Gaia, an all-sky survey for standard photometry
NASA Astrophysics Data System (ADS)
Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.
2017-03-01
Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.
Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics
NASA Astrophysics Data System (ADS)
Basden, A. G.
2014-08-01
Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.
CMB-S4 and the hemispherical variance anomaly
NASA Astrophysics Data System (ADS)
O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.
2017-09-01
Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.
Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.
Wang, Lianqi; Andersen, David; Ellerbroek, Brent
2012-06-01
The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.
The Wide-Field Infrared Survey Explorer (WISE): Mission Description and Initial On-Orbit Performance
NASA Technical Reports Server (NTRS)
Wright, Edward L.; Eisenhardt, Peter R. M.; Mainzer, Amy; Ressler, Michael E.; Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; McMillan, Robert S.; Skrutskie,Michael;
2010-01-01
The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".
NASA Astrophysics Data System (ADS)
Howard, Ward S.; Law, Nicholas M.; Ziegler, Carl A.; Baranec, Christoph; Riddle, Reed
2018-02-01
Adaptive optics laser guide-star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. In this paper, we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15000 targets and 42000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39% ± 19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled energy (e.g., those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
eGSM: A extended Sky Model of Diffuse Radio Emission
NASA Astrophysics Data System (ADS)
Kim, Doyeon; Liu, Adrian; Switzer, Eric
2018-01-01
Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.
CBSD Version 2 Component Models of the IR Celestial Background
1990-12-07
to B1950.0) INCL Inclination of orbit (referred to B1950.0) E Eccentricity SMA Semi-major axis (AU) OBLIQ Obliquity of the ecliptic (at B1950.0) The...pre-release summary of Super Sky Flux: Plates for ecliptic latitudes >500 are scheduled to be available in Spring 1991; full-sky coverage is scheduled...individual HCON Plate sets, a three HCON co-add plate set is being developed; however, regions within ±30’ of the ecliptic plane may not be included in
5th Annual AGILE Science Workshop
NASA Technical Reports Server (NTRS)
Hunter, Stanley
2008-01-01
The EGRET model of the galactic diffuse gamma-ray emission (GALDIF) has been extended to provide full-sky coverage and improved to address the discrepancies with the EGRET data. This improved model is compared with the AGILE results from the Galactic center. The comparison is discussed.
Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.
Wang, Likun; Chen, Yong; Han, Yong
2016-09-01
Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.
UCAC1: New Proper Motions for 27 Million Stars on the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Zacharias, N.; Monet, S. Urban D. G.; Platais, I.; Wycoff, G. L.; Zacharias, M. I.; Rafferty, T. J.
The big impact of UCAC on galactic kinematics and dynamics studies will be outlined. The USNO CCD Astrograph (UCA) started an astrometric sky survey in February 1998 at Cerro Tololo, Chile. By January 2000 about 90% of the Southern Hemisphere has been observed and full sky coverage is expected by early 2003. In addition, calibration fields around extragalactic reference frame sources and selected open clusters are observed frequently. The UCAC project is a huge dedicated astrometric survey similar to the AGK2 and AGK3 projects but vastly exceeding those with respect to higher accuracy, limiting magnitude (16th) and full sky coverage. A first catalog (UCAC1) is being published in early 2000 for 27 million stars. Stars in the range of 9 to 14th magnitude have a positional precision of 20 mas. The UCAC1 will utilize positions from the USNO A2.0 catalog for determining proper motions, which are expected to be about 8 mas/yr for this initial release. Higher precision proper motions, expected to be in the 3 to 4 mas/yr range, will be derived utilizing a variety of early epoch data, including re-measuring of the Southern Proper Motion (SPM) survey first epoch plates.
Pi of the Sky full system and the new telescope
NASA Astrophysics Data System (ADS)
Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; Majczyna, A.; Malek, K.; Nawrocki, K.; Obara, L.; Opiela, R.; Piotrowski, L. W.; Siudek, M.; Sokolowski, M.; Wawrzaszek, R.; Wrochna, G.; Zaremba, M.; Żarnecki, A. F.
2014-12-01
The Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12(m}-13({m)) and with time resolution of the order of 1 - 10 seconds. The system design and observation strategy were successfully tested with a prototype detector operational at Las Campanas Observatory, Chile from 2004-2009 and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed at the INTA El Arenosillo Test Centre in Spain. In July 2013 three more units (12 CCD cameras) were commissioned and installed, together with the first one, on a new platform in INTA, extending sky coverage to about 6000 square degrees.
Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations
NASA Astrophysics Data System (ADS)
Su, Meng
2015-08-01
Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.
EVA: Evryscopes for the Arctic and Antarctic
NASA Astrophysics Data System (ADS)
Richichi, A.; Law, N.; Tasuya, O.; Fors, O.; Dennihy, E.; Carlberg, R.; Tuthill, P.; Ashley, M.; Soonthornthum, B.
2017-06-01
We are planning to build Evryscopes for the Arctic and Antarctic (EVA), which will enable the first ultra-wide-field, high-cadence sky survey to be conducted from both Poles. The system is based on the successful Evryscope concept, already installed and operating since 2015 at Cerro Tololo in Chile with the following characteristics: robotic operation, 8,000 square degrees simultaneous sky coverage, 2-minute cadence, milli-mag level photometric accuracy, pipelined data processing for real-time analysis and full data storage for off-line analysis. The initial location proposed for EVA is the PEARL station on Ellesmere island; later also an antarctic location shall be selected. The science goals enabled by this unique combination of almost full-sky coverage and high temporal cadence are numerous, and include among others ground-breaking forays in the fields of exoplanets, stellar variability, asteroseismology, supernovae and other transient events. The EVA polar locations will enable uninterrupted observations lasting in principle over weeks and months. EVA will be fully robotic. We discuss the EVA science drivers and expected results, and present the logistics and the outline of the project which is expected to have first light in the winter of 2018. The cost envelope can be kept very competitive thanks to R&D already employed for the CTIO Evryscope, to our experience with both Arctic and Antarctic locations, and to the use of off-the-shelf components.
The Development of the Spanish Fireball Network Using a New All-Sky CCD System
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte
2004-12-01
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.
Sensitivity of the orbiting JEM-EUSO mission to large-scale anisotropies
NASA Astrophysics Data System (ADS)
Weiler, Thomas; Anchordoqui, Luis; Denton, Peter
2013-04-01
Uniform sky coverage and very large apertures are advantages of future extreme-energy, space-based cosmic-ray observatories. In this talk we will quantify the advantage of an all-sky/4pi observatory such as JEM-EUSO over the one to two steradian coverage of a ground-based observatory such as Auger. We exploit the availability of spherical harmonics in the case of 4pi coverage. The resulting Y(lm) coefficients will likely become a standard analysis tool for near-future, space-based, cosmic-ray astronomy. We demonstrate the use of Y(lm)'s with extractions of simulated dipole and quadrupole anisotropies. (A dipole anisotropy is expected if a single source-region such as Cen A dominates the sky, while a quadrupole moment is expected if a 2D source region such as the Supergalactic Plane dominates the sky.)
CLASS: The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.;
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
ROTSE All-Sky Surveys for Variable Stars. I. Test Fields
NASA Astrophysics Data System (ADS)
Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Schaefer, J.; Szymanski, J.; Wren, J.
2000-04-01
The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv=10.0 and mv=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.
NASA Astrophysics Data System (ADS)
Wainscoat, Richard J.; Chambers, Kenneth C.; Chastel, Serge; Denneau, Larry; Lilly Schunova, Eva; Micheli, Marco; Weryk, Robert J.
2016-10-01
The Pan-STARRS1 telescope has been spending most of its time for the last 2.5 years searching the sky for Near Earth Objects (NEOs). The surveyed area covers the entire northern sky and extends south to -49 degrees declination. Because Pan-STARRS1 has a large field-of-view, it has been able survey large areas of the sky, and we are now able to examine NEO discovery rates relative to ecliptic latitude.Most contemporary searches, including Pan-STARRS1, have been spending large amounts of their observing time during the dark moon period searching for NEOs close to the ecliptic. The rationale for this is that many objects have low inclination, and all objects in orbit around the Sun must cross the ecliptic. New search capabilities are now available, including Pan-STARRS2, and the upgraded camera in Catalina Sky Survey's G96 telescope. These allow NEO searches to be conducted over wider areas of the sky, and to extend further from the ecliptic.We have examined the discovery rates relative to location on the sky for new NEOs from Pan-STARRS1, and find that the new NEO discoveries are less concentrated on the ecliptic than might be expected. This finding also holds for larger objects. The southern sky has proven to be very productive in new NEO discoveries - this is a direct consequence of the major NEO surveys being located in the northern hemisphere.Our preliminary findings suggest that NEO searches should extend to at least 30 degrees from the ecliptic during the more sensitive dark moon period. At least 6,000 deg2 should therefore be searched each lunation. This is possible with the newly augmented NEO search assets, and repeat coverage will be needed in order to recover most of the NEO candidates found. However, weather challenges will likely make full and repeated coverage of such a large area of sky difficult to achieve. Some simple coordination between observing sites will likely lead to improvement in efficiency.
Air Shower Detection and Sky Survey with the ARGO-YBJ Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleve, C.; Sezione INFN di Lecce, via per Arnesano, 73100 Lecce
2006-02-08
The ARGO-YBJ detector, located in Tibet at 4300 m a.s.l., is a full-coverage Extensive Air-Shower Array consisting of a single layer of Resistive Plate Chambers. The main scientific goals of the experiment are the study of cosmic rays and the detection of astrophysical {gamma} radiation at few hundreds GeV energy threshold. About 30% of the foreseen active area is in stable data taking since December 2004. The analysis of first data shows that the detector is working properly and that ARGO-YBJ has the capability to image extensive air showers with unprecedented granularity and to monitor continuously the Northern Sky searchingmore » for steady and transient sources of {gamma}-rays. In this paper we report some results about the air shower detection and the first sky map covering the declination band -20 deg. < {delta} <80 deg.« less
Observation strategies with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Fermi mission Teams
2015-01-01
During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.
The Correction of Fiber Throughput Variation due to Focal Ratio Degradation
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Bai, Zhongrui; Li, Guangwei; Zhang, Haotong
2014-01-01
The focal ratio degradation (FRD) of optical fibers is a major source causing light loss to astronomical multi-fibre instruments like LAMOST (Oliveira, A. C, et al. 2005). The effects of stress and twist during mounting and rotation of the fibers could change the FRD for individual fibers (Clayton 1989), which means that the transmission efficiency of each individual fiber will vary. We investigate such throughput variation among LAMOST fibers and its relevance to the intensity of sky emission lines (Garstang 1989) over the full wavelength coverage. On the basis of the work, we present an approach to correct the varied fiber throughput by measuring the strength of the sky emission lines as the secondary throughput correction.
Modelling the angular correlation function and its full covariance in photometric galaxy surveys
NASA Astrophysics Data System (ADS)
Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique
2011-06-01
Near-future cosmology will see the advent of wide-area photometric galaxy surveys, such as the Dark Energy Survey (DES), that extend to high redshifts (z˜ 1-2) but give poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function w(θ), or the Cℓ power spectrum, will become the standard approach to extracting cosmological information or to studying the nature of dark energy through the baryon acoustic oscillations (BAO) probe. In this work we present a detailed model for w(θ) at large scales as a function of redshift and binwidth, including all relevant effects, namely non-linear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix, characterizing the angular correlation measurements, that takes into account the same effects as for w(θ) and also the possibility of a shot-noise component and partial sky coverage. Provided with a large-volume N-body simulation from the MICE collaboration, we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.
All Sky Cloud Coverage Monitoring for SONG-China Project
NASA Astrophysics Data System (ADS)
Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.
2016-05-01
In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.
Science with the VLA Sky Survey (VLASS)
NASA Astrophysics Data System (ADS)
Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group
2015-01-01
The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start observing in 2016.
Daytime Sky Brightness Characterization for Persistent GEO SSA
NASA Astrophysics Data System (ADS)
Thomas, G.; Cobb, R. G.
Space Situational Awareness (SSA) is fundamental to operating in space. SSA for collision avoidance ensures safety of flight for both government and commercial spacecraft through persistent monitoring. A worldwide network of optical and radar sensors gather satellite ephemeris data from the nighttime sky. Current practice for daytime satellite tracking is limited exclusively to radar as the brightening daytime sky prevents the use of visible-band optical sensors. Radar coverage is not pervasive and results in significant daytime coverage gaps in SSA. To mitigate these gaps, optical telescopes equipped with sensors in the near-infrared band (0.75-0.9m) may be used. The diminished intensity of the background sky radiance in the near-infrared band may allow for daylight tracking further into the twilight hours. To determine the performance of a near-infrared sensor for daylight custody, the sky background radiance must first be characterized spectrally as a function of wavelength. Using a physics-based atmospheric model with access to near-real time weather, we developed a generalized model for the apparent sky brightness of the Geostationary satellite belt. The model results are then compared to measured data collected from Dayton, OH through various look and Sun angles for model validation and spectral sky radiance quantification in the visible and near-infrared bands.
Stellar activity for every TESS star in the Southern sky
NASA Astrophysics Data System (ADS)
Howard, Ward S.; Law, Nicholas; Fors, Octavi; Corbett, Henry T.; Ratzloff, Jeff; del Ser, Daniel
2018-01-01
Although TESS will search for Earths around more than 200,000 nearby stars, the life-impacting superflare occurrence of these stars remains poorly characterized. We monitor long-term stellar flare occurrence for every TESS star in the accessible sky at 2-minute cadence with the CTIO-based Evryscope, a combination of twenty-four telescopes, together giving instantaneous sky coverage of 8000 square degrees. In collaboration with Owens Valley Long Wavelength Array (LWA) all-sky monitoring, Evryscope also provides optical counterparts to radio flare, CME, and exoplanet-magnetosphere stellar activity searches. A Northern Evryscope will be installed at Mount Laguna Observatory, CA in collaboration with SDSU later this year, enabling stellar activity characterization for the full TESS target list and both continuous viewing zones, as well as providing 100% overlap with LWA radio activity. Targets of interest (e.g. Proxima Cen, TRAPPIST-1) are given special focus. We are currently sensitive to stellar activity down to 1% precision at g' ~ 10 and about 0.2 of a magnitude at g' ~ 15. With 2-minute cadence and a projected 5-year timeline, with 2+ years already recorded, we present preliminary results from an activity characterization of every Southern TESS target.
Measurement of CIB power spectra over large sky areas from Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2017-04-01
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.
Footprint Database and web services for the Herschel space observatory
NASA Astrophysics Data System (ADS)
Verebélyi, Erika; Dobos, László; Kiss, Csaba
2015-08-01
Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.
2008-08-01
Requirements for UXO Discrimination: Paper prepared for UXO Location Workshop, Annapolis, May 2005. Billings, S. D., Pasion , L. R., Beran, L., Oldenburg, D...Discrimination Strategies for Application to Live Sites. Billings, S. D., Pasion , L. R. and Oldenburg, D., 2007b, Sky Research/University of British Columbia...moved RTS to reacquire SE1-12 which was lost by the DAS issue as well. o Talked with Len Pasion about the best approach for full coverage data given
Continuous All-Sky Cloud Measurements: Cloud Fraction Analysis Based on a Newly Developed Instrument
NASA Astrophysics Data System (ADS)
Aebi, C.; Groebner, J.; Kaempfer, N.; Vuilleumier, L.
2017-12-01
Clouds play an important role in the climate system and are also a crucial parameter for the Earth's surface energy budget. Ground-based measurements of clouds provide data in a high temporal resolution in order to quantify its influence on radiation. The newly developed all-sky cloud camera at PMOD/WRC in Davos (Switzerland), the infrared cloud camera (IRCCAM), is a microbolometer sensitive in the 8 - 14 μm wavelength range. To get all-sky information the camera is located on top of a frame looking downward on a spherical gold-plated mirror. The IRCCAM has been measuring continuously (day and nighttime) with a time resolution of one minute in Davos since September 2015. To assess the performance of the IRCCAM, two different visible all-sky cameras (Mobotix Q24M and Schreder VIS-J1006), which can only operate during daytime, are installed in Davos. All three camera systems have different software for calculating fractional cloud coverage from images. Our study analyzes mainly the fractional cloud coverage of the IRCCAM and compares it with the fractional cloud coverage calculated from the two visible cameras. Preliminary results of the measurement accuracy of the IRCCAM compared to the visible camera indicate that 78 % of the data are within ± 1 octa and even 93 % within ± 2 octas. An uncertainty of 1-2 octas corresponds to the measurement uncertainty of human observers. Therefore, the IRCCAM shows similar performance in detection of cloud coverage as the visible cameras and the human observers, with the advantage that continuous measurements with high temporal resolution are possible.
The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars
NASA Astrophysics Data System (ADS)
Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.
2017-05-01
This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
NASA Astrophysics Data System (ADS)
Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András
2017-02-01
If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for dmin∗=23 % under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Telescope Array Collaboration
2014-10-01
Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.
Gaia: 3-dimensional census of the Milky Way Galaxy
NASA Astrophysics Data System (ADS)
Gilmore, Gerard
2018-04-01
Astrometry from space has unique advantages over ground-based observations: the all-sky coverage, relatively stable, and temperature and gravity invariant, operating environment delivers precision, accuracy and sample volume several orders of magnitude greater than ground-based results. Even more importantly, absolute astrometry is possible. The European Space Agency Cornerstone mission Gaia is delivering that promise. Gaia provides 5-D phase space measurements, 3 spatial coordinates and 2 space motions in the plane of the sky, for a representative sample of the Milky Way's stellar populations (over 2 billion stars, being 1% of the stars over 50% of the radius). Full 6-D phase space data are delivered from line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. A knowledge revolution is underway.
Weather and atmosphere observation with the ATOM all-sky camera
NASA Astrophysics Data System (ADS)
Jankowsky, Felix; Wagner, Stefan
2015-03-01
The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.
