A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David
2011-10-01
A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golwala, Sunil R.
2013-12-20
The eventual full-size, radiopure BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. We expect that the prototype BetaCage already developed will be an excellent screener of alpha particles. Both the prototype and final BetaCage will provide new infrastructure for rare-event science.
EVA Suit R and D for Performance Optimization
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2014-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.; Sancaktar, Erol; Roberts, Gary D. (Technical Monitor)
2002-01-01
An effective design methodology was established for composite jet engine containment structures. The methodology included the development of the full and reduced size prototypes, and FEA models of the containment structure, experimental and numerical examination of the modes of failure clue to turbine blade out event, identification of materials and design candidates for future industrial applications, and design and building of prototypes for testing and evaluation purposes.
Mu2e transport solenoid prototype tests results
Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; ...
2016-02-08
The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went throughmore » an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.« less
Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2017-01-01
The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.
The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument
NASA Technical Reports Server (NTRS)
Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.
1989-01-01
The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.
NASA Technical Reports Server (NTRS)
Morgan, Ray
2004-01-01
A project manager recounts his decisions before and during the aftermath of the crash of a full-size flying model of Quetzalcoatlus northropi. The unstable pterodactyl crashed without harming anyone, although it caused a local power outage. The manager summarizes lessons learned about flight testing prototypes, including the effects of impatience.
The development and testing of a regenerable CO2 and humidity control system for Shuttle
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1977-01-01
A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.
Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James
2018-07-01
This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zagrodnik, Jeffrey P.; Jones, Kenneth R.
1991-01-01
Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.
Tracking a head-mounted display in a room-sized environment with head-mounted cameras
NASA Astrophysics Data System (ADS)
Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry
1990-10-01
This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.
Development of Intelligent Spray Systems for Nursery Crop Production
USDA-ARS?s Scientific Manuscript database
Two intelligent sprayer prototypes were developed to increase pesticide application efficiency in nursery production. The first prototype was a hydraulic vertical boom system using ultrasonic sensors to detect tree size and volume for liner-sized trees and the second prototype was an air-assisted sp...
A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.
Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K
2018-06-01
Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging. © 2018 American Association of Physicists in Medicine.
Mu2e transport solenoid prototype design and manufacturing
Fabbricatore, P.; Ambrosio, G.; Cheban, S.; ...
2016-02-08
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
Applications and testing of the LSCAD system
NASA Astrophysics Data System (ADS)
Althouse, Mark L.; Gross, Robert L.; Ditillo, John T.; Lagna, William M.; Kolodzey, Steve J.; Keiser, Christopher C.; Nasers, Gary D.
1996-06-01
The lightweight standoff chemical agent detector (LSCAD) is an infrared Michelson interferometer operating in the 8 - 13 micron band and is designed primarily for military contamination avoidance and early warning applications. The system is designed to be operated autonomously from a vehicle while on the move and provide 360 degree coverage. The first group of prototypes were delivered in 1994 and have undergone integration into several platforms including the HMMWV, the M2 Bradley Fighting Vehicle, the M109 self- propelled Howitzer and the Pioneer and Hurricane unmanned air vehicles (UAVs). Additional vehicles and platforms are planned. To meet the restrictions of military applications, the prototype interferometer subsystem has a weight of about 10 lbs and is approximately 0.20 cu fit in size. The full system size and weight depends upon the particular platform and its operational requirements. LSCAD employs onboard instrument control, data collection, analysis and target detection decision software, all of which are critical to real-time operation. The hardware, software, and test results are discussed.
Construction of a Full-size Component of the ICRH System
NASA Astrophysics Data System (ADS)
Mantovani, S.; Sassi, M.; Coppi, B.
2012-10-01
The ICRH system is an important component of the Ignitor project and all efforts have been made to ensure that its design takes into account the construction experience gained in the most advanced laboratories. The system is designed to operate over a frequency range 80-120 MHz, which is consistent with the use of magnetic fields in the range 9-13 T. The maximum delivered power ranges from 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. Since the transition from a detailed design to the actual construction is not without surprises we have constructed a full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system. The innovative quick latching system located at the end of the coaxial cable was successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Special care was given to the finishing of the inox surfaces, and to the TIG welds. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. A revision of the other key components of the Ignitor machine has been undertaken, taking into account the experience gained in the fabrication of the corresponding prototypes.
Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Michael W; Miner, Kris
The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less
First results of the front-end ASIC for the strip detector of the PANDA MVD
NASA Astrophysics Data System (ADS)
Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.
2017-03-01
PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulman, Holly; Ross, Nicole
2015-10-30
An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less
Muon data from a water Cherenkov detector prototype at Colorado State University
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2013-04-01
The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.
A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-10-01
The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.
Tests of a Roman Pot prototype for the TOTEM experiment
NASA Astrophysics Data System (ADS)
Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Eight prototype systems were developed. The systems are 3, 25, and 75-ton size units. The manufacture, test, installation, maintenance, problem resolution, and performance evaluation of the systems is described. Size activities for the various systems are included.
Use of prototyping in preoperative planning for patients with head and neck tumors.
de Farias, Terence Pires; Dias, Fernando Luiz; Galvão, Mário Sérgio; Boasquevisque, Edson; Pastl, Ana Carolina; Albuquerque Sousa, Bruno
2014-12-01
Prototyping technologies for reconstructions consist of obtaining a 3-dimensional model of the object of interest. Solid models are constructed by the deposition of materials in successive layers. The purpose of this study was to perform a double-blind, randomized, prospective study to evaluate the efficacy of prototype use in head and neck surgeries. Thirty-seven cases were randomized into prototype and nonprototype groups. The following factors were recorded: the time of plate and locking screw apposition, flap size, time for reconstruction, and an aesthetic evaluation. The prototype group exhibited a reduced surgical time (43.7 minutes vs 127.7 minutes, respectively; p = .001), a tendency to reduce the size of the bone flap taken for reconstruction, and better aesthetic results than the group that was not prototyped. The use of prototyping demonstrated a trend toward a reduced surgical time, smaller bone flaps, and better aesthetic results. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliwell, Stephen
2012-07-01
At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less
Data report for the Northeast Residential Experiment Station, Apr. 1982
NASA Astrophysics Data System (ADS)
Russell, M. C.; Raghuraman, P.; Mahoney, P. C.
1982-06-01
Physical performance data obtained from photovoltaic energy systems under test at the Northeast Residential Experiment Station (NE RES) in Concord, Massachusetts, are tabulated for the month of April 1982. Five prototype residential photovoltaic systems are under test at the NE RES, each consisting of a roof mounted array sized to meet at least 50% of the annual electrical demand of an energy conserving house, and an enclosed structure to house the remainder of the photovoltaic system equipment, test instrumentation, and work space. Each system is grid connected. In addition, one full sized PV residence, the Carlisle House, is also being monitored in Carlisle, Massachusetts. The features of the systems and of the houses, are briefly summarized, and the monthly performance of the monitored houses, PV systems, and meteorological data is tabulated. Also tabulated is hourly information for an average day of the month including data on the monitored houses and prototype systems data. Data include energy consumption, array and inverter outputs, energy supplied to and by the utility, solar array panel temperatures, and total tilt insolation. Also included are tables that present the hypothetical energy exchange between the system and the utility if each prototype system supplied energy to each monitored house. These data are also graphed, as well as the duration of time for which the load had a specific value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newmarker, Marc; Campbell, Mark
2012-03-16
Design, validate at prototype level, and then demonstrate a full size, 800 MWht Thermal Energy Storage (TES) system based on Phase Changing Material (PCM) TES modules with round trip efficiency in excess of 93%. The PCM TES module would be the building block of a TES system which can be deployed at costs inline with the DOE benchmark of 2020. The development of a reliable, unsophisticated, modular, and scalable TES system designed to be massmanufactured utilizing advanced automated fabrication and assembly processes and field installed in the most cost-effective configuration could facilitate the attainment of a Levelized Cost of Energymore » (LCOE) of $.07/kWh by 2015. It was believed that the DOE targets can be attained by finding the best combinationTES module size, its optimal integration in the power cycle, and readily available PCM. Work under this project ultimately focused on the development and performance evaluation of a 100kWht prototype heat exchanger. The design utilizes a commercially available heat exchanger product to create a unique latent heat PCM storage module. The novel ideal associated with this technology is the inclusion of an agitation mechanism that is activated during the discharge process to improve heat transfer. The prototype unit did not meet the performance goals estimated through modeling, nor did the estimated costs of the system fall in line with the goals established by DOE.« less
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg
2009-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.
El Sabbagh, Abdallah; Eleid, Mackram F; Matsumoto, Jane M; Anavekar, Nandan S; Al-Hijji, Mohammed A; Said, Sameh M; Nkomo, Vuyisile T; Holmes, David R; Rihal, Charanjit S; Foley, Thomas A
2018-01-23
Three-dimensional (3D) prototyping is a novel technology which can be used to plan and guide complex procedures such as transcatheter mitral valve replacement (TMVR). Eight patients with severe mitral annular calcification (MAC) underwent TMVR. 3D digital models with digital balloon expandable valves were created from pre-procedure CT scans using dedicated software. Five models were printed. These models were used to assess prosthesis sizing, anchoring, expansion, paravalvular gaps, left ventricular outflow tract (LVOT) obstruction, and other potential procedure pitfalls. Results of 3D prototyping were then compared to post procedural imaging to determine how closely the achieved procedural result mirrored the 3D modeled result. 3D prototyping simulated LVOT obstruction in one patient who developed it and in another patient who underwent alcohol septal ablation prior to TMVR. Valve sizing correlated with actual placed valve size in six out of the eight patients and more than mild paravalvular leak (PVL) was simulated in two of the three patients who had it. Patients who had mismatch between their modeled valve size and post-procedural imaging were the ones that had anterior leaflet resection which could have altered valve sizing and PVL simulation. 3D printed model of one of the latter patients allowed modification of anterior leaflet to simulate surgical resection and was able to estimate the size and location of the PVL after inserting a valve stent into the physical model. 3D prototyping in TMVR for severe MAC is feasible for simulating valve sizing, apposition, expansion, PVL, and LVOT obstruction. © 2018 Wiley Periodicals, Inc.
Future Directions for Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2005-01-01
Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
Prototype residential photovoltaic system: Evaluation results
NASA Astrophysics Data System (ADS)
Nichols, B. E.; Russell, M. C.
1982-09-01
Residential size photovoltaic power systems were discussed. Lessons learned from this experience, and performance summaries for the five prototype systems at the Northeast Residential Experiment Station and the system at the all electric Carlisle PV house are given. Results of evaluating five utility interactive residential size inverters also are reported.
Fabrication of fuel pin assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1972-01-01
Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, Ed
2010-01-01
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuuminsulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, E. F.
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Leveraging object-oriented development at Ames
NASA Technical Reports Server (NTRS)
Wenneson, Greg; Connell, John
1994-01-01
This paper presents lessons learned by the Software Engineering Process Group (SEPG) from results of supporting two projects at NASA Ames using an Object Oriented Rapid Prototyping (OORP) approach supported by a full featured visual development environment. Supplemental lessons learned from a large project in progress and a requirements definition are also incorporated. The paper demonstrates how productivity gains can be made by leveraging the developer with a rich development environment, correct and early requirements definition using rapid prototyping, and earlier and better effort estimation and software sizing through object-oriented methods and metrics. Although the individual elements of OO methods, RP approach and OO metrics had been used on other separate projects, the reported projects were the first integrated usage supported by a rich development environment. Overall the approach used was twice as productive (measured by hours per OO Unit) as a C++ development.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
NASA Astrophysics Data System (ADS)
Okumura, A.; Dang, T. V.; Ono, S.; Tanaka, S.; Hayashida, M.; Hinton, J.; Katagiri, H.; Noda, K.; Teshima, M.; Yamamoto, T.; Yoshida, T.
2017-12-01
We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.
Tuning the sensing range of silicon pressure sensor by trench etching technology
NASA Astrophysics Data System (ADS)
Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua
2006-01-01
The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.
van Lettow, Britt; de Vries, Hein; Burdorf, Alex; van Empelen, Pepijn
2016-01-01
Prototypes (i.e., social images representing perceptions of typical persons engaging in or refraining from certain behaviour) have been shown to explain health-related behaviours. The present meta-analysis quantified the strength of the associations of prototype perceptions with health motivation and behaviour. Specifically, the analysis addressed (i) the relationship of prototype favourability (i.e., degree of likability) and similarity (i.e., perceived resemblance to the self) with behaviour, willingness and intentions; (ii) the effect of the interaction between favourability and similarity; and (iii) the extent to which health-risk and health-protective prototypes differed in their association with these outcomes. A total of 80 independent studies were identified based on 69 articles. The results indicated that prototype favourability and similarity were related to behaviour, intentions and willingness with small-to-medium effect sizes (r+ = 0.12-0.43). Direct measures of prototype perceptions generally produced larger effects than indirect measures. The interaction between favourability and similarity produced small-to-large effect sizes (r+ = .22-.54). The results suggest that both health-risk and health-protective prototypes might be useful targets for interventions (r+ = .22-.54). In order to increase health-protective behaviours, intentions and behaviour could be targeted by increasing similarity to health-protective prototypes. Health-risk behaviour might be decreased by targeting willingness by modifying health-risk prototype favourability and similarity.
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
MWPC prototyping and testing for STAR inner TPC upgrade
NASA Astrophysics Data System (ADS)
Shen, F.; Wang, S.; Yang, C.; Xu, Q.
2017-06-01
STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the inner sectors of the Time Projection Chamber (iTPC). The iTPC upgrade project will increase the segmentation on the inner pad plane from 13 to 40 pad rows and renew the inner sector wire chambers. The upgrade will expand the TPC's acceptance from |η|<=1.0 to |η|<=1.5. Furthermore, the detector will have better acceptance for tracks with low momentum, as well as better resolution in both momentum and dE/dx for tracks of all momenta. The enhanced measurement capabilities of STAR-iTPC upgrade are crucial to the physics program of the Phase II of Beam Energy Scan (BES-II) at RHIC during 2019-2020, in particular the QCD phase transition study. In this proceedings, I will discuss the iTPC MWPC module fabrication and testing results from the first full size iTPC MWPC pre-prototype made at Shandong University.
A Compact, Soft-Switching DC-DC Converter for Electric Propulsion
NASA Technical Reports Server (NTRS)
Button, Robert; Redilla, Jack; Ayyanar, Raja
2003-01-01
A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.
A space-efficient quantum computer simulator suitable for high-speed FPGA implementation
NASA Astrophysics Data System (ADS)
Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel
2009-05-01
Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.
Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony
2012-08-27
Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.
NASA Astrophysics Data System (ADS)
Möller, Thomas; Bellin, Knut; Creutzburg, Reiner
2015-03-01
The aim of this paper is to show the recent progress in the design and prototypical development of a software suite Copra Breeder* for semi-automatic generation of test methodologies and security checklists for IT vulnerability assessment in small and medium-sized enterprises.
X-33 Injector Ignition Single Cell Test
NASA Technical Reports Server (NTRS)
1997-01-01
The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.
The water Cherenkov detectors of the HAWC Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2012-10-01
The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbricatore, P.; Ambrosio, G.; Cheban, S.
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
NREL: News - Prototype Low-Emissions Natural Gas Engine Saves Fuel
/heavy_vehicle/natgas_pub.html#engine for a copy of the full NREL report, "Development of a Throttleless engines. In testing, the prototype engine operated over the full speed and load range, delivering 250
Ultra-Efficient and Power Dense Electric Motors for U. S. Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.
2013-03-12
The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commerciallymore » viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.« less
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2013-06-01
A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.
NectarCAM, a camera for the medium sized telescopes of the Cherenkov telescope array
NASA Astrophysics Data System (ADS)
Glicenstein, J.-F.; Shayduk, M.
2017-01-01
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of 100 GeV to 30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.
The application of rapid prototyping technique in chin augmentation.
Li, Min; Lin, Xin; Xu, Yongchen
2010-04-01
This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.
16 CFR 309.21 - Labeling requirements for used covered vehicles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... visible surface of each such vehicle. (b) Layout. Figure 6 of appendix A is the prototype label that... consistent with the prototype label. The label required by this section is one-sided and rectangular in shape... label. Specific type sizes and faces to be used are indicated on the prototype label (Figure 6 of...
16 CFR 309.20 - Labeling requirements for new covered vehicles.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (b) Layout. Figures 4, 5, and 5.1 are prototype labels that demonstrate the proper layout. All positioning, spacing, type size, and line widths shall be similar to and consistent with the prototype labels... and 71/2 inches (19.05 cm) long. Figure 4 of appendix A represents the prototype for the labels for...
Sorensen, Mathew D; Teichman, Joel M H; Bailey, Michael R
2009-07-01
Proof-of-principle in vitro experiments evaluated a prototype ultrasound technology to size kidney stone fragments. Nineteen human stones were measured using manual calipers. A 10-MHz, 1/8'' (10F) ultrasound transducer probe pinged each stone on a kidney tissue phantom submerged in water using two methods. In Method 1, the instrument was aligned such that the ultrasound pulse traveled through the stone. In Method 2, the instrument was aligned partially over the stone such that the ultrasound pulse traveled through water. For Method 1, the correlation between caliper- and ultrasound-determined stone size was r(2) = 0.71 (P < 0.0001). All but two stone measurements were accurate and precise to within 1 mm. For Method 2, the correlation was r(2) = 0.99 (P < 0.0001), and measurements were accurate and precise to within 0.25 mm. The prototype technology and either method measured stone size with good accuracy and precision. This technology may be possible to incorporate into ureteroscopy.
Construction and characterization of the detection modules for the Muon Portal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blancato, A.A.; Bonanno, D.L.; La Rocca, P.
The Muon Portal Project is a joint initiative between research and industrial partners, aimed at the construction of a real size detector prototype (6 x 3 x 7 m{sup 3}) for the inspection of containers by the muon scattering technique, devised to search for hidden high-Z fissile materials and provide a full 3D tomography of the interior of the container in a scanning time of the order of minutes. The muon tracking detector is based on a set of 48 detection modules (size 1 m x 3 m), each built with 100 extruded scintillator strips, so as to provide fourmore » X-Y detection planes, two placed above and two below the container to be inspected. Two wavelength shifting (WLS) fibres embedded in each strip convey the emitted photons to Silicon Photomultipliers (SiPM) which act as photo-sensors. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started. The paper describes the results of the mass characterization of the photo-sensors and the construction and test measurements of the first detection modules of the Project. (authors)« less
Tsai, Cheng-Tao; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521
Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.
The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes
NASA Astrophysics Data System (ADS)
Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.
The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.
Development of optimized PPP insulated pipe-cable systems in the commercial voltage range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allam, E.M.; McKean, A.L.
1992-05-01
The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allam, E.M.; McKean, A.L.
1992-05-01
The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less
NASA Astrophysics Data System (ADS)
Zhang, X.; Karanassios, V.
2012-06-01
A solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube developed on a hybrid, 3d-chip is described. Rapid prototyping of the 3d-chip; some fundamental aspects and a brief characterization of its background spectral emission using a portable, fiber-optic spectrometer are discussed.
Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn
2015-04-15
A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reachesmore » 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.« less
Design and fabrication of a prototype system for a photovoltaic residence in the Northeast
NASA Astrophysics Data System (ADS)
1982-08-01
This project consisted of the design, fabrication, and testing of a photovoltaic residence which is suitable for construction in the Northeast. A full size residence was designed which included energy conserving and passive features, and the energy performance of the residence was completed for a 5 kW PV array in a standoff configuration. Actual construction consisted of the roof structure and a building enclosure large enough to contain the PCU, test equipment, and load simulation equipment. The PV array consists of 78 modules along with a line tie inverter.
Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.
2012-09-01
It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.
MAPS development for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.
2015-03-01
Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.
Visual analysis of trash bin processing on garbage trucks in low resolution video
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Loibner, Gernot
2015-03-01
We present a system for trash can detection and counting from a camera which is mounted on a garbage collection truck. A working prototype has been successfully implemented and tested with several hours of real-world video. The detection pipeline consists of HOG detectors for two trash can sizes, and meanshift tracking and low level image processing for the analysis of the garbage disposal process. Considering the harsh environment and unfavorable imaging conditions, the process works already good enough so that very useful measurements from video data can be extracted. The false positive/false negative rate of the full processing pipeline is about 5-6% at fully automatic operation. Video data of a full day (about 8 hrs) can be processed in about 30 minutes on a standard PC.
Development of an integrated automated retinal surgical laser system.
Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J
1996-01-01
Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.
X-Ray Backscatter Machine Support Frame
NASA Technical Reports Server (NTRS)
Cannon, Brooke
2010-01-01
This summer at Kennedy Space Center, I spent 10 weeks as an intern working at the Prototype Development Lab. During this time I learned about the design and machining done here at NASA. I became familiar with the process from where a design begins in Pro/Engineer and finishes at the hands of the machinists. As an intern I was given various small jobs to do and then one project of my own. My personal project was a job for the Applied Physics Lab; in their work they use an X-Ray Backscatter machine. Previously it was resting atop a temporary frame that limited the use of the machine. My job was to design a frame for the machine to rest upon that would allow a full range of sample sizes. The frame was required to support the machine and provide a strain relief for the cords attached to the machine as it moved in the x and y directions. Calculations also had to be done to be sure the design would be able to withstand any loads or outside sources of stress. After the calculations proved the design to be ready to withstand the requirements, the parts were ordered or fabricated, as required. This helped me understand the full process of jobs sent to the Prototype Development Lab.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2014-01-01
A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
Size scaling of negative hydrogen ion sources for fusion
NASA Astrophysics Data System (ADS)
Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.
2015-04-01
The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.
Development of 3000 m Subsea Blowout Preventer Experimental Prototype
NASA Astrophysics Data System (ADS)
Cai, Baoping; Liu, Yonghong; Huang, Zhiqian; Ma, Yunpeng; Zhao, Yubin
2017-12-01
A subsea blowout preventer experimental prototype is developed to meet the requirement of training operators, and the prototype consists of hydraulic control system, electronic control system and small-sized blowout preventer stack. Both the hydraulic control system and the electronic system are dual-mode redundant systems. Each system works independently and is switchable when there are any malfunctions. And it significantly improves the operation reliability of the equipment.
Scalability of Several Asynchronous Many-Task Models for In Situ Statistical Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille; Kolla, Hemanth
This report is a sequel to [PB16], in which we provided a first progress report on research and development towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system. This earlier work included a prototype implementation of a proposed solution, using a proxy mini-application as a surrogate for a full-scale scientific simulation code. The first scalability studies were conducted with the above on modestly-sized experimental clusters. In contrast, in the current work we have integrated our in situ analysis engines with a full-size scientific application (S3D, using the Legion-SPMD model), and have conducted nu- mericalmore » tests on the largest computational platform currently available for DOE science ap- plications. We also provide details regarding the design and development of a light-weight asynchronous collectives library. We describe how this library is utilized within our SPMD- Legion S3D workflow, and compare the data aggregation technique deployed herein to the approach taken within our previous work.« less
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.
NASA Astrophysics Data System (ADS)
Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.
2007-11-01
A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.
ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Mager, M.; ALICE Collaboration
2016-07-01
A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.
Detection of a Geostationary Satellite with the Navy Prototype Optical Interferometer
2010-07-01
USA 86001 USA ABSTRACT We have detected a satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical...available at the time of our observations, resolves out structures larger than ∼ 1.5 m at the geostationary distance, while a typical size for the solar... satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical Interferometer (NPOI) to observe the
Development of a Computer Vision Technology for the Forest Products Manufacturing Industry
D. Earl Kline; Richard Conners; Philip A. Araman
1992-01-01
The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...
Second Generation Prototype Design and Testing for a High Altitude Venus Balloon
NASA Technical Reports Server (NTRS)
Hall, J. L.; Kerzhanovich, V. V.; Yavrouian, A. H.; Plett, G. A.; Said, M.; Fairbrother, D.; Sandy, C.; Frederickson, T.; Sharpe, G.; Day, S.
