm this zero-chromatic law. A straight scaling FFAG prototype has been designed and manufactured, and horizontal phase advances of two different energies are measured. Results are analyzed to clarify the straight scaling law.
DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.; Pak, D.; Edwards, T.
2010-10-28
The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less
ECCE Toolkit: Prototyping Sensor-Based Interaction.
Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma
2017-02-23
Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.
GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.
Arakawa, Kazuharu; Yamada, Yohei; Shinoda, Kosaku; Nakayama, Yoichi; Tomita, Masaru
2006-03-23
Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. We developed the Genome-based Modeling (GEM) System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.
Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku
2013-01-01
Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426
ECCE Toolkit: Prototyping Sensor-Based Interaction
Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma
2017-01-01
Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502
Muon data from a water Cherenkov detector prototype at Colorado State University
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2013-04-01
The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.
Interpersonal Development, Stability, and Change in Early Adulthood
Wright, Aidan G. C.; Pincus, Aaron L.; Lenzenweger, Mark F.
2011-01-01
Objective This goal of this research was to explore the development of the interpersonal system mapped by the interpersonal circumplex in early adulthood (Ages 18-22). Method This study uses the Longitudinal Study of Personality Disorders sample (N = 250; 53% Female). Participants completed the Revised Interpersonal Adjective Scales (Wiggins, Trapnell, & Phillips, 1988) in their freshman, sophomore, and senior years of college. Estimates of structural, rank-order, mean, individual, and ipsative stability were calculated for the broad interpersonal dimensions of Dominance and Affiliation, and also the lower-order octant scales. Additionally, the interpersonal profile parameters of differentiation and prototypicality were calculated at each wave and explored longitudinally, and also used as predictors of interpersonal stability. Results We found excellent structural and high rank-order and ipsative stability in the interpersonal scales over this time period. Mean increases on the Affiliation axis, but not on the Dominance axis, were found to mask differential rates of change among the octant scales, along with significant individual variation in the rates of change. Interpersonal differentiation and prototypicality were related to higher stability in overall interpersonal style. Conclusions Results point to evidence of both stability and nuanced change, illuminating some of the features of the structural variables that can be derived from interpersonal circumplex profiles. PMID:22224462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, S.
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
Hollow-Fiber Spacesuit Water Membrane Evaporator
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph
2013-01-01
The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.
Wu, Heyu; Tai, Yuan-Chuan
2011-09-07
To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
Seismic testing of precast segmental bridges, Phase III : bridge system test.
DOT National Transportation Integrated Search
2005-06-01
This report discusses the main findings of a test examining the seismic behavior of a precast, post-tensioned, segmental bridge : superstructure with a cast-in-place, hollow, rectangular column. The half-scale specimen modeled a prototype bridge from...
ELECTROCHEMICAL ARSENIC REMEDIATION IN RURAL BANGLADESH
In Year 1, we built a bench-scale continuous flow prototype (dubbed “Sushi” for its sushi-like electrode roll) and completed preliminary field trials in Bangladesh. We were also able to leverage additional funding to complete preliminary field trials in arsenic-...
NASA Astrophysics Data System (ADS)
Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.
2018-02-01
Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
Toward the Factory of the Future.
ERIC Educational Resources Information Center
Hazony, Yehonathan
1983-01-01
Computer-integrated manufacturing (CIM) involves use of data processing technology as the vehicle for full integration of the total manufacturing process. A prototype research and educational facility for CIM developed with industrial sponsorship at Princeton University is described. (JN)
Clinical Evaluation of a Prototype Underwear Designed to Detect Urine Leakage From Continence Pads.
Long, Adele; Edwards, Julia; Worthington, Joanna; Cotterill, Nikki; Weir, Iain; Drake, Marcus J; van den Heuvel, Eleanor
2015-01-01
We evaluated the performance of prototype underwear designed to detect urine leakage from continence pads, their acceptability to users, and their effect on health-related quality of life and psychosocial factors. Prototype product evaluation. Participants were 81 women with an average age of 67 years (range, 32-98 years) recruited between October 2010 and February 2012 from outpatient clinics, general practice surgeries, community continence services, and through charities and networks. The TACT3 project developed and manufactured a prototype undergarment designed to alert the wearer to a pad leak before it reaches outer clothing or furniture. The study was conducted in 2 stages: a pilot/feasibility study to assess general performance and a larger study to measure performance, acceptability to users, health-related quality of life, and psychosocial impact. Participants were asked to wear the prototype underwear for a period of 2 weeks, keeping a daily diary of leakage events for the first 7 days. They also completed validated instruments measuring lower urinary tract symptoms, health-related quality of life, and psychosocial impact. On average, 86% of the time participants were alerted to pad leakage events. More than 90% thought the prototype underwear was "good" or "OK" and that it would or could give them more confidence. Mean scores for the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form indicated no change in the level of symptoms reported before or after the intervention, and no significant changes in health-related quality of life status occurred, except improvement in for travel restrictions. Evaluation via the Psychosocial Impact of Assistive Devices Scale also indicated a positive impact. The prototype underwear evaluated in this study was effective and acceptable for 5 out of every 10 wearers. Findings also suggest that the prototype underwear is suitable for women of all ages, dress sizes, and continence severity.