The Gaia–WISE Extragalactic Astrometric Catalog
NASA Astrophysics Data System (ADS)
Paine, Jennie; Darling, Jeremy; Truebenbach, Alexandra
2018-06-01
The Gaia mission has detected a large number of active galactic nuclei (AGNs) and galaxies, but these objects must be identified among the thousandfold more numerous stars. Extant astrometric AGN catalogs do not have the uniform sky coverage required to detect and characterize the all-sky, low-multipole proper motion signals produced by the barycenter motion, gravitational waves, and cosmological effects. To remedy this, we present an all-sky sample of 567,721 AGNs in Gaia Data Release 1, selected using WISE two-color criteria. The catalog has fairly uniform sky coverage beyond the Galactic plane, with a mean density of 12.8 AGNs per square degree. The objects have magnitudes ranging from G = 8.8 down to Gaia’s magnitude limit, G = 20.7. The catalog is approximately 50% complete but suffers from low stellar contamination, roughly 0.2%. We predict that the end-of-mission Gaia proper motions for this catalog will enable detection of the secular aberration drift to high significance (23σ) and will place an upper limit on the anisotropy of the Hubble expansion of about 2%.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András
2017-01-01
If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (−5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for dmin∗=23% under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes. PMID:28386426
Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András
2017-02-01
If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d * for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d * is satisfied. Using full-sky imaging polarimetry, we measured the d -pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ . From the measured d -patterns of a given sky we determined the proportion P of the sky for which d > d *. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for [Formula: see text] under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-04-01
Our study analyses climatologies of cloud fraction, cloud type and cloud radiative effect depending on different parameters at two stations in Switzerland. The calculations have been performed for shortwave (0.3 - 3 μm) and longwave (3 - 100 μm) radiation separately. Information about fractional cloud coverage and cloud type is automatically retrieved from images taken by visible all-sky cameras at the two stations Payerne (490 m asl) and Davos (1594 m asl) using a cloud detection algorithm developed by PMOD/WRC (Wacker et al., 2015). Radiation data are retrieved from pyranometers and pyrgeometers, the cloud base height from a ceilometer and IWV data from GPS measurements. Interestingly, Davos and Payerne show different trends in terms of cloud coverage and cloud fraction regarding seasonal variations. The absolute longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 octas has a median value between 61 and 72 Wm-2. It is shown that the fractional cloud coverage, the cloud base height (CBH) and integrated water vapour (IWV) all have an influence on the magnitude of the LCE and will be illustrated with key examples. The relative values of the shortwave cloud radiative effect (SCE) for low-level clouds and a cloud coverage of 8 octas are between -88 to -62 %. The SCE is also influenced by the latter parameters, but also if the sun is covered or not by clouds. At both stations situations of shortwave radiation cloud enhancements have been observed and will be discussed. Wacker S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikas, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, J. Geophys. Res. Atmos, 120, 695-707.
A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey
NASA Astrophysics Data System (ADS)
Westmeier, Tobias
2018-02-01
High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.
A Review of Optical Sky Brightness and Extinction at Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Kenyon, S. L.; Storey, J. W. V.
2006-03-01
The recent discovery of exceptional seeing conditions at Dome C, Antarctica, raises the possibility of constructing an optical observatory there with unique capabilities. However, little is known from an astronomer's perspective about the optical sky brightness and extinction at Antarctic sites. We review the contributions to sky brightness at high-latitude sites and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites and review optical extinction data from the South Pole. Finally, we examine the proposal of Baldry & Bland-Hawthorn to extend the amount of usable dark time through the use of polarizing filters.
The History and Legacy of BATSE
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2012-01-01
The BATSE experiment on the Compton Gamma-ray Observatory was the first large detector system specifically designed for the study of gamma-ray bursts. The eight large-area detectors allowed full-sky coverage and were optimized to operate in the energy region of the peak emission of most GRBs. BATSE provided detailed observations of the temporal and spectral characteristics of large samples of GRBs, and it was the first experiment to provide rapid notifications of the coarse location of many them. It also provided strong evidence for the cosmological distances to GRBs through the observation of the sky distribution and intensity distribution of numerous GRBs. The large number of GRBs observed with the high- sensitivity BATSE detectors continues to provide a database of GRB spectral and temporal properties in the primary energy range of GRB emission that will likely not be exceeded for at least another decade. The origin and development of the BATSE experiment, some highlights from the mission and its continuing legacy are described in this paper.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Gamma-Ray Astronomy Across 6 Decades of Energy: Synergy between Fermi, IACTs, and HAWC
NASA Technical Reports Server (NTRS)
Hui, C. Michelle
2017-01-01
Gamma Ray Observatories, Gamma-Ray Astrophysics, GeV TeV Sky Survey, Galaxy, Galactic Plane, Source Distribution, The gamma-ray sky is currently well-monitored with good survey coverage. Many instruments from different waveband/messenger (X rays, gamma rays, neutrinos, gravitational waves) available for simultaneous observations. Both wide-field and pointing instruments in development and coming online in the next decade LIGO
IRAS sky survey atlas: Explanatory supplement
NASA Technical Reports Server (NTRS)
Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; Mccallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.
1994-01-01
This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).
Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems
Kyba, Christopher C. M.; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz
2011-01-01
The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered. PMID:21399694
Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems.
Kyba, Christopher C M; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz
2011-03-02
The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this "ecological light pollution". We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.
using mesonet visbility observations and CLARUS QC'd obs; Add ceiling height and sky cover analysis to precipitation coverage gaps near CONUS coastlines; Add significant wave height analysis to OCONUS domains
2MASS - The 2 Micron All Sky Survey
NASA Technical Reports Server (NTRS)
Kleinmann, S. G.
1992-01-01
This paper describes a new sky survey to be carried out in three wavebands, J(1.25 m), H(1.65 m), and K(2.2 m). The limiting sensitivity of the survey, 10 sigma detection of point sources with K not greater than 14 mag, coupled with its all-sky coverage, were selected primarily to support studies of the large-scale structure of the Milky Way and the Local Universe. The survey requires construction of a pair of observing facilities, one each for the Northern and Southern Hemispheres. Operations are scheduled to begin in 1995. The data will begin becoming publicly available soon thereafter.
Science Goals for an All-sky Viewing Observatory in X-rays
NASA Astrophysics Data System (ADS)
Remillard, R. A.; Levine, A. M.; Morgan, E. H.; Bradt, H. V.
2003-03-01
We describe a concept for a NASA SMEX Mission that will provide a comprehensive investigation of cosmic explosions. These range from the short flashes at cosmological distances in Gamma-ray bursts, to the moments of relativistic mass ejections in Galactic microquasars, to the panorama of outbursts used to identify the stellar-scale black holes in our Galaxy. With an equatorial launch, an array of 31 cameras can cover 97% of the sky with an average exposure efficiency of 65%. Coded mask cameras with Xe detectors (1.5-12 keV) are chosen for their ability to distinguish thermal and non-thermal processes, while providing high throughput and msec time resolution to capture the detailed evolution of bright events. This mission, with 1' position accuracy, would provide a long-term solution to the critical needs for monitoring services for Chandra and GLAST, with possible overlap into the time frame for Constellation-X. The sky coverage would create additional science opportunities beyond the X-ray missions: "eyes" for LIGO and partnerships for time-variability with LOFAR and dedicated programs at optical observatories. Compared to the RXTE ASM, AVOX offers improvements by a factor of 40 in instantaneous sky coverage and a factor of 10 in sensitivity to faint X-ray sources (i.e. to 0.8 mCrab at 3 sigma in 1 day).
Explanatory Supplement to the AllWISE Data Release Products
NASA Astrophysics Data System (ADS)
Cutri, R. M.; Wright, E. L.; Conrow, T.; Fowler, J. W.; Eisenhardt, P. R. M.; Grillmair, C.; Kirkpatrick, J. D.; Masci, F.; McCallon, H. L.; Wheelock, S. L.; Fajardo-Acosta, S.; Yan, L.; Benford, D.; Harbut, M.; Jarrett, T.; Lake, S.; Leisawitz, D.; Ressler, M. E.; Stanford, S. A.; Tsai, C. W.; Liu, F.; Helou, G.; Mainzer, A.; Gettings, D.; Gonzalez, A.; Hoffman, D.; Marsh, K. A.; Padgett, D.; Skrutskie, M. F.; Beck, R. P.; Papin, M.; Wittman, M.
2013-11-01
The AllWISE program builds upon the successful Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) mission by combining data from all WISE and NEOWISE (Mainzer et al. 2011) survey phases to form the most comprehensive view of the mid-infrared sky currently available. By combining the data from two complete sky coverage epochs in an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared with the earlier WISE All-Sky Data Release. Exploiting the 6 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. AllWISE data release products include: a Source Catalog that contains 4-band fluxes, positions, apparent motion measurements, and flux variability statistics for over 747 million objects detected at SNR>5 in the combined exposures; a Multiepoch Photometry Database containing over 42 billion time-tagged, single-exposure fluxes for each object detected on the combined exposures; and an Image Atlas of 18,240 4-band calibrated FITS images, depth-of-coverage and noise maps that cover the sky produced by coadding nearly 7.9 million single-exposure images from the cryogenic and post-cryogenic survey phases. The Explanatory Supplement to the AllWISE Data Release Products is a general guide for users of the AllWISE data. The Supplement contains detailed descriptions of the format and characteristics of the AllWISE data products, as well as a summary of cautionary notes that describe known limitations. The Supplement is an on-line document that is updated frequently to provide the most current information for users of the AllWISE data products. The Explanatory Supplement is maintained at: http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/index.html AllWISE makes use of data from WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration.
Strategy for the IRAS all-sky survey
NASA Technical Reports Server (NTRS)
Lundy, S. A.
1984-01-01
IRAS (the Infrared Astronomical Satellite) was launched on January 25, 1983 (January 26 GMT) with the primary purpose of performing an infrared survey of the entire celestial sphere. To ensure completeness and reliability, every point of sky was to be covered by a minimum of four separate scans of the telescope field-of-view, and as much as possible with six, with certain added timing constraints on the elapsed interval between scans. These strong requirements for sky coverage, combined with a restricted, rotating viewing-window, made extensive planning for the survey strategy, both pre-launch and during operations, a necessity. The result was that on November 21 (November 22 GMT), when the liquid helium required for cooling was depleted, 96 percent of the sky was covered to the minimum depth of four and 71 percent was coverd to depth six or more.
On-sky performance of the tip-tilt correction system for GLAS using an EMCCD camera
NASA Astrophysics Data System (ADS)
Skvarč, Jure; Tulloch, Simon
2008-07-01
Adaptive optics systems based on laser guide stars still need a natural guide star (NGS) to correct for the image motion caused by the atmosphere and by imperfect telescope tracking. The ability to properly compensate for this motion using a faint NGS is critical to achieve large sky coverage. For the laser guide system (GLAS) on the 4.2 m William Herschel Telescope we designed and tested in the laboratory and on-sky a tip-tilt correction system based on a PC running Linux and an EMCCD technology camera. The control software allows selection of different centroiding algorithms and loop control methods as well as the control parameters. Parameter analysis has been performed using tip-tilt only correction before the laser commissioning and the selected sets of parameters were then used during commissioning of the laser guide star system. We have established the SNR of the guide star as a function of magnitude, depending on the image sampling frequency and on the dichroic used in the optical system; achieving a measurable improvement using full AO correction with NGSes down to magnitude range R=16.5 to R=18. A minimum SNR of about 10 was established to be necessary for a useful correction. The system was used to produce 0.16 arcsecond images in H band using bright NGS and laser correction during GLAS commissioning runs.
Build YOUR All-Sky View with Aladin
NASA Astrophysics Data System (ADS)
Oberto, A.; Fernique, P.; Boch, T.; Bonnarel, F.
2011-07-01
From the need to extend the display outside the boundaries of a single image, the Aladin team recently developed a new feature to visualize wide areas or even all of the sky. This all-sky view is particularly useful for visualization of very large objects and, with coverage of the whole sky, maps from the Planck satellite. To improve on this capability, some catalogs and maps have been built from many surveys (e.g., DSS, IRIS, GLIMPSE, SDSS, 2MASS) in mixed resolutions, allowing progressive display. The maps are constructed by mosaicing individual images. Now, we provide a new tool to build an all-sky view with your own images. From the images you have selected, it will compose a mosaic with several resolutions (HEALPix tessellation), and organize them to allow their progressive display in Aladin. For convenience, you can export it to a HEALPix map, or share it with the community through Aladin from your web site or eventually from the CDS image collection.
The Footprint Database and Web Services of the Herschel Space Observatory
NASA Astrophysics Data System (ADS)
Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba
2016-10-01
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data in various formats including Virtual Observatory standards.
Microwave Landing System. Phase II. Tracker Error Study.
1974-12-01
the runways and environs. The geographical locations of the four phototheodolite towers are indicated on Figure 1-1. A Contraves Model C phototheodolite...temperature 400 K above 500 elevation (dark sky) Side lobe location 1.720 (Ist) Type of scan Monopulse R-f transmission line Rectangular waveguide Line loss ...receiving 1.3 db Line loss transmitting 2.3 db System Facts Azimuth coverage 3600 Elevation coverage -10* to 190* (tracking -10* to 85*) Range accuracy
CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
The S201 far-ultraviolet imaging survey - A summary of results and implications for future surveys
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Page, T.
1984-01-01
The results from all-sky surveys with the S201 FUV camera/spectrograph from the moon during the Apollo 16 mission are summarized with respect to implications for future UV all-sky surveys. The scans provided imagery of 10 fields, each 20 deg in diameter, in the wavelength ranges 1050-1600 A and 1250-1600 A. Best detection thresholds were obtained with 10 and 30 min exposures at 1400 A. Only 7 percent sky coverage was recorded, and then only down to 11th mag. A Mark II camera may be flown on the Shuttle on the Spartan 3 mission, as may be an all-reflector Schmidt telescope. An additional 20 percent of the sky will be mapped and microchannel intensification will increase the diffuse source sensitivity by two orders of magnitude. Several objects sighted with the S201 will be reviewed with the Mark II.
NASA Astrophysics Data System (ADS)
Kawara, Kimiaki; Matsuoka, Yoshiki; Sano, Kei; Brandt, Timothy D.; Sameshima, Hiroaki; Tsumura, Kohji; Oyabu, Shinki; Ienaka, Nobuyuki
2017-04-01
We present an analysis of the blank-sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed towards 54 fields distributed widely over the sky, with spectral coverage from 0.2 to 0.7 μm. In order to avoid contaminating light from earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ∼0.3 μm. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer 10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.
NASA Astrophysics Data System (ADS)
Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid
2014-12-01
We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.
Data annotation, recording and mapping system for the US open skies aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.W.; Goede, W.F.; Farmer, R.G.
1996-11-01
This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less
VizieR Online Data Catalog: VLT Survey Telescope ATLAS (Shanks+, 2015)
NASA Astrophysics Data System (ADS)
Shanks, T.; Metcalfe, N.; Chehade, B.; Findlay, J. R.; Irwin, M. J.; Gonzalez-Solares, E.; Lewis, J. R.; Yoldas, A. K.; Mann, R. G.; Read, M. A.; Sutorius, E. T. W.; Voutsinas, S.
2017-11-01
The ATLAS sky coverage consists of two contiguous blocks in the North and South galactic caps. The ATLAS South Galactic Cap (SGC) area lies between 21h30m
NASA Technical Reports Server (NTRS)
Katow, S. M.
1979-01-01
The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2015-01-01
This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2016-01-01
This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
Technical considerations on using the large Nancay radio telescope for SETI
NASA Technical Reports Server (NTRS)
Gulkis, S.; Biraud, F.; Heidmann, J.; Tarter, J.
1990-01-01
The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends.
NASA Technical Reports Server (NTRS)
Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.
2017-01-01
We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations.
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
Development of the fibre positioning unit of MOONS
NASA Astrophysics Data System (ADS)
Montgomery, David; Atkinson, David; Beard, Stephen; Cochrane, William; Drass, Holger; Guinouard, Isabelle; Lee, David; Taylor, William; Rees, Phil; Watson, Steve
2016-08-01
The Multi-Object Optical and Near-Infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. This can be configured to produce spectra for chosen targets and have close proximity sky subtraction if required. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibre positioning units are used to position each fibre independently in order to pick off each sub field of 1.0" within a circular patrol area of 85" on sky (50mm physical diameter). The nominal physical separation between FPUs is 25mm allowing a 100% overlap in coverage between adjacent units. The design of the fibre positioning units allows parallel and rapid reconfiguration between observations. The kinematic geometry is such that pupil alignment is maintained over the patrol area. This paper presents the design of the Fibre Positioning Units at the preliminary design review and the results of verification testing of the advanced prototypes.
Full-sky, High-resolution Maps of Interstellar Dust
NASA Astrophysics Data System (ADS)
Meisner, Aaron Michael
We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).
Recent Advances and Achievements at The Catalina Sky Survey
NASA Astrophysics Data System (ADS)
Leonard, Gregory J.; Christensen, Eric J.; Fuls, Carson; Gibbs, Alex; Grauer, Al; Johnson, Jess A.; Kowalski, Richard; Larson, Stephen M.; Matheny, Rose; Seaman, Rob; Shelly, Frank
2017-10-01
The Catalina Sky Survey (CSS) is a NASA-funded project fully dedicated to discover and track near-Earth objects (NEOs). Since its founding nearly 20 years ago CSS remains at the forefront of NEO surveys, and recent improvements in both instrumentation and software have increased both survey productivity and data quality. In 2016 new large-format (10K x 10K) cameras were installed on both CSS survey telescopes, the 1.5-m reflector and the 0.7-m Schmidt, increasing the field of view, and hence nightly sky coverage by 4x and 2.4x respectively. The new cameras, coupled with improvements in the reduction and detection pipelines, and revised sky-coverage strategies have yielded a dramatic upward trend of NEO discovery rates. CSS has also developed a custom adaptive queue manager for scheduling NEO follow-up astrometry using a remotely operated and recently renovated 1-m Cassegrain reflector telescope, improvements that have increased the production of follow-up astrometry for newly discovered NEOs and arc extensions for previously discovered objects by CSS and other surveys. Additionally, reprocessing of archival CSS data (which includes some 46 million individual astrometric measurements) through the new reduction and detection pipeline will allow for improved orbit determinations and increased arc extensions for hundreds of thousands of asteroids. Reprocessed data will soon feed into a new public archive of CSS images and catalog data products made available through NASA’s Planetary Data System (PDS). For the future, CSS is working towards improved NEO follow-up capabilities through a combination of access to larger telescopes, instrument upgrades and follow-up scheduling tools.
Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, J.; Levin, S.; Anderson, C. H.
2004-01-01
Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).
ESO Public Surveys at VISTA: Lessons learned from Cycle 1 Surveys and the start of Cycle 2
NASA Astrophysics Data System (ADS)
Arnaboldi, M.; Delmotte, N.; Gadotti, D.; Hilker, M.; Hussain, G.; Mascetti, L.; Micol, A.; Petr-Gotzens, M.; Rejkuba, M.; Retzlaff, J.; Ivison, R.; Leibundgut, B.; Romaniello, M.
2017-06-01
The ESO Public Surveys on VISTA serve the science goals of the survey teams while increasing the legacy value of ESO programmes, thanks to their homogeneity and the breadth of their sky coverage in multiple bands. These projects address a variety of research areas: from the detection of planets via microlensing, to stars, the Milky Way and Local Group galaxies, to extragalactic astronomy, galaxy evolution, the high-redshift Universe and cosmology. In 2015, as the first generation of imaging surveys was nearing completion, a second call for Public Surveys was opened to define a coherent scientific programme for VISTA until the commissioning of the wide-field multi-fibre spectrograph, 4MOST, in 2020. This article presents the status of the Cycle 1 surveys as well as an overview of the seven new programmes in Cycle 2, including their science goals, coverage on the sky and observing strategies. We conclude with a forward look at the Cycle 2 data releases and the timelines for their release.
Natural guide-star processing for wide-field laser-assisted AO systems
NASA Astrophysics Data System (ADS)
Correia, Carlos M.; Neichel, Benoit; Conan, Jean-Marc; Petit, Cyril; Sauvage, Jean-Francois; Fusco, Thierry; Vernet, Joel D. R.; Thatte, Niranjan
2016-07-01
Sky-coverage in laser-assisted AO observations largely depends on the system's capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELT's visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph - Harmoni. We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wavefront is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using. Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.