2008-01-01
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 cubic meters and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.
The FE-I4 Pixel Readout Chip and the IBL Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbero, Marlon; Arutinov, David; Backhaus, Malte
2012-05-01
FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on testmore » results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.« less
The sonic window: second generation results
NASA Astrophysics Data System (ADS)
Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.
2006-03-01
Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further integration and testing. This second prototype represents a major reduction in size and forms the foundation of a fully functional, fully integrated, pocket sized prototype.
Tam, Matthew D B S; Laycock, Stephen D; Brown, James R I; Jakeways, Matthew
2013-12-01
To describe rapid prototyping or 3-dimensional (3D) printing of aneurysms with complex neck anatomy to facilitate endovascular aneurysm repair (EVAR). A 75-year-old man had a 6.6-cm infrarenal aortic aneurysm that appeared on computed tomographic angiography to have a sharp neck angulation of ~90°. However, although the computed tomography (CT) data were analyzed using centerline of flow, the true neck length and relations of the ostial origins were difficult to determine. No multidisciplinary consensus could be reached as to which stent-graft to use owing to these borderline features of the neck anatomy. Based on past experience with rapid prototyping technology, a decision was taken to print a model of the aneurysm to aid in visualization of the neck anatomy. The CT data were segmented, processed, and converted into a stereolithographic format representing the lumen as a 3D volume, from which a full-sized replica was printed within 24 hours. The model demonstrated that the neck was adequate for stent-graft repair using the Aorfix device. Rapid prototyping of aortic aneurysms is feasible and can aid decision making and device delivery. Further work is required to test the value of 3D replicas in planning procedures and their impact on procedure time, radiation dose, and procedure cost.
High-order adaptive secondary mirrors: where are we?
NASA Astrophysics Data System (ADS)
Salinari, Piero; Sandler, David G.
1998-09-01
We discuss the current developments and the perspective performances of adaptive secondary mirrors for high order adaptive a correction on large ground based telescopes. The development of the basic techniques involved a large collaborative effort of public research Institutes and of private companies is now essentially complete. The next crucial step will be the construction of an adaptive secondary mirror for the 6.5 m MMT. Problems such as the fabrication of very thin mirrors, the low cost implementation of fast position sensors, of efficient and compact electromagnetic actuators, of the control and communication electronics, of the actuator control system, of the thermal control and of the mechanical layout can be considered as solved, in some cases with more than one viable solution. To verify performances at system level two complete prototypes have been built and tested, one at ThermoTrex and the other at Arcetri. The two prototypes adopt the same basic approach concerning actuators, sensor and support of the thin mirror, but differ in a number of aspects such as the material of the rigid back plate used as reference for the thin mirror, the number and surface density of the actuators, the solution adopted for the removal of the heat, and the design of the electronics. We discuss how the results obtained by of the two prototypes and by numerical simulations will guide the design of full size adaptive secondary units.
Development of a Multiple-Stage Differential Mobility Analyzer (MDMA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Da-Ren; Cheng, Mengdawn
2007-01-01
A new DMA column has been designed with the capability of simultaneously extracting monodisperse particles of different sizes in multiple stages. We call this design a multistage DMA, or MDMA. A prototype MDMA has been constructed and experimentally evaluated in this study. The new column enables the fast measurement of particles in a wide size range, while preserving the powerful particle classification function of a DMA. The prototype MDMA has three sampling stages, capable of classifying monodisperse particles of three different sizes simultaneously. The scanning voltage operation of a DMA can be applied to this new column. Each stage ofmore » MDMA column covers a fraction of the entire particle size range to be measured. The covered size fractions of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement leads to the reduction of scanning voltage range and thus the cycling time of the measurement. The modular sampling stage design of the MDMA allows the flexible configuration of desired particle classification lengths and variable number of stages in the MDMA. The design of our MDMA also permits operation at high sheath flow, enabling high-resolution particle size measurement and/or reduction of the lower sizing limit. Using the tandem DMA technique, the performance of the MDMA, i.e., sizing accuracy, resolution, and transmission efficiency, was evaluated at different ratios of aerosol and sheath flowrates. Two aerosol sampling schemes were investigated. One was to extract aerosol flows at an evenly partitioned flowrate at each stage, and the other was to extract aerosol at a rate the same as the polydisperse aerosol flowrate at each stage. We detail the prototype design of the MDMA and the evaluation result on the transfer functions of the MDMA at different particle sizes and operational conditions.« less
Design and characterization of very high frequency pulse tube prototypes
NASA Astrophysics Data System (ADS)
Lopes, Diogo; Duval, Jean-Marc; Charles, Ivan; Butterworth, James; Trollier, Thierry; Tanchon, Julien; Ravex, Alain; Daniel, Christophe
2012-06-01
Weight and size are important features of a cryocooler when it comes to space applications. Given their reliability and low level of exported vibrations (due to the absence of moving cold parts), pulse tubes are good candidates for spatial purposes and their miniaturization has been the focus of many studies. We report on the design and performance of a small-scale very high frequency pulse tube prototype, modeled after two previous prototypes which were optimized with a numerical code.
Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection
NASA Astrophysics Data System (ADS)
Mingji, Huang; Geng, Wu; yan, Shan
2017-11-01
The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.
The Scientific Prototype - a proposed next step for the American MFE effort
NASA Astrophysics Data System (ADS)
Manheimer, Wallace
2013-10-01
The Scientific prototype is the only logical next step for the American magnetic fusion effort. This poster is divided into two parts. The first is a description of the scientific prototype, a tokamak about the size of TFTR, JET and JT-60, but which runs steady state in DT and breeds its own tritium. The second is an examination of other proposed approaches for American MFE and why none constitute a viable alternative. W. Manheimer, J. Fusion Energy, 32, 419-421, 2013.
Simulation of pump-turbine prototype fast mode transition for grid stability support
NASA Astrophysics Data System (ADS)
Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.
2017-04-01
The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.
Status of the NectarCAM camera project
NASA Astrophysics Data System (ADS)
Glicenstein, J.-F.; Barcelo, M.; Barrio, J.-A.; Blanch, O.; Boix, J.; Bolmont, J.; Boutonnet, C.; Brun, P.; Chabanne, E.; Champion, C.; Colonges, S.; Corona, P.; Courty, B.; Delagnes, E.; Delgado, C.; Diaz, C.; Ernenwein, J.-P.; Fegan, S.; Ferreira, O.; Fesquet, M.; Fontaine, G.; Fouque, N.; Henault, F.; Gascón, D.; Giebels, B.; Herranz, D.; Hermel, R.; Hoffmann, D.; Horan, D.; Houles, J.; Jean, P.; Karkar, S.; Knödlseder, J.; Martinez, G.; Lamanna, G.; LeFlour, T.; Lévêque, A.; Lopez-Coto, R.; Louis, F.; Moudden, Y.; Moulin, E.; Nayman, P.; Nunio, F.; Olive, J.-F.; Panazol, J.-L.; Pavy, S.; Petrucci, P.-O.; Punch, M.; Prast, Julie; Ramon, P.; Rateau, S.; Ribó, M.; Rosier-Lees, S.; Sanuy, A.; Sizun, P.; Sieiro, J.; Sulanke, K.-H.; Tavernet, J.-P.; Tejedor, L. A.; Toussenel, F.; Vasileiadis, G.; Voisin, V.; Waegebert, V.; Zurbach, C.
2014-07-01
NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014.
Full size Euclid grism prototype made by photolithography: first optical performance validation
NASA Astrophysics Data System (ADS)
Grange, R.; Caillat, A.; Pascal, S.; Ong, C.; Ellouzi, M.; Prieto, E.; Dohlen, K.
2017-11-01
The ESA Euclid mission is intended to explore the dark side of the Universe, particularly to understand the nature of the dark energy responsible of the accelerating expansion of the Universe. One of the two probes carried by this mission is the Baryonic Acoustic Oscillation (BAO) that requires the redshift measurements of millions of galaxies. In the Euclid design, these massive NIR spectroscopic measurements are based on slitless low resolution grisms. These grisms with low groove density and small blaze angle are difficult to manufacture by conventional replica process. Two years ago we started a CNES R&D program to develop grism manufacturing by the photolithographic process which is well adapted to coarse gratings. In addition, this original method allows introducing optical aberration correction by ruling curved and non-parallel grooves in order to simplify the instrument optical design. During the Euclid Phase A, we developed several prototypes of gratings made by photolithography. In this paper, we present the optical performance test results, including tests in the specific environment of the Euclid mission.
Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Bender, Donald A.
Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less
Thermal performance demonstration of a prototype internally cooled nose tip/forebody/window assembly
NASA Astrophysics Data System (ADS)
Wojciechowski, Carl J.; Brooks, Lori C.; Teal, Gene; Karu, Zain; Kalin, David A.; Jones, Gregory W.; Romero, Harold
1996-11-01
Internally liquid cooled apertures (windows) installed in a full size forebody have been characterized under high heat flux conditions representative of endoatmospheric flight. Analysis and test data obtained in the laboratory and at arc heater test facilities at Arnold Engineering Development Center and NASA Ames are presented in this paper. Data for several types of laboratory bench tests are presented: transmission interferometry and imaging, coolant pressurization effects on optical quality, and coolant flow rate calibrations for both the window and other internally cooled components. Initially, using heat transfer calibration models identical in shape to the flight test articles, arc heater facility thermal test environments were obtained at several conditions representative of full flight thermal environments. Subsequent runs tested the full-up flight article including nosetip, forebody and aperture for full flight duplication of surface heating rates and exposure ties. Pretest analyses compared will to test measurements. These data demonstrate a very efficient internal liquid cooling design which can be applied to other applications such as cooled mirrors for high heat flux applications.
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Adams, David L.; Trinidad, P. Paul
1997-01-01
NASA Langley Technical Library has been involved in developing systems for full-text information delivery of NACA/NASA technical reports since 1991. This paper will describe the two prototypes it has developed and the present production system configuration. The prototype systems are a NACA CD-ROM of thirty-three classic paper NACA reports and a network-based Full-text Electronic Reports Documents System (FEDS) constructed from both paper and electronic formats of NACA and NASA reports. The production system is the DigiDoc System (DIGItal Documents) presently being developed based on the experiences gained from the two prototypes. DigiDoc configuration integrates the on-line catalog database World Wide Web interface and PDF technology to provide a powerful and flexible search and retrieval system. It describes in detail significant achievements and lessons learned in terms of data conversion, storage technologies, full-text searching and retrieval, and image databases. The conclusions from the experiences of digitization and full- text access and future plans for DigiDoc system implementation are discussed.
NASA Technical Reports Server (NTRS)
Jennings, Mallory; Quinn, Gregory; Strange, Jeremy
2012-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
NASA Astrophysics Data System (ADS)
Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.
2016-07-01
The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.
Preliminary design of a superconducting coil array for NASA prototype magnetic balance. M.S. Thesis
NASA Technical Reports Server (NTRS)
Alishahi, M. M.
1980-01-01
Using a computer program a partly optimized configuration for a supeconducting version of side and lift coil system of NASA-MIT prototype is presented. Cable size for the mentioned coils and also for superconducting drag and magnetizing coils regarding the overall computed field was determined.
Horowitz, A.J.; Smith, J.J.; Elrick, K.A.
2001-01-01
A prototype 14-L Teflon? churn splitter was evaluated for whole-water sample-splitting capabilities over a range of sediment concentratons and grain sizes as well as for potential chemical contamination from both organic and inorganic constituents. These evaluations represent a 'best-case' scenario because they were performed in the controlled environment of a laboratory, and used monomineralic silica sand slurries of known concentration made up in deionized water. Further, all splitting was performed by a single operator, and all the requisite concentration analyses were performed by a single laboratory. The prototype Teflon? churn splitter did not appear to supply significant concentrations of either organic or inorganic contaminants at current U.S. Geological Survey (USGS) National Water Quality Laboratory detection and reporting limits when test samples were prepared using current USGS protocols. As with the polyethylene equivalent of the prototype Teflon? churn, the maximum usable whole-water suspended sediment concentration for the prototype churn appears to lie between 1,000 and 10,000 milligrams per liter (mg/L). Further, the maximum grain-size limit appears to lie between 125- and 250-microns (m). Tests to determine the efficacy of the valve baffle indicate that it must be retained to facilitate representative whole-water subsampling.
Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C
2016-08-01
Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of the prototype data management system of the solar H-alpha full disk observation
NASA Astrophysics Data System (ADS)
Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong
2004-06-01
The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.
Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping
2016-03-07
Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.
The GCT camera for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium
2017-12-01
The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.
Energy efficient engine shroudless, hollow fan blade technology report
NASA Technical Reports Server (NTRS)
Michael, C. J.
1981-01-01
The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.
SVGA AMOLED with world's highest pixel pitch
NASA Astrophysics Data System (ADS)
Prache, Olivier; Wacyk, Ihor
2006-05-01
We present the design and early evaluation results of the world's highest pixel pitch full-color 800x3x600- pixel, active matrix organic light emitting diode (AMOLED) color microdisplay for consumer and environmentally demanding applications. The design premises were aimed at improving small area uniformity as well as reducing the pixel size while expanding the functionality found in existing eMagin Corporations' microdisplay products without incurring any power consumption degradation when compared to existing OLED microdisplays produced by eMagin. The initial results of the first silicon prototype presented here demonstrate compliance with all major objectives as well as the validation of a new adaptive gamma correction technique that can operate automatically over temperature.
Design, qualification, manufacturing and integration of IXV Ablative Thermal Protection System
NASA Astrophysics Data System (ADS)
Cioeta, Mario; Di Vita, Gandolfo; Signorelli Maria, Teresa; Bianco, Gianluca; Cutroni, Maurizio; Damiani, Francesco; Ferretti, Viviana; Rotondo, Adriano
2016-07-01
In the present paper, all the activities carried out by Avio S.p.A in order to define, qualify, manufacture and integrate the IXV Ablative TPS will be presented. In particular the extensive numerical simulation in both small and full scale testing activities will be overviewed. Wide-ranging testing activity has been carried out in order to verify, confirm and correlate the numerical models used for TPS sizing. Tests ranged from classical thermo-mechanical characterization traction specimens to tests in plasma wind tunnels on dedicated prototypes. Finally manufacturing and integration activities will be described emphasizing technological aspects solved in order to meet the stringent requirements in terms of shape accuracy and integration tolerances.
Preliminary results of an in-beam PET prototype for proton therapy
NASA Astrophysics Data System (ADS)
Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.
2008-06-01
Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.
16 CFR § 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the
2014-06-01
The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.
The moving-ring field-reversed mirror prototype reactor
NASA Astrophysics Data System (ADS)
Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.
1981-03-01
A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.
SIMS prototype system 1: Design data brochure. [solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heady, R.; Luger, G.F.; Maccabe, A.B.
1991-05-15
This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.
Solid models for CT/MR image display: accuracy and utility in surgical planning
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott
1991-05-01
Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.
Testing and Analysis of the First Plastic Melt Waste Compactor Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John W.
2005-01-01
A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.
Designing and commissioning of a prototype double Laue monochromator at CHESS
NASA Astrophysics Data System (ADS)
Ko, J. Y. Peter; Oswald, Benjamin B.; Savino, James J.; Pauling, Alan K.; Lyndaker, Aaron; Revesz, Peter; Miller, Matthew P.; Brock, Joel D.
2014-03-01
High-energy X-rays are efficiently focused sagittally by a set of asymmetric Laue (transmission) crystals. We designed, built and commissioned a prototype double Laue monochromator ((111) reflection in Si(100)) optimized for high-energy X-rays (30-60 keV). Here, we report our design of novel prototype sagittal bender and highlight results from recent characterization experiments. The design of the bender combines the tuneable bending control afforded by previous leaf-spring designs with the stability and small size of a four-bar bender. The prototype monochromator focuses a 25 mm-wide white beam incident on the first monochromator crystal to a monochromatized 0.6 mm beam waist in the experimental station. Compared to the flux in the same focal spot with the Bragg crystal (without focusing), the prototype Laue monochromator delivered 85 times more at 30 keV.
8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment
NASA Astrophysics Data System (ADS)
Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.
2017-02-01
SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.
Shape of vaginal suppositories affects willingness-to-try and preference
Li, Bangde; Zaveri, Toral; Ziegler, Gregory R.; Hayes, John E.
2013-01-01
HIV and other sexually transmitted infections (STIs) are a global threat to public health that may be countered, in part, by microbicides. A successful microbicide must be both biologically efficacious and highly acceptable to users. Sensory attributes have a direct influence on product acceptability. We created a series of vaginal suppositories appropriate for use as microbicides to investigate the influence of shape on women's willingness-to-try. The influence of perceived size and firmness on acceptability was also assessed. Sexually-active women (n=99) were invited to participate in an evaluation of vaginal suppositories in 5 different shapes including: Bullet, Long Oval, Round Oval, Teardrop and Tampon. The volume (3 ml) and formulation for these 5 prototypes were identical. After manipulating prototypes ex vivo (in their hands), participants rated their willingness-to-try on a 100-point visual analog scale. The appropriateness of size and firmness were evaluated using 5-point just-about-right (JAR) scales. Each participant evaluated all 5 prototypes individually. Samples were presented in a counterbalanced monadic sequence using a Williams design. Mean willingness-to-try varied by shape, with Bullet and Long Oval receiving significantly higher scores. This was consistent with JAR data for size, as 70 and 65% of women indicated these shapes were `just-about–right', respectively. In contrast, a minority of women endorsed the other 3 shapes as having a size that was `just-about-right'. The proportion of women who felt the firmness was `just-about-right' was uniformly high, irrespective of shape, suggesting prior attempts to optimize the formula were successful. Perceptions of size and firmness were influenced by the physical length and width of the prototypes, in spite of having constant volume. Women showed high willingness-to-try when asked to assume they were at risk. These results are relevant for behavioral and formulation scientists working on microbicides, to better understand the influence of sensory attributes on acceptability, as acceptability and compliance ultimately impact effectiveness. PMID:23276592
Code of Federal Regulations, 2014 CFR
2014-01-01
... immediate consumer recognition and readability. Trim size dimensions for all labels shall be as follows... on the label. Specific sizes and faces to be used are indicated on the prototype labels. No...
Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer
KONDO, Kosuke; NEMOTO, Masaaki; MASUDA, Hiroyuki; OKONOGI, Shinichi; NOMOTO, Jun; HARADA, Naoyuki; SUGO, Nobuo; MIYAZAKI, Chikao
We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p < 0.001). A significant difference was also noted in the longitudinal diameter of the cerebral aneurysm (p < 0.01). Regarding the CTA image as the gold standard, reproducibility of the microsurgical anatomy of skull bone and main arteries was favorable in the rapid prototyping models prepared using a 3D printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors. PMID:26119896
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Bergman, W.
2017-08-25
The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.
Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade
NASA Astrophysics Data System (ADS)
Benítez, V.; Ullán, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.; Sperlich, D.; Hauser, M.; Wonsak, S.; Parzefall, U.; Mahboubi, K.; Kuehn, S.; Mori, R.; Jakobs, K.; Bernabeu, J.; García, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.; Ariza, D.; Bloch, I.; Diez, S.; Gregor, I. M.; Keller, J.; Lohwasser, K.; Peschke, R.; Poley, L.; Brenner, R.; Affolder, A.
2016-10-01
The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-in stereo angle. In order to investigate these specific problems, the "petalet" prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITk strip community acquiring the necessary expertise to develop the full End-cap structure, the petal.
Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, L. D.; Adam, H. R.
The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.
NASA Astrophysics Data System (ADS)
Rountree, S. Derek
2013-04-01
The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.
Human Factors and Technical Considerations for a Computerized Operator Support System Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne
2015-09-01
A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less
A low-power CMOS readout IC design for bolometer applications
NASA Astrophysics Data System (ADS)
Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar
2017-02-01
A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kasinski, K.; Szczygiel, R.; Zabolotny, W.
2016-11-01
Each front-end readout ASIC for the High-Energy Physics experiments requires robust and effective hit data streaming and control mechanism. A new STS-XYTER2 full-size prototype chip for the Silicon Tracking System and Muon Chamber detectors in the Compressed Baryonic Matter experiment at Facility for Antiproton and Ion Research (FAIR, Germany) is a 128-channel time and amplitude measuring solution for silicon microstrip and gas detectors. It operates at 250 kHit/s/channel hit rate, each hit producing 27 bits of information (5-bit amplitude, 14-bit timestamp, position and diagnostics data). The chip back-end implements fast front-end channel read-out, timestamp-wise hit sorting, and data streaming via a scalable interface implementing the dedicated protocol (STS-HCTSP) for chip control and hit transfer with data bandwidth from 9.7 MHit/s up to 47 MHit/s. It also includes multiple options for link diagnostics, failure detection, and throttling features. The back-end is designed to operate with the data acquisition architecture based on the CERN GBTx transceivers. This paper presents the details of the back-end and interface design and its implementation in the UMC 180 nm CMOS process.
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2014 CFR
2014-01-01
... recognition and readability. Trim size dimensions for all labels shall be as follows: width must be between 51.... Specific sizes and faces to be used are indicated on the prototype labels. No hyphenation should be used in...
Xu, Jie; Li, Deng; Ma, Ruo-fan; Barden, Bertram; Ding, Yue
2015-11-01
Total hip arthroplasty (THA) is challenging in cases of osteoarthritis secondary to developmental dysplasia of the hip (DDH). Acetabular deficiency makes the positioning of the acetabular component difficult. Computer tomography based, patient-individual three dimensional (3-D) rapid prototype technology (RPT)-models were used to plan the placement of acetabular cup so that a surgeon was able to identify pelvic structures, assess the ideal extent of reaming and determine the size of cup after a reconstructive procedure. Intraclass correlation coefficients (ICCs) were used to analyze the agreement between the sizes of chosen components on the basis of preoperative planning and the actual sizes used in the operation. The use of the 3-D RPT-model facilitates the surgical procedures due to better planning and improved orientation. Copyright © 2015 Elsevier Inc. All rights reserved.
Rain rate instrument for deployment at sea, phase 2
NASA Technical Reports Server (NTRS)
Steele, Jimmy W.
1992-01-01
This report describes, in detail, the SBIR Phase 2 contracting effort provided for by NASA Contract Number NAS8-38481 in which a prototype Rain Rate Sensor was developed. FWG Model RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A consists of a fiber optic probe containing a 32-fiber array connected to an electronic signal processor. When interfaced to an IBM compatible personal computer and configured with appropriate software, the RP101A is capable of measuring rain rates and particles ranging in size from around 300 microns up to 6 to 7 millimeters. FWG Associates, Inc. intends to develop a production model from the prototype and continue the effort under NASA's SBIR Phase 3 program.
Algorithmic design for 3D printing at building scale
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew; ...
2017-01-01
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Algorithmic design for 3D printing at building scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment
NASA Astrophysics Data System (ADS)
Williams, W. J.; Robinson, A. B.; Rabin, B. H.
2017-12-01
This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.
Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment
NASA Astrophysics Data System (ADS)
Perez Codina, E.; ATLAS Muon Collaboration
2016-07-01
The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.
Design and construction of prototype radio antenna for shortest radio wavelengths
NASA Technical Reports Server (NTRS)
Leighton, R. B.
1975-01-01
A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.
Dayer, Mohammad Reza
2016-05-01
Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.
Structural Similitude and Scaling Laws for Plates and Shells: A Review
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Starnes, J. H., Jr.; Rezaeepazhand, J.
2000-01-01
This paper deals with the development and use of scaled-down models in order to predict the structural behavior of large prototypes. The concept is fully described and examples are presented which demonstrate its applicability to beam-plates, plates and cylindrical shells of laminated construction. The concept is based on the use of field equations, which govern the response behavior of both the small model as well as the large prototype. The conditions under which the experimental data of a small model can be used to predict the behavior of a large prototype are called scaling laws or similarity conditions and the term that best describes the process is structural similitude. Moreover, since the term scaling is used to describe the effect of size on strength characteristics of materials, a discussion is included which should clarify the difference between "scaling law" and "size effect". Finally, a historical review of all published work in the broad area of structural similitude is presented for completeness.