Large-Format Dual-Counter Pixelated X-Ray Detector Platform: Phase II Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Adam; Williams, George; Huntington, Andrew
2016-10-10
Within the program, a Voxtel led team demonstrated both prototype (48 x 48, 130-μm pitch, VX-798) and full-format (192 x 192, 100-μm pitch, VX-810) versions of a high-dynamic-range, x-ray photon-counting (HDR-XPC) sensor. Within the program the following tasks were completed: 1) integration and evaluation of the VX-798 prototype camera at the Advanced Photon Source beamline at Argonne National Labs; 2) the design, simulation, and fabrication of the full-format VX-810 ROIC was completed; 3) fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of themore » optically sensitive FPA (FPA), and 4) development of an evaluation camera to enable electrical and optical characterization of the sensor.« less
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.
1978-01-01
A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.
Campbell, K B; Shroff, S G; Kirkpatrick, R D
1991-06-01
Based on the premise that short-time-scale, small-amplitude pressure/volume/outflow behavior of the left ventricular chamber was dominated by dynamic processes originating in cardiac myofilaments, a prototype model was built to predict pressure responses to volume perturbations. In the model, chamber pressure was taken to be the product of the number of generators in a pressure-bearing state and their average volumetric distortion, as in the muscle theory of A.F. Huxley, in which force was equal to the number of attached crossbridges and their average lineal distortion. Further, as in the muscle theory, pressure generators were assumed to cycle between two states, the pressure-bearing state and the non-pressure-bearing state. Experiments were performed in the isolated ferret heart, where variable volume decrements (0.01-0.12 ml) were removed at two commanded flow rates (flow clamps, -7 and -14 ml/sec). Pressure responses to volume removals were analyzed. Although the prototype model accounted for most features of the pressure responses, subtle but systematic discrepancies were observed. The presence or absence of flow and the magnitude of flow affected estimates of model parameters. However, estimates of parameters did not differ when the model was fitted to flow clamps with similar magnitudes of flows but different volume changes. Thus, prototype model inadequacies were attributed to misrepresentations of flow-related effects but not of volume-related effects. Based on these discrepancies, an improved model was built that added to the simple two-state cycling scheme, a pathway to a third state. This path was followed only in response to volume change. The improved model eliminated the deficiencies of the prototype model and was adequate in accounting for all observations. Since the template for the improved model was taken from the cycling crossbridge theory of muscle contraction, it was concluded that, in spite of the complexities of geometry, architecture, and regional heterogeneity of function and structure, crossbridge mechanisms dominated the short-time-scale dynamics of left ventricular chamber behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao
Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotatingmore » blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.« less
WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remmes, N; Courneyea, L; Corner, S
2014-06-15
Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less
Environmentally Benign Battlefield Effects Black Smoke Simulator
2006-11-01
tested and results Fuel Oxidizer Color of Smoke Density of Smoke Sugar (Sucrose) KNO3 Grey Medium Dextrin KNO3 Grey Thin Microcrystalline...design. 3.5 Initial Prototype Scale Fiberboard Testing Several quality black smoke formulations were identified in the small pellet testing to
A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.
Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven
2005-01-01
Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.
2003-12-01
Active Velcro” is a general technology which can be applied at different scales (micro- to macro -) for different required performance by tailoring a...operations (engagement, retention/release, positioning) to provide synthesis and analysis tools. Several different scaled prototypes were fabricated and...necessary foundation for further development of this unique paradigm which is useful for any unstable environment (space, fluidic, moving, vibration
Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing
2015-07-27
Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.
New-type planar field emission display with superaligned carbon nanotube yarn emitter.
Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2012-05-09
With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.
Parametric motion control of robotic arms: A biologically based approach using neural networks
NASA Technical Reports Server (NTRS)
Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.
1993-01-01
A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.
Experimental Pressure Measurements on Hydropower Turbine Runners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Richmond, Marshall C.
The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamicsmore » (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.« less
Development of micromachine tool prototypes for microfactories
NASA Astrophysics Data System (ADS)
Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.
2002-11-01
At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.
Sherrod, Brandon A.; Dew, Dustin A.; Rogers, Rebecca; Rimmer, James H.; Eberhardt, Alan W.
2017-01-01
Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and 5 power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R2=0.997) with absolute differences of 1.4±2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype’s estimated commercial price range, $500–600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition. PMID:27450105
The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access
NASA Astrophysics Data System (ADS)
Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.
2011-12-01
The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.
Design and commissioning of a multi-mode prototype for thermochemical conversion of human faeces.
Jurado, Nelia; Somorin, Tosin; Kolios, Athanasios J; Wagland, Stuart; Patchigolla, Kumar; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean
2018-05-01
This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi
2016-07-01
Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.
Landázuri, Andrea C.; Sáez, A. Eduardo; Anthony, T. Renée
2016-01-01
This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k–ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier–Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort. PMID:26949268
NASA Astrophysics Data System (ADS)
Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.
1999-06-01
Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming
NASA Astrophysics Data System (ADS)
Diller, Eric; Zhuang, Jiang; Zhan Lum, Guo; Edwards, Matthew R.; Sitti, Metin
2014-04-01
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for micro-robotics applications in biotechnology and healthcare.