Data indexing techniques for the EUVE all-sky survey
NASA Technical Reports Server (NTRS)
Lewis, J.; Saba, V.; Dobson, C.
1992-01-01
This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.
Suhai, Bence; Horváth, Gábor
2004-09-01
We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.
NASA Astrophysics Data System (ADS)
Acharya, B. S.; Actis, M.; Aghajani, T.; Agnetta, G.; Aguilar, J.; Aharonian, F.; Ajello, M.; Akhperjanian, A.; Alcubierre, M.; Aleksić, J.; Alfaro, R.; Aliu, E.; Allafort, A. J.; Allan, D.; Allekotte, I.; Amato, E.; Anderson, J.; Angüner, E. O.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Armstrong, T.; Arnaldi, H.; Arrabito, L.; Asano, K.; Ashton, T.; Asorey, H. G.; Awane, Y.; Baba, H.; Babic, A.; Baby, N.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balbo, M.; Balis, D.; Balkowski, C.; Bamba, A.; Bandiera, R.; Barber, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basili, A.; Basso, S.; Bastieri, D.; Bauer, C.; Baushev, A.; Becerra, J.; Becherini, Y.; Bechtol, K. C.; Becker Tjus, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Belluso, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernard, F.; Bernardino, T.; Bernlöhr, K.; Bhat, N.; Bhattacharyya, S.; Bigongiari, C.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Biteau, J.; Bitossi, M.; Blake, S.; Blanch Bigas, O.; Blasi, P.; Bobkov, A.; Boccone, V.; Boettcher, M.; Bogacz, L.; Bogart, J.; Bogdan, M.; Boisson, C.; Boix Gargallo, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Bonifacio, P.; Bonnoli, G.; Bordas, P.; Borgland, A.; Borkowski, J.; Bose, R.; Botner, O.; Bottani, A.; Bouchet, L.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M.; Bringmann, T.; Brook, P.; Brun, P.; Brunetti, L.; Buanes, T.; Buckley, J.; Buehler, R.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Camprecios, J.; Canestrari, R.; Cantu, S.; Capalbi, M.; Caraveo, P.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P.-H.; Casanova, S.; Casiraghi, M.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, M.; Chabanne, E.; Chadwick, P.; Champion, C.; Chen, A.; Chiang, J.; Chiappetti, L.; Chikawa, M.; Chitnis, V. R.; Chollet, F.; Chudoba, J.; Cieślar, M.; Cillis, A.; Cohen-Tanugi, J.; Colafrancesco, S.; Colin, P.; Colome, J.; Colonges, S.; Compin, M.; Conconi, P.; Conforti, V.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corona, P.; Corti, D.; Cortina, J.; Cossio, L.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Crimi, G.; Criswell, S. J.; Croston, J.; Cusumano, G.; Dafonseca, M.; Dale, O.; Daniel, M.; Darling, J.; Davids, I.; Dazzi, F.; De Angelis, A.; De Caprio, V.; De Frondat, F.; de Gouveia Dal Pino, E. M.; de la Calle, I.; De La Vega, G. A.; de los Reyes Lopez, R.; De Lotto, B.; De Luca, A.; de Mello Neto, J. R. T.; de Naurois, M.; de Oliveira, Y.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, G.; Decock, G.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Della Volpe, D.; Demange, P.; Depaola, G.; Dettlaff, A.; Di Paola, A.; Di Pierro, F.; Díaz, C.; Dick, J.; Dickherber, R.; Dickinson, H.; Diez-Blanco, V.; Digel, S.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Dohmke, M.; Domainko, W.; Dominis Prester, D.; Donat, A.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Drake, G.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Dumas, D.; Dumm, J.; Durand, D.; Dyks, J.; Dyrda, M.; Ebr, J.; Edy, E.; Egberts, K.; Eger, P.; Einecke, S.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Engelhaupt, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Evans, P.; Falcone, A.; Fantinel, D.; Farakos, K.; Farnier, C.; Fasola, G.; Favill, B.; Fede, E.; Federici, S.; Fegan, S.; Feinstein, F.; Ferenc, D.; Ferrando, P.; Fesquet, M.; Fiasson, A.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Fiorini, M.; Firpo Curcoll, R.; Flores, H.; Florin, D.; Focke, W.; Föhr, C.; Fokitis, E.; Font, L.; Fontaine, G.; Fornasa, M.; Förster, A.; Fortson, L.; Fouque, N.; Franckowiak, A.; Fransson, C.; Fraser, G.; Frei, R.; Albuquerque, I. F. M.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Fukui, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gabriele, R.; Gadola, A.; Galante, N.; Gall, D.; Gallant, Y.; Gámez-García, J.; García, B.; Garcia López, R.; Gardiol, D.; Garrido, D.; Garrido, L.; Gascon, D.; Gaug, M.; Gaweda, J.; Gebremedhin, L.; Geffroy, N.; Gerard, L.; Ghedina, A.; Ghigo, M.; Giannakaki, E.; Gianotti, F.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Gika, V.; Giommi, P.; Girard, N.; Giro, E.; Giuliani, A.; Glanzman, T.; Glicenstein, J.-F.; Godinovic, N.; Golev, V.; Gomez Berisso, M.; Gómez-Ortega, J.; Gonzalez, M. M.; González, A.; González, F.; González Muñoz, A.; Gothe, K. S.; Gougerot, M.; Graciani, R.; Grandi, P.; Grañena, F.; Granot, J.; Grasseau, G.; Gredig, R.; Green, A.; Greenshaw, T.; Grégoire, T.; Grimm, O.; Grube, J.; Grudzinska, M.; Gruev, V.; Grünewald, S.; Grygorczuk, J.; Guarino, V.; Gunji, S.; Gyuk, G.; Hadasch, D.; Hagiwara, R.; Hahn, J.; Hakansson, N.; Hallgren, A.; Hamer Heras, N.; Hara, S.; Hardcastle, M. J.; Harris, J.; Hassan, T.; Hatanaka, K.; Haubold, T.; Haupt, A.; Hayakawa, T.; Hayashida, M.; Heller, R.; Henault, F.; Henri, G.; Hermann, G.; Hermel, R.; Herrero, A.; Hidaka, N.; Hinton, J.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Holder, J.; Horns, D.; Horville, D.; Houles, J.; Hrabovsky, M.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Humensky, T. B.; Huovelin, J.; Ibarra, A.; Illa, J. M.; Impiombato, D.; Incorvaia, S.; Inoue, S.; Inoue, Y.; Ioka, K.; Ismailova, E.; Jablonski, C.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jean, P.; Jeanney, C.; Jimenez, J. J.; Jogler, T.; Johnson, T.; Journet, L.; Juffroy, C.; Jung, I.; Kaaret, P.; Kabuki, S.; Kagaya, M.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Karastergiou, A.; Kärcher, K.; Karczewski, M.; Karkar, S.; Kasperek, J.; Kastana, D.; Katagiri, H.; Kataoka, J.; Katarzyński, K.; Katz, U.; Kawanaka, N.; Kellner-Leidel, B.; Kelly, H.; Kendziorra, E.; Khélifi, B.; Kieda, D. B.; Kifune, T.; Kihm, T.; Kishimoto, T.; Kitamoto, K.; Kluźniak, W.; Knapic, C.; Knapp, J.; Knödlseder, J.; Köck, F.; Kocot, J.; Kodani, K.; Köhne, J.-H.; Kohri, K.; Kokkotas, K.; Kolitzus, D.; Komin, N.; Kominis, I.; Konno, Y.; Köppel, H.; Korohoda, P.; Kosack, K.; Koss, G.; Kossakowski, R.; Kostka, P.; Koul, R.; Kowal, G.; Koyama, S.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawzcynski, H.; Krennrich, F.; Krepps, A.; Kretzschmann, A.; Krobot, R.; Krueger, P.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; Kuznetsov, A.; La Barbera, A.; La Palombara, N.; La Parola, V.; La Rosa, G.; Lacombe, K.; Lamanna, G.; Lande, J.; Languignon, D.; Lapington, J.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lee, S.-H.; Lee, W. H.; Leigui de Oliveira, M. A.; Lelas, D.; Lenain, J.-P.; Leopold, D. J.; Lerch, T.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lipniacka, A.; Lockart, H.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lopez, M.; López-Coto, R.; López-Oramas, A.; Lorca, A.; Lorenz, E.; Lubinski, P.; Lucarelli, F.; Lüdecke, H.; Ludwin, J.; Luque-Escamilla, P. L.; Lustermann, W.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T. J.; Madejski, G. M.; Madhavan, A.; Mahabir, M.; Maier, G.; Majumdar, P.; Malaguti, G.; Maltezos, S.; Manalaysay, A.; Mancilla, A.; Mandat, D.; Maneva, G.; Mangano, A.; Manigot, P.; Mannheim, K.; Manthos, I.; Maragos, N.; Marcowith, A.; Mariotti, M.; Marisaldi, M.; Markoff, S.; Marszałek, A.; Martens, C.; Martí, J.; Martin, J.-M.; Martin, P.; Martínez, G.; Martínez, F.; Martínez, M.; Masserot, A.; Mastichiadis, A.; Mathieu, A.; Matsumoto, H.; Mattana, F.; Mattiazzo, S.; Maurin, G.; Maxfield, S.; Maya, J.; Mazin, D.; Mc Comb, L.; McCubbin, N.; McHardy, I.; McKay, R.; Medina, C.; Melioli, C.; Melkumyan, D.; Mereghetti, S.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mihailidis, A.; Mineo, T.; Minuti, M.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Mognet, I.; Molinari, E.; Molinaro, M.; Montaruli, T.; Monteiro, I.; Moore, P.; Moralejo Olaizola, A.; Mordalska, M.; Morello, C.; Mori, K.; Mottez, F.; Moudden, Y.; Moulin, E.; Mrusek, I.; Mukherjee, R.; Munar-Adrover, P.; Muraishi, H.; Murase, K.; Murphy, A.; Nagataki, S.; Naito, T.; Nakajima, D.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Naumann-Godo, M.; Nayman, P.; Nedbal, D.; Neise, D.; Nellen, L.; Neustroev, V.; Neyroud, N.; Nicastro, L.; Nicolau-Kukliński, J.; Niedźwiecki, A.; Niemiec, J.; Nieto, D.; Nikolaidis, A.; Nishijima, K.; Nolan, S.; Northrop, R.; Nosek, D.; Nowak, N.; Nozato, A.; O'Brien, P.; Ohira, Y.; Ohishi, M.; Ohm, S.; Ohoka, H.; Okuda, T.; Okumura, A.; Olive, J.-F.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J.; Ostrowski, M.; Otero, L. A.; Otte, N.; Ovcharov, E.; Oya, I.; Ozieblo, A.; Padilla, L.; Paiano, S.; Paillot, D.; Paizis, A.; Palanque, S.; Palatka, M.; Pallota, J.; Panagiotidis, K.; Panazol, J.-L.; Paneque, D.; Panter, M.; Paoletti, R.; Papayannis, A.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parks, G.; Parraud, J.-M.; Parsons, D.; Paz Arribas, M.; Pech, M.; Pedaletti, G.; Pelassa, V.; Pelat, D.; Perez, M. d. C.; Persic, M.; Petrucci, P.-O.; Peyaud, B.; Pichel, A.; Pita, S.; Pizzolato, F.; Platos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmanski, G.; Ponz, J. D.; Potter, W.; Poutanen, J.; Prandini, E.; Prast, J.; Preece, R.; Profeti, F.; Prokoph, H.; Prouza, M.; Proyetti, M.; Puerto-Gimenez, I.; Pühlhofer, G.; Puljak, I.; Punch, M.; Pyzioł, R.; Quel, E. J.; Quinn, J.; Quirrenbach, A.; Racero, E.; Rajda, P. J.; Ramon, P.; Rando, R.; Rannot, R. C.; Rataj, M.; Raue, M.; Reardon, P.; Reimann, O.; Reimer, A.; Reimer, O.; Reitberger, K.; Renaud, M.; Renner, S.; Reville, B.; Rhode, W.; Ribó, M.; Ribordy, M.; Richer, M. G.; Rico, J.; Ridky, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P. R.; Riviére, A.; Rivoire, S.; Rob, L.; Roeser, U.; Rohlfs, R.; Rojas, G.; Romano, P.; Romaszkan, W.; Romero, G. E.; Rosen, S.; Rosier Lees, S.; Ross, D.; Rouaix, G.; Rousselle, J.; Rousselle, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C.; Rupiński, M.; Russo, F.; Ryde, F.; Sacco, B.; Saemann, E. O.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Saito, Y.; Sakaki, N.; Sakonaka, R.; Salini, A.; Sanchez, F.; Sanchez-Conde, M.; Sandoval, A.; Sandaker, H.; Sant'Ambrogio, E.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Sartore, N.; Sasaki, H.; Satalecka, K.; Sawada, M.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schafer, J.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schovanek, P.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schure, K.; Schwab, T.; Schwanke, U.; Schwarz, J.; Schwarzburg, S.; Schweizer, T.; Schwemmer, S.; Segreto, A.; Seiradakis, J.-H.; Sembroski, G. H.; Seweryn, K.; Sharma, M.; Shayduk, M.; Shellard, R. C.; Shi, J.; Shibata, T.; Shibuya, A.; Shum, E.; Sidoli, L.; Sidz, M.; Sieiro, J.; Sikora, M.; Silk, J.; Sillanpää, A.; Singh, B. B.; Sitarek, J.; Skole, C.; Smareglia, R.; Smith, A.; Smith, D.; Smith, J.; Smith, N.; Sobczyńska, D.; Sol, H.; Sottile, G.; Sowiński, M.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Sterzel, M.; Stinzing, F.; Stodulski, M.; Straumann, U.; Strazzeri, E.; Stringhetti, L.; Suarez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K.-H.; Sun, S.; Supanitsky, A. D.; Suric, T.; Sutcliffe, P.; Sykes, J.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, G.; Tammi, J.; Tanaka, M.; Tanaka, S.; Tasan, J.; Tavani, M.; Tavernet, J.-P.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tezier, D.; Thuermann, D.; Tibaldo, L.; Tibolla, O.; Tiengo, A.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torii, K.; Tornikoski, M.; Torres, D. F.; Torres, M.; Tosti, G.; Totani, T.; Toussenel, F.; Tovmassian, G.; Travnicek, P.; Trifoglio, M.; Troyano, I.; Tsinganos, K.; Ueno, H.; Umehara, K.; Upadhya, S. S.; Usher, T.; Uslenghi, M.; Valdes-Galicia, J. F.; Vallania, P.; Vallejo, G.; van Driel, W.; van Eldik, C.; Vandenbrouke, J.; Vanderwalt, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V.; Veberic, D.; Vegas, I.; Vercellone, S.; Vergani, S.; Veyssiére, C.; Vialle, J. P.; Viana, A.; Videla, M.; Vincent, P.; Vincent, S.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; von Gunten, H.-P.; Vorobiov, S.; Vuerli, C.; Waegebaert, V.; Wagner, R.; Wagner, R. G.; Wagner, S.; Wakely, S. P.; Walter, R.; Walther, T.; Warda, K.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Werner, M.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wiesand, S.; Wilkinson, M.; Williams, D. A.; Willingale, R.; Winiarski, K.; Wischnewski, R.; Wiśniewski, Ł.; Wood, M.; Wörnlein, A.; Xiong, Q.; Yadav, K. K.; Yamamoto, H.; Yamamoto, T.; Yamazaki, R.; Yanagita, S.; Yebras, J. M.; Yelos, D.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zanin, R.; Zdziarski, A.; Zech, A.; Zhao, A.; Zhou, X.; Ziętara, K.; Ziolkowski, J.; Ziółkowski, P.; Zitelli, V.; Zurbach, C.; Żychowski, P.; CTA Consortium
2013-03-01
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.
Explanatory Supplement to the WISE All-Sky Release Products
NASA Technical Reports Server (NTRS)
2012-01-01
The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) surveyed the entire sky at 3.4, 4.6, 12 and 22 microns in 2010, achieving 5-sigma point source sensitivities per band better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Data Release, conducted on March 14, 2012, incorporates all data taken during the full cryogenic mission phase, 7 January 2010 to 6 August 20l0,that were processed with improved calibrations and reduction algorithms. Release data products include: (1) an Atlas of 18,240 match-filtered, calibrated and coadded image sets; (2) a Source Catalog containing positions and four-band photometry for over 563 million objects, and (3) an Explanatory Supplement. Ancillary products include a Reject Table that contains 284 million detections that were not selected for the Source Catalog because they are low signal-to-noise ratio or spurious detections of image artifacts, an archive of over 1.5 million sets of calibrated WISE Single-exposure images, and a database of 9.4 billion source extractions from those single images, and moving object tracklets identified by the NEOWISE program (Mainzer et aI. 2011). The WISE All-Sky Data Release products supersede those from the WISE Preliminary Data Release (Cutri et al. 2011). The Explanatory Supplement to the WISE All-Sky Data Release Products is a general guide for users of the WISE data. The Supplement contains an overview of the WISE mission, facilities, and operations, a detailed description of WISE data processing algorithms, a guide to the content and formals of the image and tabular data products, and cautionary notes that describe known limitations of the All-Sky Release products. Instructions for accessing the WISE data products via the services of the NASA/IPAC Infrared Science Archive are provided. The Supplement also provides analyses of the achieved sky coverage, photometric and astrometric characteristics and completeness and reliability of the All-Sky Release data products. The WISE All-Sky Release Explanatory Supplement is an on-line document that is updated frequently to provide the most current information for users of the WISE data products. The Explanatory Supplement is maintained at: http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/index.html WISE is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NEOWISE is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration.
The UKIRT Hemisphere Survey: definition and J-band data release
NASA Astrophysics Data System (ADS)
Dye, S.; Lawrence, A.; Read, M. A.; Fan, X.; Kerr, T.; Varricatt, W.; Furnell, K. E.; Edge, A. C.; Irwin, M.; Hambly, N.; Lucas, P.; Almaini, O.; Chambers, K.; Green, R.; Hewett, P.; Liu, M. C.; McGreer, I.; Best, W.; Zhang, Z.; Sutorius, E.; Froebrich, D.; Magnier, E.; Hasinger, G.; Lederer, S. M.; Bold, M.; Tedds, J. A.
2018-02-01
This paper defines the UK Infra-Red Telescope (UKIRT) Hemisphere Survey (UHS) and release of the remaining ∼12 700 deg2 of J-band survey data products. The UHS will provide continuous J- and K-band coverage in the Northern hemisphere from a declination of 0° to 60° by combining the existing Large Area Survey, Galactic Plane Survey and Galactic Clusters Survey conducted under the UKIRT Infra-red Deep Sky Survey (UKIDSS) programme with this new additional area not covered by UKIDSS. The released data include J-band imaging and source catalogues over the new area, which, together with UKIDSS, completes the J-band UHS coverage over the full ∼17 900 deg2 area. 98 per cent of the data in this release have passed quality control criteria. The remaining 2 per cent have been scheduled for re-observation. The median 5σ point source sensitivity of the released data is 19.6 mag (Vega). The median full width at half-maximum of the point spread function across the data set is 0.75 arcsec. In this paper, we outline the survey management, data acquisition, processing and calibration, quality control and archiving as well as summarizing the characteristics of the released data products. The data are initially available to a limited consortium with a world-wide release scheduled for 2018 August.