Developing and Evaluating Prototype of Waste Volume Monitoring Using Internet of Things
NASA Astrophysics Data System (ADS)
Fathhan Arief, Mohamad; Lumban Gaol, Ford
2017-06-01
In Indonesia, especially Jakarta have a lot of garbage strewn that can be an eyesore and also cause pollution that can carry diseases. Garbage strewn can cause many things, one of her dues is bins are overflowing due to the full so it can not accommodate the waste dumped from other people. Thus, the author created a new method for waste disposal more systematic. In creating new method requires a technology to supports, then the author makes a prototype for waste volume monitoring. By using the internet of things prototype of waste volume monitoring may give notification to the sanitary agency that waste in the trash bin needs to be disposal. In this study, conducted the design and manufactured of prototype waste volume monitoring using LinkItONE board based by Arduino and an ultrasonic sensor for appliance senses. Once the prototype is completed, evaluation in order to determine whether the prototype will function properly. The result showed that the expected function of a prototype waste volume monitoring can work well.
Prototyping an institutional IAIMS/UMLS information environment for an academic medical center.
Miller, P L; Paton, J A; Clyman, J I; Powsner, S M
1992-07-01
The paper describes a prototype information environment designed to link network-based information resources in an integrated fashion and thus enhance the information capabilities of an academic medical center. The prototype was implemented on a single Macintosh computer to permit exploration of the overall "information architecture" and to demonstrate the various desired capabilities prior to full-scale network-based implementation. At the heart of the prototype are two components: a diverse set of information resources available over an institutional computer network and an information sources map designed to assist users in finding and accessing information resources relevant to their needs. The paper describes these and other components of the prototype and presents a scenario illustrating its use. The prototype illustrates the link between the goals of two National Library of Medicine initiatives, the Integrated Academic Information Management System (IAIMS) and the Unified Medical Language System (UMLS).
Application of full-scale three-dimensional models in patients with rheumatoid cervical spine.
Mizutani, Jun; Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu
2008-05-01
Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results.
Beam tracking with micromegas & wire chambers in secondary electron detection configuration
NASA Astrophysics Data System (ADS)
Voštinar, M.; Fernández, B.; Pancin, J.; Alvarez, M. A. G.; Chaminade, T.; Damoy, S.; Doré, D.; Drouart, A.; Druillole, F.; Frémont, G.; Kebbiri, M.; Materna, T.; Monmarthe, E.; Panebianco, S.; Papaevangelou, T.; Riallot, M.; Savajols, H.; Spitaels, C.
2013-12-01
The focal plane of S3 (Super Separator Spectrometer), a new experimental area of SPIRAL2 at GANIL, will be used for identification of nuclei, and requires the reconstruction of their trajectories and velocities by the Time Of Flight (TOF) method. Classical tracking detectors used in-beam would generate a lot of angular and energy straggling due to their thickness. One solution is the use of a SED (Secondary Electron Detection), which consists of a thin emissive foil in beam coupled to a low pressure gaseous detector out of the beam, for the detection of secondary electrons ejected from the foil. Moreover, this type of detector can be used for classical beam tracking at low energies, or for example at NFS (GANIL) for the FALSTAFF experiment for the reconstruction of fission fragments trajectories. Several low pressure gaseous detectors such as wire chambers and Micromegas have been constructed and tested since 2008. High counting rate capabilities and good time resolution obtained in previous tests motivated the construction of a new real-size 2D prototype wire chamber and a 2D bulk Micromegas at low pressure. For the first time, spatial resolution of the Micromegas at low pressure (below 20 mbar) in the SED configuration was measured. Different tests have been performed in order to characterize time and spatial properties of both prototypes, giving spatial resolution in the horizontal (X) direction of 0.90(0.02) mm FWHM for the real size prototype and 0.72(0.08) mm FWHM for Micromegas, and a time resolution of ~ 110(25) ps for the real size prototype.
Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon
2015-01-01
Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240
The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors
NASA Astrophysics Data System (ADS)
de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.
2018-01-01
A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.
NASA Astrophysics Data System (ADS)
Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.
2014-05-01
Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.
NASA Astrophysics Data System (ADS)
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Performance of the full size nGEM detector for the SPIDER experiment
NASA Astrophysics Data System (ADS)
Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.
2016-03-01
The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).
NASA Astrophysics Data System (ADS)
Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.
2014-07-01
The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.
OTEC riser cable model and prototype testing
NASA Astrophysics Data System (ADS)
Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.
1981-12-01
Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.
Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell
2015-11-16
The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.
D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V
1992-08-01
The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
NASA Astrophysics Data System (ADS)
Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.
2017-08-01
The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.
Phase I prototype digesters demonstrated the feasibility of biogas generation, using simple materials such as trash cans, oil drums, and polyethylene bags – a full scale digester, based on prototype biogas production volumes, range from 5000 to 9000 liters, depending on ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
Development and Prototyping of the PROSPECT Antineutrino Detector
NASA Astrophysics Data System (ADS)
Commeford, Kelley; Prospect Collaboration
2017-01-01
The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.
Study on selective laser sintering of glass fiber reinforced polystyrene
NASA Astrophysics Data System (ADS)
Yang, Laixia; Wang, Bo; Zhou, Wenming
2017-12-01
In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
Marian, Ali J.; van Rooij, Eva; Roberts, Robert
2016-01-01
This is the first of 2 review papers on genetics and genomics appearing as part of the series on “omics.” Genomics pertains to all components of an organism’s genes, whereas genetics involves analysis of a specific gene(s) in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. PMID:28007145
Shape of vaginal suppositories affects willingness-to-try and preference.
Li, Bangde; Zaveri, Toral; Ziegler, Gregory R; Hayes, John E
2013-03-01
HIV and other sexually transmitted infections (STIs) are a global threat to public health that may be countered, in part, by microbicides. A successful microbicide must be both biologically efficacious and highly acceptable to users. Sensory attributes have a direct influence on product acceptability. We created a series of vaginal suppositories appropriate for use as microbicides to investigate the influence of shape on women's willingness-to-try. The influence of perceived size and firmness on acceptability was also assessed. Sexually-active women (n=99) were invited to participate in an evaluation of vaginal suppositories in 5 different shapes including: Bullet, Long Oval, Round Oval, Teardrop and Tampon. The volume (3mL) and formulation for these five prototypes were identical. After manipulating prototypes ex vivo (in their hands), participants rated their willingness-to-try on a 100-point visual analog scale. The appropriateness of size and firmness were evaluated using 5-point just-about-right (JAR) scales. Each participant evaluated all five prototypes individually. Samples were presented in a counterbalanced monadic sequence using a Williams design. Mean willingness-to-try varied by shape, with Bullet and Long Oval receiving significantly higher scores. This was consistent with JAR data for size, as 70% and 65% of women indicated these shapes were 'just-about-right', respectively. In contrast, a minority of women endorsed the other 3 shapes as having a size that was 'just-about-right'. The proportion of women who felt the firmness was 'just-about-right' was uniformly high, irrespective of shape, suggesting prior attempts to optimize the formula were successful. Perceptions of size and firmness were influenced by the physical length and width of the prototypes, in spite of having constant volume. Women showed high willingness-to-try when asked to assume they were at risk. These results are relevant for behavioral and formulation scientists working on microbicides, to better understand the influence of sensory attributes on acceptability, as acceptability and compliance ultimately impact effectiveness. Copyright © 2012 Elsevier B.V. All rights reserved.
Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.
Software Testing for Evolutionary Iterative Rapid Prototyping
1990-12-01
kept later hours than I did. Amidst the hustle and bustle, their prayers and help around the house were a great ast.. Finally, if anything shows the...possible meanings. A basic dictionary definition describes prototyping as "an original type , form, or instance that serves as a modfe] on which later...on program size. Asset instruments 49 the subject procedure and produces a graph of the structure for the type of data flow testing conducted. It
Development of micromachine tool prototypes for microfactories
NASA Astrophysics Data System (ADS)
Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.
2002-11-01
At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.
Sensors on instrumented socks for detection of lower leg edema--An in vitro study.
Zhang, Song; Rajamani, Rajesh
2015-01-01
This paper presents the design, sensing principles and in vitro evaluation of a novel instrumented sock intended for prediction and prevention of acute decompensated heart failure. The sock contains a drift-free ankle size sensor and a leg tissue elasticity sensor. Both sensors are inexpensive and developed using innovative new sensing ideas. Preliminary tests with the sensor prototypes show promising results: The ankle size sensor is capable of measuring 1 mm changes in ankle diameter and the tissue elasticity sensor can detect 0.15 MPa differences in elasticity. A low-profile instrumented sock prototype with these two sensors has been successfully fabricated and will be evaluated in the future in an IRB-approved human study.
Burleson, Winslow; Lozano, Cecil; Ravishankar, Vijay; Lee, Jisoo; Mahoney, Diane
2018-05-01
Individuals living with advancing stages of dementia (persons with dementia, PWDs) or other cognitive disorders do not have the luxury of remembering how to perform basic day-to-day activities, which in turn makes them increasingly dependent on the assistance of caregivers. Dressing is one of the most common and stressful activities provided by caregivers because of its complexity and privacy challenges posed during the process. In preparation for in-home trials with PWDs, the aim of this study was to develop and evaluate a prototype intelligent system, the DRESS prototype, to assess its ability to provide automated assistance with dressing that can afford independence and privacy to individual PWDs and potentially provide additional freedom to their caregivers (family members and professionals). This laboratory study evaluated the DRESS prototype's capacity to detect dressing events. These events were engaged in by 11 healthy participants simulating common correct and incorrect dressing scenarios. The events ranged from donning a shirt and pants inside out or backwards to partial dressing-typical issues that challenge a PWD and their caregivers. A set of expected detections for correct dressing was prepared via video analysis of all participants' dressing behaviors. In the initial phases of donning either shirts or pants, the DRESS prototype missed only 4 out of 388 expected detections. The prototype's ability to recognize other missing detections varied across conditions. There were also some unexpected detections such as detection of the inside of a shirt as it was being put on. Throughout the study, detection of dressing events was adversely affected by the relatively smaller effective size of the markers at greater distances. Although the DRESS prototype incorrectly identified 10 of 22 cases for shirts, the prototype preformed significantly better for pants, incorrectly identifying only 5 of 22 cases. Further analyses identified opportunities to improve the DRESS prototype's reliability, including increasing the size of markers, minimizing garment folding or occlusions, and optimal positioning of participants with respect to the DRESS prototype. This study demonstrates the ability to detect clothing orientation and position and infer current state of dressing using a combination of sensors, intelligent software, and barcode tracking. With improvements identified by this study, the DRESS prototype has the potential to provide a viable option to provide automated dressing support to assist PWDs in maintaining their independence and privacy, while potentially providing their caregivers with the much-needed respite. ©Winslow Burleson, Cecil Lozano, Vijay Ravishankar, Jisoo Lee, Diane Mahoney. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.05.2018.
Characterizing X-ray detectors for prototype digital breast tomosynthesis systems
NASA Astrophysics Data System (ADS)
Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.
2016-03-01
The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray detectors for commercial DBT systems. Our findings suggest that the Dexela detector can be applied to the DBT system with regard to its high imaging performance.
Optimized Orthovoltage Stereotactic Radiosurgery
NASA Astrophysics Data System (ADS)
Fagerstrom, Jessica M.
Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.
Repulsive force actuated rotary micromirror
NASA Astrophysics Data System (ADS)
He, Siyuan; Ben Mrad, Ridha
2004-09-01
In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.
2016-08-09
This image shows the bare bones of the first prototype starshade by NASA's Jet Propulsion Laboratory, Pasadena, California. The prototype was shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California in 2013. In order for the petals of the starshade to diffract starlight away from the camera of a space telescope, they must be deployed with accuracy once the starshade reaches space. The four petals pictured in the image are being measured for this positional accuracy with a laser. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. http://photojournal.jpl.nasa.gov/catalog/PIA20903
Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions
NASA Technical Reports Server (NTRS)
Patel, P. S.; Baker, B. S.
1977-01-01
A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.
The cosmic ray muon tomography facility based on large scale MRPC detectors
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping
2015-06-01
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
The Galileo PPS expert monitoring and diagnostic prototype
NASA Technical Reports Server (NTRS)
Bahrami, Khosrow
1989-01-01
The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne R.
2009-01-01
This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.
Long-Life Thermal Battery for Sonobuoy
2000-04-20
Microtherm insulation. This Phase I project provided a cost-effective prototype development for fully meeting size ’A’ sonobuoy performance objectives. An...Crossection of Thermal Battery inside V/M-Insulated Battery Case having a Spun Inner Wall and the Standard Battery Can ( Microtherm added at header-end...34 thick Microtherm — — / 0.250" extra Fiberfrax Wrap X^ 0.075 " vacuum annulus ,/ Detail of Header-End 0.250’’ Fig.l, Drawing of a Prototype
Expanded Owens Valley Solar Array (EOVSA) Testbed and Prototype
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Nita, G. M.; Sane, N.
2012-05-01
NJIT is engaged in constructing a new solar-dedicated radio array, the Expanded Owens Valley Solar Array (EOVSA), which is slated for completion in late 2013. An initial 3-antenna array, the EOVSA Subsystem Testbed (EST), is now in operation from 1-9 GHz based on three of the old OVSA antennas, to test certain design elements of the new array. We describe this instrument and show some results from recent solar flares observed with it. We also describe plans for an upcoming prototype of EOVSA, which will use three antennas of the new design over the full 1-18 GHz signal chain of the entirely new system. The EOVSA prototype will be in operation by late 2012. Highlights of the new design are ability to cover the entire 1-18 GHz in less than 1 s, simultaneous dual polarization, and improved sensitivity and stability. We discuss what can be expected from the prototype, and how it will compare with the full 13-antenna EOVSA. This work was supported by NSF grants AGS-0961867 and AST-0908344, and NASA grant NNX11AB49G to New Jersey Institute of Technology.
A novel method for designing and fabricating low-cost facepiece prototypes.
Joe, Paula S; Shum, Phillip C; Brown, David W; Lungu, Claudiu T
2014-01-01
In 2010, the National Institute for Occupational Safety and Health (NIOSH) published new digital head form models based on their recently updated fit-test panel. The new panel, based on the 2000 census to better represent the modern work force, created two additional sizes: Short/Wide and Long/Narrow. While collecting the anthropometric data that comprised the panel, additional three-dimensional data were collected on a subset of the subjects. Within each sizing category, five individuals' three-dimensional data were used to create the new head form models. While NIOSH has recommended a switch to a five-size system for designing respirators, little has been done in assessing the potential benefits of this change. With commercially available elastomeric facepieces available in only three or four size systems, it was necessary to develop the facepieces to enable testing. This study aims to develop a method for designing and fabricating elastomeric facepieces tailored to the new head form designs for use in fit-testing studies. This novel method used computed tomography of a solid silicone facepiece and a number of computer-aided design programs (VolView, ParaView, MEGG3D, and RapidForm XOR) to develop a facepiece model to accommodate the Short/Wide head form. The generated model was given a physical form by means of three-dimensional printing using stereolithography (SLA). The printed model was then used to create a silicone mold from which elastomeric prototypes can be cast. The prototype facepieces were cast in two types of silicone for use in future fit-testing.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
NASA Astrophysics Data System (ADS)
Hampton, Francis Patrick
Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3--6 were achieved for all concrete elements tested. To study the long-term behavior of DHFRP, the creep-rupture strength of 5-mm bars was tested. This was conducted first on individual bar specimens and is important in the life-cycle design and performance of DHFRP reinforced concrete.
NASA Technical Reports Server (NTRS)
Stringer, E. J.
1977-01-01
Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.
Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium
2017-12-01
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
Research and development of energy-efficient high back-pressure compressor
NASA Astrophysics Data System (ADS)
1983-09-01
Improved-efficiency compressors were developed in four capacity sizes. Changes to the baseline compressor were made to the motors, valve plates, and mufflers. The adoption of a slower running speed compressor required larger displacements to maintain the desired capacity. This involved both bore and stroke modifications. All changes that were made to the compressor are readily adaptable to manufacture. Prototype compressors were built and tested. The largest capacity size (4000 Btu/h) was selected for testing in a vending machine. Additional testing was performed on the prototype compressors in order to rate them on an alternate refrigerant. A market analysis was performed to determine the potential acceptance of the improved-efficiency machines by a vending machine manufacturer, who supplies a retail sales system of a major soft drink company.
Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A
2008-04-01
To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.
The Multifrequency Siberian Radioheliograph
NASA Astrophysics Data System (ADS)
Lesovoi, S. V.; Altyntsev, A. T.; Ivanov, E. F.; Gubin, A. V.
2012-10-01
The ten-antenna prototype of the multifrequency Siberian radioheliograph is described. The prototype consists of four parts: antennas with broadband front-ends, analog back-ends, digital receivers and a correlator. The prototype antennas are mounted on the outermost stations of the Siberian Solar Radio Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom by an analog fiber optical link, laid in an underground tunnel. After mixing, all signals are digitized and processed by digital receivers before the data are transmitted to the correlator. The digital receivers and the correlator are accessible by the Local Area Network (LAN). The frequency range of the prototype is from 4 to 8 GHz. Currently the frequency switching observing mode is used. The prototype data include both circular polarizations at a number of frequencies given by a list. This prototype is the first stage of the multifrequency Siberian radioheliograph development. It is assumed that the radioheliograph will consist of 96 antennas and will occupy stations of the West-East-South subarray of the SSRT. The radioheliograph will be fully constructed in the autumn of 2012. We plan to reach the brightness temperature sensitivity of about 100 K for the snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and a polarization measurement accuracy about a few percent. First results with the ten-antenna prototype are presented of observations of solar microwave bursts. The prototype's abilities to estimate source size and locations at different frequencies are discussed.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Impact of SCBA size and firefighting work cycle on firefighter functional balance.
Kesler, Richard M; Deetjen, Grace S; Bradley, Faith F; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T
2018-05-01
Slips, trips and falls are leading causes of fireground injuries. A functional balance test (FBT) was used to investigate the effects of self-contained breathing apparatus (SCBA) size and design, plus firefighting work cycle. During the FBT, subjects walked along a narrow platform and turned in defined spaces, with and without an overhead obstacle. Thirty firefighters wore three varying-sized standard SCBAs and a low-profile prototype SCBA during three simulated firefighting work/rest cycles. Firefighters were tested pre- and post-firefighting activity (one bout, two bouts with a 5-min break, or back-to-back bouts with no break). Subjects committed more errors and required longer completion times with larger SCBAs. Use of the prototype SCBA lead to lower times and fewer errors. Performing a second bout of firefighting increased completion time. Firefighters need to consider how SCBA and amount of physical activity on the fireground may influence balance in order to reduce the risk of injury. Copyright © 2018 Elsevier Ltd. All rights reserved.
Setoh, Yin Xiang; Amarilla, Alberto A; Peng, Nias Y; Slonchak, Andrii; Periasamy, Parthiban; Figueiredo, Luiz T M; Aquino, Victor H; Khromykh, Alexander A
2018-01-01
Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).
Development of a superconducting claw-pole linear test-rig
NASA Astrophysics Data System (ADS)
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus
2016-04-01
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.
2016-08-09
A furled first prototype starshade developed by NASA's Jet Propulsion Laboratory, shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California, in 2013. This design shows petals that are more extreme in shape, which properly diffracts starlight for smaller telescopes. For launch, the petals of the starshade will be wrapped around the spacecraft, then unfurled into the familiar flower-like design once in space. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. http://photojournal.jpl.nasa.gov/catalog/PIA20905
2017-01-11
Daniel Perez, Ph.D., a graduate student from the University of Miami, displays a piece of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.
2017-01-11
Daniel Perez, Ph.D., a graduate student from the University of Miami, prepares layers of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.
NASA Astrophysics Data System (ADS)
Rasco, B. C.
2012-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less
Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A
2015-01-01
Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580
High-speed multishot pellet injector prototype for the Frascati Tokamak Upgrade
NASA Astrophysics Data System (ADS)
Frattolillo, A.; Migliori, S.; Scaramuzzi, F.; Angelone, G.; Baldarelli, M.; Capobianchi, M.; Cardoni, P.; Domma, C.; Mori, L.; Ronci, G.
1998-07-01
The Frascati Tokamak Upgrade (FTU) may require multiple high-speed pellet injection in order to achieve quasi-steady-state conditions. A research and development program was thus being pursued at ENEA Frascati, aimed at developing a multishot two-stage pellet injector (MPI), featuring eight "pipe gun" barrels and eight small two-stage pneumatic guns. According to FTU requirements, the final goal is to simultaneously produce up to eight D2 pellets, and then deliver them during a plasma pulse (1 s) with any time schedule, at speeds in the 1-2.5 km/s range. A prototype was constructed and tested to demonstrate the feasibility of the concept, and optimize pellet formation and firing sequences. This laboratory facility was automatically operated by means of a programmable logic controller (PLC), and had a full eight-shot capability. However, it was equipped as a first approach with only four two-stage guns. In this article we will describe in detail the guidelines of the MPI prototype design, which were strongly influenced by some external constraints. We will also report on the results of the experimental campaign, during which the feasibility of such a two-stage MPI was demonstrated. Sequences of four intact D2 pellets in the 1.2-1.6 mm size range, fired at time intervals of a few tens up to a few hundreds of ms, were routinely delivered in a laboratory experiment at injection speeds above 2.5 km/s, with good reproducibility and satisfactory aiming dispersion. Some preliminary effort to address the problem of propellant gas handling, based on an innovative approach, gave encouraging results, and work is in progress to carry out an experiment to definitely test the feasibility of this concept.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore
2016-08-01
ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.
Metamorphoses of ONAV console operations: From prototype to real time application
NASA Technical Reports Server (NTRS)
Millis, Malise; Wang, Lui
1991-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently the entry and rendezvous systems are in verification, and the ascent is being prototyped. To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, what is verification, and availability, stability, and the size of the expert pool. The environmental issues included real time data acquisition, hardware stability, and how to achieve acceptance by users and management.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Meikle, Mary B; Henry, James A; Griest, Susan E; Stewart, Barbara J; Abrams, Harvey B; McArdle, Rachel; Myers, Paula J; Newman, Craig W; Sandridge, Sharon; Turk, Dennis C; Folmer, Robert L; Frederick, Eric J; House, John W; Jacobson, Gary P; Kinney, Sam E; Martin, William H; Nagler, Stephen M; Reich, Gloria E; Searchfield, Grant; Sweetow, Robert; Vernon, Jack A
2012-01-01
Chronic subjective tinnitus is a prevalent condition that causes significant distress to millions of Americans. Effective tinnitus treatments are urgently needed, but evaluating them is hampered by the lack of standardized measures that are validated for both intake assessment and evaluation of treatment outcomes. This work was designed to develop a new self-report questionnaire, the Tinnitus Functional Index (TFI), that would have documented validity both for scaling the severity and negative impact of tinnitus for use in intake assessment and for measuring treatment-related changes in tinnitus (responsiveness) and that would provide comprehensive coverage of multiple tinnitus severity domains. To use preexisting knowledge concerning tinnitus-related problems, an Item Selection Panel (17 expert judges) surveyed the content (175 items) of nine widely used tinnitus questionnaires. From those items, the Panel identified 13 separate domains of tinnitus distress and selected 70 items most likely to be responsive to treatment effects. Eliminating redundant items while retaining good content validity and adding new items to achieve the recommended minimum of 3 to 4 items per domain yielded 43 items, which were then used for constructing TFI Prototype 1.Prototype 1 was tested at five clinics. The 326 participants included consecutive patients receiving tinnitus treatment who provided informed consent-constituting a convenience sample. Construct validity of Prototype 1 as an outcome measure was evaluated by measuring responsiveness of the overall scale and its individual items at 3 and 6 mo follow-up with 65 and 42 participants, respectively. Using a predetermined list of criteria, the 30 best-functioning items were selected for constructing TFI Prototype 2.Prototype 2 was tested at four clinics with 347 participants, including 155 and 86 who provided 3 and 6 mo follow-up data, respectively. Analyses were the same as for Prototype 1. Results were used to select the 25 best-functioning items for the final TFI. Both prototypes and the final TFI displayed strong measurement properties, with few missing data, high validity for scaling of tinnitus severity, and good reliability. All TFI versions exhibited the same eight factors characterizing tinnitus severity and negative impact. Responsiveness, evaluated by computing effect sizes for responses at follow-up, was satisfactory in all TFI versions.In the final TFI, Cronbach's alpha was 0.97 and test-retest reliability 0.78. Convergent validity (r = 0.86 with Tinnitus Handicap Inventory [THI]; r = 0.75 with Visual Analog Scale [VAS]) and discriminant validity (r = 0.56 with Beck Depression Inventory-Primary Care [BDI-PC]) were good. The final TFI was successful at detecting improvement from the initial clinic visit to 3 mo with moderate to large effect sizes and from initial to 6 mo with large effect sizes. Effect sizes for the TFI were generally larger than those obtained for the VAS and THI. After careful evaluation, a 13-point reduction was considered a preliminary criterion for meaningful reduction in TFI outcome scores. The TFI should be useful in both clinical and research settings because of its responsiveness to treatment-related change, validity for scaling the overall severity of tinnitus, and comprehensive coverage of multiple domains of tinnitus severity.
Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica
2015-01-01
We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this technology in busy inpatient settings.
Structural Similitude and Scaling Laws
NASA Technical Reports Server (NTRS)
Simitses, George J.
1998-01-01
Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.
Rainbow peacock spiders inspire miniature super-iridescent optics.
Hsiung, Bor-Kai; Siddique, Radwanul Hasan; Stavenga, Doekele G; Otto, Jürgen C; Allen, Michael C; Liu, Ying; Lu, Yong-Feng; Deheyn, Dimitri D; Shawkey, Matthew D; Blackledge, Todd A
2017-12-22
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm 2 ) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components.
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Johnson, G. K.
1982-01-01
Satisfactory performance is reported for the first 12-cell sub-stack of the 5 kW rebuild using improved ABA reactant distribution plates. Construction and test results are described for the first full-sized single-cell test (0.33 m x 0.56 m). Test duration was 450 hours. Plans are outlined for construction and testing of two methanol reformer units based on commercially-available shell-and-tube heat exchangers. A 5 kW-equivalent precursor and a 50 kW-equivalent prototype will be built. Supporting design and single-tube experimental data are presented. Stack support efforts are summarized on corrosion currents of graphite materials and acid-management of single-cell test facilities. Comparative properties are summarized for the two methanol/steam reforming catalysts evauated under Task V (now completed); T2107RS and C70-2RS.
Anthropometry and Biomechanics Facility Presentation to Open EVA Research Forum
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar
2017-01-01
NASA is required to accommodate individuals who fall within a 1st to 99th percentile range on a variety of critical dimensions. The hardware the crew interacts with must therefore be designed and verified to allow these selected individuals to complete critical mission tasks safely and at an optimal performance level. Until now, designers have been provided simpler univariate critical dimensional analyses. The multivariate characteristics of intra-individual and inter-individual size variation must be accounted for, since an individual who is 1st percentile in one body dimension will not be 1st percentile in all other dimensions. A more simplistic approach, assuming every measurement of an individual will fall within the same percentile range, can lead to a model that does not represent realistic members of the population. In other words, there is no '1st percentile female' or '99th percentile male', and designing for these unrealistic body types can lead to hardware issues down the road. Furthermore, due to budget considerations, designers are normally limited to providing only 1 size of a prototype suit, thus requiring other possible means to ensure that a given suit architecture would yield the necessary suit sizes to accommodate the entire user population. Fortunately, modeling tools can be used to more accurately model the types of human body sizes and shapes that will be encountered in a population. Anthropometry toolkits have been designed with a variety of capabilities, including grouping the population into clusters based on critical dimensions, providing percentile information given test subject measurements, and listing measurement ranges for critical dimensions in the 1st-99th percentile range. These toolkits can be combined with full body laser scans to allow designers to build human models that better represent the astronaut population. More recently, some rescaling and reposing capabilities have been developed, to allow reshaping of these static laser scans in more representative postures, such as an abducted shoulder. All of the hardware designed for use with the crew must be sized to accommodate the user population, but the interaction between subject size and hardware fit is complicated with multi-component, complex systems like a space suit. Again, prototype suits are normally only provided in a limited size range, and suited testing is an expensive endeavor; both of these factors limit the number and size of people who can be used to benchmark a spacesuit. However, modeling tools for assessing suit-human interaction can allow potential issues to be modeled and visualized. These types of modeling tools can be used for analysis of a larger combination of anthropometries and hardware types than could feasibly be done with actual human subjects and physical mockups.
NASA Astrophysics Data System (ADS)
Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.
2012-06-01
A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.
Wireless optical network for a home network
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric
2010-08-01
During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
Large fully retractable telescope enclosures still closable in strong wind
NASA Astrophysics Data System (ADS)
Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus
2008-07-01
Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.
Endo, Gen; Iemura, Yu; Fukushima, Edwardo F; Hirose, Shigeo; Iribe, Masatsugu; Ikeda, Ryota; Onishi, Kohei; Maeda, Naoto; Takubo, Toshio; Ohira, Mineko
2013-06-01
Home oxygen therapy (HOT) is a medical treatment for the patients suffering from severe lung diseases. Although walking outdoors is recommended for the patients to maintain physical strength, the patients always have to carry a portable oxygen supplier which is not sufficiently light weight for this purpose. Our ultimate goal is to develop a mobile robot to carry an oxygen tank and follow a patient in an urban outdoor environment. We have proposed a mobile robot with a tether interface to detect the relative position of the foregoing patient. In this paper, we report the questionnaire-based evaluation about the two developed prototypes by the HOT patients. We conduct maneuvering experiments, and then obtained questionnaire-based evaluations from the 20 patients. The results show that the basic following performance is sufficient and the pulling force of the tether is sufficiently small for the patients. Moreover, the patients prefer the small-sized prototype for compactness and light weight to the middle-sized prototype which can carry larger payload. We also obtained detailed requests to improve the robots. Finally the results show the general concept of the robot is favorably received by the patients.
Scalable Performance Environments for Parallel Systems
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.
1991-01-01
As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.
NASA Technical Reports Server (NTRS)
Squires, P. K.
1982-01-01
Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.
SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades
NASA Astrophysics Data System (ADS)
Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.
2017-04-01
This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez
2011-07-01
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez; /NIU
2011-08-18
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
NASA Astrophysics Data System (ADS)
Nishimura, K.; Dey, B.; Aston, D.; Leith, D. W. G. S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G. S.; Va'vra, J.
2013-02-01
We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from 384 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of Emuon> 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of reconstruction ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.
Judgments of subtle facial expressions of emotion.
Matsumoto, David; Hwang, Hyisung C
2014-04-01
Most studies on judgments of facial expressions of emotion have primarily utilized prototypical, high-intensity expressions. This paper examines judgments of subtle facial expressions of emotion, including not only low-intensity versions of full-face prototypes but also variants of those prototypes. A dynamic paradigm was used in which observers were shown a neutral expression followed by the target expression to judge, and then the neutral expression again, allowing for a simulation of the emergence of the expression from and then return to a baseline. We also examined how signal and intensity clarities of the expressions (explained more fully in the Introduction) were associated with judgment agreement levels. Low-intensity, full-face prototypical expressions of emotion were judged as the intended emotion at rates significantly greater than chance. A number of the proposed variants were also judged as the intended emotions. Both signal and intensity clarities were individually associated with agreement rates; when their interrelationships were taken into account, signal clarity independently predicted agreement rates but intensity clarity did not. The presence or absence of specific muscles appeared to be more important to agreement rates than their intensity levels, with the exception of the intensity of zygomatic major, which was positively correlated with agreement rates for judgments of joy.
NASA Technical Reports Server (NTRS)
Shaia, C. D.; Jones, G. H.
1971-01-01
Work on a biodetection grinder is summarized. It includes development of the prototype grinder, second generation grinder, and the production version of the grinder. Tests showed the particle size distribution was satisfactory and biological evaluation confirmed the tests.
13 CFR 121.701 - What SBIR programs are subject to size determinations?
Code of Federal Regulations, 2010 CFR
2010-01-01
... between any Federal agency and any small business for the performance of experimental, developmental, or... design, development, and improvement of prototypes and new processes to meet specific requirements. ...
13 CFR 121.701 - What SBIR programs are subject to size determinations?
Code of Federal Regulations, 2012 CFR
2012-01-01
... between any Federal agency and any small business for the performance of experimental, developmental, or... design, development, and improvement of prototypes and new processes to meet specific requirements. ...
13 CFR 121.701 - What SBIR programs are subject to size determinations?
Code of Federal Regulations, 2011 CFR
2011-01-01
... between any Federal agency and any small business for the performance of experimental, developmental, or... design, development, and improvement of prototypes and new processes to meet specific requirements. ...
Reducing particle dimensions of chunkwood.
Robert C. Radcliffe
1990-01-01
Presents and compares the chunkwood sizes obtainable with the USDA Forest Service prototype wood chunker using four different blade configurations, and the results of further chunkwood reduction with three methods totally separate from the chunking process.
NASA Astrophysics Data System (ADS)
Rulten, Cameron; Zech, Andreas; Okumura, Akira; Laporte, Philippe; Schmoll, Jürgen
2016-09-01
The Gamma-ray Cherenkov Telescope (GCT) is a small-sized telescope (SST) that represents one of three novel designs that are based on Schwarzschild-Couder optics and are proposed for use within the Cherenkov Telescope Array (CTA). The GAmma-ray Telescope Elements (GATE) program has led an effort to build a prototype of the GCT at the Paris Observatory in Meudon, France. The mechanical structure of the prototype, known as the SST-GATE prototype telescope, is now complete along with the successful installation of the camera. We present the results of extensive simulation work to determine the optical performance of the SST-GATE prototype telescope. Using the ROBAST software and assuming an ideal optical system, we find the radius of the encircled point spread function (θ80) of the SST-GATE to be ∼1.3 arcmin (∼0.02°) for an on-axis (θfield =0∘) observation and ∼3.6 arcmin (∼0.06°) for an observation at the edge of the field of view (θfield = 4 .4∘). In addition, this research highlights the shadowing that results from the stopping of light rays by various telescope components such as the support masts and trusses. It is shown that for on-axis observations the effective collection area decreases by approximately 1 m2 as a result of shadowing components other than the secondary mirror. This is a similar loss (∼11%) to that seen with the current generation of conventional Davies-Cotton (DC) Cherenkov telescopes. An extensive random tolerance analysis was also performed and it was found that certain parameters, especially the secondary mirror z-position and the tip and tilt rotations of the mirrors, are critical in order to contain θ80 within the pixel limit radius for all field angles. In addition, we have studied the impact upon the optical performance of introducing a hole in the center of the secondary mirror for use with pointing and alignment instruments. We find that a small circular area (radius < 150 mm) at the center of the secondary mirror can be used for instrumentation without any significant impact upon optical performance. Finally, we studied the impact of reducing the size of the primary mirror for the prototype telescope and found that this comes at the cost of poorer image quality and light collection efficiency for all field angles, but at a significant cost saving for a one-off prototype.
Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John
2005-01-01
A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.
Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices
Shen, Caiwei; Wang, Xiaohong; Zhang, Wenfeng; Kang, Feiyu
2013-01-01
Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems. PMID:23887486
Advanced optical disk storage technology
NASA Technical Reports Server (NTRS)
Haritatos, Fred N.
1996-01-01
There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.
Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.
2009-01-01
Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991
Integration of Pneumatic Technology in Powered Mobility Devices
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G.; Schneider, Urs
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs. PMID:29339888
Integration of Pneumatic Technology in Powered Mobility Devices.
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.
WASTE INFORMATION MODELING (WIM) FOR CONSTRUCTION OF THE BUILT ENVIRONMENT
The outcomes will include the construction of full-scale building prototypes. As full-scale pieces are constructed they will be installed throughout the community, and could potentially be used as installations within the local community to demonstrate the use of recycled prod...
Design of integrated laser initiator
NASA Astrophysics Data System (ADS)
Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue
2018-03-01
This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.
NASA Astrophysics Data System (ADS)
Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.
2016-08-01
The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.
Gao, Wen-Yang; Leng, Kunyue; Cash, Lindsay; Chrzanowski, Matthew; Stackhouse, Chavis A; Sun, Yinyong; Ma, Shengqian
2015-03-21
A series of prototypal metal-organic frameworks (MOFs) consisting of polyhedral cages with accessible Lewis-acid sites, have been systematically investigated for Friedländer annulation reaction, a straightforward approach to synthesizing quinoline and its derivatives. Amongst them MMCF-2 demonstrates significantly enhanced catalytic activity compared with the benchmark MOFs, HKUST-1 and MOF-505, as a result of a high-density of accessible Cu(II) Lewis acid sites and large window size in the cuboctahedral cage-based nanoreactor of MMCF-2.
NASA Technical Reports Server (NTRS)
Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James
2010-01-01
CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.
Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report
Holt, Andrew M.; Starosolski, Zbigniew; Kan, J. Herman
2017-01-01
Abstract Background: Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. Case Description: We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient’s anatomy offered unparalleled, hands-on experience with the patient’s anatomy pre-operatively and improved surgical precision. Conclusions: Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon’s ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics. PMID:28852351
Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.
Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B
2017-01-01
Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.
Prompt and Precise Prototyping
NASA Technical Reports Server (NTRS)
2003-01-01
For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.
The development of internet based ship design support system for small and medium sized shipyards
NASA Astrophysics Data System (ADS)
Shin, Sung-Chul; Lee, Soon-Sup; Kang, Dong-Hoon; Lee, Kyung-Ho
2012-03-01
In this paper, a prototype of ship basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. The system is designed from the user requirements. Consequently, standardized development environment and tools are selected. These tools are used for the system development to define and evaluate core application technologies. The system will contribute to increasing competitiveness of small and medium sized shipyards in the 21st century industrial en-vironment.
Construction and Design of a full size sTGC prototype for the ATLAS New Small Wheel upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For the forthcoming Phase-I upgrade to the LHC (2018/19), the first station of the ATLAS muon end-cap system, Small Wheel, will need to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. In particular, the precision reconstruction of tracks requires a spatial resolution of about 100 μm, and the Level-1 trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The NSW will have two chamber technologies, one primarily devoted tomore » the Level-1 trigger function the small-strip Thin Gap Chambers (sTGC) and one dedicated to precision tracking, Micromegas detectors, (MM). The single sTGC planes of a quadruplet consists of an anode layer of 50 μm gold plated tungsten wire sandwiched between two resistive cathode layers. Behind one of the resistive cathode layers, a PCB with precise machined strips (thus the name sTGC's) spaced every 3.2 mm allows to achieve the position resolution that ranges from 70 to 150 μm, depending on the incident particle angle. Behind the second cathode, a PCB that contains an arrangement of pads, allows for a fast coincidence between successive sTGC layers to tag the passage of a track and reads only the corresponding strips for triggering. To be able to profit from the high accuracy of each of the sTGC planes for trigger purposes, their relative geometrical position between planes has to be controlled to within a precision of about 40 μm in their parallelism, as well (due to the various incident angles), to within a precision of 80 μm in the relative distance between the planes to achieve the overall angular resolution of 1 mrad. The needed accuracy in the position and parallelism of the strips is achieved by machining brass inserts together when machining the strip patterns into the cathode boards in a single step. The inserts can then be used as external references on a granite table. Precision methods are used to maintain high accuracy when combining four single detector gaps first into two doublets and then into a quadruplet. We will present results on the ongoing construction of full size (∼1 x 1 m) sTGC quadruplet prototypes before full construction starts in 2015. (authors)« less
Kushniruk, Andre; Karson, Tom; Moore, Carlton; Kannry, Joseph
2003-01-01
Approaches to the development of information systems in large health care institutions range from prototyping to conventional development of large scale production systems. This paper discusses the development of the SignOut System at Mount Sinai Medical Center, which was designed in 1997 to capture vital resident information. Local need quickly outstripped proposed delays for building a production system and a prototype system quickly became a production system. By the end of 2002 the New SignOut System was built to create an integrated application that was a true production system. In this paper we discuss the design and implementation issues in moving from a prototype to a production system. The production system had a number of advantages, including increased organizational visibility, integration into enterprise resource planning and full time staff for support. However, the prototype allowed for more rapid design and subsequent changes, less training, and equal to or superior help desk support. It is argued that healthcare IT systems may need characteristics of both prototype and production system development to rapidly meet the changing and different needs of healthcare user populations.
STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)
2017-03-01
STAR operation in the presence of 1 kW EIRP power , independently of the choice of transmitter in use. The paper reports on the status of the SPEAR...prototype will be presented. To the authors’ knowledge , the measured results from the prototype already demonstrate state-of-the-art STAR performance...self-generated high power interferers. SPEAR is an innovative approach to the full duplex challenge that meets the high demands of military systems
NASA Astrophysics Data System (ADS)
Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.
2010-08-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
In Situ Resource Utilization For Mobility In Mars Exploration
NASA Astrophysics Data System (ADS)
Hartman, Leo
There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.
Two coupled, driven Ising spin systems working as an engine.
Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Two coupled, driven Ising spin systems working as an engine
NASA Astrophysics Data System (ADS)
Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel
2011-01-01
An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.
Hicks, C R; Chirila, T V; Dalton, P D; Clayton, A B; Vijayasekaran, S; Crawford, G J; Constable, I J
1996-08-01
To develop a prototype artificial cornea and evaluate it in the rabbit model. Hydrogel core-and-skirt keratoprostheses were made and were inserted as full-thickness implants covered with conjunctival flaps in the right eyes of eight rabbits. Peroperative complications related to inadequate mechanical strength led to failure in the early postoperative period in three animals, one was euthanased for an unrelated reason and the remaining four have been successful for up to 16 weeks' follow-up. Full-thickness implantation of an artificial cornea, analogous to penetrating keratoplasty, has been achieved in the rabbit model. Histological findings confirm that integration of the prosthesis with host tissue occurs. The main complications encountered in this preliminary series were related to inadequate strength of the sponge skirt of this prototype device. Work in our laboratories is now concentrated upon improving the mechanical qualities of the hydrogel skirt and on the enhancement of biointegration.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn
2005-01-01
Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
Design of rehabilitation robot hand for fingers CPM training
NASA Astrophysics Data System (ADS)
Zhou, Hongfu; Chan, T. W.; Tong, K. Y.; Kwong, K. K.; Yao, Xifan
2008-10-01
This paper presents a low-cost prototype for rehabilitation robot aide patient do hands CPM (continuous passive motion) training. The design of the prototype is based on the principle of Rutgers Master II glove, but it is better in performance for more improvement made. In the design, it uses linear motors to replace pneumatic actuators to make the product more portable and mobile. It increases finger training range to 180 degree for the full range training of hand finger holding and extension. Also the prototype can not only be wearing on palm and fore arm do training for face to face with finger move together, but also be put in the opposite hand glove wear direction for hand rehabilitation training. During the research, Solidworks is used as the tool for mechanical design and movement simulation. It proved through experiment that the prototype made in the research is appropriate for hand do CPM training.
Kilmer, Suzanne L
2017-01-01
Cryolipolysis is a safe, effective non-surgical procedure to reduce fat. For most cryolipolysis treatments, tissue is pulled between parallel cooling plates with a treatment duration of 60 minutes. A novel contoured cup, medium-sized applicator was developed to increase tissue contact with reduced skin tension and reduced treatment time. This prototype contoured cup was investigated with a standard cryolipolysis applicator to evaluate safety, efficacy, and patient preference. A prototype CoolCup medium-sized vacuum applicator (CoolSculpting System, ZELTIQ Aesthetics) was used to treat n = 19 subjects in the flanks. Randomly assigned, one flank received standard treatment with the CoolCore applicator (-10°C for 60 minutes). The contralateral flank received treatment from the CoolCup (-11°C for 35 minutes). The clinical study primary efficacy endpoint was 70% correct identification of baseline photographs by independent physician review. Incidence of adverse device effects was monitored. Fat layer reduction was measured by ultrasound and subject surveys were administered 12 weeks post-treatment. Equivalent efficacy was demonstrated between the CoolCore standard treatment and the prototype CoolCup. Independent review from three blinded physicians found 81% correct identification of baseline photographs for the standard treatment and 79% for the CoolCup. Ultrasound measurements indicated mean fat layer reduction of 4.38 mm for the standard treatment and 4.40 mm for the CoolCup; no statistically significant difference was found when comparing treatment efficacy of the two applicators (P = 0.96). Patient questionnaires revealed 85% preferred CoolCup because of shorter treatment duration and greater comfort. Procedural assessments revealed 45% lower pain scores for CoolCup. Immediate post-treatment clinical assessments revealed 82% less bruising. Typical side effects, such as numbness and erythema, were similar. There were no adverse events. This clinical study of a prototype medium-sized vacuum applicator with a cooled contoured surface indicates that the CoolCup produces equivalent safety and efficacy to the standard CoolCore cryolipolysis applicator. With a 42% reduction in treatment time, the procedure was found to be more comfortable because of lower vacuum skin tension and shorter treatment duration. Lasers Surg. Med. 49:63-68, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Charles Joseph
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-05-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
3D-printed components for quantum devices.
Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P
2018-05-30
Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.
Composite overwrapped metallic tanks
NASA Technical Reports Server (NTRS)
Caudill, C. L.; Kirlin, R. L.
1972-01-01
Work is reported for fabricating and testing the fiberglass overwrapped titanium pressure vessel for cryogenic service. Difficulties encountered in the tank liner fabrication phase involved explosive forming, vacuum annealing, chemical milling and electron beam welding. While each of these processes and the nondestructive test methods employed are normally considered to be individually reliable, the combination of poor material together with fabrication and development reversals prevented the full achievement of the desired end results. Eight tanks plus a prototype and tool proofing article were produced. Six of the vessels failed during the hydrostatic sizing operation. One of the remaining tanks was hydrostatically pressurized to burst and the other was pressurized repeatedly at 75 F from 100 psi to the operating pressure until failure occurred. As a result, it is not possible to draw firm conclusions as to the true value of the design concept due to the problems encountered in the program.
Molecular vibrational energy flow
NASA Astrophysics Data System (ADS)
Gruebele, M.; Bigwood, R.
This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2018-03-01
The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.
Developments for the ICRH System of the Ignitor Machine
NASA Astrophysics Data System (ADS)
Sassi, M.; Mantovani, S.; Coppi, B.
2014-10-01
The ICRH system that is suitable for the high-density plasmas to be produced by the Ignitor machine has been designed and components of it have been tested. This system will operate over the range 80-120 MHz, consistently with magnetic fields in the range 9-13 T. The maximum delivered power is in the interval 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. A full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system has been constructed. The innovative quick latching system located at the end of the coaxial cable has been successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. Sponsored in part by the US DOE.
Mechanical Characterization and Corrosion Testing of X608 Al Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.
2016-02-07
This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated bymore » limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.« less
The Design, Fabrication, and Testing of Composite Heat Exchange Coupons
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.