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-11-01
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3 to 5 years. Information on fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud-base height (CBH) data are retrieved from a ceilometer and integrated water vapour (IWV) data from GPS measurements. The longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 oktas has a median value between 59 and 72 Wm-2. For mid- and high-level clouds the LCE is significantly lower. It is shown that the fractional cloud coverage, the CBH and IWV all have an influence on the magnitude of the LCE. These observed dependences have also been modelled with the radiative transfer model MODTRAN5. The relative values of the shortwave cloud radiative effect (SCErel) for low-level clouds and a cloud coverage of 8 oktas are between -90 and -62 %. Also here the higher the cloud is, the less negative the SCErel values are. In cases in which the measured direct radiation value is below the threshold of 120 Wm-2 (occulted sun) the SCErel decreases substantially, while cases in which the measured direct radiation value is larger than 120 Wm-2 (visible sun) lead to a SCErel of around 0 %. In 14 and 10 % of the cases in Davos and Payerne respectively a cloud enhancement has been observed with a maximum in the cloud class cirrocumulus-altocumulus at both stations. The calculated median total cloud radiative effect (TCE) values are negative for almost all cloud classes and cloud coverages.
The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1
NASA Astrophysics Data System (ADS)
Intema, H. T.; Jagannathan, P.; Mooley, K. P.; Frail, D. A.
2017-02-01
We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope (GMRT) between April 2010 and March 2012 as part of the TIFR GMRT Sky Survey (TGSS) project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 h of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36 900 deg2 (or 3.6 π steradians) of the sky between -53° and +90° declination (Dec), which is 90 percent of the total sky. The majority of pointing images have a noise level below 5 mJy beam-1 with an approximate resolution of 25''×25'' (or 25''×25''/ cos(Dec-19°) for pointings south of 19° declination). We have produced a catalog of 0.62 Million radio sources derived from an initial, high reliability source extraction at the seven sigma level. For the bulk of the survey, the measured overall astrometric accuracy is better than two arcseconds in right ascension and declination, while the flux density accuracy is estimated at approximately ten percent. Within the scope of the TGSS alternative data release (TGSS ADR) project, the source catalog, as well as 5336 mosaic images (5°×5°) and an image cutout service, are made publicly available at the CDS as a service to the astronomical community. Next to enabling a wide range of different scientific investigations, we anticipate that these survey products will provide a solid reference for various new low-frequency radio aperture array telescopes (LOFAR, LWA, MWA, SKA-low), and can play an important role in characterizing the epoch-of-reionisation (EoR) foreground. The TGSS ADR project aims at continuously improving the quality of the survey data products. Near-future improvements include replacement of bright source snapshot images with archival targeted observations, using new observations to fill the holes in sky coverage and replace very poor quality observational data, and an improved flux calibration strategy for less severely affected observational data. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A78
NASA Technical Reports Server (NTRS)
McEnery, Julie
2006-01-01
The Gamma-ray Large Area Space Telescope (GLAST), scheduled for launch in late 007, is a satellite based observatory to study the high energy gamma-ray sky. There are two instruments on GLAST: the Large Area Telescope (LAT) which provides coverage from 20 MeV to over 300 GeV, and the GLAST Burst Monitor (GBM) which provides supportive observations of transients from 8 keV to 30 MeV. GLAST will provide well beyond those achieved by the highly successful EGRET instrument on the Compton Gamma-Ray Observatory, with dramatic improvements in sensitivity, angular resolution and energy range. The very large field of view will make it possible to observe approx. 20% of the sky at any instant, and the entire sky on timescale of a few hours. This talk includes a description of the instruments, the opportunities for guest investigators, and the mission status.
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
NASA Technical Reports Server (NTRS)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.;
2016-01-01
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument
NASA Astrophysics Data System (ADS)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.
2016-12-01
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA
NASA Astrophysics Data System (ADS)
Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf
2012-09-01
The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.
Novel tip-tilt sensing strategies for the laser tomography adaptive optics system of the GMT
NASA Astrophysics Data System (ADS)
van Dam, Marcos A.; Bouchez, Antonin H.; Conan, Rodolphe
2016-07-01
We investigate the tip-tilt sensor for the laser tomography adaptive optics system of the Giant Magellan Telescope. In the case of the GMTIFS instrument, we require high Strehl over a moderate region of the sky and high throughput with very high sky coverage. In this paper, we simulate the performance of a K-band tip-tilt sensor using an eAPD array. The paper presents a comparison of different centroiding techniques and servo controllers. In addition, we explore the possibility of using the wavefront sensors (WFSs) used in the ground layer adaptive optics (GLAO) mode to supplement the tip-tilt sensor measurement. The imaging requirement is almost met using the correlation algorithm to estimate the displacement of the spot, along with a high-order controller tailored to the telescope wind shake. This requires a sufficiently bright star to be able to run at 500 Hz, so the sky coverage is limited. In the absence of wind, then the star can be fainter and the requirement is met. The spectroscopy requirement is met even in the case of high wind. The results are even better if we use the GLAO WFSs as well as the tip-tilt sensors. Further work will explore the viability of inserting a DM in the OIWFS and the resulting tip-tilt performance.
2017-08-21
On Monday, Aug. 21 NASA provided coast-to-coast coverage of the solar eclipse across America- featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during live broadcast seen on NASA Television and the agency’s website. Footage of the moon's shadow moving across the planet is captured from NASA's Gulfstream III aircraft as it flew in the skies off the coast of Oregon during the Aug. 21 solar eclipse
Constellation analysis of an integrated AIS/remote sensing spaceborne system for ship detection
NASA Astrophysics Data System (ADS)
Graziano, Maria Daniela; D'Errico, Marco; Razzano, Elena
2012-08-01
A future system integrating data from remote sensing and upcoming AIS satellites is analyzed through the development of a novel design method for global, discontinuous coverage constellations. It is shown that 8 AIS satellites suffice to guarantee global coverage and a ship location update of 50 min if the spaceborne AIS receiver has a swath of 2800 nm. Furthermore, synergic utilization of COSMO/SkyMed and Radarsat-C data would provide a mean revisit time of 7 h, with AIS information available within 25 min from SAR data acquisition.
CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation
NASA Astrophysics Data System (ADS)
Badescu, Viorel; Dumitrescu, Alexandru
2016-08-01
Two products provided by the climate monitoring satellite application facility (CMSAF) are the instantaneous Cloud Fractional Coverage (iCFC) and the instantaneous Cloud Type (iCTY) products. Previous studies based on the iCFC product show that the simple solar radiation models belonging to the cloudiness index class n CFC = 0.1-1.0 have rRMSE values ranging between 68 and 71 %. The products iCFC and iCTY are used here to develop simple models providing hourly estimates for solar global irradiance. Measurements performed at five weather stations of Romania (South-Eastern Europe) are used. Two three-class characterizations of the state-of-the-sky, based on the iCTY product, are defined. In case of the first new sky state classification, which is roughly related with cloud altitude, the solar radiation models proposed here perform worst for the iCTY class 4-15, with rRMSE values ranging between 46 and 57 %. The spreading error of the simple models is lower than that of the MAGIC model for the iCTY classes 1-4 and 15-19, but larger for iCTY classes 4-15. In case of the second new sky state classification, which takes into account in a weighted manner the chance for the sun to be covered by different types of clouds, the solar radiation models proposed here perform worst for the cloudiness index class n CTY = 0.7-0.1, with rRMSE values ranging between 51 and 66 %. Therefore, the two new sky state classifications based on the iCTY product are useful in increasing the accuracy of solar radiation models.
Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment
NASA Technical Reports Server (NTRS)
Matteson, J. L.; Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T. L.; Teegarden, B. J.
1985-01-01
A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described.
Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.
2014-05-01
We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.
An all-reflective wide-angle flat-field telescope for space
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1984-01-01
An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.
A 3000 TNOs Survey Project at ESO La Silla
NASA Astrophysics Data System (ADS)
Boehnhardt, H.; Hainaut, O.
We propose a wide-shallow TNO search to be done with the Wide Field Imager (WFI) instrument at the 2.2m MPG/ESO telescope in La Silla/Chile. The WFI is a half-deg camera equipped with an 8kx8k CCD (0.24 arcsec/pixel). The telescope can support excellent seeing quality down to 0.5arcsec FWHM. A TNO search pilot project was run with the 2.2m+WFI in 1999: images with just 1.6sdeg sky coverage and typically 24mag limiting brightness revealed 6 new TNOs when processed with our new automatic detection program MOVIE. The project is now continued on a somewhat larger scale in order to find more TNOs and to fine-tune the operational environment for a full automatic on-line detection, astrometry and photometry of the objects at the telescope. The future goal is to perform - with the 2.2m+WFI and in an international colaboration - an even larger TNO survey over a major part of the sky (typically 2000sdeg in and out of Ecliptic) down to 24mag. Follow-up astrometry and photometry of the expected more than 3000 discovered objects will secure their orbital and physical characterisation for synoptic dynamical and taxonomic studies of the Transneptunian population.
The Swift/BAT Hard X-ray Transient Monitor: A Status Report
NASA Astrophysics Data System (ADS)
Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team
2013-04-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.
The Swift/BAT Hard X-ray Transient Monitor: A Status Report
NASA Astrophysics Data System (ADS)
Krimm, Hans A.; Swift/BAT Team
2011-09-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.
The Primordial Inflation Explorer (PIXIE) Mission
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer
The Swift/BAT Hard X-ray Transient Monitor
NASA Technical Reports Server (NTRS)
Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.;
2013-01-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.
NASA Technical Reports Server (NTRS)
Billingham, John; Tarter, Jill
1989-01-01
The maximum range is calculated at which radar signals from the earth could be detected by a search system similar to the NASA SETI Microwave Observing Project (SETI MOP) assumed to be operating out in the Galaxy. Figures are calculated for the Targeted Search and for the Sky Survey parts of the MOP, both planned to be operating in the 1990s. The probability of detection is calculated for the two most powerful transmitters, the planetary radar at Arecibo (Puerto Rico) and the ballistic missile early warning systems (BMEWSs), assuming that the terrestrial radars are only in the eavesdropping mode. It was found that, for the case of a single transmitter within the maximum range, the highest probability is for the sky survey detecting BMEWSs; this is directly proportional to BMEWS sky coverage and is therefore 0.25.
NASA Astrophysics Data System (ADS)
Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; de Angelis, A.; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.
2011-12-01
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Keck adaptive optics: control subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less
ERIC Educational Resources Information Center
Allen, Craig M.
A number of flight accidents in recent years have made the use of helicopters in news coverage controversial. Radio or television reporters are sometimes asked to fly under unsafe conditions simply because competing stations have sent up their reporters. Although pilots have the right to refuse to fly if they feel conditions are dubious, they too…
VizieR Online Data Catalog: Line list for seven target PAndAS clusters (Sakari+, 2015)
NASA Astrophysics Data System (ADS)
Sakari, C. M.; Venn, K. A.; Mackey, D.; Shetrone, M. D.; Dotter, A.; Ferguson, A. M. N.; Huxor, A.
2017-11-01
The targets were observed with the Hobby-Eberly Telescope (HET; Ramsey et al. 1998, Proc. SPIE, 3352, 34; Shetrone et al. 2007PASP..119..556S) at McDonald Observatory in Fort Davis, TX in 2011 and early 2012. The High Resolution Spectrograph (HRS; Tull 1998, Proc. SPIE, 3355, 387) was utilized with the 3-arcsec fibre and a slit width of 1 arcsec, yielding an instrumental spectral resolution of R=30000. With the 600 g/mm cross-disperser set to a central wavelength of 6302.9Å, wavelength coverages of ~5320-6290 and ~6360-7340Å were achieved in the blue and the red, respectively. The 3-arcsec fibre provided coverage of the clusters past their half-light radii; the additional sky fibres (located 10 arcsec from the central object fibre) provided simultaneous observations for sky subtraction. Exposure times were calculated to obtain a total signal-to-noise ratio (S/N)=80 (per resolution element), although not all targets received sufficient time to meet this goal. (2 data files).
Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor
2008-12-01
Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.
NASA Technical Reports Server (NTRS)
Tang, C. C. H.
1984-01-01
A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.
Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.
Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R
2013-03-10
A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles.
Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, D. P.
2014-01-01
We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.
NASA Astrophysics Data System (ADS)
Spanò, P.; Tosh, I.; Chemla, F.
2010-07-01
OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.
The Montage Image Mosaic Toolkit As A Visualization Engine.
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Lerias, Angela; Good, John; Mandel, Eric; Pepper, Joshua
2018-01-01
The Montage toolkit has since 2003 been used to aggregate FITS images into mosaics for science analysis. It is now finding application as an engine for image visualization. One important reason is that the functionality developed for creating mosaics is also valuable in image visualization. An equally important (though perhaps less obvious) reason is that Montage is portable and is built on standard astrophysics toolkits, making it very easy to integrate into new environments. Montage models and rectifies the sky background to a common level and thus reveals faint, diffuse features; it offers an adaptive image stretching method that preserves the dynamic range of a FITS image when represented in PNG format; it provides utilities for creating cutouts of large images and downsampled versions of large images that can then be visualized on desktops or in browsers; it contains a fast reprojection algorithm intended for visualization; and it resamples and reprojects images to a common grid for subsequent multi-color visualization.This poster will highlight these visualization capabilities with the following examples:1. Creation of down-sampled multi-color images of a 16-wavelength Infrared Atlas of the Galactic Plane, sampled at 1 arcsec when created2. Integration into web-based image processing environment: JS9 is an interactive image display service for web browsers, desktops and mobile devices. It exploits the flux-preserving reprojection algorithms in Montage to transform diverse images to common image parameters for display. Select Montage programs have been compiled to Javascript/WebAssembly using the Emscripten compiler, which allows our reprojection algorithms to run in browsers at close to native speed.3. Creation of complex sky coverage maps: an multicolor all-sky map that shows the sky coverage of the Kepler and K2, KELT and TESS projects, overlaid on an all-sky 2MASS image.Montage is funded by the National Science Foundation under Grant Number ACI-1642453. JS9 is funded by the Chandra X-ray Center (NAS8-03060) and NASA's Universe of Learning (STScI-509913).
NASA Astrophysics Data System (ADS)
Green, Paul J.; Aldcroft, T. L.; Richards, G. T.; Barkhouse, W. A.; Constantin, A.; Haggard, D.; Karovska, M.; Kim, D.-W.; Kim, M.; Vikhlinin, A.; Anderson, S. F.; Mossman, A.; Kashyap, V.; Myers, A. D.; Silverman, J. D.; Wilkes, B. J.; Tananbaum, H.
2009-01-01
We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project. Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2 < z < 5.4, representing some 36 Msec of effective exposure. We provide catalogs of QSO properties, and describe our novel method of calculating X-ray flux upper limits and effective sky coverage. Spectroscopic redshifts are available for about 1/3 of the detected sample; elsewhere, redshifts are estimated photometrically. We detect 56 QSOs with redshift z > 3, substantially expanding the known sample. We find no evidence for evolution out to z ~ 5 for either the X-ray photon index Γ or for the ratio of optical/UV to X-ray flux αox. About 10% of detected QSOs show best-fit intrinsic absorbing columns greater than 1022 cm-2, but the fraction might reach ~1/3 if most nondetections are absorbed. We confirm a significant correlation between αox and optical luminosity, but it flattens or disappears for fainter (MB gsim -23) active galactic nucleus (AGN) alone. We report significant hardening of Γ both toward higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in nonthermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN. For uniformly selected subsamples of narrow-line Seyfert 1s and narrow absorption line QSOs, we find no evidence for unusual distributions of either αox or Γ.
Update on the Wide-field Infrared Survey Explorer (WISE)
NASA Technical Reports Server (NTRS)
Mainzer, Amanda K.; Eisenhardt, Peter; Wright, Edward L.; Liu, Feng-Chuan; Irace, William; Heinrichsen, Ingolf; Cutri, Roc; Duval, Valerie
2006-01-01
The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Survey into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024(sup 2) HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5 resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47' x47' field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE has completed its mission Preliminary Design Review and its NASA Confirmation Review, and the project is awaiting confirmation from NASA to proceed to the Critical Design phase. Much of the payload hardware is now complete, and assembly of the payload will occur over the next year. WISE is scheduled to launch in late 2009; the project web site can be found at www.wise.ssl.berkeley.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Actis, M
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTAmore » is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.« less
The Neutron Star Interior Composition Explorer (NICER)
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.
2014-01-01
The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.
VizieR Online Data Catalog: Spectropolarimetric survey of radio sources (Anderson+, 2015)
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.
2017-10-01
We obtained mosaicked observations of a 30 deg2 region of sky the CABB correlator on the Australia Telescope Compact Array (ATCA; Wilson et al. 2011MNRAS.416..832W). Our observations were performed using the "CFB 1M" mode, which generates all polarization products from 1.1 to 3.1 GHz with 1 MHz channel widths. The mosaic consisted of 342 pointings laid out in a hexagonal grid. This grid spanned 7.5° in RA and 5.5° in DE and was centered on RA=03h29m40s and DE=-36°16'30" (J2000) in Fornax. The angular separation of the mosaic pointings was 0.323° and therefore spatially Nyquist-sampled at 1.4 GHz. To obtain adequate uv coverage, we broke the full mosaic up into seven submosaics and observed each submosaic on consecutive days. We completed the full seven-day observing run twice-once in each of the 1.5B and 750B array configurations, from 2011 May 5-11 and 2011 June 10-16, respectively. (1 data file).
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...
2016-12-09
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
NASA Astrophysics Data System (ADS)
Cook, K. H.; Delgado, F.; Miller, M.; Saha, A.; Allsman, R.; Pinto, P.; Gee, P. A.
2005-12-01
We have developed an operations simulator for LSST and used it to explore design and operations parameter space for this large etendue telescope and its ten year survey mission. The design is modular, with separate science programs coded in separate modules. There is a sophisticated telescope module with all motions parametrized for ease of testing different telescope capabilities, e.g. effect of acceleration capabilities of various motors on science output. Sky brightness is calculated as a function of moon phase and separation. A sophisticated exposure time calculator has been developed for LSST which is being incorporated into the simulator to allow specification of S/N requirements. All important parameters for the telescope, the site and the science programs are easily accessible in configuration files. Seeing and cloud data from the three candidate LSST sites are used for our simulations. The simulator has two broad categories of science proposals: sky coverage and transient events. Sky coverage proposals base their observing priorities on a required number of observations for each field in a particular filter with specified conditions (maximum seeing, sky brightness, etc) and one is used for a weak lensing investigation. Transient proposals are highly configurable. A transient proposal can require sequential, multiple exposures in various filters with a specified sequence of filters, and require a particular cadence for multiple revisits to complete an observation sequence. Each science proposal ranks potential observations based upon the internal logic of that proposal. We present the results of a variety of mixed science program observing simulations, showing how varied programs can be carried out simultaneously, with many observations serving multiple science goals. The simulator has shown that LSST can carry out its multiple missions under a variety of conditions. KHC's work was performed under the auspices of the US DOE, NNSA by the Univ. of California, LLNL under contract No. W-7405-Eng-48.
A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra
NASA Astrophysics Data System (ADS)
Dobos, László; Csabai, István.; Yip, Ching-Wa; Budavári, Tamás.; Wild, Vivienne; Szalay, Alexander S.
2012-02-01
In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star formation activity to calculate average spectra of high signal-to-noise ratio (S/N) and resolution (? at Δλ= 1 Å), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. The continua of the composite spectra are fitted with BC03 stellar population synthesis models to extend the wavelength coverage beyond the coverage of the SDSS spectrographs. Common derived parameters of the composites are also calculated: integrated colours in the most popular filter systems, line-strength measurements and continuum absorption indices (including Lick indices). These derived parameters are compared with the distributions of parameters of individual galaxies, and it is shown on many examples that the composites of the atlas cover much of the parameter space spanned by SDSS galaxies. By co-adding thousands of spectra, a total integration time of several months can be reached, which results in extremely low noise composites. The variations in redshift not only allow for extending the spectral coverage bluewards to the original wavelength limit of the SDSS spectrographs, but also make higher spectral resolution achievable. The composite spectrum atlas is available online at .
MONET: a MOnitoring NEtwork of Telescopes
NASA Astrophysics Data System (ADS)
Hessman, F. V.; Beuermann, K.
2002-01-01
MONET is a planned network of two 1m-class robotic telescopes which will be used for various photometric monitoring projects -- variable stars, planet searches, AGN's, GRB's -- as well as by school children in Germany and over the world. The two host partners, the Univ. of Texas' McDonald Observatory and the South African Astronomical Observatory, will operate the telescopes in exchange for observing time on the network. MONET will be one of the first robotic telescope networks offering 1-m class telescopes, complete coverage of the sky, good longitude coverage for long observing sequences on objects near the celestial equator, and a heavy educational emphasis.
The SuperCOSMOS all-sky galaxy catalogue
NASA Astrophysics Data System (ADS)
Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.
2016-10-01
We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.
NASA Astrophysics Data System (ADS)
Day, B. H.; Bland, P.
2016-12-01
Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.
A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX
NASA Astrophysics Data System (ADS)
Wyder, Ted K.; GALEX Science Team
2006-12-01
Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.
The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope
Isabelle Grenier
2018-04-17
The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. Â In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.
The Swift-BAT Hard X-Ray Transient Monitor
NASA Technical Reports Server (NTRS)
Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.;
2013-01-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.
THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.
2013-11-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. Themore » primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.« less
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1998-01-01
Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.
First results of tests on the WEAVE fibres
NASA Astrophysics Data System (ADS)
Sayède, Frédéric; Younes, Youssef; Fasola, Gilles; Dorent, Stéphane; Abrams, Don Carlos; Aguerri, J. Alphonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Dalton, Gavin; Dee, Kevin; Laporte, Philippe; Lewis, Ian; Lhome, Emilie; Middleton, Kevin; Pragt, Johan H.; Rey, Juerg; Stuik, Remko; Trager, Scott C.; Vallenari, Antonella
2016-07-01
WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of 5000 or modest wavelength coverage in both arms at a resolution 20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V 17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.
VizieR Online Data Catalog: NuSTAR serendipitous survey: the 40-month catalog (Lansbury+, 2017)
NASA Astrophysics Data System (ADS)
Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Balokovic, M.; Del Moro, A.; Gandhi, P.; Ajello, M.; Annuar, A.; Ballantyne, D. R.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Jiang, B.; Jun, H. D.; Koss, M.; Marchesi, S.; Melo, A. D.; Mullaney, J. R.; Noirot, G.; Schulze, S.; Walton, D. J.; Zappacosta, L.; Zhang, W. W.
2017-09-01
Over the period from 2012 July to 2015 November, which is the focus of the current study, there are 510 individual NuSTAR exposures that have been incorporated into the serendipitous survey. These exposures were performed over 331 unique fields (i.e., 331 individual sky regions, each with contiguous coverage composed of one or more NuSTAR exposures), yielding a total sky area coverage of 13deg2. Table 1 lists the fields chronologically. The fields have a cumulative exposure time of 20.4Ms. We have undertaken a campaign of dedicated spectroscopic follow-up in the optical-IR bands, obtaining spectroscopic identifications for a large fraction (56%) of the total sample. Since NuSTAR performs science pointings across the whole sky, a successful ground-based follow-up campaign requires the use of observatories at a range of geographic latitudes, and preferably across a range of dates throughout the sidereal year. This has been achieved through observing programs with, primarily, the following telescopes over a multiyear period (2012 Oct 10 to 2016 Jul 10): the Hale Telescope at Palomar Observatory (5.1m; PIs F. A. Harrison and D. Stern); Keck I and II at the W. M. Keck Observatory (10m; PIs F. A. Harrison and D. Stern); the New Technology Telescope (NTT) at La Silla Observatory (3.6m; PI G. B. Lansbury); the Magellan I (Baade) and Magellan II (Clay) Telescopes at Las Campanas Observatory (6.5m; PIs E. Treister and F. E. Bauer); and the Gemini-South observatory (8.1m; PI E. Treister). (5 data files).
Preflight Coverage of the STS-112 and Expedition 8 Crew during Egress Training
2002-08-08
JSC2002-01563 (8 August 2002) --- Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, uses the Sky-genie to lower himself from a simulated trouble-plagued shuttle in a training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Curbeam is wearing a training version of the shuttle launch and entry suit.
The Palomar planet-crossing asteroid survey, 1973-1978
Helin, E.F.; Shoemaker, E.M.
1979-01-01
Photographic coverage of about 80,000 deg2 of sky with the Palomar 46-cm Schmidt camera has yielded 12 new planet-crossing asteroids as well as many objects in the main asteroid belt. The estimated population of planet-crossing asteroids includes ???100 Atens, 700 ?? 300 Apollos, 1000-2000 Amors, 10,000 ?? 5000 Mars crossers, and ???5000 Mars grazers. ?? 1979.
An optical to IR sky brightness model for the LSST
NASA Astrophysics Data System (ADS)
Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo
2016-07-01
To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.
First results from HAWC: monitoring the TeV gamma-ray sky
NASA Astrophysics Data System (ADS)
Lauer, Robert J.
2015-03-01
The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field gamma-ray detector sensitive to primary energies between 100 GeV and 100 TeV. The array is being built at an altitude of 4100 m a.s.l. on the Sierra Negra volcano near Puebla, Mexico. Data taking has already started while construction continues, with the completion projected for early 2015. The design is optimized to detect extended air showers induced by gamma rays that pass through the array and to reconstruct the directions and energies of the primary photons. With a duty cycle close to 100% and a daily coverage of ~8 sr of the sky, HAWC will perform a survey of TeV emissions from many different sources. The northern active galactic nuclei will be monitored for up to 6 hours each day, providing unprecedented light curve coverage at energies comparable to those of imaging air Cherenkov telescopes. HAWC has been in scientific operation with more than 100 detector modules since August 2013. Here we present a preliminary look at the first results and discuss the efforts to integrate HAWC in multi-wavelength studies of extragalactic jets.
Near-Earth asteroid discovery rate review
NASA Technical Reports Server (NTRS)
Helin, Eleanor F.
1991-01-01
Fifteen to twenty years ago the discovery of 1 or 2 Near Earth Asteroids (NEAs) per year was typical from one systematic search program, Palomar Planet Crossing Asteroid Survey (PCAS), and the incidental discovery from a variety of other astronomical program. Sky coverage and magnitude were both limited by slower emulsions, requiring longer exposures. The 1970's sky coverage of 15,000 to 25,000 sq. deg. per year led to about 1 NEA discovery every 13,000 sq. deg. Looking at the years from 1987 through 1990, it was found that by comparing 1987/1988 and 1989/1990, the world discovery rate of NEAs went from 20 to 43. More specifically, PCAS' results when grouped into the two year periods, show an increase from 5 discoveries in the 1st period to 20 in the 2nd period, a fourfold increase. Also, the discoveries went from representing about 25 pct. of the world total to about 50 pct. of discoveries worldwide. The surge of discoveries enjoyed by PCAS in particular is attributed to new fine grain sensitive emulsions, film hypering, more uniformity in the quality of the photograph, more equitable scheduling, better weather, and coordination of efforts. The maximum discoveries seem to have been attained at Palomar Schmidt.
Comprehensive Software Eases Air Traffic Management
NASA Technical Reports Server (NTRS)
2007-01-01
To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
Scanning sky monitor (SSM) onboard AstroSat
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar
2017-10-01
Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.
Testing local anisotropy using the method of smoothed residuals I — methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appleby, Stephen; Shafieloo, Arman, E-mail: stephen.appleby@apctp.org, E-mail: arman@apctp.org
2014-03-01
We discuss some details regarding the method of smoothed residuals, which has recently been used to search for anisotropic signals in low-redshift distance measurements (Supernovae). In this short note we focus on some details regarding the implementation of the method, particularly the issue of effectively detecting signals in data that are inhomogeneously distributed on the sky. Using simulated data, we argue that the original method proposed in Colin et al. [1] will not detect spurious signals due to incomplete sky coverage, and that introducing additional Gaussian weighting to the statistic as in [2] can hinder its ability to detect amore » signal. Issues related to the width of the Gaussian smoothing are also discussed.« less
Imaging spectropolarimetry of cloudy skies
NASA Astrophysics Data System (ADS)
Pust, Nathan; Shaw, Joseph A.
2006-05-01
The polarization state of atmospheric radiance varies with cloudiness and cloud type. We have developed a dual-field-of-view imaging spectro-polarimeter for measuring atmospheric polarization in five spectral bands from 450 to 700 nm. This instrument improves the acquisition time of past full-sky digital camera designs to 400 ms using liquid crystal variable retarders (LCVRs). The system can be used to measure polarization with either fisheye or telephoto optics, allowing studies of all-sky and target polarization. We present and describe measurements of sky polarization with clear and variably cloudy sky conditions. In clear skies, we observe a slight upward trend of the degree of polarization with wavelength, in agreement with previous observations. Presence of clouds generally reduces both cloudy sky and surrounding clear sky degree of polarization. The polarization measured from a cloud often reflects only the Rayleigh scattering between the instrument and the cloud, but some of our recent data shows partially polarized cloud scattering.
Fast Plasma Instrument for MMS: Simulation Results
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.
2008-01-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the results obtained by the Cluster/PEACE electron spectrometers. The data analyzed was selected because it represented a potential reconnection event as currently published.
Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey
NASA Astrophysics Data System (ADS)
Jones, William
The standard dark-matter and dark-energy dominated cosmological model (LCDM) has proven to be remarkably successful in describing the current state and past evolution of the Universe. However, there remain significant uncertainties regarding the physical mechanisms that established the initial conditions upon which the LCDM predictions rely. Theories of cosmic genesis - the extremely high energy mechanisms that established these conditions - should be expected to provide a natural description of the nearly flat geometry of the Universe, the existence of super-horizon density correlations, and the adiabatic, Gaussian and nearly scale-invariant nature of the observed primordial density perturbations. The primary objective of Spider is to subject models of the early Universe to observational test, probing fundamental physics at energy scales far beyond the reach of terrestrial particle accelerators. The main scientific result will be to characterize, or place stringent upper limits on the level of the odd-parity polarization of the CMB. In the context of the inflationary paradigm, Spider will confirm or exclude the predictions of the simplest single-field inflationary models near the Lyth bound, characterized by tensor to scalar ratios r 0.03. While viable alternatives to the inflationary paradigm are an active and important area of investigation, including string cosmologies and cyclic models, early Universe models described by inflationary periods are now widely accepted as the underlying cause behind much of what we observe in cosmology today. Nevertheless, we know very little about the mechanism that would drive inflation or the energy scale at which it occurred, and the paradigm faces significant questions about the viability of the framework as a scientific theory. Fortunately, inflationary paradigms and alternative theories offer distinct predictions regarding the statistical properties of the Cosmic Microwave Background radiation. Spider will use measurements of the polarization of the CMB to search for the signature of primordial gravitational waves that are predicted within the currently favored theories of inflation. A definitive detection of this signal would provide the first direct insight into the underlying physics of inflation as well as a measurement of its energy scale. A stringent limit on the amplitude of this signal would exclude the currently favored class of inflationary models, bolstering the case for alternative theories. Spider is a suborbital Long-Duration Balloon payload housing six cryogenic smallaperture (half-degree resolution) millimeter-wave polarimeters. The frequency bands of the individual polarimeters are chosen to optimize overall sensitivity to the inflationary CMB polarization signal in the presence of Galactic foregrounds. By making extremely deep, high fidelity measurements of the entire portion of the southern sky that is relatively free of Galactic emission, the Spider data complement those of Planck (in sensitivity and control of systematics) PIPER (in frequency coverage) and EBEX (in sky coverage and angular scale). The data from Spider's inaugural flight in 2015 has resulted in high signal-to-noise maps of the southern Galactic hemisphere covering 10% of the full sky at each of 94 and 150 GHz. The payload is now being fabricated and fitted with a suite of 285 GHz cameras to extend our frequency coverage, improving our ability to disentangle the Galactic and cosmological signals. If its signature is present in the CMB, Spider's frequency coverage and fidelity to a broad range of angular scales enable the experiment to take a step beyond detection, toward the characterization of the gravitational wave induced signature in the CMB. Additionally Spider serves as a training ground for young scientists, including 16 graduate students (9 female, 7 male).
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.
Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.
2013-12-01
We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Åkesson, Susanne; Horváth, Gábor
2007-05-01
The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (pmax≤14%, paverage≤8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.
A Sky Chock-Full of Black Holes
2012-08-29
With its all-sky infrared survey, NASA Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun.
The impact of terrorism on children and adolescents: terror in the skies, terror on television.
Fremont, Wanda P; Pataki, Caroly; Beresin, Eugene V
2005-07-01
Terrorist attacks and their aftermath have had a powerful impact on children and their families. Media and television exposure of terrorist events throughout the world has increased during the past few years. There is increasing concern about the effects of this exposure on children who witness these violent images. To develop a proactive and strategic response to reactions of fear, clinicians, educators, and policy makers must understand the psychologic effects of media coverage of terrorism on children. Previous research has focused on media coverage of criminal violence and war. Recent studies have examined the effect of remote exposure of terrorist attacks and have shown a significant clinical impact on children and families.
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Instrument Improvements
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Redemann, Jens; Chang, Cecilia; Dahlgren, Robert; Fahey, Lauren; Flynn, Connor; Johnson, Roy; Kacenelenbogen, Meloe; Leblanc, Samuel; Liss, Jordan;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with grating spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution and climate. Hyper-spectral measurements of direct-beam solar irradiance provide retrievals of gas constituents, aerosol optical depth, and aerosol and thin cloud optical properties. Sky radiance measurements in the principal and almucantar planes enhance retrievals of aerosol absorption, aerosol type, and size mode distribution. Zenith radiance measurements are used to retrieve cloud properties and phase, which in turn are used to quantify the radiative transfer below cloud layers. These airborne measurements tighten the closure between satellite and ground-based measurements. In contrast to the Ames Airborne Tracking Sunphotometer (AATS-14) predecessor instrument, new technologies for each subsystem have been incorporated into 4STAR. In particular, 4STAR utilizes a modular sun-trackingsky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and spectrometerdetector configurations that may be tailored for specific scientific objectives. This paper discusses technical challenges relating to compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage at high resolution. Test results benchmarking the performance of the instrument against the AATS-14 standard and emerging science requirements are presented.
The LWA1 Low Frequency Sky Survey
NASA Astrophysics Data System (ADS)
Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration
2015-01-01
The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.
Open Skies aerial photography of selected areas in Central America affected by Hurricane Mitch
Molnia, Bruce; Hallam, Cheryl A.
1999-01-01
Between October 27 and November 1, 1998, Central America was devastated by Hurricane Mitch. Following a humanitarian relief effort, one of the first informational needs was complete aerial photographic coverage of the storm ravaged areas so that the governments of the affected countries, the U.S. agencies planning to provide assistance, and the international relief community could come to the aid of the residents of the devastated area. Between December 4 and 19, 1998 an Open Skies aircraft conducted five successful missions and obtained more than 5,000 high-resolution aerial photographs and more than 15,000 video images. The aerial data are being used by the Reconstruction Task Force and many others who are working to begin rebuilding and to help reduce the risk of future destruction.
Evaluation of a wildfire smoke forecasting system as a tool for public health protection.
Yao, Jiayun; Brauer, Michael; Henderson, Sarah B
2013-10-01
Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection.
An all sky map of the CO emission extracted from Planck
NASA Astrophysics Data System (ADS)
Aumont, Jonathan
2012-07-01
The High Frequency Instrument (HFI) on board of the Planck satellite, observing the sky in the 100 to 857 GHz frequency range, is sensitive to the light emitted by the CO molecule through its rotational transition lines. We present here the first all sky map of the CO emission ever compiled, taking advantage of the Planck HFI high sensitivity and sky coverage. The processing of this map is first presented, from calibration of the response of the HFI bolometers to the CO lines, to the component separation method that was applied to separate the CO signal from other Galactic components and from the CMB radiation. After having quantified the characteristics of the map, in terms of noise statistics and level, large scale systematics and zero level assessment, we test its reliability by confronting it with ground measurements of the integrated intensity of the ^{12}CO (J=1-0) line. First, we show a very good agreement to the Dame et al. 2001 data, in and around the bright molecular cloud regions, always within the combined uncertainties in the absolute calibration of ground based data and the varying ^{13}CO/^{12}CO line ratio. We additionally use the Hartmann et al. 1998 and Magnani et al. 2000 measurements, sampling the high Galactic latitudes sky with a grid of more than 15,000 degree-spaced positions, and find compatibility both for where they do measure CO and where they don't. As being an all sky map, it can be used to find CO clouds that were never observed by dedicated ground measurements and we illustrate this ability in the Pegasus region around previous observations by Dame et al. 2001 and Yamamoto et al. 2003.
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.
2014-01-01
The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.
NASA Astrophysics Data System (ADS)
Finch, Charlie T.; Zacharias, Norbert; Jao, Wei-Chun
2018-04-01
We present 916 trigonometric parallaxes and proper motions of newly discovered nearby stars from the United States Naval Observatory Robotic Astrometric Telescope (URAT). Observations were taken at the Cerro Tololo Interamerican Observatory over a 2-year period from 2015 to 2017 October covering the entire sky south of about +25° decl. SPM4 and UCAC4 early epoch catalog data were added to extend the temporal coverage for the parallax and proper motion fit up to 48 years. Using these new URAT parallaxes, optical and near-IR photometry from the AAVSO Photometric All-Sky Survey and Two Micron All-Sky Survey catalogs, we identify possible new nearby dwarfs, young stars, low-metallicity subdwarfs and white dwarfs. Comparison to known trigonometric parallaxes shows a high quality of the URAT-based results confirming the error in parallax of the URAT south parallaxes reported here to be between 2 and 13 mas. We also include additional 729 trigonometric parallaxes from the URAT north 25 pc sample published in Finch & Zacharias here after applying the same criterion as for the southern sample to have a complete URAT 25 pc sample presented in this paper.