2011-01-01
Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
The Effect of Porosity on Fatigue of Die Cast AM60
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2016-07-01
AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
Lai, Hung-En; Moore, Simon; Polizzi, Karen; Freemont, Paul
2018-01-01
Development of advanced synthetic biology tools is always in demand since they act as a platform technology to enable rapid prototyping of biological constructs in a high-throughput manner. EcoFlex is a modular cloning (MoClo) kit for Escherichia coli and is based on the Golden Gate principles, whereby Type IIS restriction enzymes (BsaI, BsmBI, BpiI) are used to construct modular genetic elements (biological parts) in a bottom-up approach. Here, we describe a collection of plasmids that stores various biological parts including promoters, RBSs, terminators, ORFs, and destination vectors, each encoding compatible overhangs allowing hierarchical assembly into single transcription units or a full-length polycistronic operon or biosynthetic pathway. A secondary module cloning site is also available for pathway optimization, in order to limit library size if necessary. Here, we show the utility of EcoFlex using the violacein biosynthesis pathway as an example.
High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy
2013-12-20
This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less
The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C
2016-09-01
Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.
Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2000-01-01
We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.
Recent progress of flexible AMOLED displays
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Rajan, Kamala; Silvernail, Jeff; Mandlik, Prashant; Ma, Ruiqing; Hack, Mike; Brown, Julie J.; Yoo, Juhn S.; Jung, Sang-Hoon; Kim, Yong-Cheol; Byun, Seung-Chan; Kim, Jong-Moo; Yoon, Soo-Young; Kim, Chang-Dong; Hwang, Yong-Kee; Chung, In-Jae; Fletcher, Mark; Green, Derek; Pangle, Mike; McIntyre, Jim; Smith, Randal D.
2011-03-01
Significant progress has been made in recent years in flexible AMOLED displays and numerous prototypes have been demonstrated. Replacing rigid glass with flexible substrates and thin-film encapsulation makes displays thinner, lighter, and non-breakable - all attractive features for portable applications. Flexible AMOLEDs equipped with phosphorescent OLEDs are considered one of the best candidates for low-power, rugged, full-color video applications. Recently, we have demonstrated a portable communication display device, built upon a full-color 4.3-inch HVGA foil display with a resolution of 134 dpi using an all-phosphorescent OLED frontplane. The prototype is shaped into a thin and rugged housing that will fit over a user's wrist, providing situational awareness and enabling the wearer to see real-time video and graphics information.
Detector evaluation of a prototype amorphous selenium-based full field digital mammography system
NASA Astrophysics Data System (ADS)
Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.
2005-04-01
This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.
Roadside Tracker Portal-less Portal Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig
2013-07-01
This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.
Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector
Hasegawa, S.
2016-04-23
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
NASA Technical Reports Server (NTRS)
Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.
1993-01-01
To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.
MIXS on BepiColombo and its DEPFET based focal plane instrumentation
NASA Astrophysics Data System (ADS)
Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.
2010-12-01
Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca
2015-09-15
Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kilovoltage-cone beam CT (CBCT) using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of 1D translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian On-Board Imager system. CBCT and planar image quality were investigated as a function of aperture radius, while maintaining the same dose to the VOI,more » for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various sizes VOI were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 to 2.4 cm (at isocenter). Depending upon VOI location and size, dose was reduced to 16%–90% of the full-field value along the central axis plane and down to 4% along the axis of rotation, while maintaining the same dose to the VOI compared to full-field techniques. When maintaining constant dose to the VOI, this change in iris diameter corresponds to a factor increase of approximately 1.6 in image contrast and a factor decrease in image noise of approximately 1.2. This results in a measured gain in contrast-to-noise ratio by a factor of approximately 2.0. Conclusions: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.« less
The chip-scale atomic clock : prototype evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mescher, Mark; Varghese, Mathew; Lutwak, Robert
2007-12-01
The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.
Handheld magnetic sensor for measurement of tension
NASA Astrophysics Data System (ADS)
Singal, K.; Rajamani, R.
2012-04-01
This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.
Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
van der Kolk, N.
2018-03-01
The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.
Development of a Prototype Nickel Optic for the Constellation-X Hard-X-Ray Telescope
NASA Technical Reports Server (NTRS)
Basso, S.; Bruni, R. J.; Citerio, O.; Engelhaupt, D.; Ghigo, M.; Gorenstien, P.; Mazzoleni, F.; ODell, S. L.; Pareschi, G.; Ramsey, B. D.
2003-01-01
The Constellation-X mission, planned for launch in 2011, will feature an array of hard-x ray telescopes with a total collecting area goal of 1500 square centimeters at 40 keV. Various technologies are currently being investigated for the optics of these telescopes including multilayer-coated Eletroformed-Nickel-Replicated (ENR) shells. The attraction of the ENR process is that the resulting full-shell optics are inherently stable and offer the promise of good angular resolution and enhanced instrument sensitivity. The challenge for this process is to meet a relatively tight weight budget with a relatively dense material (rho nickel = 9 grams per cubic centimeters.) To demonstrate the viability of the ENR process we are fabricating a prototype HXT mirror module to be tested against a competing segmented-glass-shell optic. The ENR prototype will consist of 5 shells of diameters from 150 mm to 280 mm and of 426 mm total length. To meet the stringent weight budget for Con-X, the shells will be only 150 micron thick. The innermost of these will be coated with Iridium, while the remainder will be coated with graded-density multilayers. Mandrels for these shells are currently under fabrication (Jan 03), with the first shells scheduled for production in February 03. A tentative date of late Summer has been set for prototype testing. Issues currently being addressed are the control of stresses in the multiplayer coating and ways of mitigating their effects on the figure of the necessarily thin shells. Also, the fabrication, handling and mounting of these shells without inducing permanent figure distortions. A full status report on the prototype optic will be presented along with test results as available.
Prototype continuous flow ventricular assist device supported on magnetic bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-06-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
NASA Technical Reports Server (NTRS)
Goldfinger, A.
1981-01-01
A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.
The Use of Prototypes in Weapon System Development
1981-03-01
engine to minimize flameouts; experience showed that some uses of composite mate- rials were unwarranted, and other uses were proved valid; and a special... composite structure materials. The YF-16 used a single F100, an engine already developed for the F-15 program. By the time of the YF-16 first flight...lessons learned during the prototype tests led to a reduction in the use of composite materials ir the full scale F-16A program. UTTAS. Because of the
Public Key-Based Need-to-Know Authorization Engine Final Report CRADA No. TSB-1553-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark, R.; Williams, R.
The goals of this project were to develop a public key-based authentication service plug-in based on LLNL's requirements, integrate the public key-based authentication with the Intra Verse authorization service adn the LLNL NTK server by developing a full-featured version of the prototyped Intra Verse need-to-know plug in; and to test the authorization and need-to-know plug-in in a secured extranet prototype among selected national Labs.
Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber
NASA Technical Reports Server (NTRS)
Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.
1994-01-01
The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.
Designing an Integrated System of Databases: A Workstation for Information Seekers.
ERIC Educational Resources Information Center
Micco, Mary; Smith, Irma
1987-01-01
Proposes a framework for the design of a full function workstation for information retrieval based on study of information seeking behavior. A large amount of local storage of the CD-ROM jukebox variety and full networking capability to both local and external databases are identified as requirements of the prototype. (MES)
22. Photocopy of photograph (original in the Langley Research Center ...
22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA
Testing of a Natural Language Retrieval System for a Full Text Knowledge Base.
ERIC Educational Resources Information Center
Bernstein, Lionel M.; Williamson, Robert E.
1984-01-01
The Hepatitis Knowledge Base (text of prototype information system) was used for modifying and testing "A Navigator of Natural Language Organized (Textual) Data" (ANNOD), a retrieval system which combines probabilistic, linguistic, and empirical means to rank individual paragraphs of full text for similarity to natural language queries…
Visible camera imaging of plasmas in Proto-MPEX
NASA Astrophysics Data System (ADS)
Mosby, R.; Skeen, C.; Biewer, T. M.; Renfro, R.; Ray, H.; Shaw, G. C.
2015-11-01
The prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device being developed at Oak Ridge National Laboratory (ORNL). This machine plans to study plasma-material interaction (PMI) physics relevant to future fusion reactors. Measurements of plasma light emission will be made on Proto-MPEX using fast, visible framing cameras. The cameras utilize a global shutter, which allows a full frame image of the plasma to be captured and compared at multiple times during the plasma discharge. Typical exposure times are ~10-100 microseconds. The cameras are capable of capturing images at up to 18,000 frames per second (fps). However, the frame rate is strongly dependent on the size of the ``region of interest'' that is sampled. The maximum ROI corresponds to the full detector area, of ~1000x1000 pixels. The cameras have an internal gain, which controls the sensitivity of the 10-bit detector. The detector includes a Bayer filter, for ``true-color'' imaging of the plasma emission. This presentation will exmine the optimized camera settings for use on Proto-MPEX. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
The development of a program analysis environment for Ada: Reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1991-01-01
The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.
2013-09-30
performance of algorithms detecting dives, strokes , clicks, respiration and gait changes. (ii) Calibration errors: Size and power constraints in...acceptance parameters used to detect and classify events. For example, swim stroke detection requires parameters defining the minimum magnitude and the min...and max duration of a stroke . Species dependent parameters can be selected from existing DTAG data but other parameters depend on the size of the
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.
Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.
Kesner, Samuel B; Howe, Robert D
2011-07-21
Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.
Gendre, Laura; Marchante, Veronica; Abhyankar, Hrushikesh A; Blackburn, Kim; Temple, Clive; Brighton, James L
2016-01-01
This work focuses on the release of nanoparticles from commercially used nanocomposites during machining operations. A reliable and repeatable method was developed to assess the intentionally exposure to nanoparticles, in particular during drilling. This article presents the description and validation of results obtained from a new prototype used for the measurement and monitoring of nanoparticles in a controlled environment. This methodology was compared with the methodologies applied in other studies. Also, some preliminary experiments on drilling nanocomposites are included. Size, shape and chemical composition of the released nanoparticles were investigated in order to understand their hazard potential. No significant differences were found in the amount of nanoparticles released between samples with and without nanoadditives. Also, no chemical alteration was observed between the dust generated and the bulk material. Finally, further developments of the prototype are proposed.
Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools.
Díaz Lantada, Andrés; Valle-Fernández, Raquel Del; Morgado, Pilar Lafont; Muñoz-García, Julio; Muñoz Sanz, José Luis; Munoz-Guijosa, Juan Manuel; Otero, Javier Echávarri
2010-02-01
Although the use of personalized annuloplasty rings manufactured for each patient according to the size and morphology of their valve complex could be beneficial for the treatment of mitral insufficiency, this possibility has been limited for reasons of time-lines and costs as well as for design and manufacturing difficulties, as has been the case with other personalized implant and prosthetic developments. However, the present quality of medical image capture equipment together with the benefits to be had from computer-aided design and manufacturing technologies (CAD-CAM) and the capabilities furnished by rapid prototyping technologies, present new opportunities for a personalized response to the development of implants and prostheses, the social impact of which could turn out to be highly positive. This paper sets out a personalized development of an annuloplasty ring based on the combined use of information from medical imaging, from CAD-CAM design programs and prototype manufacture using rapid prototyping technologies.
DEEP: Database of Energy Efficiency Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
Lozano, Cecil; Ravishankar, Vijay; Lee, Jisoo; Mahoney, Diane
2018-01-01
Background Individuals living with advancing stages of dementia (persons with dementia, PWDs) or other cognitive disorders do not have the luxury of remembering how to perform basic day-to-day activities, which in turn makes them increasingly dependent on the assistance of caregivers. Dressing is one of the most common and stressful activities provided by caregivers because of its complexity and privacy challenges posed during the process. Objective In preparation for in-home trials with PWDs, the aim of this study was to develop and evaluate a prototype intelligent system, the DRESS prototype, to assess its ability to provide automated assistance with dressing that can afford independence and privacy to individual PWDs and potentially provide additional freedom to their caregivers (family members and professionals). Methods This laboratory study evaluated the DRESS prototype’s capacity to detect dressing events. These events were engaged in by 11 healthy participants simulating common correct and incorrect dressing scenarios. The events ranged from donning a shirt and pants inside out or backwards to partial dressing—typical issues that challenge a PWD and their caregivers. Results A set of expected detections for correct dressing was prepared via video analysis of all participants’ dressing behaviors. In the initial phases of donning either shirts or pants, the DRESS prototype missed only 4 out of 388 expected detections. The prototype’s ability to recognize other missing detections varied across conditions. There were also some unexpected detections such as detection of the inside of a shirt as it was being put on. Throughout the study, detection of dressing events was adversely affected by the relatively smaller effective size of the markers at greater distances. Although the DRESS prototype incorrectly identified 10 of 22 cases for shirts, the prototype preformed significantly better for pants, incorrectly identifying only 5 of 22 cases. Further analyses identified opportunities to improve the DRESS prototype’s reliability, including increasing the size of markers, minimizing garment folding or occlusions, and optimal positioning of participants with respect to the DRESS prototype. Conclusions This study demonstrates the ability to detect clothing orientation and position and infer current state of dressing using a combination of sensors, intelligent software, and barcode tracking. With improvements identified by this study, the DRESS prototype has the potential to provide a viable option to provide automated dressing support to assist PWDs in maintaining their independence and privacy, while potentially providing their caregivers with the much-needed respite. PMID:29716885
NASA Technical Reports Server (NTRS)
Mullican, R. C.; Hayes, B. C.
1991-01-01
Preliminary results of research conducted in the late 1970's indicate that perceptual qualities of an enclosure can be influenced by the distribution of illumination within the enclosure. Subjective impressions such as spaciousness, perceptual clarity, and relaxation or tenseness, among others, appear to be related to different combinations of surface luminance. A prototype indirect ambient illumination system was developed which will allow crew members to alter surface luminance distributions within an enclosed module, thus modifying perceptual cues to match crew preferences. A traditional lensed direct lighting system was compared to the prototype utilizing the full-scale mockup of Space Station Freedom developed by Marshall Space Flight Center. The direct lensed system was installed in the habitation module with the indirect prototype deployed in the U.S. laboratory module. Analysis centered on the illuminance and luminance distributions resultant from these systems and the implications of various luminaire spacing options. All test configurations were evaluated for compliance with NASA Standard 3000, Man-System Integration Standards.
Huebner-Bloder, Gudrun; Duftschmid, Georg; Kohler, Michael; Rinner, Christoph; Saboor, Samrend; Ammenwerth, Elske
2012-01-01
Cross-institutional longitudinal Electronic Health Records (EHR), as introduced in Austria at the moment, increase the challenge of information overload of healthcare professionals. We developed an innovative cross-institutional EHR query prototype that offers extended query options, including searching for specific information items or sets of information items. The available query options were derived from a systematic analysis of information needs of diabetes specialists during patient encounters. The prototype operates in an IHE-XDS-based environment where ISO/EN 13606-structured documents are available. We conducted a controlled study with seven diabetes specialists to assess the feasibility and impact of this EHR query prototype on efficient retrieving of patient information to answer typical clinical questions. The controlled study showed that the specialists were quicker and more successful (measured in percentage of expected information items found) in finding patient information compared to the standard full-document search options. The participants also appreciated the extended query options. PMID:23304308
Jung, Yunho; Kato, Masayuki; Lee, Jongchan; Gromski, Mark A; Chuttani, Ram; Matthes, Kai
2013-11-01
A prototype endoscope was designed to improve visualization and dissection of tissue with the use of 2 working channels with different deflections. To evaluate the efficacy and operability of a prototype endoscope in comparison with a conventional double-channel endoscope for rectal endoscopic submucosal dissection (ESD). Randomized, prospective, controlled, ex vivo study. Academic medical center. A total of 80 standardized artificial lesions measuring 3 × 3 cm were created approximately 5 cm from the anal verge in fresh ex vivo porcine colorectal specimens. Two endoscopists each completed 20 cases with the prototype endoscope and 20 cases with the conventional endoscope. An independent observer recorded procedure time, specimen size, en bloc resection, and perforation rate. For the ESD novice, the mean submucosal dissection time (10.5 ± 3.8 vs 14.9 ± 7.3 minutes; P = .024) and total procedure time (18.1 ± 5.2 vs 23.6 ± 8.2 minutes; P = .015) were significantly shorter in the prototype group in comparison with the conventional group. For the ESD expert, there was no significant difference between the mean circumferential resection, submucosal dissection, and total procedure time (prototype group 14.2 ± 6.0 minutes, conventional group 14.2 ± 8.8 minutes; P = .992). The overall perforation and en bloc resection rates were not significantly different between groups. Ex vivo study. In this ex vivo prospective comparison study, there was a technical advantage for the ESD novice with the prototype endoscope that resulted in a shorter procedure time, which was not observed for cases performed by the ESD expert. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1992-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.
NASA Astrophysics Data System (ADS)
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-01
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm-2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares
2011-06-21
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm(-2) CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.
Rapid prototyping of compliant human aortic roots for assessment of valved stents.
Kalejs, Martins; von Segesser, Ludwig Karl
2009-02-01
Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.
Progress on development of SPIDER diagnostics
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-08-01
SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- <1 and beam uniformity within 10%, for up to one hour beam pulses. Main RF source plasma and beam parameters are measured with different complementary techniques to exploit the combination of their specific features. While SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-02-01
Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
3D laptop for defense applications
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
Yu, Zhanghao; Yang, Xi; Chung, SungWon
2018-01-29
High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal-oxide-semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900- μ m 2 chip area and achieves 0.022-2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1-15 nF. The prototype amplifier consumes 7.6 μ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping
2014-03-01
The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.
BIOFUEL AND BIOENERGY PRODUCTION FROM SUGAR BEETS
A design spreadsheet model for sizing and analyzing the integrated ethanol and biogas production system, a prototype of the ethanol and biogas production system in the laboratory that has been tested and documented with performance data, and a design and operating manual for t...
Prototype smart phone application to report water quality conditions.
The EPA Pathfinder Innovation Project has identified that environmental managers are typically limited in their time and ability to use and handle satellite remote sensing data due to the file size and complexity in the data structures. Therefore this project developed the Mobil...
A prototype coarse pointing mechanism for laser communication
NASA Astrophysics Data System (ADS)
Miller, Eric D.; DeSpenza, Michael; Gavrilyuk, Ilya; Nelson, Graham; Erickson, Brent; Edwards, Britney; Davis, Ethan; Truscott, Tony
2017-02-01
Laser communication systems promise orders-of-magnitude improvement in data throughput per unit SWaP (size, weight and power) compared to conventional RF systems. However, in order for lasercom to make sense economically as part of a worldwide connectivity solution, the cost per terminal still needs to be significantly reduced. In this paper, we describe a coarse pointing mechanism that has been designed with an emphasis on simplicity, making use of conventional materials and commercial off-the-shelf components wherever possible. An overview of the design architecture and trades is presented, along with various results and practical lessons learned during prototype integration and test.
Object-oriented productivity metrics
NASA Technical Reports Server (NTRS)
Connell, John L.; Eller, Nancy
1992-01-01
Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.
Schuettler, M; Stiess, S; King, B V; Suaning, G J
2005-03-01
A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.
Status of the EDDA experiment at COSY
NASA Astrophysics Data System (ADS)
Scobel, W.; EDDA Collaboration; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.
1993-07-01
The EDDA experiment is designed to study p + p excitation functions with high energy resolution and narrow step size in the kinetic energy range from 250 MeV to 2500 MeV at the Cooler Synchrotron COSY. Measurements during the accelertion phase in conjunction with internal targets will allow to achieve a fast and precise energy variation. Prototypes of the detector elements and the fiber target have been extensively tested with proton and electron beams; the detector performance and trigger efficiency have been studied in Monte Carlo simulations. In this contribution, results concerning detector design, prototype studies, Monte Carlo simulations and the anticipated detector resolutions will be reported.
NOAA GOES Geostationary Satellite Server
Size West CONUS IR Image MPEG | Loop Visible Full Size West CONUS VIS Image MPEG | Loop Water Vapor Full Size West Conus WV Image MPEG | Loop Alaska Infrared Full Size Alaska IR Image Loop | Color Infrared Full Size Hawaii IR Image Loop | Color Visible Full Size Hawaii VIS Image Loop Water Vapor Full
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... child care centers' compliance with the recent CPSC safety standards for full-size and non-full-size... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2012-0019] Proposed Collection; Comment Request; Safety Standards for Full- Size Baby Cribs and Non-Full-Size Baby Cribs; Compliance Form AGENCY...
Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H
2014-01-01
The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.
Nanoporous Silica Thermal Insulation for Space Shuttle Cryogenic Tanks: A Case Study
NASA Technical Reports Server (NTRS)
Noever, David A.
1999-01-01
Nanoporous silica (with typical 10-50 nm porous radii) has been benchmarked for thermal insulators capable of maintaining a 150 K/cm temperature gradient. For cryogenic use in aerospace applications, the combined features for low-density, high thermal insulation factors, and low temperature compatibility are demonstrated in a prototype sandwich structure between two propulsion tanks. Theoretical modelling based on a nanoscale fractal structure suggest that the thermal conductivity scales proportionally (exponent, 1.7) with the material density-lower density increases the thermal insulation rating. Computer simulations, however, support the optimization tradeoff between material strength (Young moduli, proportional to density with exponent, 3.7), the characteristic (colloidal silica, less than 5 nm) particle size, and the thermal rating. The results of these simulations indicate that as nanosized particles are incorporated into the silica backbone, the resulting physical properties will be tailored by the smallest characteristic length and their fractal interconnections (dimension and fractal size). The application specifies a prototype panel which takes advantage of the processing flexibility inherent in sol-gel chemistry.
A three-mode microstrip resonator and a miniature ultra-wideband filter based on it
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Khodenkov, S. A.; Leksikov, An. A.; Shabanov, V. F.
2017-06-01
An original microstrip resonator design with a strip conductor split by a slot at one of its ends is investigated. It is demonstrated that at the optimal slot sizes, when the eigenfrequency of the second oscillation mode hits the center between the first and third oscillation modes, the resonator can work as a thirdorder bandpass filter. The structure formed from only two such resonators electromagnetically coupled by split conductor sections is a miniature six-order wideband filter with high selectivity. The test prototype of the filter with a central passband frequency of 1.2 GHz and a passband width of 0.75 GHz fabricated on a substrate (45 × 11 × 1) mm3 in size with a permittivity of 80 is characterized by minimum loss in a passband of 0.5 dB. The parametric synthesis of the filter structure was performed using electrodynamic analysis of the 3D model. The measured characteristics of the test prototype agree well with the calculated data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, H.; Imura, A.; Furuta, Y.
Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less
Feasibility and design study of a frictionless air mover for thermal management of electronics
NASA Astrophysics Data System (ADS)
Schacht, R.; Hausdorf, A.; Wunderle, B.
2014-07-01
A frictionless air mover concept is introduced in this paper. As opposed to a piezoelectric driven fan, the air mover is based on a flexible blade whose vibration is driven by means of a magnetic field. The blade is based on a polymer material. The paper presents the results of a feasibility analysis and an on-going comprehensive design study. The performance of the prototype amounted to 65% of a comparable piezoelectric fan. To enhance the performance, two different blade materials were investigated, as well as the influence of the coil shape and value. A further goal is to reduce the size and to investigate the influence of a casing. The design study resulted in a prototype of size of 50 × 14 × 35 mm2 including a casing. The performance could be doubled, to attain a volumetric flow rate of dot V ~14 l/min and a static pressure of ρstat = 3 Pa.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
Clinical Evaluation of a Prototype Underwear Designed to Detect Urine Leakage From Continence Pads.