Observations of thunderstorm-related 630 nm airglow depletions
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Bhatt, A.
2015-12-01
The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.
Rapid All-Sky Transient Discovery and Analysis with Evryscope
NASA Astrophysics Data System (ADS)
Corbett, Henry T.; Law, Nicholas; Fors, Octavi; Ratzloff, Jeff; Goeke, Erin; Howard, Ward S.
2018-01-01
The Evryscope is an array of 24 small telescopes on a common mount, capable of observing the entire visible sky down to g' ~ 16 with a two-minute cadence. Each exposure covers 8000 square degrees over 691 MPix and requires minimal readout time, providing 97% continuous coverage of the night sky. The system's large field of view and rapid cadence enable exploration of a previously inaccessible parameter space of bright and fast transients, including nearby microlensing events, supernovae, and kilonovae GW counterparts. The first instrument, located at CTIO in Chile, was deployed in mid-2015 and is currently in production creating multi-year light curves with percent-level precision. A second identical system is on track for deployment at Mount Laguna Observatory in California in early 2018. Once operational, the two sites will provide simultaneous two-color photometry over a 4000 square degree overlapping region accessible to both instruments, operating as a combined discovery and follow-up network for transient phenomena on all nearby stars and many nearby galaxies. I will present recent science results from the Evryscope and an overview of our data reduction pipeline.
Photographic coverage of STS-115 Egress Training. Bldg.9NW, CTT
2002-12-03
JSC2002-02132 (3 December 2002) --- Astronaut Daniel C. Burbank, STS-115 mission specialist, uses the Sky-genie to lower himself from a simulated trouble-plagued shuttle in an emergency egress training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Burbank is wearing a training version of the shuttle launch and entry suit. United Space Alliance (USA) crew trainer David Pogue assisted Burbank.
NASA Technical Reports Server (NTRS)
Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.;
2010-01-01
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study
NASA Astrophysics Data System (ADS)
Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team
2018-06-01
The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.
Experimentally, How Dark Are Black Hole Mergers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annis, James; Soares-Santos, Marcelle
2016-09-29
The first Advanced LIGO observing run detected two black hole merger events with confidence and likely a third. Many groups organized to followup the events in the optical even though the strong theoretical prior that no optical emission should be seen. We carry through the logic of this by asking about the experimental upper limits to the optical light from Advanced LIGO black hole mergere events. We inventory the published optical searches for transient events associated with the black hole mergers. We describe the factors that go into a formal limit on the visibility of an event (sky area coverage,more » the coverage factor of the camera, the fraction of sky not covered by intervening objects), and list what is known from the literature of the followup teams quantitative assessment of each factor. Where possible we calculate the total probability from each group that the source was imaged. The calculation of confidence level is reviewed for the case of no background. We find that an experimental 95% upper limit on the magnitude of a black hole requires the sum of the total probabilities over all events to be more than 3. In the first Advanced LIGO observing run we were far from reaching that threshold.« less
Polar Geophysics Products Derived from AVHRR: The "AVHRR Polar Pathfinder
NASA Technical Reports Server (NTRS)
Maslanik, James; Fowler, Charles; Scambos, Theodore
1999-01-01
This NOAA/NASA Pathfinder effort was established to locate, acquire, and process Advanced Very High Resolution Radiometer (AVHRR) imagery into geo-located and calibrated radiances, cloud masks, surface clear-sky broadband albedo, clear-sky skin temperatures, satellite viewing times, and viewing and solar geometry for the, high-latitude portions of the northern and southern hemispheres (all area north of 48N and south of 53S). AVHRR GAC data for August 1981 - July 1998 were acquired, with some gaps remaining, and processed into twice-daily 5-km grids, with some products also provided at 25-km resolution. AVHRR LAC data for 3.5 years of coverage in the northern hemisphere and 2.75 years of coverage in the southern hemisphere were processed into 1.25-km grids for the same suite of products. The resulting data sets are presently being transferred to the National Snow and Ice Data Center (NSIDC) for archiving and distribution. Using these data, researchers now have at their disposal an extensive AVHRR data set for investigations of high-latitude processes. In addition, the data lend themselves to development and testing of algorithms. The products are particularly relevant for climate research and algorithm development as applied to relatively long time periods and large areas.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2004-05-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
Fireballs in the Sky: an Augmented Reality Citizen Science Program
NASA Astrophysics Data System (ADS)
Day, B. H.; Bland, P.; Sayers, R.
2017-12-01
Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.
Fireballs in the Sky: An Augmented Reality Citizen Science Program
NASA Technical Reports Server (NTRS)
Day, Brian
2017-01-01
Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.
Aylor, K.; Hou, Z.; Knox, L.; ...
2017-11-20
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less
NASA Astrophysics Data System (ADS)
Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2017-11-01
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.
The Jansky VLA: Rebuilt for 21st Century Astronomy
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2016-01-01
At the start of this decade, the Very Large Array underwent a transformative upgrade. While retaining its original 27 antennas, the signal transmission and processing systems, originally developed and built in the 1970s, have been replaced with state of the art wideband receivers and a new data transmission system, as well as one of the most powerful correlators yet built. With a ten-fold increase in continuum sensitivity, up to 4 million frequency channels and complete frequency coverage from 1-50 GHz, the resulting increase in capability and versatility is analogous to the transition from photographic plate to CCD technology that revolutionized optical astronomy in the 1980s. Post upgrade, the Jansky VLA will be the most sensitive radio interferometer in the world for this decade, probing the sub-uJy radio sky for the first time, and will remain the most versatile, frequency-agile radio telescope for the foreseeable future. Underscoring this versatility, is the VLA's capability to trace both thermal and non-thermal emission over a wide range of spatial, time and velocity resolution. At the highest frequencies, this includes imaging cool gas in high redshift galaxies and dusty disks in nearby protoplanetary systems, while at the lowest frequencies tracing AGN activity and star formation back to the epoch of reionization. In the time domain, the VLA can respond to external triggers within 15 minutes to provide an instantaneous broadband radio spectrum of explosive events. I will review some of the exciting science emerging from the Jansky VLA as well as the range of science-ready data products that will make the VLA increasingly accessible to the wider astronomical community. Finally, I will briefly introduce the new VLA Sky Survey (VLASS), a community-driven project to image 80% of the sky over multiple epochs with the VLA, reaching a depth of ~70 uJy and detecting ~10 million radio sources at high spatial and spectral resolution with full polarization information.
Martín-Carrasco, Pablo; Bernabeu-Wittel, José; Dominguez-Cruz, Javier; Zulueta Dorado, Teresa; Conejo-Mir Sanchez, Julian
2017-05-01
Desmoplastic giant congenital melanocytic nevus (DGCN) is an uncommon variant of congenital nevus, presenting as a progressive induration and hypopigmentation of the lesion that occasionally causes hair loss and even total or partial disappearance of the nevus. A 6-month-old girl with a giant congenital melanocytic nevus that involved the entire posterior side of the right thigh was seen in our department. Nine months later, the peripheral area of the nevus presented as a marked induration with hypopigmentation. Dermoscopy demonstrated a reticular pattern exclusively located in the perifollicular areas, with a radial distribution from the follicular ostium that mimicked a "sky full of stars." We report a case of DGCN, including a dermoscopic description of the findings noted in the indurated and hypopigmented areas that appear as a "sky full of stars" image. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Thorne, Ben; Alonso, David; Naess, Sigurd; Dunkley, Jo
2017-04-01
PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs
The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities
NASA Technical Reports Server (NTRS)
Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.
1989-01-01
The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.
NEMESIS: Near Encounters with M-dwarfs from an Enormous Sample and Integrated Simulations
NASA Astrophysics Data System (ADS)
Bochanski, John J.; Sanderson, R. E.; West, A. A.; Burgasser, A. J.
2011-01-01
The latest spectroscopic catalog of M dwarfs identified in the Sloan Digital Sky Survey provides radial velocities, proper motions and distances for nearly 40,000 low-mass stars. Using the full 6D phase space coverage and a realistic Galactic potential, we calculated orbits for each star in the sample. The sample consists of stars from both the thin and thick disks, and the orbital properties between the two groups are compared. We also examine trends in orbital properties with spectroscopic features, such as Balmer emission and molecular bands, that should correlate with age. In addition, we have identified a number of stars that will pass very close to the Sun within the next 1000 Myrs. These stars form the "Nemesis" family of orbits. Potential encounters with these stars could have a significant impact on orbits of Oort Cloud and Kuiper Belt members as well as the planets. We comment on the probability of a catastrophic encounter within the next 1000 Myrs.
High Resolution Spectrograph for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Tull, R. G.; MacQueen, P. J.; Good, J.; Epps, H. W.; HET HRS Team
1998-12-01
A fiber fed high-resolution spectrograph (HRS) is under construction for the Hobby-Eberly Telescope (HET). The primary resolving power originally specified, from astrophysical considerations, was R = 60,000 with a fiber of diameter at least 1 arc-second, with full spectral coverage limited only by the combined band-pass of the HET, the optical fiber, and the image detector. This was achieved in the final design with a high blaze angle R-4 echelle mosaic, white pupil design, image slicing, and a large area CCD mosaic illuminated by an eight element refractive camera. Two back-to-back, user selectable first-order diffraction gratings are employed for cross dispersion, to separate echelle spectral orders; the entire spectral range (420 - 1,000 nm) can be covered in as few as two exposures. Critical issues addressed in the design are cross dispersion and order spacing, sky subtraction, echelle and CCD selection, fiber optic feed and scrambling, and image or pupil slicing. In the final design meeting the requirements we exploited the large-area 4096 square CCD, image slicing, and the optical performance of the white-pupil design to acquire a range of 30,000 < R < 120,000 with fibers of diameter 2 and 3 arc-seconds, without sacrificing full spectral coverage. Design details will be presented. Limiting magnitude is projected to be about V = 19 (for S/N = 10) at the nominal R = 60,000 resolving power. The poster display will outline performance characteristics expected in relation to projected astrophysical research capabilities outlined by Sneden et al., in this conference. HRS is supported by generous grants from NSF, NASA, the State of Texas, and private philanthropy, with matching funds granted by the University of Texas and by McDonald Observatory.
NASA Technical Reports Server (NTRS)
Shenk, William E.; Hope, William A.
1994-01-01
The impact of time compositing on infrared profiling from geosynchronous orbit was evaluated for two convective outbreak cases. Time compositing is the accumulation of the data from several successive images taken at short intervals to provide a single field of measurements with the temporal resolution equal to the time to take all of the images. This is especially effective when the variability of the measurements is slow compared to the image interval. Time compositing should be able to reduce the interference of clouds for infrared measurments since clouds move and change. The convective outbreak cases were on 4 and 21 May 1990 over the eastern Midwest and southeastern United States, respectively. Geostationary Operational Environmental (GOES) Satellite imagery was used to outline clear areas at hourly intervals by two independent analysts. Time compositing was done every 3 h (1330-1530 UTC; 1630-1830 UTC) and over the full 5-h period. For both cases, a significant increase in coverage was measured with each 3-h compositing (about a factor of 2) and a further increase over the full period (approximately a factor of 3). The increase was especially useful in areas of broken cloud cover where large gaps between potential profiling areas on each image were reduced. To provide information on measurement variability over local areas, the regions where the clear-area analyses were done were subdivided into 0.5 deg latitude-longitude boxes, and if some portion of each box was clear, it was assumed that at least one profile could be obtained within the box. In the largest clear areas, at least some portion was clear every hour. Even in the cloudier regions, multiple clear looks possible during the entire period.
SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations
NASA Astrophysics Data System (ADS)
Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy
2008-07-01
Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools used for handling the CFHT CCD mosaics (CFH12K and MegaCam), from data pre-processing to astrometric and photometric calibration.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
B-machine polarimeter: A telescope to measure the polarization of the cosmic microwave background
NASA Astrophysics Data System (ADS)
Williams, Brian Dean
The B-Machine Telescope is the culmination of several years of development, construction, characterization and observation. The telescope is a departure from standard polarization chopping of correlation receivers to a half wave plate technique. Typical polarimeters use a correlation receiver to chop the polarization signal to overcome the 1/f noise inherent in HEMT amplifiers. B-Machine uses a room temperature half wave plate technology to chop between polarization states and measure the polarization signature of the CMB. The telescope has a demodulated 1/f knee of 5 mHz and an average sensitivity of 1.6 mK s . This document examines the construction, characterization, observation of astronomical sources, and data set analysis of B-Machine. Preliminary power spectra and sky maps with large sky coverage for the first year data set are included.
VLITE-Fast: A Real-time, 350 MHz Commensal VLA Survey for Fast Transients
NASA Astrophysics Data System (ADS)
Kerr, Matthew; Ray, Paul S.; Kassim, Namir E.; Clarke, Tracy; Deneva, Julia; Polisensky, Emil
2018-01-01
The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu) program operates commensally during all Very Large Array observations, collecting data from 320 to 384 MHz. Recently expanded to include 16 antennas, the large field of view and huge time on sky offer good coverage of the transient, low-frequency sky. We describe the VLITE-Fast system, a GPU-based signal processor capable of detecting short (<1s) transients in real time and triggering recording of baseband voltage for offline imaging. In the case of Fast Radio Bursts, this offers the opportunity for discovering host galaxies of non-repeating FRBs, and in the case of single pulses, the identification of pulsar positions for dedicated follow-up. We describe the observing system, techniques for mitigating interference, and initial results from searches for FRBs.
QUEST1 Variability Survey. III. Light Curve Catalog Update
NASA Astrophysics Data System (ADS)
Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.
2009-03-01
This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.
Photographic coverage of STS-115 Egress Training. Bldg.9NW, CTT
2002-12-03
JSC2002-02121 (3 December 2002) --- Astronaut Joseph R. (Joe) Tanner, STS-115 mission specialist, uses the Sky-genie to lower himself from a simulated trouble-plagued shuttle in an emergency egress training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Tanner is wearing a training version of the shuttle launch and entry suit. United Space Alliance (USA) crew trainer David Pogue assisted Tanner.
A Large-Telescope Natural Guide Star AO System
NASA Technical Reports Server (NTRS)
Redding, David; Milman, Mark; Needels, Laura
1994-01-01
None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.
A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application
NASA Astrophysics Data System (ADS)
Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.
2005-09-01
A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.
The Sensitivity to Trans-Neptunian Dwarf Planets of the Siding Spring Survey
NASA Astrophysics Data System (ADS)
Bannister, Michele; Brown, M. E.; Schmidt, B. P.; Francis, P.; McNaught, R.; Garrad, G.; Larson, S.; Beshore, E.
2012-10-01
The last decade has seen considerable effort in assessing the populations of icy worlds in the outer Solar System, with major surveys in the Northern and more recently, in the Southern Hemisphere skies. Our archival search of more than ten thousand square degrees of sky south of the ecliptic observed over five years is a bright-object survey, sensitive to dwarf-planet sized trans-Neptunian objects. Our innovative survey analyses observations of the Siding Spring Survey, an ongoing survey for near-Earth asteroids at the 0.5 m Uppsala telescope at Siding Spring Observatory. This survey observed each of 2300 4.55 square degree fields on between 30 and 90 of the nights from early 2004 to late 2009, creating a dataset with dense temporal coverage, which we reprocessed for TNOs with a dedicated pipeline. We assess our survey's sensitivity to trans-Neptunian objects by simulating the observation of the synthetic outer Solar System populations of Grav et al. (2011): Centaurs, Kuiper belt and scattered disk. As our fields span approx. -15 to -70 declination, avoiding the galactic plane by 10 degrees either side, we are particularly sensitive to dwarf planets in high-inclination orbits. Partly due to this coverage far from the ecliptic, all known dwarf planets, including Pluto, do fall outside our survey coverage in its temporal span. We apply the widest plausible range of absolute magnitudes to each observable synthetic object, measuring each subsequent apparent magnitude against the magnitude depth of the survey observations. We evaluate our survey's null detection of new dwarf planets in light of our detection efficiencies as a function of trans-Neptunian orbital parameter space. MTB appreciates the funding support of the Joan Duffield Postgraduate Scholarship, an Australian Postgraduate Award, and the Astronomical Society of Australia.
2009-10-30
This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html
Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor
2014-08-10
Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
Pomozi, I; Horváth, G; Wehner, R
2001-09-01
One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhang, M.; Bond, J. R.; Netterfield, C. B.
2013-07-01
We use the Bayesian estimation on direct T - Q - U cosmic microwave background (CMB) polarization maps to forecast errors on the tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of sky coverage f{sub sky}. This map-based likelihood filters the information in the pixel-pixel space into the optimal combinations needed for r detection for cut skies, providing enhanced information over a first-step linear separation into a combination of E, B, and mixed modes, and ignoring the latter. With current computational power and for typical resolutions appropriate for r detection, the large matrix inversions requiredmore » are accurate and fast. Our simulations explore two classes of experiments, with differing bolometric detector numbers, sensitivities, and observational strategies. One is motivated by a long duration balloon experiment like Spider, with pixel noise {proportional_to}{radical}(f{sub sky}) for a specified observing period. This analysis also applies to ground-based array experiments. We find that, in the absence of systematic effects and foregrounds, an experiment with Spider-like noise concentrating on f{sub sky} {approx} 0.02-0.2 could place a 2{sigma}{sub r} Almost-Equal-To 0.014 boundary ({approx}95% confidence level), which rises to 0.02 with an l-dependent foreground residual left over from an assumed efficient component separation. We contrast this with a Planck-like fixed instrumental noise as f{sub sky} varies, which gives a Galaxy-masked (f{sub sky} = 0.75) 2{sigma}{sub r} Almost-Equal-To 0.015, rising to Almost-Equal-To 0.05 with the foreground residuals. Using as the figure of merit the (marginalized) one-dimensional Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives -2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider (+ Planck); this compares with up to -11 bits for CMBPol, COrE, and PIXIE post-Planck satellites and -13 bits for a perfectly noiseless cosmic variance limited experiment. We thus confirm the wisdom of the current strategy for r detection of deeply probed patches covering the f{sub sky} minimum-error trough with balloon and ground experiments.« less
Artificial light alters natural regimes of night-time sky brightness
Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.
2013-01-01
Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.
[The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].
Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao
2014-11-01
At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.
48 CFR 9903.304 - Concurrent full and modified coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modified coverage. 9903.304 Section 9903.304 Federal Acquisition Regulations System COST ACCOUNTING... AND COST ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Rules and Regulations 9903.304 Concurrent full and... may compel the use of cost accounting practices that are not required under modified coverage. Under...
NASA Astrophysics Data System (ADS)
Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen
2018-05-01
In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.
VizieR Online Data Catalog: HerMES Large Mode Survey catalogue (Asboth+, 2016)
NASA Astrophysics Data System (ADS)
Asboth, V.; Conley, A.; Sayers, J.; Bethermin, M.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Farrah, D.; Glenn, J.; Golwala, S. R.; Halpern, M.; Ibar, E.; Ivison, R. J.; Maloney, P. R.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Perez-Fournon, I.; Riechers, D. A.; Rowan-Robinson, M.; Scott, D.; Siegel, S. R.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Wheeler, J.
2018-01-01
The HerMES Large Mode Survey (HeLMS) consists of a large area shallow observation of an equatorial field at wavelengths of 250, 350 and 500um, obtained using the SPIRE aboard the Herschel Space Observatory. HeLMS is an extension of HerMES (Oliver et al., 2012MNRAS.424.1614O, Cat. VIII/95 and VIII/103), a 'wedding cake' type survey containing small and deep maps and larger shallower observations of different fields. HeLMS covers about 302deg2 of the sky, making it the largest area observed in the HerMES. The HeLMS field spans 23h14m
SPACE: the SPectroscopic, All-Sky Cosmic Explorer
NASA Technical Reports Server (NTRS)
Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. W. V.; Content, R.; Daddi, E.; deLucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.;
2007-01-01
We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 < z < 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 < z < l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.
Pathfinder, Volume 7, Number 5, September/October 2009. Charting the Sea and Sky
2009-10-01
During the six-month season, ski-equipped LC-130s, the polar version of the C-130 Hercules transport plane, flew more than 8.7 million pounds of...collaborate closely with the Space and Naval Warfare Systems Command (SPAWAR), Office of Polar Programs; the Federal Avia- tion Administration (FAA...only worldwide vector chart coverage. Recently, the Navy implemented polar navigation using NGA charts and is now capable of true worldwide digital
Time Domain Astronomy with the Harvard Plates: from Cepheids to DASCH
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.
2014-06-01
The ~500,000 Harvard glass plate photographic negatives are the world’s largest and most complete (full sky; 107y time span) database for Time Domain Astronomy (TDA) on days-months-decades to century timescales. With plate fields of view ranging from 3o - 30o exposed quasi-randomly full sky from 1885 - 1992, any object is observed ~1000 - 3000 times, with limiting magnitudes ranging from B =12-18. I briefly review some of the colorful history of this massive plate-taking project and a few of the pivotal discoveries (e.g. the “Leavitt Law” for the Cepheid Period-Luminosity relation) made by visual studies of the plates by the true TDA pioneers, the likely <300 different visual users of the plates. I then describe our Digital Access to a Sky Century @ Harvard (DASCH) project to fully digitize and reduce this wealth of data 1 Pb) and provide it on spinning disk to the full astronomical community and public. Using the full-sky APASS catalog giving BVR magnitudes (for V ~9-17) as well as GSC2.3.2 for both fainter and brighter stars, DASCH does spatially resolved (0.25o -0.6o bins) photometric calibrations to derive B magnitudes with rm 0.1mag over the full plate and over the (typically) ~6-8 different principal plate series (telescopes and plate scales) covering any given object, along with ~0.3-1 arcsec astrometry (depending on plate scale) for each stellar object averaged over ~1year. The high speed/precision scanner, plate processing, and analysis pipeline have now enabled the first data releases (DR1-DR3) of 12 to cover full sky and already enabled a wealth of new discoveries. I describe a few examples, such as: K2III giants with decadal variations; a new class of Symbiotic novae; ~50-100y recurrence times for black hole X-ray binary outbursts; and QPOs from 3C273. The DASCH data are increasingly available 15% now; 100% in 3.5y) for TDA on largely unexplored timescales. We are grateful to NSF for support with grants AST-0407380, AST-0909073 and AST-1313370.
The Mushroom: A half-sky energetic ion and electron detector
NASA Astrophysics Data System (ADS)
Hill, M. E.; Mitchell, D. G.; Andrews, G. B.; Cooper, S. A.; Gurnee, R. S.; Hayes, J. R.; Layman, R. S.; McNutt, R. L.; Nelson, K. S.; Parker, C. W.; Schlemm, C. E.; Stokes, M. R.; Begley, S. M.; Boyle, M. P.; Burgum, J. M.; Do, D. H.; Dupont, A. R.; Gold, R. E.; Haggerty, D. K.; Hoffer, E. M.; Hutcheson, J. C.; Jaskulek, S. E.; Krimigis, S. M.; Liang, S. X.; London, S. M.; Noble, M. W.; Roelof, E. C.; Seifert, H.; Strohbehn, K.; Vandegriff, J. D.; Westlake, J. H.
2017-02-01
We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of which (ideally eight) compose a full instrument. Most of the sensor head's volume is an empty, equipotential region, resulting in the modest 250 g mass of each 10-aperture wedge. The Mushroom is capable of separating ion species across most of its energy range and angular field of view. For example, separation of the neighboring 3He and 4He isotopes is excellent; the full width at half maximum mass resolution has been measured to be 0.24 amu to 0.32 amu, respectively. Converting this to a Gaussian width σm in mass m, this represents a σm/m mass resolution better than 0.04. This separation is highly desirable for the flight program for which the first Mushroom was built, the Solar Probe Plus mission. More generally, we estimate the mass resolution to be σm/m ≈ 0.1, but this is energy, mass, and angularly dependent. We also discuss the solid-state detector stack capability, which extends the energy range of protons and helium, with composition, to 100 MeV.
Fermi (Formerly GLAST) at Six Months
NASA Technical Reports Server (NTRS)
Ritz, Steven M.
2009-01-01
The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
Fermi (nee GLAST) at Six Months
NASA Technical Reports Server (NTRS)
Ritz, Steve
2009-01-01
The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
STEREO TRansiting Exoplanet and Stellar Survey (STRESS) - I. Introduction and data pipeline
NASA Astrophysics Data System (ADS)
Sangaralingam, Vinothini; Stevens, Ian R.
2011-12-01
The Solar TErrestrial RElations Observatory (STEREO) is a system of two identical spacecraft in heliocentric Earth orbit. We use the two heliospheric imagers (HI), which are wide-angle imagers with multibaffle systems, to perform high-precision stellar photometry in order to search for exoplanetary transits and understand stellar variables. The large cadence (40 min for HI-1 and 2 h for HI-2), high precision, wide magnitude range (R mag: 4-12) and broad sky coverage (nearly 20 per cent for HI-1A alone and 60 per cent of the sky in the zodiacal region for all instruments combined) of this instrument place it in a region left largely devoid by other current projects. In this paper, we describe the semi-automated pipeline devised for reduction of the data, some of the interesting characteristics of the data obtained and data-analysis methods used, along with some early results.
A Survey For TNOs Using the APS POSS I Database
NASA Astrophysics Data System (ADS)
Rhoads, E.
2005-05-01
The digitized first epoch Palomar Observatory Sky Survey (POSS I) was an ideal and unused archive for the purpose of data mining Trans-Neptunian Objects (TNOs). When accounting for overlap in TNO phase space and the area of the plates covered by stars and galaxies, the effective sky coverage area for this search was 4931 square degrees for Plutinos, and 4992 square degrees for classical TNOs. Using constraints based on the properties of known TNOs, computer codes were used to separate TNO candidates from millions of stars and galaxies. Lists of possible TNO, Centaur, and asteroid candidates were created. The results of this survey yielded 17 reliable TNOs and TNO candidates, including Pluto, Quaoar, and Varuna. In addition to the TNOs, 27 Centaur and 29 Asteroid candidates were found. The TNO Quaoar was pre-covered, and the Main Belt Asteroid (395) Delia was also recovered.
The Palomar Transient Factory: Introduction and Data Release
NASA Astrophysics Data System (ADS)
Surace, Jason Anthony
2015-08-01
The Palomar Transient Factory (PTF) is a synoptic sky survey in operation since 2009. PTF utilizes a 7.1 square degree camera on the Palomar 48-inch Schmidt telescope to survey the sky primarily at a single wavelength (R-band) at a rate of 1000-3000 square degrees a night, to a depth of roughly 20.5. The data are used to detect and study transient and moving objects such as gamma ray bursts, supernovae and asteroids, as well as variable phenomena such as quasars and Galactic stars. The data processing system handles realtime processing and detection of transients, solar system object processing, high photometric precision processing and light curve generation, and long-term archiving and curation. Although a significant scientific installation in of itself, PTF also serves as the prototype for our next generation project, the Zwicky Transient Facility (ZTF). Beginning operations in 2017, ZTF will feature a 50 square degree camera which will enable scanning of the entire northern visible sky every night. ZTF in turn will serve as a stepping stone to the Large Synoptic Survey Telescope (LSST).We announce the availability of the second PTF public data release, which includes epochal images and catalogs, as well as deep (coadded) reference images and associated catalogs, for the majority of the northern sky. The epochal data span the time period from 2009 through 2012, with various cadences and coverages, typically in the tens or hundreds for most points on the sky. The data are available through both a GUI and software API portal at the Infrared Processing and Analysis Center at Caltech. The PTF and current iPTF projects are multi-partner multi-national collaborations.
New Horizons Alice sky Lyman-α at Pluto encounter: Importance for photochemistry
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Gladstone, R.; Stern, S. A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Cheng, A. F.; Greathouse, T.; Kammer, J.; Linscott, I.; Parker, A. H.; Parker, J. W.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Strobel, D. F.; Summers, M. E.; Tsang, C.; Tyler, G. L.; Versteeg, M.; Woods, W. W.; Ennico Smith, K.; Hinson, D. P.; Pryor, W. R.; Cunningham, N. J.; Curdt, W.
2015-12-01
The third zone of our solar system, including the Pluto system, has a unique illumination environment at UV wavelengths. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of illumination by Interplanetary Medium (IPM) Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al. 2015). The Pluto-Alice UV imaging spectrograph on New Horizons conducted several dedicated sky scans to measure the IPM Lyman-α both en route to and while at Pluto. These scans provide 6° by 360° great-circle swaths while spinning the spacecraft. Three sets of scans conducted en route are reported in Gladstone et al. (2012). During the Pluto encounter, sets of scans with six such swaths evenly spaced ~30° apart for all-sky coverage were obtained just before closest approach and again just after. These measurements agree well with brightness variations expected for IPM brightnesses peaking in the sunward direction and interspersed with detections of UV bright stars and other sky features. Previous studies estimated contributions of ~2/3rds direct solar Lyα and 1/3rd IPM Lyα. Our early results suggest that these model predictions need revision. These findings have important implications for determining the rates of photochemical reactions within Pluto's atmosphere that are driven by UV photons at 121.6 nm. Similarly, new constraints are provided to the rates of photolysis on Charon's polar winter nightside. These constraints are useful for understanding the volatile transport and long-term stability of the dark red region near Charon's pole discovered by New Horizons.
Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection
Brauer, Michael; Henderson, Sarah B.
2013-01-01
Background: Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. Objectives: We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. Methods: We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. Results: We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. Conclusions: BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection. Citation: Yao J, Brauer M, Henderson SB. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect 121:1142–1147; http://dx.doi.org/10.1289/ehp.1306768 PMID:23906969
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks.
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-06-06
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-01-01
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions. PMID:28587304
Planck 2015 results. XV. Gravitational lensing
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.
NASA Technical Reports Server (NTRS)
Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.
2014-01-01
The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion.
CFHT's SkyProbe: a real-time sky-transparency monitor
NASA Astrophysics Data System (ADS)
Cuillandre, Jean-Charles; Magnier, Eugene A.; Isani, Sidik; Sabin, Daniel; Knight, Wiley; Kras, Simon; Lai, Kamson
2002-12-01
We have developed a system at the Canada-France-Hawaii Telescope (CFHT), SkyProbe, which allows for the direct measurement of the true attenuation by clouds once per minute, within a percent, directly on the field pointed by the telescope. It has been possible to make this system relatively inexpensively due to the low-cost CCD cameras from the amateur market. A crucial addition to this hardware is the quite recent availability of a full-sky photometry catalog at the appropriate depth: the Tycho catalog, from the Hipparcos mission. The central element is the automatic data analysis pipeline developed at CFHT, Elixir, for the improved operation of the CFHT wide-field imagers, CFH12K and MegaCam. SkyProbe"s FITS images are processed in real-time and the pipeline output (a zero point attenuation) provides the current sky transmission to the observers and helps immediate decision making. These measurements are also attached to the archived data, adding a key criteria for future use by other astronomers.
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.
2014-01-01
The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile downloading), with related tools, from the author web site " http://dolomiti.pha.jhu.edu/uvsky "
The impact of the 2007-2009 recession on workers' health coverage.
Fronstin, Paul
2011-04-01
IMPACT OF THE RECESSION: The 2007-2009 recession has taken its toll on the percentage of the population with employment-based health coverage. While, since 2000, there has been a slow erosion in the percentage of individuals under age 65 with employment-based health coverage, 2009 was the first year in which the percentage fell below 60 percent, and marked the largest one-year decline in coverage. FEWER WORKERS WITH COVERAGE: The percentage of workers with coverage through their own job fell from 53.2 percent in 2008 to 52 percent in 2009, a 2.4 percent decline in the likelihood that a worker has coverage through his or her own job. The percentage of workers with coverage as a dependent fell from 17 percent in 2008 to 16.3 percent in 2009, a 4.5 percent drop in the likelihood that a worker has coverage as a dependent. These declines occurred as the unemployment rate increased from an average of 5.8 percent in 2008 to 9.3 percent in 2009 (and reached a high of 10.1 percent during 2009). FIRM SIZE/INDUSTRY: The decline in the percentage of workers with coverage from their own job affected workers in private-sector firms of all sizes. Among public-sector workers, the decline from 73.4 percent to 73 percent was not statistically significant. Workers in all private-sector industries experienced a statistically significant decline in coverage between 2008 and 2009. HOURS WORKED: Full-time workers experienced a decline in coverage that was statistically significant while part-time workers did not. Among full-time workers, those employed full year experienced a statistically significant decline in coverage from their own job. Those employed full time but for only part of the year did not experience a statistically significant change in coverage. Among part-time workers, those employed full year experienced a statistically significant increase in the likelihood of having coverage in their own name, as did part-time workers employed for only part of the year. ANNUAL EARNINGS: The decline in the percentage of workers with coverage through their own job was limited to workers with lower annual earnings. Statistically significant declines were not found among any group of workers with annual earnings of at least $40,000. Workers with a high school education or less experienced a statistically significant decline in the likelihood of having coverage. Neither workers with a college degree nor those with a graduate degree experienced a statistically significant decline in coverage through their own job. Workers of all races experienced statistically significant declines in coverage between 2008 and 2009. Both men and women experienced a statistically significant decline in the percentage with health coverage through their own job. IMPACT OF STRUCTURAL CHANGES TO THE WORK FORCE: The movement of workers from the manufacturing industry to the service sector continued between 2008 and 2009. The percentage of workers employed on a full-time basis decreased while the percentage working part time increased. While there was an overall decline in the percentage of full-time workers, that decline was limited to workers employed full year. The percentage of workers employed on a full-time, part-year basis increased between 2008 and 2009. The distribution of workers by annual earnings shifted from middle-income workers to lower-income workers between 2008 and 2009.
Inequalities in full immunization coverage: trends in low- and middle-income countries
Barros, Aluísio JD; Wong, Kerry LM; Johnson, Hope L; Pariyo, George; França, Giovanny VA; Wehrmeister, Fernando C; Victora, Cesar G
2016-01-01
Abstract Objective To investigate disparities in full immunization coverage across and within 86 low- and middle-income countries. Methods In May 2015, using data from the most recent Demographic and Health Surveys and Multiple Indicator Cluster Surveys, we investigated inequalities in full immunization coverage – i.e. one dose of bacille Calmette-Guérin vaccine, one dose of measles vaccine, three doses of vaccine against diphtheria, pertussis and tetanus and three doses of polio vaccine – in 86 low- or middle-income countries. We then investigated temporal trends in the level and inequality of such coverage in eight of the countries. Findings In each of the World Health Organization’s regions, it appeared that about 56–69% of eligible children in the low- and middle-income countries had received full immunization. However, within each region, the mean recorded level of such coverage varied greatly. In the African Region, for example, it varied from 11.4% in Chad to 90.3% in Rwanda. We detected pro-rich inequality in such coverage in 45 of the 83 countries for which the relevant data were available and pro-urban inequality in 35 of the 86 study countries. Among the countries in which we investigated coverage trends, Madagascar and Mozambique appeared to have made the greatest progress in improving levels of full immunization coverage over the last two decades, particularly among the poorest quintiles of their populations. Conclusion Most low- and middle-income countries are affected by pro-rich and pro-urban inequalities in full immunization coverage that are not apparent when only national mean values of such coverage are reported. PMID:27821882
Pan-STARRS1: Status, Science, and Public Data Release
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2013-01-01
PS1, the Pan-STARRS1 Telescope is entering its third year of operations. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The PS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered most of the sky north of dec=-30 with 8 to 10 visits in five bands: g,r,i,z and y or over ~45 epochs per point on sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the surveys will be presented as well as progress in reprocessing of the data taken to date and plans for serving the data to the public. A summary of science highlights will be included. The PS1 Science Consortium consists of The Institute for Astronomy at the University of Hawai'i in Manoa, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, the University of Durham, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Los Cumbres Observatory Global Telescope Network Incorporated, and the National Central University of Taiwan, NASA, and NSF.
The PS1 Science Mission - Status and Results
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2013-06-01
PS1, the Pan-STARRS1 Telescope is in its last year of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The PS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with 8 to 12 visits in five bands: g,r,i,z and y or over ~45 epochs per point on sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the surveys will be presented as well as progress in reprocessing of the data taken to date and plans for serving the data to the public. A summary of science highlights will be included. The PS1 Science Consortium consists of The Institute for Astronomy at the University of Hawai'i in Manoa, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, the University of Durham, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Los Cumbres Observatory Global Telescope Network Incorporated, and the National Central University of Taiwan, NASA, and NSF.
Spectroscopic and Photometric Survey of Northern Sky for the ESA PLATO space mission
NASA Astrophysics Data System (ADS)
Ženovienė, Renata; Bagdonas, Vilius; Drazdauskas, Arnas; Janulis, Rimvydas; Klebonas, Lukas; Mikolaitis, Šarūnas; Pakštienė, Erika; Tautvaišienė, Gražina
2018-04-01
The ESA-PLATO 2.0 mission will perform an in-depth analysis of the large part of the sky-sphere searching for extraterrestrial telluric-like planets. At the Molėtai Astronomical Observatory of Vilnius University, we started a spectroscopic and photometric survey of the northern sky fields that potentially will be targeted by the PLATO mission. We aim to contribute in developing the PLATO input catalogue by delivering a long-duration stellar variability information and a full spectroscopic characterization of brightest targets. First results of this survey are overviewed.
Microwave Sky image from the WMAP Mission
NASA Technical Reports Server (NTRS)
2005-01-01
A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html
Long-term individual recovery for the IRAS mission
NASA Technical Reports Server (NTRS)
Lau, C. O.; Wolff, D. M.