Long, Adele; Edwards, Julia; Worthington, Joanna; Cotterill, Nikki; Weir, Iain; Drake, Marcus J; van den Heuvel, Eleanor
2015-01-01
We evaluated the performance of prototype underwear designed to detect urine leakage from continence pads, their acceptability to users, and their effect on health-related quality of life and psychosocial factors. Prototype product evaluation. Participants were 81 women with an average age of 67 years (range, 32-98 years) recruited between October 2010 and February 2012 from outpatient clinics, general practice surgeries, community continence services, and through charities and networks. The TACT3 project developed and manufactured a prototype undergarment designed to alert the wearer to a pad leak before it reaches outer clothing or furniture. The study was conducted in 2 stages: a pilot/feasibility study to assess general performance and a larger study to measure performance, acceptability to users, health-related quality of life, and psychosocial impact. Participants were asked to wear the prototype underwear for a period of 2 weeks, keeping a daily diary of leakage events for the first 7 days. They also completed validated instruments measuring lower urinary tract symptoms, health-related quality of life, and psychosocial impact. On average, 86% of the time participants were alerted to pad leakage events. More than 90% thought the prototype underwear was "good" or "OK" and that it would or could give them more confidence. Mean scores for the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form indicated no change in the level of symptoms reported before or after the intervention, and no significant changes in health-related quality of life status occurred, except improvement in for travel restrictions. Evaluation via the Psychosocial Impact of Assistive Devices Scale also indicated a positive impact. The prototype underwear evaluated in this study was effective and acceptable for 5 out of every 10 wearers. Findings also suggest that the prototype underwear is suitable for women of all ages, dress sizes, and continence severity.
A Quantitative Analysis of the Benefits of Prototyping Fixed-Wing Aircraft
2012-06-14
in then-year dollars. The RDT&E costs through FSD were provided in then-year dollars as a lump sum. Additionally, the cost of full capability ...development was available in then-year dollars as a lump sum. Full capability development was the RDT&E that continued after the completion of the FSD...contract, which ended in July 1984. In [31] [31], the authors stated that full capability development occurred through approximately 1990
F-8 oblique wing structural feasibility study
NASA Technical Reports Server (NTRS)
Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.
1975-01-01
The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.
Packaging of silicon photonic devices: from prototypes to production
NASA Astrophysics Data System (ADS)
Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter
2018-02-01
The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.
NASA Technical Reports Server (NTRS)
1971-01-01
Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.
The GlueX central drift chamber: Design and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Haarlem, Y; Barbosa, F; Dey, B
2010-10-01
Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
The LHC magnet system and its status of development
NASA Technical Reports Server (NTRS)
Bona, Maurizio; Perin, Romeo; Vlogaert, Jos
1995-01-01
CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.
The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.
2016-08-01
In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.
Lee, Doug-Youn; Spångberg, Larz S W; Bok, Young-Bin; Lee, Chang-Young; Kum, Kee-Yeon
2005-07-01
The aim of this in vitro study was to evaluate the suitability of using chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA) to control the release of chlorhexidine digluconate (CHX) from a prototype of controlled release drug device for root canal disinfection. Four different prototypes with different formulations were prepared. Group A (n = 12): the device (absorbent paper point) was loaded with CHX as control. Group B (n = 12): same as group A, but the device was coated with chitosan (Texan MedTech). In Groups C and D, the device was treated in the same way as group A and then coated 3 times with 5% PMMA (Group C, n = 12, Aldrich), or coated 3 times with 3% PLGA (Group D, n = 12, Sigma). The devices were randomly allocated to experimental groups of 12 each. All the prototypes of controlled release drug device were soaked in 3 mL distilled water. The concentrations of CHX were determined using a UV spectrophotometer. The surface characteristics of each prototype were observed using a scanning electron microscope. The result showed that release rate of CHX was the greatest in the noncoated group, followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). Pores were observed on the surface of the prototypes that were coated with PLGA and PMMA. When the pore size was smaller, the release rate was lower. These data indicate that polymer coating can control the release rate of CHX from the prototypes of controlled release drug device.
A practical optical-resolution photoacoustic microscopy prototype using a 300 mW visible laser diode
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Piao, Zhonglie; Huang, Shenghai; Jia, Wangcun; Chen, Zhongping
2016-03-01
Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique for microvasculature imaging at high spatial resolution and contrast. In this work, we present a practical visible laser-diode-based OR-PAM (LD-OR-PAM) prototype for vasculature imaging, which has the desirable properties of being portable, low-cost, and label-free. The prototype employs a 300 mW pulsed laser diode in a 3.8 mm diameter package, emitting 174 ns pulses at 405 +/- 5 nm wavelength and a pulse energy of 52 nJ. An aspheric objective with a numerical aperture of 0.60 is used to achieve microscope optical illumination. The laser diode excitation has a compact size of 4.5 × 1.8 × 1.8 cm3 assembled with a cooling block. The lateral resolution was tested to be 0.95 μm on ~7 μm carbon fibers. The subcutaneous microvasculature on a mouse back was label-free imaged ex vivo, which demonstrates the potential of the LD-OR-PAM prototype for in vivo imaging skin chromosphores such as hemoglobin. Our ultimate aim is to provide a practical and affordable OR-PAM system as a routine instrument for standard clinical applications.
Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-05-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells. © 1996 International Society for Artificial Organs.
Inauguration and first light of the GCT-M prototype for the Cherenkov telescope array
NASA Astrophysics Data System (ADS)
Watson, J. J.; De Franco, A.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium
2017-01-01
The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure at the Observatoire de Paris-Meudon, where it observed the first Cherenkov light detected by a prototype instrument for CTA.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PROTOTYPE PRINTED CIRCUIT BOARDS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remmes, N; Courneyea, L; Corner, S
2014-06-15
Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less
Eagle, Benjamin; Williams, David J; Dingley, John
2017-08-01
An ideal electronic anesthesia recording system would be capable of not only recording physiological data but also injectable drug doses given, including those given incrementally from one syringe, without recourse to manual data entry. We compared 2 prototype devices which wirelessly recognized individual syringes and measured changes in their plunger positions via 2 different optical noncontact means, allowing calculation of incremental drug doses given. Both devices incorporated a radio-frequency identification reader, which wirelessly read a unique code from a radio-frequency identification tag within syringe drug labels. A custom-designed cradle oriented any inserted 1-mL to 20-mL syringe in a repeatable position. The "laser" device had a moving laser beam broken by the end of the syringe plunger. The infrared (IR) device measured time of travel of IR light from a sender to a syringe plunger and back to a receiver. Both devices could therefore determine the drug and volume administered since the previous occasion when any syringe had been used. For each syringe size of 1, 2, 5, 10, and 20 mL, 121 plunger-length measurements were made over their full range, with each machine against a reference method of water filling and weighing using a randomized de Bruijn sequence. For every syringe size, the laser device showed greater accuracy and precision, lower bias, and narrower limits of agreement (95% confidence intervals = bias ± 1.96 SD) than the IR device when compared to the reference method. For all syringe sizes, the range of bias was -0.05 to 0.32 mL for the laser and -2.42 to 1.38 mL for the IR. Lin concordance correlation coefficient values for the IR versus reference methods ranged from 0.6259 to 0.9255, with the lowest coefficients seen in syringes with the shortest distance of plunger travel (2 and 5 mL), while in laser versus reference comparisons, these coefficients were similar (0.9641-0.9981) over all syringe lengths. Both devices measured syringe volume changes, demonstrating potential for measuring incremental drug doses, recording these, and also the time of each measurement. The IR device had no moving parts, which would be advantageous in a clinical situation. However, the current embodiment was not deemed accurate enough for clinical use, potentially remediable through improvements in hardware and software design. The laser device showed high accuracy and precision over all syringe sizes and contained volumes, and was considered potentially accurate enough for clinical use with suitable development.
A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...
NASA Astrophysics Data System (ADS)
Proper, Megan Longo
I present an indirect search for Dark Matter using the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. There is significant evidence for dark matter within the known Universe, and we can set constraints on the dark matter annihilation cross-section using dark matter rich sources. Dwarf spheroidal galaxies (dSphs) are low luminosity galaxies with little to no gas or dust, or recent star formation. In addition, the total mass of a dwarf spheroidal galaxy, as inferred from gravitational effects observed within the galaxy, is many times more than the luminous mass, making them extremely dark matter rich. For these reasons dSphs are prime targets for indirect dark matter searches with gamma rays. Dark matter annihilation cross-section limits are presented for 14 dSphs within the HAWC field of view, as well as a combined limit with all sources. The limits presented here are for dark matter masses ranging from 0.5 TeV to 1000 TeV. At lower dark matter masses, the HAWC-111 limits are not competitive with other gamma-ray experiments, however it will be shown that HAWC is currently dominating in the higher dark matter mass range. The HAWC observatory is a water Cherenkov detector and consists of 300 Water Cherenkov Detectors (WCDs). The detector is located at 4100 m above sea level in the Sierra Negra region of Mexico at latitude 18°59'41" N and longitude 97°18'28" W. Each WCD is instrumented with three 8 inch photomultiplier tubes (PMTs) and one 10 inch high efficiency PMT, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank. The tank contains a multilayer hermetic plastic bag, called a bladder, which holds 200,000 L of ultra-purified water. I will also present the design, deployment, and operation of a WCD prototype for HAWC built at Colorado State University (CSU). The CSU WCD was the only full-size prototype outside of the HAWC site. It was instrumented with 7 HAWC PMTs and scintillator paddles both under and above the volume of water. In addition, the CSU WCD was equipped with the same laser calibration system that is deployed at the HAWC site, as well as the same electronics and data acquisition system. The WCD prototype served as a testbed for the different subsystems of the HAWC observatory. During the three different installations of the prototype, many aspects of the detector design and performance were tested including: tank construction, bladder installation and performance, PMT installation and performance, roof design, water filtration and filling, muon coincidence measurements and calibration system. The experience gained from the CSU prototype was invaluable to the overall design and installation of the HAWC detector.
Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.
Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang
2017-06-01
Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model
NASA Astrophysics Data System (ADS)
Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.
2014-03-01
Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.
Development of TMA-based imaging system for hyperspectral application
NASA Astrophysics Data System (ADS)
Choi, Young-Wan; Yang, Seung-Uk; Kang, Myung-Seok; Kim, Ee-Eul
2017-11-01
Funded by the Ministry of Commerce, Industry, and Energy of Korea, SI initiated the development of the prototype model of TMA-based electro-optical system as part of the national space research and development program. Its optical aperture diameter is 120 mm, the effective focal length is 462 mm, and its full field-of-view is 5.08 degrees. The dimension is of about 600 mm × 400 mm × 400 mm and the weight is less than 15 kg. To demonstrate its performance, hyper-spectral imaging based on linear spectral filter is selected for the application of the prototype. The spectral resolution will be less than 10 nm and the number of channels will be more than 40 in visible and nearinfrared region. In this paper, the progress made so far on the prototype development will be presented
The Pinchot Institute System for Environmental Forestry Studies
Institute The Pinchot
1973-01-01
NOTE large file size. This paper describes a prototype system for research planning and administration to meet man's needs for forest vegetation in and around metropolitan areas. The system's components involve social needs or services, technological developments, environmental effects, and the locales where the services, developments, and environmental...
Computed tomography as a diagnostic aid for extracanal invasive resorption.
Kim, Euiseong; Kim, Kee-Deog; Roh, Byoung-Duck; Cho, Yong-Sik; Lee, Seung-Jong
2003-07-01
A case of multiple extracanal invasive resorption is reported. The patient had a history of hypothyroidism for approximately 1 yr before the dental visit. Utilization of computed tomography and a rapid prototyping tooth model in diagnosing the exact location and the size of the resorption area are discussed.
$13.5M Moore Grant to Develop Working âAccelerator on a Chipâ Prototype
None
2018-06-21
An international team of researchers has begun a 5-year effort to build a working particle accelerator the size of a shoebox based on an innovative technology known as âaccelerator on a chip.â
Hardware acceleration and verification of systems designed with hardware description languages (HDL)
NASA Astrophysics Data System (ADS)
Wisniewski, Remigiusz; Wegrzyn, Marek
2005-02-01
Hardware description languages (HDLs) allow creating bigger and bigger designs nowadays. The size of prototyped systems very often exceeds million gates. Therefore verification process of the designs takes several hours or even days. The solution for this problem can be solved by hardware acceleration of simulation.
Counteracting Rotor Imbalance in a Bearingless Motor System with Feedforward Control
NASA Technical Reports Server (NTRS)
Kascak, Peter Eugene; Jansen, Ralph H.; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth
2012-01-01
In standard motor applications, traditional mechanical bearings represent the most economical approach to rotor suspension. However, in certain high performance applications, rotor suspension without bearing contact is either required or highly beneficial. Such applications include very high speed, extreme environment, or limited maintenance access applications. This paper extends upon a novel bearingless motor concept, in which full five-axis levitation and rotation of the rotor is achieved using two motors with opposing conical air-gaps. By leaving the motors' pole-pairs unconnected, different d-axis flux in each pole-pair is created, generating a flux imbalance which creates lateral force. Note this is approach is different than that used in previous bearingless motors, which use separate windings for levitation and rotation. This paper will examine the use of feedforward control to counteract synchronous whirl caused by rotor imbalance. Experimental results will be presented showing the performance of a prototype bearingless system, which was sized for a high speed flywheel energy storage application, with and without feedforward control.
Transformation toughened ceramics for the heavy duty diesel engine technology program
NASA Technical Reports Server (NTRS)
Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.
1984-01-01
The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
An atomistic simulation scheme for modeling crystal formation from solution.
Kawska, Agnieszka; Brickmann, Jürgen; Kniep, Rüdiger; Hochrein, Oliver; Zahn, Dirk
2006-01-14
We present an atomistic simulation scheme for investigating crystal growth from solution. Molecular-dynamics simulation studies of such processes typically suffer from considerable limitations concerning both system size and simulation times. In our method this time-length scale problem is circumvented by an iterative scheme which combines a Monte Carlo-type approach for the identification of ion adsorption sites and, after each growth step, structural optimization of the ion cluster and the solvent by means of molecular-dynamics simulation runs. An important approximation of our method is based on assuming full structural relaxation of the aggregates between each of the growth steps. This concept only holds for compounds of low solubility. To illustrate our method we studied CaF2 aggregate growth from aqueous solution, which may be taken as prototypes for compounds of very low solubility. The limitations of our simulation scheme are illustrated by the example of NaCl aggregation from aqueous solution, which corresponds to a solute/solvent combination of very high salt solubility.
Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion
NASA Astrophysics Data System (ADS)
1982-03-01
Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, Friedrich; Ferracin, Paolo; Todesco, Ezio
The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb3Sn technology. The coils with a length of 7281 mm will bemore » the longest Nb3Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.« less
NASA Astrophysics Data System (ADS)
Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.
2009-12-01
Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.
Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Zubrzycka, Weronika
2016-09-01
The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, S.
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
A wireless wearable surface functional electrical stimulator
NASA Astrophysics Data System (ADS)
Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong
2017-09-01
In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
Development of an automatic rotational orthosis for walking with arm swing.
Fang, Juan; Yang, Guo-Yuan; Xie, Le
2017-07-01
Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints. The aROWAS prototype was tested in three able-bodied subjects. The prototype could automatically adjust to size and height, and automatically produced adaptable coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported better acceptance in aROWAS than in ROWAS. The aROWAS system was deemed feasible among able-bodied subjects.
A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range
NASA Astrophysics Data System (ADS)
Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.
2017-05-01
We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.
Calderoni, Davi Reis; Gilioli, Rovilson; Munhoz, André Luiz Jardini; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Lambert, Carlos Salles; Lopes, Eder Socrates Najar; Toro, Ivan Felizardo Contrera; Kharmandayan, Paulo
2014-09-01
To investigate the osseointegration properties of prototyped implants with tridimensionally interconnected pores made of the Ti6Al4V alloy and the influence of a thin calcium phosphate coating. Bilateral critical size calvarial defects were created in thirty Wistar rats and filled with coated and uncoated implants in a randomized fashion. The animals were kept for 15, 45 and 90 days. Implant mechanical integration was evaluated with a push-out test. Bone-implant interface was analyzed using scanning electron microscopy. The maximum force to produce initial displacement of the implants increased during the study period, reaching values around 100N for both types of implants. Intimate contact between bone and implant was present, with progressive bone growth into the pores. No significant differences were seen between coated and uncoated implants. Adequate osseointegration can be achieved in calvarial reconstructions using prototyped Ti6Al4V Implants with the described characteristics of surface and porosity.
UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting
NASA Astrophysics Data System (ADS)
Sottile, G.; Russo, F.; Agnetta, G.; Belluso, M.; Billotta, S.; Biondo, B.; Bonanno, G.; Catalano, O.; Giarrusso, S.; Grillo, A.; Impiombato, D.; La Rosa, G.; Maccarone, M. C.; Mangano, A.; Marano, D.; Mineo, T.; Segreto, A.; Strazzeri, E.; Timpanaro, M. C.
2013-06-01
UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320-900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.
NASA Technical Reports Server (NTRS)
1979-01-01
The findings of the IIT Research Institute (IITRI) market study of the SIMS Prototype System 4, a hot water (DHW) system are documented. The feasibility of prepackaging currently available solar heating components into modular subsystems for site assembly is addressed. A documented design and installation procedure and a performance test report were prepared. The potential markets and applications for this particular system in the nonfederal market are profiled by assessing the needs and requirements of potential users and specifiers, by characterizing the nature of the market and the competitive environment, by identifying the barriers to commercial acceptance, and by estimating the size of the potential market.
Glyantsev, Sergey P; Tchantchaleishvili, Vakhtang; Bockeria, Leo A
2016-01-01
The world's first implantable total artificial heart was designed by Vladimir Demikhov as a fourth year biology student in Voronezh, Soviet Union, in 1937. As a prototype of his device, Demikhov must have used an apparatus for extracorporeal blood circulation invented by Sergei Bryukhonenko of Moscow. The device was the size of a dog's native heart and consisted of two diaphragm pumps brought into motion by an electric motor. A dog with an implanted device lived for 2.5 hours. In addition to having the prototype, the preconditions for Demikhov's artificial heart creation were his manual dexterity, expertise in animal physiology, and his mechanistic worldview.
Space station wardroom habitability and equipment study
NASA Technical Reports Server (NTRS)
Nixon, David; Miller, Christopher; Fauquet, Regis
1989-01-01
Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.
Simplified Impact Testing of Traffic Barrier Systems (Phase I)
DOT National Transportation Integrated Search
2003-06-01
A simplified impact test configuration was developed to provide a preliminary, economical means of assessing prototype traffic barriers before proceeding to full-scale federal testing. Specifically, the test was configured to assess the federal crite...
Toward the Factory of the Future.
ERIC Educational Resources Information Center
Hazony, Yehonathan
1983-01-01
Computer-integrated manufacturing (CIM) involves use of data processing technology as the vehicle for full integration of the total manufacturing process. A prototype research and educational facility for CIM developed with industrial sponsorship at Princeton University is described. (JN)
Flow measurements in a water tunnel using a holocinematographic velocimeter
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.; Beeler, George B.
1987-01-01
Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.
Large-Format Dual-Counter Pixelated X-Ray Detector Platform: Phase II Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Adam; Williams, George; Huntington, Andrew
2016-10-10
Within the program, a Voxtel led team demonstrated both prototype (48 x 48, 130-μm pitch, VX-798) and full-format (192 x 192, 100-μm pitch, VX-810) versions of a high-dynamic-range, x-ray photon-counting (HDR-XPC) sensor. Within the program the following tasks were completed: 1) integration and evaluation of the VX-798 prototype camera at the Advanced Photon Source beamline at Argonne National Labs; 2) the design, simulation, and fabrication of the full-format VX-810 ROIC was completed; 3) fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of themore » optically sensitive FPA (FPA), and 4) development of an evaluation camera to enable electrical and optical characterization of the sensor.« less
Developing effective rockfall protection barriers for low energy impacts
NASA Astrophysics Data System (ADS)
Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen
2016-04-01
Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the block size dropped from 1000 to 450 mm, with a realistic velocity observed to get the perforation of the net. The results of the study provide an important insight on the behaviour of low energy barriers. Data also shed an important light on the testing procedures which should be followed when full-scale experiments are performed on these structures, highlighting the need of considering the whole spectrum of potential block sizes. References [1] Spadari M, Kardani M, De Carteret R, Giacomini A, Buzzi O, Fityus S, Sloan S W (2013) Statistical evaluation of rockfall energy ranges for different geological settings of New South Wales, Australia. Eng Geol 158:57-65. [2] Thoeni K, Lambert C, Giacomini A, Sloan S W (2013) Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Comp Geotech 49: 158-169. [3] Mentani A, Giacomini A, Buzzi O, Govoni L, Gottardi G, Fityus S (2015) Numerical Modelling of a Low-Energy Rockfall Barrier: New Insight into the Bullet Effect, Rock Mech Rock Eng, DOI10.1007/s00603-015-0803-1
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.
1978-01-01
A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.
Full Duplex, Spread Spectrum Radio System
NASA Technical Reports Server (NTRS)
Harvey, Bruce A.
2000-01-01
The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.
Yang, Xi
2018-01-01
High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal–oxide–semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900-μm2 chip area and achieves 0.022–2.78-MHz unity gain bandwidth and over 65∘ phase margin with a load capacitance of 0.1–15 nF. The prototype amplifier consumes 7.6 μW from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption. PMID:29382183
Creation of an in vitro biomechanical model of the trachea using rapid prototyping.
Walenga, Ross L; Longest, P Worth; Sundaresan, Gobalakrishnan
2014-06-03
Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth-throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2001-01-01
Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.
2005-05-16
Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.
Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo
2016-08-01
The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).
Tan, J Y; Chua, C K; Leong, K F
2013-02-01
Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.
Formative evaluation of a patient-specific clinical knowledge summarization tool
Del Fiol, Guilherme; Mostafa, Javed; Pu, Dongqiuye; Medlin, Richard; Slager, Stacey; Jonnalagadda, Siddhartha R.; Weir, Charlene R.
2015-01-01
Objective To iteratively design a prototype of a computerized clinical knowledge summarization (CKS) tool aimed at helping clinicians finding answers to their clinical questions; and to conduct a formative assessment of the usability, usefulness, efficiency, and impact of the CKS prototype on physicians’ perceived decision quality compared with standard search of UpToDate and PubMed. Materials and methods Mixed-methods observations of the interactions of 10 physicians with the CKS prototype vs. standard search in an effort to solve clinical problems posed as case vignettes. Results The CKS tool automatically summarizes patient-specific and actionable clinical recommendations from PubMed (high quality randomized controlled trials and systematic reviews) and UpToDate. Two thirds of the study participants completed 15 out of 17 usability tasks. The median time to task completion was less than 10 s for 12 of the 17 tasks. The difference in search time between the CKS and standard search was not significant (median = 4.9 vs. 4.5 min). Physician’s perceived decision quality was significantly higher with the CKS than with manual search (mean = 16.6 vs. 14.4; p = 0.036). Conclusions The CKS prototype was well-accepted by physicians both in terms of usability and usefulness. Physicians perceived better decision quality with the CKS prototype compared to standard search of PubMed and UpToDate within a similar search time. Due to the formative nature of this study and a small sample size, conclusions regarding efficiency and efficacy are exploratory. PMID:26612774
Formative evaluation of a patient-specific clinical knowledge summarization tool.
Del Fiol, Guilherme; Mostafa, Javed; Pu, Dongqiuye; Medlin, Richard; Slager, Stacey; Jonnalagadda, Siddhartha R; Weir, Charlene R
2016-02-01
To iteratively design a prototype of a computerized clinical knowledge summarization (CKS) tool aimed at helping clinicians finding answers to their clinical questions; and to conduct a formative assessment of the usability, usefulness, efficiency, and impact of the CKS prototype on physicians' perceived decision quality compared with standard search of UpToDate and PubMed. Mixed-methods observations of the interactions of 10 physicians with the CKS prototype vs. standard search in an effort to solve clinical problems posed as case vignettes. The CKS tool automatically summarizes patient-specific and actionable clinical recommendations from PubMed (high quality randomized controlled trials and systematic reviews) and UpToDate. Two thirds of the study participants completed 15 out of 17 usability tasks. The median time to task completion was less than 10s for 12 of the 17 tasks. The difference in search time between the CKS and standard search was not significant (median=4.9 vs. 4.5m in). Physician's perceived decision quality was significantly higher with the CKS than with manual search (mean=16.6 vs. 14.4; p=0.036). The CKS prototype was well-accepted by physicians both in terms of usability and usefulness. Physicians perceived better decision quality with the CKS prototype compared to standard search of PubMed and UpToDate within a similar search time. Due to the formative nature of this study and a small sample size, conclusions regarding efficiency and efficacy are exploratory. Published by Elsevier Ireland Ltd.
Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis
2015-04-05
We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.
Picosecond resolution on relativistic heavy ions' time-of-flight measurement
NASA Astrophysics Data System (ADS)
Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.
2013-11-01
We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment-which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron-accelerator (ELSA) at CEA-DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
NASA Astrophysics Data System (ADS)
Patil, S. N.; Mulay, A. V.; Ahuja, B. B.
2018-04-01
Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of metal rapid prototyping process and its important parameters.
Intra-Chip Free-Space Optical Interconnect: System, Device, Integration and Prototyping
NASA Astrophysics Data System (ADS)
Ciftcioglu, Berkehan
Currently, on-chip optical interconnect schemes already proposed utilize circuit switching using wavelength division multiplexing (WDM) or all-optical packet switching, all based on planar optical waveguides and related photonic devices such as microrings. These proposed approaches pose significant challenges in latency, energy efficiency, integration, and scalability. This thesis presents a new alternative approach by utilizing free-space optics. This 3-D integrated intra-chip free-space optical interconnect (FSOI) leverages mature photonic devices such as integrated lasers, photodiodes, microlenses and mirrors. It takes full advantages of the latest developments in 3-D integration technologies. This interconnect system provides point-to-point free-space optical links between any two communication nodes to construct an all-to-all intra-chip communication network with little or no arbitration. Therefore, it has significant networking advantages over conventional electrical and waveguide-based optical interconnects. An FSOI system is evaluated based on the real device parameters, predictive technology models and International Roadmap of Semiconductor's predictions. A single FSOI link achieves 10-Gbps data rate with 0.5-pJ/bit energy efficiency and less than 10--12 bit-error-rate (BER). A system using this individual link can provide scalability up to 36 nodes, providing 10-Tbps aggregate bandwidth. A comparison analysis performed between a WDM-based waveguide interconnect system and the proposed FSOI system shows that FSOI achieves better energy efficiency than the WDM one as the technology scales. Similarly, network simulation on a 16-core microprocessor using the proposed FSOI system instead of mesh networks has been shown to speed up the system by 12% and reduce the energy consumption by 33%. As a part of the development of a 3-D integrated FSOI system, operating at 850 nm with a 10-Gbps data rate per optical link, the photonics devices and optical components are individually designed and fabricated. The photodiodes (PDs) are designed to have large area for efficient light coupling and low capacitance to achieve large bandwidth, while achieving reasonably high responsivity. A metal-semiconductor-metal (MSM) structure is chosen over p-i-n ones to reduce parasitic capacitance per area, to allow less stringent microlens-to-PD alignment for efficient light coupling with a large bandwidth. A novel MSM germanium PD is implemented using an amorphous silicon (a-Si) layer on top of the undoped germanium substrate, serving as a barrier enhancement layer, mitigating the low Schottky barrier height for holes due to fermi level pinning and a surface passivation layer, preventing charge accumulation and image force lowering of the barrier. Therefore, the dark current is reduced and low-frequency gain is eliminated. The PDs achieve a 13-GHz bandwidth with a 0.315-A/W responsivity and a 1.7-nAmum² dark current density. The microlenses are fabricated on a fused silica substrate based on the photoresist melt-and-reflow technique, followed by dry etching into fused silica substrate. The measured focal length of a 220-mum aperture size microlens is 350-mum away from the backside of the substrate. The vertical-cavity surface-emitting lasers (VCSELs) are fabricated on a commercial molecular beam epitaxially (MBE) grown GaAs wafer. The fabricated 8-mum aperture size VCSEL can achieve 0.65-mW optical power at a 1.5-mA forward bias current with a threshold current of 0.48 mA and a 0.67-A/W slope efficiency. Three prototypes are implemented via integrating the individually fabricated components using non-conductive epoxy and wirebonding. The first prototype, built on a printed circuit board (PCB) using commercial VCSEL arrays, achieves a 5-dB transmission loss and less than -30-dB crosstalk at 1-cm distance with a small-signal bandwidth of 10 GHz, limited by the VCSEL. The second board-level prototype uses all fabricated components integrated on a PCB. The prototype achieves a 9-dB transmission loss at 3-cm distance and a 4.4-GHz bandwidth. The chip-level prototype is built on a germanium carrier with integrated MSM Ge PDs, microlenses on fused silica and VCSEL chip on GaAs substrates. The prototype achieves 4-dB transmission loss at 1 cm and 3.3-GHz bandwidth, limited by commercial VCSEL bandwidth. (Abstract shortened by UMI.)
EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL
We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.
Development of Trace Contaminant Control Prototypes for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek; Cosgrove, Joseph E.; Serio, Michael E.; Nalette, Tim; Guerrero, Sandra V.; Papale, William; Wilburn, Monique S.
2017-01-01
Results are presented on the development of Trace Contaminant Control (TCC) Prototypes for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, as well as pressure-drop calculations were used to design and test 1/6-scale and full-scale trace contaminant control system (TCCS) prototypes. Carbon sorbents were fabricated in both the granular and foam-supported forms. Sorbent performance was tested for ammonia sorption and vacuum regeneration in 1/6-scale, and pressure-drop characteristics were measured at flow rates relevant to the PLSS application.
Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven
2005-01-01
Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.
Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC
Ferracin, P.; G. Ambrosio; Anerella, M.; ...
2015-12-18
The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less
Browning, J. R.; Jonkman, J.; Robertson, A.; ...
2014-12-16
In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof
The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit. DEEP will be migrated into the DEnCity - DOE’s Energy City, which integrates large-scale energy data for multi-purpose, open, and dynamic database leveraging diverse source of existing simulation data.« less
Analysis of 3D face forms for proper sizing and CAD of spectacle frames.
Kouchi, Makiko; Mochimaru, Masaaki
2004-11-01
Three-dimensional morphological variations in the human face were analysed using digital models of the human face, and the usefulness of such analysis in designing industrial products was demonstrated by validating spectacle frame designs based on an original sizing system developed based on the analysis. A normalized model of the three-dimensional face form was made for each of 56 young adult Japanese males. The morphological distances between subjects were defined, and subjects were divided into four groups based on analysis of the distance matrix. A prototype spectacle frame was designed for the average form of each of the four groups. Tightening force of the prototype frames was adjusted using the materialized average forms with soft material placed at the nasal bridge and side of the head. Four prototype frames as well as a conventional frame were evaluated using sensory evaluation and physical measurement of the pressure and slip in 38 young adult male subjects. For each of the 38 subjects, prototype frames were ranked according to the morphological similarity of the subjects and the average form of the four groups: the frame designed for the average form of the group most similar to the subject was #1, the frame designed for the average form of the next most similar group was #2, and so on. For the groups with smaller or narrower faces, new frame #1 was most preferred and had the best overall fit, smallest slip sensation and largest pressure sensation. The groups with larger or wider faces preferred tighter frames than new frame #1, because they were concerned that the frames might slip, although the frames did not. Most of the subjects habitually wore spectacles, and the reason that groups with larger or wider faces preferred tighter frames was thought to be that they were accustomed to tighter fitting frames.
Adaptive Boiler Controls: Market Survey and Appraisal of a Prototype System
1994-06-01
be considered. Operating staff sizes and experience are declining . Operators often lack experience and expertise to make the overall operating...Quick C, V2.5 or higher or b. Aztec CBS Compiler, v4.2 or higher $1,000 7. Uninterruptable Power Supply (for example, Superior Electric Company Model
The Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Lechner, Peter
2009-05-01
For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Stephens, Michael; Weber, Erica; Barrett, Steven F
2006-01-01
An assistive technology (AT) device was originally created for a young child who has difficulty communicating. The child is not able to talk and is not old enough to read yet. This rules out conventional communication devices that this child could use to communicate. A device was requested by the child's educator that would talk for the child. Originally it needed to be wristwatch size and able to visually cue the child so that the child would know what was going to be said. The project's first prototype was built by a senior design student. Although the basic features of the prototype functioned properly, it was not practical for day to day use. Originally a rebuild was requested by the educator but after further investigation it was decided that a new design was needed so that it could better cue the child. A new device was built using a high resolution graphic liquid crystal display (LCD), a voice recording chip and a microcontroller. The wristwatch size requirement was changed to meet available technology and the device was packaged to be used on a lanyard.
Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack
2017-12-01
Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NON-FULL-SIZE BABY CRIBS § 1509.7 Hardware. (a) The hardware in a non-full-size baby crib shall be... abuse. (b) Non-full-size baby cribs shall incorporate locking or latching devices for dropsides or... non-full-size baby crib. ...
Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas
2012-11-01
Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, C; Seduk, J; Yang, T
Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiationmore » plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.« less
Surface water, groundwater, and social science measurements in a prototype hydrologic observatory
NASA Astrophysics Data System (ADS)
Genereux, D.; Duffy, C.; Famiglietti, J.; Helly, J.; Hooper, R.; Krajewski, W.; McKnight, D.; Ogden, F.; Reckhow, K.; Scanlon, B.; Shabmasn, L.
2003-12-01
We convened in late April 2003 to begin work on the design for a "paper" prototype hydrologic observatory (HO) in the watershed of the Neuse estuary in North Carolina. This design example was to specify what would be measured in the HO, why, where, how, how often, and how much it would cost. This presentation focuses on aspects of the design related to stream and river measurements (discharge, water quality, fluvial geomorphology and sediment), groundwater measurements, and groundwater interaction with streams, rivers, and the estuary. Also considered is the collection of social sciences data to support multidisciplinary studies of land and water use and the consequences for flooding, water supply, and water quality. A second presentation in this session (Scanlon et al.) covers atmospheric and land surface aspects of the HO design, including recharge and ET. The design calls for measurements to quantify surface and subsurface hydrologic fluxes (water, solutes, sediment) into the Neuse estuary, and internally within the watershed at a wide range of spatial scales (about 5 orders of magnitude, roughly 0.1-10,000 square km). One hydrologic goal is to construct reliable water budgets for watersheds spanning this full range of scales, from the smallest to the full Neuse estuary watershed. A linked water quality goal is a strong quantitative characterization of the hydrologic storage and transport of nitrogen, a major water quality issue in this and many other large watersheds with major agricultural operations. Geomorphological observations will target the effects of physiographic and anthropogenic factors on rates of erosion, residence times of sediment in the fluvial system, and the role of wetlands and channel sources on the discharge of sediment and sorbed nutrients to the Neuse estuary during extreme events. Measurements will span the entire Neuse watershed but be more concentrated in a subset of 6 intermediate-size watersheds (averaging about 500 square km) that represent zones of different geology, land use, and topography within the larger watershed. We do not claim that the design is "optimal" in a rigorous statistical sense, but believe the reasoning used in the design is sound and applicable to other sites. The design and its staged implementation plan are flexible and allow the reasonably full coverage of the hydrologic cycle (and reasonable core) necessary to yield new insights and to make the HO an attractive site for individual studies.
First Starshade Prototype at JPL
2016-08-09
The first prototype starshade developed by NASA's Jet Propulsion Laboratory, shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California, in 2013. As shown by this 66 foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. Each petal is covered in a high-performance plastic film that resembles gold foil. On a starshade ready for launch, the thermal gold foil will only cover the side of the petals facing away from the telescope, with black on the other, so as not to reflect other light sources such as the Earth into its camera. http://photojournal.jpl.nasa.gov/catalog/PIA20906
TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentativemore » schedule has been drawn to illustrate the feasibility of the program. (auth)« less
Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring
NASA Astrophysics Data System (ADS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.
2018-05-01
We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.
Flowability of granular materials with industrial applications - An experimental approach
NASA Astrophysics Data System (ADS)
Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo
2017-06-01
Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.
Z-2 Prototype Space Suit Development
NASA Technical Reports Server (NTRS)
Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.
2014-01-01
NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.
Size selective isocyanate aerosols personal air sampling using porous plastic foams
NASA Astrophysics Data System (ADS)
Khanh Huynh, Cong; Duc, Trinh Vu
2009-02-01
As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.
High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi
2017-12-12
Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siddiqi, M A; Kilduff, G M; Gearhart, J D
2003-11-01
We describe the design, construction and testing of a prototype device that allows the direct visualization by eye of far-red and near-infrared (NIR) fluorescence through an optical microscope. The device incorporates a gallium arsenide (GaAs) image intensifier, typically utilized in low-light or 'night vision' applications. The intensifier converts far-red and NIR light into electrons and then into green light, which is visible to the human eye. The prototype makes possible the direct, real-time viewing by eye of normally invisible far-red and NIR fluorescence from a wide variety of fluorophores, using the full field of view of the microscope to which it is applied. The high sensitivity of the image intensifier facilitates the viewing of a wide variety of photosensitive specimens, including live cells and embryos, at vastly reduced illumination levels in both fluorescence and bright-field microscopy. Modifications to the microscope are not required in order to use the prototype, which is fully compatible with all current fluorescence techniques. Refined versions of the prototype device will have broad research and clinical applications.
Prototyping phase of the high heat flux scraper element of Wendelstein 7-X
Boscary, Jean; Greuner, Henri; Ehrke, G.; ...
2016-03-24
The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equippedmore » with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m 2. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. In conclusion, the prototypes are presently under fabrication.« less
High performance 1.2 Ah Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery
NASA Astrophysics Data System (ADS)
Marinaro, Mario; Yoon, Dong-hwan; Gabrielli, Giulio; Stegmaier, Petra; Figgemeier, Egbert; Spurk, Paul C.; Nelis, Daniël; Schmidt, Gregory; Chauveau, Jerome; Axmann, Peter; Wohlfahrt-Mehrens, Margret
2017-07-01
The study reports on realization and electrochemical testing of prototype Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 batteries. Water soluble polyacrylic acid (PAA), used as the only binder at the anode side, demonstrates excellent dispersant and binding properties. Sedimentation tests and rheological measurements show remarkable stability and mostly a thinning behavior of the non-Newtonian type of slurry. The cathode is processed in N-Methylpyrrolidone based slurry using polyvinylidene fluoride (PVDF) as the binding agent. The electronic conductivities of the manufactured Si-alloy/Graphite and LiNi0.5Mn0.3Co0.2O2 electrodes are evaluated. Furthermore, the cathode and anode electrochemical behavior is initially studied in half-cells, and subsequently in full Li-ion stacked prototype soft pouch-cells (1.22 Ah). It is demonstrated that the manufactured prototype cells can sustain about 290 charge/discharge galvanostatic cycles before the retained capacity drops below 80%. Cell aging is monitored using Electrochemical Impedance Spectroscopy (EIS), whereas post-mortem SEM analysis of electrodes cross-section is used to shed light on the causes of performance degradation of the cells.
Ultrafast holographic technique for 3D in situ documentation of cultural heritage
NASA Astrophysics Data System (ADS)
Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter
2003-10-01
A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.
NASA Astrophysics Data System (ADS)
Haziza, M.
1990-10-01
The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.
CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus
DOT National Transportation Integrated Search
2018-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
Dual circuit embossed sheet heat transfer panel
Morgan, G.D.
1984-02-21
A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.
Dual-circuit embossed-sheet heat-transfer panel
Morgan, G.D.
1982-08-23
A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.
Dual circuit embossed sheet heat transfer panel
Morgan, Grover D.
1984-01-01
A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.
A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.
Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar
2003-12-01
Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating subsequent radioguided surgery.
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.
2017-01-01
Precision Combustion, Inc. (PCI) and NASA’s Marshall Space Flight Center (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI’s patented Microlith technology to meet the requirements of future extended human spaceflight explorations. Previous efforts focused on integrating PCI’s HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight. Significant improvement was demonstrated over traditional approaches of integrating the HTCO with an external recuperative heat exchanger. While the critical target performance metrics were achieved, the thermal effectiveness of PCI’s recuperator remained a potential area of improvement to further reduce the energy requirements of the integrated system. Using the same material combinations and an improved recuperator design, the redesigned prototype has experimentally demonstrated 20 – 30% reduction (flow dependent) in steady state power consumption compared to the earlier prototype without compromising the destruction efficiency of methane and volatile organic compounds (VOCs). Moreover, design modifications and improvements allow our redesigned prototype to be more easily manufactured compared to traditional brazed plate-fin recuperator designs. The redesigned prototype was delivered to MSFC for validation testing. Here, we report and discuss the performance of the improved prototype HTCO unit with a high efficiency recuperative heat exchanger based on testing at PCI and MSFC. The device is expected to provide a reliable and robust means of disposing of trace levels of methane and VOCs by oxidizing them into carbon dioxide and water in order to maintain clean air in enclosed spaces, such as crewed spacecraft cabins.
High Reliability Prototype Quadrupole for the Next Linear Collider
NASA Astrophysics Data System (ADS)
Spencer, C. M.
2001-01-01
The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.
Westendorff, Carsten; Kaminsky, Jan; Ernemann, Ulrike; Reinert, Siegmar; Hoffmann, Jürgen
2007-02-01
Resection of large intraosseous sphenoid wing meningiomas is traditionally associated with significant morbidity. Rapid prototyping techniques have become widely used for treatment planning. Yet, the transfer of a treatment plan into the intraoperative situs strongly depends on the experience of the individual surgeon. Extensive resection with orbital decompression was planned and performed on the basis of rapid prototyping and surgical navigation techniques in a 44-year-old woman presenting with a large sphenoid wing meningioma on the right infiltrating the orbit. Tumor resection was simulated on a stereolithography model of the patient's head. The stereolithography model was scanned using computed tomography (CT) and the defect geometry was used to create a custom-made titanium implant. The implant consisted of a solid titanium core and a spot-welded titanium mesh surrounding the core, allowing for minor intraoperative adjustments of the implant size by reducing the mesh size. The stereolithography model with the incorporated implant was CT scanned again and the CT data were fused with the patient's original CT data. The implant borders indicating the resection borders were marked within the patient's CT data set. This treatment plan was transferred to an optical navigation system. Intraoperatively, tumor resection was performed using surgical navigation. In the presented case report, the combination of computer-assisted planning using rapid prototyping techniques and image-guided surgery allowed for an extensive tumor resection precisely according to a preoperative treatment plan in a patient presenting with a large intraosseous sphenoid wing meningioma. A larger clinical series with a long-term follow-up period will be needed to determine the reproducibility.
2011-08-01
5 Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis...classification of streaming data. Example input images (top left). All digit prototypes (cluster centers) found, with size proportional to frequency (top...Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis 1 http
Erratum: Correction to: The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer
NASA Astrophysics Data System (ADS)
Murphy, Daniel M.
2018-05-01
In the article "The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer", the electric sectors in the prototype analyzer used to generate the data in Figure 4 were mistakenly listed as having a radius of 165 mm. The correct size is a diameter of 165 mm.
Design of prototype charged particle fog dispersal unit
NASA Technical Reports Server (NTRS)
Collins, F. G.; Frost, W.; Kessel, P.
1981-01-01
The unit was designed to be easily modified so that certain features that influence the output current and particle size distribution could be examined. An experimental program was designed to measure the performance of the unit. The program described includes measurements in a fog chamber and in the field. Features of the nozzle and estimated nozzle characteristics are presented.
Advanced rotary engine studies
NASA Technical Reports Server (NTRS)
Jones, C.
1980-01-01
A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.
Experimental Packet Radio System Design Plan
1974-03-13
specific design parameters (packet format, data rates, modulation type, spread factor, etc.) for the initial system configuration. c. Prototype...are described along with size, weight and power estimates, and projections of per- formance parameters . d. Measurement and Test. The plan...are presented covering the communications link, system parameters , and various levels of network operation and performance. This plan is a snapshot
Prototype architecture for a VLSI level zero processing system. [Space Station Freedom
NASA Technical Reports Server (NTRS)
Shi, Jianfei; Grebowsky, Gerald J.; Horner, Ward P.; Chesney, James R.
1989-01-01
The prototype architecture and implementation of a high-speed level zero processing (LZP) system are discussed. Due to the new processing algorithm and VLSI technology, the prototype LZP system features compact size, low cost, high processing throughput, and easy maintainability and increased reliability. Though extensive control functions have been done by hardware, the programmability of processing tasks makes it possible to adapt the system to different data formats and processing requirements. It is noted that the LZP system can handle up to 8 virtual channels and 24 sources with combined data volume of 15 Gbytes per orbit. For greater demands, multiple LZP systems can be configured in parallel, each called a processing channel and assigned a subset of virtual channels. The telemetry data stream will be steered into different processing channels in accordance with their virtual channel IDs. This super system can cope with a virtually unlimited number of virtual channels and sources. In the near future, it is expected that new disk farms with data rate exceeding 150 Mbps will be available from commercial vendors due to the advance in disk drive technology.
High-Rate Digital Receiver Board
NASA Technical Reports Server (NTRS)
Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David
2004-01-01
A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.
Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability
Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709
Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.
2017-01-01
The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L; Sarkar, V; Spiessens, S
2014-06-01
Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-plannedmore » as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... data elements: Full Name; Alias(es); Gender; Date of Birth; Country of Birth; Country of Citizenship... locked drawer behind a locked door. The records may be stored on magnetic disc, tape, or digital media...
Zhang, Yong-de; Jiang, Jin-gang; Liang, Ting; Hu, Wei-ping
2011-12-01
Artificial teeth are very complicated in shape, and not easy to be grasped and manipulated accurately by a single robot. The method of tooth-arrangement by multi-manipulator for complete denture manufacturing proposed in this paper. A novel complete denture manufacturing mechanism is designed based on multi-manipulator and dental arch generator. Kinematics model of the multi-manipulator tooth-arrangement robot is built by analytical method based on tooth-arrangement principle for full denture. Preliminary experiments on tooth-arrangement are performed using the multi-manipulator tooth-arrangement robot prototype system. The multi-manipulator tooth-arrangement robot prototype system can automatically design and manufacture a set of complete denture that is suitable for a patient according to the jaw arch parameters. The experimental results verified the validity of kinematics model of the multi-manipulator tooth-arrangement robot and the feasibility of the manufacture strategy of complete denture fulfilled by multi-manipulator tooth-arrangement robot.
NASA Astrophysics Data System (ADS)
Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald
2016-12-01
Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.
NASA Astrophysics Data System (ADS)
Ghosh, P.
2015-03-01
The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.
Prototype of an in vitro model of the microcirculation.
Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W
2003-03-01
We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.
Bhavani, Selvaraj Rani; Senthilkumar, Jagatheesan; Chilambuchelvan, Arul Gnanaprakasam; Manjula, Dhanabalachandran; Krishnamoorthy, Ramasamy; Kannan, Arputharaj
2015-03-27
The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called "CIMIDx", based on representative association rules that support the diagnosis of medical images (mammograms). The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype's classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user's perspective. We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals and health centers. The CIMIDx prototype achieved high sensitivity of up to 99.29%, and accuracy of up to 98%. The second set of experiments evaluated CIMIDx use for breast health issues, using t tests and Pearson chi-square tests to assess differences, and binary logistic regression to estimate the odds ratio (OR) for the predictors' use of CIMIDx. For the prototype usage statistics for the same 150 breast cancer survivors, we interviewed 114 (76.0%), through self-report questionnaires from CIMIDx blogs. The frequency of log-ins/person ranged from 0 to 30, total duration/person from 0 to 1500 minutes (25 hours). The 114 participants continued logging in to all phases, resulting in an intervention adherence rate of 44.3% (95% CI 33.2-55.9). The overall performance of the prototype for the good category, reported usefulness of the prototype (P=.77), overall satisfaction of the prototype (P=.31), ease of navigation (P=.89), user friendliness evaluation (P=.31), and overall satisfaction (P=.31). Positive evaluations given by 100 participants via a Web-based questionnaire supported our hypothesis. The present study shows that women felt favorably about the use of a generic fully automated cloud-based self- management prototype. The study also demonstrated that the CIMIDx prototype resulted in the detection of more cancers in screening and diagnosing patients, with an increased accuracy rate.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie
2012-01-01
Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... worked with the voluntary standards group, ASTM International (formerly known as the American Society for Testing and Materials), which added provisions in its standard for full-size baby cribs, ASTM F 1169, to... the same as voluntary standards ASTM F 1169-10, Standard Consumer Safety Specification for Full-Size...
75 FR 43107 - Revocation of Requirements for Full-Size Baby Cribs and Non-Full-Size Baby Cribs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... Improvement Act of 2008 (``CPSIA'') requires the United States Consumer Product Safety Commission (``CPSC'' or... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Parts 1508 and 1509 [CPSC Docket No. CPSC-2010-0075] Revocation of Requirements for Full-Size Baby Cribs and Non-Full- Size Baby Cribs AGENCY: Consumer Product...
Recent Progress on High-Current SRF Cavities at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand
2010-05-01
JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, amore » practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerlin, B.D.; Cerva, J.R.; Glenn, M.E.
This document describes evaluation studies and technical investigations proposed for the three-year Digital Imaging Network System (DINS) prototype project, sponsored by the U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland. The project has three overall goals. The first is to install and operate a prototype DINS at each of two University-based hospitals for test purposes. The second is to evaluate key aspects of each prototype system once it is in full operation. The third is to develop guidelines and specifications for an operational DINS suitable for use by the military and others developing systems of the future. Thismore » document defines twelve overall evaluative questions for use in meeting the second and third objectives of the project and proposes studies that will answer these questions.« less
The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga
NASA Technical Reports Server (NTRS)
2002-01-01
The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.
Results from the NEXT Protogypes
Oliveira, C A.B.
2013-10-04
NEXT-100 is an electroluminescent high pressure Time Projection Chamber currently under construction. It will search for the neutrino-less double beta decay in 136Xe at the Canfranc Underground Laboratory. NEXT-100 aims to achieve nearly intrinsic energy resolution and to highly suppress background events by taking advantage of the unique properties of xenon in the gaseous phase as the detection medium. In order to prove the principle of operation and to study which are the best operational conditions, two prototypes were constructed: NEXT-DEMO and NEXT-DBDM. In this study we present the latest results from both prototypes. We report the improvement in termsmore » of light collection (~ 3x) achieved by coating the walls of NEXT-DEMO with tetraphenyl butadiene (TPB), the outstanding energy resolution of 1% (Full Width Half Maximum) from NEXT-DBDM as well as the tracking capabilities of this prototype (2.1 mm RMS error for point-like depositions) achieved by using a square array of 8 x 8 SiPMs.« less
Orlova, Anna O.; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven
2005-01-01
Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation’s healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH) system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN. PMID:16779105
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.
ROBITOM-robot for biopsy and therapy of the mamma.
Felden, A; Vagner, J; Hinz, A; Fischer, H; Pfleiderer, S O R; Reichenbach, J R; Kaiser, W A
2002-01-01
MR-Mammography reaches a high sensitivity in detecting breast carcinomas of 3 mm in size at least. In cooperation with the Institute of Diagnostic and Interventional Radiology of the Friedrich-Schiller-University of Jena, a manipulator has been developed by the IMB, which combines the advantages of MRM imaging with a minimal invasive biopsy and a possible subsequent therapy. Referring to this ROBITOM I was introduced in November 1999 as worldwide first, precise operating manipulator system in the ISO center of a closed MR, at RSNA in Chicago. Clinical trials started at 22. November 2000. The experiences and results of these tests were brought into the following prototype ROBITOM II, that is currently developed at the IMB. The completion of this Prototype is planned at the end of 2002.
3D PRINTING SUSTAINABLE BUILDING COMPONENTS FOR FAÇADES AND AS WINDOW ELEMENTS
The production of full scale working prototypes that can be installed on site and measured through observation and actual physical measurement are vital. Students will measure mechanical, structural, chemical and optical properties of the walls. Students will do temperature an...
Cocchietto, Moreno; Blasi, Paolo; Lapasin, Romano; Moro, Chiara; Gallo, Davide; Sava, Gianni
2013-11-19
to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs) by processing highly viscous feed solutions (FSs). the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle's dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L) and the range of practicable feed solution (FS) viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. the novel prototype of production plant is suitable to process large amounts (2 L or more) of FSs, characterized by a high viscosity, to produce MPs suitable for bioactive principle delivery.
Deems-Dluhy, Susan L; Jayaraman, Chandrasekaran; Green, Steve; Albert, Mark V; Jayaraman, Arun
2017-05-01
Difficulty ascending ramps and inclines with a manual wheelchair adversely affects the everyday mobility and overall quality of life of manual wheelchair users. Currently, various anti-rollback devices are available to assist manual wheelchair users to ascend ramps and inclines. However, these devices have 2 main shortcomings: restriction to backward motion limiting recovery from an overturning wheelchair, which is a safety concern; and difficulty in engaging/disengaging the device while on the ramp. To evaluate the functionality and usability of 2 novel wheelchair anti-rollback devices developed to address these shortcomings (prototypes "Wheel" and "Brake"). Cross-sectional. Rehabilitation research facility. Twelve adult participants with chronic spinal cord injury. Participants completed training and tested with both the wheelchair anti-rollback devices on a 7.3-m-long ramp. Number of stops, perceived physical exertion, pain, and ease of use of these devices as participants maneuvered their wheelchairs up a 7.3-m ramp were assessed. Participants also evaluated their satisfaction with the usability of both the devices using the Quebec User Evaluation of Satisfaction With Assistive Technology (QUEST 2.0). Both prototypes evaluated overcame the limitations of the existing anti-rollback devices. Nonparametric statistical tests showed that participants rated both prototypes similarly for the overall functional and usability aspects. However, the participants' satisfactory rating were higher for the prototype "Brake" than for the prototype "Wheel" based on a functional aspect (ie, engaging/disengaging easiness), and higher for Wheel than for Brake, based on a usability aspect (prototype size). The qualitative and quantitative outcomes of this investigation, based on the usability and functional evaluations, provided useful information for the improvement in the design of both anti-rollback devices, which may allow manual wheelchair users to manage ramp ascent more safely and easily. Further evaluations with a different SCI population is recommended. IV. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Cocchietto, Moreno; Blasi, Paolo; Lapasin, Romano; Moro, Chiara; Gallo, Davide; Sava, Gianni
2013-01-01
Purpose: to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs) by processing highly viscous feed solutions (FSs). Methods: the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle’s dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L) and the range of practicable feed solution (FS) viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. Results: according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. Conclusions: the novel prototype of production plant is suitable to process large amounts (2 L or more) of FSs, characterized by a high viscosity, to produce MPs suitable for bioactive principle delivery. PMID:24956192
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1993-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. An overview of the GRASP/Ada project with an emphasis on the current update is provided.
Wide Area Security Region Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin
2010-03-31
This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of systemmore » parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.« less
Satellite on-board real-time SAR processor prototype
NASA Astrophysics Data System (ADS)
Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François
2017-11-01
A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Yoshida, M.
2015-04-08
The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because themore » PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.« less
2012-09-30
Doug Gillespie, SMRU/U. St. Andrews Mark Johnson, SMRU/U. St. Andrews Holger Klink, U. Oregon Phil Lovell , SMRU/U. St. Andrews David Mann, U. South...be be sourced from an ’ AA ’ size Lithium primary (non- rechargable) cell while the tag is attached to an animal and then from a rechargeable Lithium-ion
USDA-ARS?s Scientific Manuscript database
The objective of this research was to develop an in-field apple presorting and grading system to separate undersized and defective fruit from fresh market-grade apples. To achieve this goal, a cost-effective machine vision inspection prototype was built, which consisted of a low-cost color camera, L...
Reducing EnergyPlus Run Time For Code Compliance Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.
2014-09-12
Integration of the EnergyPlus ™ simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and threemore » climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.« less
Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn
2017-06-25
In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.
Drag and Side Force Reduction for Cyclicsts in Echelon Formation
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Cunningham, Alec; Lovell, Adam
2017-11-01
When riding directly behind another cyclist (drafting), a rider can use up to 30% less energy. This technique is often used during competitions, yet drafting in the presence of a cross wind has not been studied extensively. To investigate the effect of side-wind on drafting, 1:11 scale models of two different cyclists were rapid-prototyped and tested in a wind tunnel. The drag and side forces were measured in formations of up to 4 models. The results suggest that there is a significant decrease in both drag and side force when a cyclist is riding in another cyclist's wake. Positioning with no off-stream-wise offset result in the largest reduction of forces. When riding in a group of four cyclists, the second and third cyclist experience the largest force reduction. The size of the leading cyclist affects the reduction of forces, particularly when the leading cyclist is smaller. The results are dependent on the Reynolds number, but appear to be independent at higher Reynolds numbers. Initial full scale tests were conducted at the UNH Flow Physics Facility.
Recent progress on external occulter technology for imaging exosolar planets
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.
Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.
Development and coupling analysis of active skin antenna
NASA Astrophysics Data System (ADS)
Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei
2017-02-01
An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Keisuke; Kishimoto, Shunji, E-mail: syunji.kishimoto@kek.jp; Inst. of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801
2016-07-27
We developed a scintillation X-ray detector using a proportional-mode silicon avalanche photodiode (Si-APD). We report a prototype detector using a lead-loaded plastic scintillator mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter), which is operated at a low temperature. Using 67.41 keV X-rays, we could measure pulse-height spectra of scintillation light with a charge-sensitive preamplifier at 20, 0, and −35°C. Time spectra of the X-ray bunch structure were successfully recorded using a wideband and 60-dB-gain amplifier in hybrid-mode operation of the Photon Factory ring. We obtained a better time resolution of 0.51 ns (full width at half-maximum)more » for the single-bunch X-ray peak at −35°C. We were also able to observe a linear response of the scintillation pulses up to 8 Mcps for input photon rates up to 1.4 × 10{sup 8} photons/s.« less
Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi
2006-01-01
Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.
High frequency copolymer ultrasonic transducer array of size-effective elements
NASA Astrophysics Data System (ADS)
Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank
2018-02-01
A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.
Nucleation versus percolation: Scaling criterion for failure in disordered solids
NASA Astrophysics Data System (ADS)
Biswas, Soumyajyoti; Roy, Subhadeep; Ray, Purusattam
2015-05-01
One of the major factors governing the mode of failure in disordered solids is the effective range R over which the stress field is modified following a local rupture event. In a random fiber bundle model, considered as a prototype of disordered solids, we show that the failure mode is nucleation dominated in the large system size limit, as long as R scales slower than Lζ, with ζ =2 /3 . For a faster increase in R , the failure properties are dominated by the mean-field critical point, where the damages are uncorrelated in space. In that limit, the precursory avalanches of all sizes are obtained even in the large system size limit. We expect these results to be valid for systems with finite (normalizable) disorder.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... sufficient samples of the product, or samples that are identical in all material respects to the product. The... 1220, Safety Standards for Full-Size Baby Cribs and Non-Full- Size Baby Cribs. A true copy, in English... assessment bodies seeking accredited status must submit to the Commission copies, in English, of their...
Anatomical information in radiation treatment planning.
Kalet, I J; Wu, J; Lease, M; Austin-Seymour, M M; Brinkley, J F; Rosse, C
1999-01-01
We report on experience and insights gained from prototyping, for clinical radiation oncologists, a new access tool for the University of Washington Digital Anatomist information resources. This access tool is designed to integrate with a radiation therapy planning (RTP) system in use in a clinical setting. We hypothesize that the needs of practitioners in a clinical setting are different from the needs of students, the original targeted users of the Digital Anatomist system, but that a common knowledge resource can serve both. Our prototype was designed to help define those differences and study the feasibility of a full anatomic reference system that will support both clinical radiation therapy and all the existing educational applications.
An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.
Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M
2001-09-15
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
CFD analysis of a diaphragm free-piston Stirling cryocooler
NASA Astrophysics Data System (ADS)
Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan
2016-10-01
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.
Kappanayil, Mahesh; Koneti, Nageshwara Rao; Kannan, Rajesh R; Kottayil, Brijesh P; Kumar, Krishna
2017-01-01
Three-dimensional. (3D) printing is an innovative manufacturing process that allows computer-assisted conversion of 3D imaging data into physical "printouts" Healthcare applications are currently in evolution. The objective of this study was to explore the feasibility and impact of using patient-specific 3D-printed cardiac prototypes derived from high-resolution medical imaging data (cardiac magnetic resonance imaging/computed tomography [MRI/CT]) on surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases (CHDs). Five patients with complex CHD with previously unresolved management decisions were chosen. These included two patients with complex double-outlet right ventricle, two patients with criss-cross atrioventricular connections, and one patient with congenitally corrected transposition of great arteries with pulmonary atresia. Cardiac MRI was done for all patients, cardiac CT for one; specific surgical challenges were identified. Volumetric data were used to generate patient-specific 3D models. All cases were reviewed along with their 3D models, and the impact on surgical decision-making and preoperative planning was assessed. Accurate life-sized 3D cardiac prototypes were successfully created for all patients. The models enabled radically improved 3D understanding of anatomy, identification of specific technical challenges, and precise surgical planning. Augmentation of existing clinical and imaging data by 3D prototypes allowed successful execution of complex surgeries for all five patients, in accordance with the preoperative planning. 3D-printed cardiac prototypes can radically assist decision-making, planning, and safe execution of complex congenital heart surgery by improving understanding of 3D anatomy and allowing anticipation of technical challenges.
Design and Manufacture of Structurally Efficient Tapered Struts
NASA Technical Reports Server (NTRS)
Brewster, Jebediah W.
2009-01-01
Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
Initial Results From the USNO Dispersed Fourier Transform Spectrograph
2007-01-25
the full instrument bandpass. 5.2. k Andromedae and Geminorum To test whether the dFTS system can accurately detect RV variations in a stellar...prototype dFTS can measure stellar RVs with sufficient accuracy to find exoplanets. We also observed Andromedae (a three-planet system) and
DOT National Transportation Integrated Search
2015-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
15 CFR 16.5 - Development of performance information labeling specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... parties and set out in full in the Specification; (3) A prototype label and directions for displaying the..., a notice either: (1) Giving the complete text of a final Specification, including conditions of use, and stating that any prospective participant in the program desiring voluntarily to use the Department...
Small scale adaptive optics experiment systems engineering
NASA Technical Reports Server (NTRS)
Boykin, William H.
1993-01-01
Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.
Multisource inverse-geometry CT. Part I. System concept and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Man, Bruno, E-mail: deman@ge.com; Harrison, Dan
Purpose: This paper presents an overview of multisource inverse-geometry computed tomography (IGCT) as well as the development of a gantry-based research prototype system. The development of the distributed x-ray source is covered in a companion paper [V. B. Neculaes et al., “Multisource inverse-geometry CT. Part II. X-ray source design and prototype,” Med. Phys. 43, 4617–4627 (2016)]. While progress updates of this development have been presented at conferences and in journal papers, this paper is the first comprehensive overview of the multisource inverse-geometry CT concept and prototype. The authors also provide a review of all previous IGCT related publications. Methods: Themore » authors designed and implemented a gantry-based 32-source IGCT scanner with 22 cm field-of-view, 16 cm z-coverage, 1 s rotation time, 1.09 × 1.024 mm detector cell size, as low as 0.4 × 0.8 mm focal spot size and 80–140 kVp x-ray source voltage. The system is built using commercially available CT components and a custom made distributed x-ray source. The authors developed dedicated controls, calibrations, and reconstruction algorithms and evaluated the system performance using phantoms and small animals. Results: The authors performed IGCT system experiments and demonstrated tube current up to 125 mA with up to 32 focal spots. The authors measured a spatial resolution of 13 lp/cm at 5% cutoff. The scatter-to-primary ratio is estimated 62% for a 32 cm water phantom at 140 kVp. The authors scanned several phantoms and small animals. The initial images have relatively high noise due to the low x-ray flux levels but minimal artifacts. Conclusions: IGCT has unique benefits in terms of dose-efficiency and cone-beam artifacts, but comes with challenges in terms of scattered radiation and x-ray flux limits. To the authors’ knowledge, their prototype is the first gantry-based IGCT scanner. The authors summarized the design and implementation of the scanner and the authors presented results with phantoms and small animals.« less
Lightweight uncooled TWS equipped with catadioptric optics and microscan mechanism
NASA Astrophysics Data System (ADS)
Bergeron, A.; Jerominek, H.; Doucet, M.; Lagacé, F.; Desnoyers, N.; Bernier, S.; Mercier, L.; Boucher, M.-A.; Jacob, M.; Alain, C.; Pope, T. D.; Laou, P.
2006-05-01
A rugged lightweight thermal weapon sight (TWS) prototype was developed at INO in collaboration with DRDC-Valcartier. This TWS model is based on uncooled bolometer technology, ultralight catadioptric optics, ruggedized mechanics and electronics, and extensive onboard processing capabilities. The TWS prototype operates in a single 8-12 μm infrared (IR) band. It is equipped with a unique lightweight athermalized catadioptric objective and a bolometric IR imager with an INO focal plane array (FPA). Microscan technology allows the use of a 160 x 120 pixel FPA with a pitch of 50 μm to achieve a 320 × 240 pixel resolution image thereby avoiding the size (larger optics) and cost (expensive IR optical components) penalties associated with the use of larger format arrays. The TWS is equipped with a miniature shutter for automatic offset calibration. Based on the operation of the FPA at 100 frames per second (fps), real-time imaging with 320 x 240 pixel resolution at 25 fps is available. This TWS is also equipped with a high resolution (857 x 600 pixels) OLED color microdisplay and an integrated wireless digital RF link. The sight has an adjustable and selectable electronic reticule or crosshair (five possible reticules) and a manual focus from 5 m to infinity standoff distance. Processing capabilities are added to introduce specific functionalities such as image inversion (black hot and white hot), image enhancement, and pixel smoothing. This TWS prototype is very lightweight (~ 1100 grams) and compact (volume of 93 cubic inches). It offers human size target detection at 800 m and recognition at 200 m (Johnson criteria). With 6 Li AA batteries, it operates continuously for 5 hours and 20 minutes at room temperature. It can operate over the temperature range of -30 °C to +40 °C and its housing is completely sealed. The TWS is adapted to weaver or Picatinny rail mounting. The overall design of the TWS prototype is based on feedbacks of users to achieve improved user-friendly (e.g. no pull-down menus and no electronic focusing) and ergonomic (e.g. locations of buttons) features.
Multisource inverse-geometry CT. Part I. System concept and development
De Man, Bruno; Uribe, Jorge; Baek, Jongduk; Harrison, Dan; Yin, Zhye; Longtin, Randy; Roy, Jaydeep; Waters, Bill; Wilson, Colin; Short, Jonathan; Inzinna, Lou; Reynolds, Joseph; Neculaes, V. Bogdan; Frutschy, Kristopher; Senzig, Bob; Pelc, Norbert
2016-01-01
Purpose: This paper presents an overview of multisource inverse-geometry computed tomography (IGCT) as well as the development of a gantry-based research prototype system. The development of the distributed x-ray source is covered in a companion paper [V. B. Neculaes et al., “Multisource inverse-geometry CT. Part II. X-ray source design and prototype,” Med. Phys. 43, 4617–4627 (2016)]. While progress updates of this development have been presented at conferences and in journal papers, this paper is the first comprehensive overview of the multisource inverse-geometry CT concept and prototype. The authors also provide a review of all previous IGCT related publications. Methods: The authors designed and implemented a gantry-based 32-source IGCT scanner with 22 cm field-of-view, 16 cm z-coverage, 1 s rotation time, 1.09 × 1.024 mm detector cell size, as low as 0.4 × 0.8 mm focal spot size and 80–140 kVp x-ray source voltage. The system is built using commercially available CT components and a custom made distributed x-ray source. The authors developed dedicated controls, calibrations, and reconstruction algorithms and evaluated the system performance using phantoms and small animals. Results: The authors performed IGCT system experiments and demonstrated tube current up to 125 mA with up to 32 focal spots. The authors measured a spatial resolution of 13 lp/cm at 5% cutoff. The scatter-to-primary ratio is estimated 62% for a 32 cm water phantom at 140 kVp. The authors scanned several phantoms and small animals. The initial images have relatively high noise due to the low x-ray flux levels but minimal artifacts. Conclusions: IGCT has unique benefits in terms of dose-efficiency and cone-beam artifacts, but comes with challenges in terms of scattered radiation and x-ray flux limits. To the authors’ knowledge, their prototype is the first gantry-based IGCT scanner. The authors summarized the design and implementation of the scanner and the authors presented results with phantoms and small animals. PMID:27487877
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
Facial and ocular deposition of nebulized budesonide: effects of face mask design.
Harris, Keith W; Smaldone, Gerald C
2008-02-01
In vivo case reports and in vitro studies have indicated that aerosol therapy using face masks can result in drug deposition on the face and in the eyes, and that face mask design may affect drug delivery. To test different mask/nebulizer combinations for budesonide, a nebulized steroid used to treat pediatric patients with asthma. Using high-performance liquid chromatography, drug delivery (inhaled mass), facial, and ocular deposition of budesonide aerosols were studied in vitro using a ventilated face facsimile (tidal volume, 50 mL; rate, 25 breaths/min, duty cycle 0.4), a tight-fitting test mask, a standard commercial mask, and a prototype mask designed to optimize delivery by reducing particle inertia. Nebulizer insertion into the mask (front loaded vs bottom loaded) was also tested. Particle size was measured by cascade impaction. Pari LC Plus (PARI Respiratory Equipment; Midlothian, VA) and MistyNeb (Allegiance; McGaw Park, IL) nebulizers were tested. Inhaled mass for tight-fitting and prototype masks was similar (13.2 +/- 1.85% vs 14.4 +/- 0.67% [percentage of nebulizer charge], p = 0.58) and significantly greater than for the commercial mask (3.03 +/- 0.26%, p = 0.005). Mask insertion of nebulizer was a key factor (inhaled mass: front loaded vs bottom loaded, 8.23 +/- 0.18% vs 3.03 +/- 0.26%; p = 0.005). Ocular deposition varied by an order of magnitude and was a strong function of mask design (4.77 +/- 0.24% vs 0.35 +/- 0.05%, p = 0.002, tight fitting vs prototype). Particle sizes (7.3 to 9 microm) were larger than previously reported for budesonide. For pediatric breathing patterns, mask design is a key factor defining budesonide delivery to the lungs, face, and eyes. Front-loaded nebulizer mask combinations are more efficient than bottom-loaded systems.
NASA Astrophysics Data System (ADS)
Trakumas, S.; Salter, E.
2009-02-01
Adverse health effects due to exposure to airborne particles are associated with particle deposition within the human respiratory tract. Particle size, shape, chemical composition, and the individual physiological characteristics of each person determine to what depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle inertial classification devices are available to fractionate airborne particles according to their aerodynamic size to approximate particle penetration through the human respiratory tract. Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. Extensive studies of different cyclonic samplers have shown, however, that the sampling characteristics of cyclones do not follow the entire selected convention accurately. In the search for a more accurate way to assess worker exposure to different fractions of inhaled dust, a novel sampler comprising several inertial impactors arranged in parallel was designed and tested. The new design includes a number of separated impactors arranged in parallel. Prototypes of respirable and thoracic samplers each comprising four impactors arranged in parallel were manufactured and tested. Results indicated that the prototype samplers followed closely the penetration characteristics for which they were designed. The new samplers were found to perform similarly for liquid and solid test particles; penetration characteristics remained unchanged even after prolonged exposure to coal mine dust at high concentration. The new parallel impactor design can be applied to approximate any monotonically decreasing penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as well as area samplers that operate at higher flow rates can be made based on the suggested design. Performance of such samplers can be predicted with high accuracy employing well-established impaction theory.