1984-01-01
IRAS (Infrared Astronomical Satellite) was launched on January 25, 1983 with the primary purpose of performing an infrared survey of the entire celestial sphere. Holes were left in the main survey when some areas received less than the minimum 2-layer coverage. A second survey filled in many of these holes; however, many still required long-term individual recovery. The result was a smooth survey with 96 percent of the sky covered to the desired depth of 2 or more layers.
An analysis of the least-squares problem for the DSN systematic pointing error model
NASA Technical Reports Server (NTRS)
Alvarez, L. S.
1991-01-01
A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.
Maser radiometer for cosmic background radiation anisotropy measurements
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Wilkinson, D. T.
1982-01-01
A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.
Measuring night sky brightness: methods and challenges
NASA Astrophysics Data System (ADS)
Hänel, Andreas; Posch, Thomas; Ribas, Salvador J.; Aubé, Martin; Duriscoe, Dan; Jechow, Andreas; Kollath, Zoltán; Lolkema, Dorien E.; Moore, Chadwick; Schmidt, Norbert; Spoelstra, Henk; Wuchterl, Günther; Kyba, Christopher C. M.
2018-01-01
Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earth's atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the "Sky Quality Meter" continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.
Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Asgari, Marika; Taylor, Andy; Joachimi, Benjamin; Kitching, Thomas D.
2018-05-01
We investigate the use of estimators of weak lensing power spectra based on a flat-sky implementation of the 'Pseudo-CI' (PCl) technique, where the masked shear field is transformed without regard for masked regions of sky. This masking mixes power, and 'E'-convergence and 'B'-modes. To study the accuracy of forward-modelling and full-sky power spectrum recovery we consider both large-area survey geometries, and small-scale masking due to stars and a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey geometry is sparsely-sampled and highly oscillatory, which makes modelling problematic. Instead, we derive an overall calibration for large-area mask bias using simulated fields. The effects of small-area star masks can be accurately corrected for, while the checkerboard mask has oscillatory and spiky behaviour which leads to percent biases. Apodisation of the masked fields leads to increased biases and a loss of information. We find that we can construct an unbiased forward-model of the raw PCls, and recover the full-sky convergence power to within a few percent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating this through to cosmological parameters using a Fisher-Matrix formalism, we find we can make unbiased estimates of parameters for surveys up to 1,200 deg2 with 30 galaxies per arcmin2, beyond which the percent biases become larger than the statistical accuracy. This implies a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will require higher accuracy.
Detection of a stellar flare at extreme ultraviolet wavelengths
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Denby, M.; Pye, J. P.; Pankiewicz, G. S.; Bromage, G. E.; Gonzalez-Riestra, R.
1991-01-01
During the all-sky survey conducted by the Rosat Wide Field Camera, the binary flare star system BY Draconis was monitored with coverage by the IUE satellite far-UV and optical observations and by the Rosat X-ray telescope for part of the time. A stellar flare was detected in all four wavebands. This is the first unambiguous EUV detection of a flare and one of the widest simultaneous wavelength-range coverages obtained. The peak luminosity and total energy of this flare in the photon energy range 0.08-0.18 keV are comparable with the values obtained for a number of flares integrated over a larger energy range by Exosat satellite observations in 1983-86. It is concluded that radiation in the EUV carries away a substantial fraction of the total flare energy.
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Aylor, K.; Benson, B. A.
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. Here, we first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find that the three cross-spectra are well fit (PTE =more » 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter—i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Lastly, the consistency of cosmological parameters derived from these data sets is discussed in a companion paper.« less
THE 31 DEG{sup 2} RELEASE OF THE STRIPE 82 X-RAY SURVEY: THE POINT SOURCE CATALOG
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaMassa, Stephanie M.; Urry, C. Megan; Ananna, Tonima
We release the next installment of the Stripe 82 X-ray survey point-source catalog, which currently covers 31.3 deg{sup 2} of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6181 unique X-ray sources are significantly detected with XMM-Newton (>5σ) and Chandra (>4.5σ). This catalog release includes data from XMM-Newton cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7 × 10{sup −16} erg s{sup −1} cm{sup −2}, 4.7 × 10{sup −15} erg s{sup −1} cm{sup −2}, and 2.1 × 10{sup −15} erg s{sup −1} cm{sup −2} in the soft (0.5–2 keV), hardmore » (2–10 keV), and full bands (0.5–10 keV), respectively, with approximate half-area survey flux limits of 5.4 × 10{sup −15} erg s{sup −1} cm{sup −2}, 2.9 × 10{sup −14} erg s{sup −1} cm{sup −2}, and 1.7 × 10{sup −14} erg s{sup −1} cm{sup −2}. We matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared WISE coverage, near-infrared coverage from UKIDSS and VISTA Hemisphere Survey, ultraviolet coverage from GALEX, radio coverage from FIRST, and far-infrared coverage from Herschel, as well as existing ∼30% optical spectroscopic completeness, we are beginning to uncover rare objects, such as obscured high-luminosity active galactic nuclei at high-redshift. The Stripe 82X point source catalog is a valuable data set for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live.« less
A Hybrid Memetic Framework for Coverage Optimization in Wireless Sensor Networks.
Chen, Chia-Pang; Mukhopadhyay, Subhas Chandra; Chuang, Cheng-Long; Lin, Tzu-Shiang; Liao, Min-Sheng; Wang, Yung-Chung; Jiang, Joe-Air
2015-10-01
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan
We propose to complete our development of the High Resolution Energetic X-ray Imager (HREXI) and to build and test a full Engineering Model of a detector and telescope system for a 12U Cubesat that will be proposed for a test flight. This will enable a future SMEX (or MIDEX) proposal for a 4piXIO mission: a constellation of Cubesats (or Smallsats) that would dramatically increase the sensitivity, source location precision and especially number of Gamma Ray Bursts (GRBs) to explore the Early Universe. Over the past two years of our current APRA grant, we have developed the world's first (to our knowledge) readout of a high-level imaging detector that is entirely three dimensional so that imaging detectors can then be tiled in close-packed arrays of arbitrary total area. This important new technology is achieved by replacing the external lateral readout of an ASIC, which reads out data from (for example) a 2 x 2 cm imaging detector through "wire bonds" to external circuits in the same plane but beyond the detector, with a vertical readout through the ASIC itself to external circuits directly below. This new technology greatly simplifies the assembly of the large area, tiled arrays of such detectors and their readout ASICs used for coded aperture wide-field telescopes that are uniquely able to discover and study X-ray (and low energy gamma-ray) transients and bursts that are key to understanding the physics and evolution of black holes. The first actual fabrication of such 3D-readout of close-tiled HREXI imaging detectors is underway and will be demonstrated in this third and final year of the current APRA grant. This proposal takes the HREXI detector concept a major step further. By incorporating this technology into the design and fabrication of a complete Engineering Model of a HREXI detector and coded aperture telescope that would fit, with comfortable margins, in a 12U Cubesat, it opens the way for a future low-cost constellation of 25 such 12U Cubesats to achieve the first full-sky, full-time imaging survey for Gamma-ray Bursts (GRBs) and transients. The full-sky/time coverage immediately increases GRB detections by factors of 6, a significant increase in the search for GRBs from the Early Universe. The proposal will also extend the development of smaller pixel size for the required ASIC chips which will significantly improve angular resolution and make the low-cost Cubesat mission even more compelling. The science goals that a multi-satellite mission enabled by HREXI detectors for high resolution imaging over the full sky include using GRBs to trace star formation back to the very first (Pop III) stars and using flares from quasars to track the growth and evolution of supermassive black holes. Both are key NASA and PCOS science objectives. This is achieved by combining coordinated optical and IR data from a 4piXIO mission with LSST ground-based optical data as well as optical/IR spectra from a future optical-IR spectroscopy telescope in space, such as the proposed TSO probe-class mission.
Estimating the Contrail Impact on Climate Using the UK Met Office Model
NASA Astrophysics Data System (ADS)
Rap, A.; Forster, P. M.
2008-12-01
With air travel predicted to increase over the coming century, the emissions associated with air traffic are expected to have a significant warming effect on climate. According to current best estimates, an important contribution comes from contrails. However, as reported by the IPCC fourth assessment report, these current best estimates still have a high uncertainty. The development and validation of contrail parameterizations in global climate models is therefore very important. This current study develops a contrail parameterization within the UK Met Office Climate Model. Using this new parameterization, we estimate that for the 2002 traffic, the global mean annual contrail coverage is approximately 0.11%, a value which in good agreement with several other estimates. The corresponding contrail radiative forcing (RF) is calculated to be approximately 4 and 6 mWm-2 in all-sky and clear-sky conditions, respectively. These values lie within the lower end of the RF range reported by the latest IPCC assessment. The relatively high cloud masking effect on contrails observed by our parameterization compared with other studies is investigated, and a possible cause for this difference is suggested. The effect of the diurnal variations of air traffic on both contrail coverage and contrail RF is also investigated. The new parameterization is also employed in thirty-year slab-ocean model runs in order to give one of the first insights into contrail effects on daily temperature range and the climate impact of contrails.
CERES Monthly Gridded Single Satellite Fluxes and Clouds (FSW) in HDF (CER_FSW_TRMM-PFM-VIRS_Beta1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)
The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)
The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)
The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
The Swift/BAT Hard X-Ray Survey
NASA Technical Reports Server (NTRS)
Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.
2006-01-01
The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.
Imaging and mapping the impact of clouds on skyglow with all-sky photometry.
Jechow, Andreas; Kolláth, Zoltán; Ribas, Salvador J; Spoelstra, Henk; Hölker, Franz; Kyba, Christopher C M
2017-07-27
Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5 km distance from the town on the clear night, similar levels are only reached at 27 km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.
Properties of Spectrally Defined Red QSOs at z = 0.3–1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw
We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOsmore » with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.« less
On the Detectability of Planet X with LSST
NASA Astrophysics Data System (ADS)
Trilling, David E.; Bellm, Eric C.; Malhotra, Renu
2018-06-01
Two planetary mass objects in the far outer solar system—collectively referred to here as Planet X— have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptionally faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18000 deg2), deep (limiting magnitude of individual frames of 24.5) survey (the “wide-fast-deep (WFD)” survey) of the southern sky beginning in 2022, and it will therefore be an important tool in searching for these hypothesized planets. Here, we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the WFD survey plus additional coverage), we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to ∼75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a nondetection of Planet X in LSST data.
Kulik, Alexander; Desai, Nihar R; Shrank, William H; Antman, Elliott M; Glynn, Robert J; Levin, Raisa; Reisman, Lonny; Brennan, Troyen; Choudhry, Niteesh K
2013-09-10
Eliminating out-of-pocket costs for patients after myocardial infarction (MI) improves adherence to preventive therapies and reduces clinical events. Because adherence to medical therapy is low among patients treated with coronary artery bypass graft surgery (CABG), we evaluated the impact of providing full prescription coverage to this patient subgroup. The MI Free Rx Event and Economic Evaluation (FREEE) trial randomly assigned 5855 patients with MI to full prescription coverage or usual formulary coverage for all statins, β-blockers, angiotensin-converting enzyme inhibitors, or angiotensin receptor blockers. We assessed the impact of full prescription coverage on adherence, clinical outcomes, and healthcare costs using adjusted models among the 1052 patients who underwent CABG at the index hospitalization and 4803 who did not. CABG patients were older and had more comorbid illness (P<0.01). After MI, CABG patients were significantly more likely to receive β-blockers and statins but were less likely to receive angiotensin-converting enzyme inhibitor/angiotensin receptor blocker therapy (P<0.01). Receiving full drug coverage increased rates of adherence to all preventative medications after CABG (all P<0.05). Full coverage was also associated with nonsignificant reductions in the rate of major vascular events or revascularization for patients treated with CABG (hazard ratio, 0.91; 95% confidence interval, 0.66-1.25) or without CABG (hazard ratio, 0.93; 95% confidence interval, 0.82-1.06), with no interaction noted (Pint=NS). After CABG, full prescription coverage significantly reduced patient out-of-pocket spending for drugs (P=0.001) without increasing overall health expenditures (P=NS). Eliminating drug copayments after MI provides consistent benefits to patients treated with or without CABG, leading to increased medication adherence, trends toward improved clinical outcomes, and reduced patient out-of-pocket expenses.
Choudhry, Niteesh K.; Patrick, Amanda R.; Antman, Elliott M.; Avorn, Jerry; Shrank, William H.
2009-01-01
Background Effective therapies for the secondary prevention of coronary heart disease–related events are significantly underused, and attempts to improve adherence have often yielded disappointing results. Elimination of patient out-of-pocket costs may be an effective strategy to enhance medication use. We sought to estimate the incremental cost-effectiveness of providing full coverage for aspirin, β-blockers, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, and statins (combination pharmacotherapy) to individuals enrolled in the Medicare drug benefit program after acute myocardial infarction. Methods and Results We created a Markov cost-effectiveness model to estimate the incremental cost-effectiveness of providing Medicare beneficiaries with full coverage for combination pharmacotherapy compared with current coverage under the Medicare Part D program. Our analysis was conducted from the societal perspective and considered a lifetime time horizon. In a sensitivity analysis, we repeated our analysis from the perspective of Medicare. In the model, post–myocardial infarction Medicare beneficiaries who received usual prescription drug coverage under the Part D program lived an average of 8.21 quality-adjusted life-years after their initial event, incurring coronary heart disease–related medical costs of $114 000. Those who received prescription drug coverage without deductibles or copayments lived an average of 8.56 quality-adjusted life-years and incurred $111 600 in coronary heart disease–related costs. Compared with current prescription drug coverage, full coverage for post–myocardial infarction secondary prevention therapies would result in greater functional life expectancy (0.35 quality-adjusted life-year) and less resource use ($2500). From the perspective of Medicare, full drug coverage was highly cost-effective ($7182/quality-adjusted life-year) but not cost saving. Conclusions Our analysis suggests that providing full coverage for combination therapy to post–myocardial infarction Medicare beneficiaries would save both lives and money from the societal perspective. PMID:18285564
Dark Energy Survey finds more celestial neighbors | News
Energy Survey finds more celestial neighbors August 17, 2015 icon icon icon New dwarf galaxy candidates could mean our sky is more crowded than we thought The Dark Energy Survey has now mapped one-eighth of Survey Collaboration The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region
ERIC Educational Resources Information Center
Hughes, S. W.
2009-01-01
What colour is a shadow? Black, grey, or some other colour? This article describes how to use a digital camera to test the hypothesis that a shadow under a clear blue sky has a blue tint. A white sheet of A4 paper was photographed in full sunlight and in shadow under a clear blue sky. The images were analysed using a shareware program called…
Mapping the CMB with the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary
2007-01-01
The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on.
Taking the Measure of the Universe: Cosmology from the WMAP Mission
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2007-01-01
The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.
Improved tilt sensing in an LGS-based tomographic AO system based on instantaneous PSF estimation
NASA Astrophysics Data System (ADS)
Veran, Jean-Pierre
2013-12-01
Laser guide star (LGS)-based tomographic AO systems, such as Multi-Conjugate AO (MCAO), Multi-Object AO (MOAO) and Laser Tomography AO (LTAO), require natural guide stars (NGSs) to sense tip-tilt (TT) and possibly other low order modes, to get rid of the LGS-tilt indetermination problem. For example, NFIRAOS, the first-light facility MCAO system for the Thirty Meter Telescope requires three NGSs, in addition to six LGSs: two to measure TT and one to measure TT and defocus. In order to improve sky coverage, these NGSs are selected in a so-called technical field (2 arcmin in diameter for NFIRAOS), which is much larger than the on-axis science field (17x17 arcsec for NFIRAOS), on which the AO correction is optimized. Most times, the NGSs are far off-axis and thus poorly corrected by the high-order AO loop, resulting in spots with low contrast and high speckle noise. Accurately finding the position of such spots is difficult, even with advanced methods such as matched-filtering or correlation, because these methods rely on the knowledge of an average spot image, which is quite different from the instantaneous spot image, especially in case of poor correction. This results in poor tilt estimation, which, ultimately, impacts sky coverage. We propose to improve the estimation of the position of the NGS spots by using, for each frame, a current estimate of the instantaneous spot profile instead of an average profile. This estimate can be readily obtained by tracing wavefront errors in the direction of the NGS through the turbulence volume. The latter is already computed by the tomographic process from the LGS measurements as part of the high order AO loop. Computing such a wavefront estimate has actually already been proposed for the purpose of driving a deformable mirror (DM) in each NGS WFS, to optically correct the NGS spot, which does lead to improved centroiding accuracy. Our approach, however, is much simpler, because it does not require the complication of extra DMs, which would need to be driven in open-loop. Instead, it can be purely implemented in software, does not increase the real-time computational burden significantly, and can still provide a significant improvement in tilt measurement accuracy, and therefore in sky-coverage. In this paper, we illustrate the benefit of this new tilt measurement strategy in the specific case of NFIRAOS, under various observing conditions, in comparison with the more traditional approaches that ignore the instantaneous variations of the NGS spot profiles.
The ISOPHOT 170 μm Serendipity Survey. IV. The far-infrared sky atlas
NASA Astrophysics Data System (ADS)
Stickel, M.; Krause, O.; Klaas, U.; Lemke, D.
2007-05-01
Aims:To further increase the scientific utilization of the strip scanning measurements of the ISOPHOT Serendipity Survey (ISOSS), the slew data has been assembled to a sky atlas with ≈15% sky coverage in the hitherto unobserved far-infrared wavelength band around 170 μm. Methods: The redundant information of the brightnesses at slew crossings has been used to globally rescale and homogenize the slew brightnesses, leading to significantly increased photometric accuracy and reproducibility as well as the homogeneity of the maps. The corrected slew data were mapped with a constant grid size of 22.4 arcsec and are presented in 124 maps in galactic coordinates. Results: The collection of image plates represents the ISOSS Sky Atlas, which will become available from major data archives. Exemplary scientific results are described, which show the scientific potential of the data set combined with far-infrared imaging data from previous and upcoming missions. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESAC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London. Image files (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/466/1205 and the ISO Data Archive www.iso.vilspa.esa.es/
Zhang, Wenjing; Cao, Yu; Zhang, Xuanzhe; Liu, Zejin
2015-10-20
Stable information of a sky light polarization pattern can be used for navigation with various advantages such as better performance of anti-interference, no "error cumulative effect," and so on. But the existing method of sky light polarization measurement is weak in real-time performance or with a complex system. Inspired by the navigational capability of a Cataglyphis with its compound eyes, we introduce a new approach to acquire the all-sky image under different polarization directions with one camera and without a rotating polarizer, so as to detect the polarization pattern across the full sky in a single snapshot. Our system is based on a handheld light field camera with a wide-angle lens and a triplet linear polarizer placed over its aperture stop. Experimental results agree with the theoretical predictions. Not only real-time detection but simple and costless architecture demonstrates the superiority of the approach proposed in this paper.
SkyMapper Southern Survey: First Data Release (DR1)
NASA Astrophysics Data System (ADS)
Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang
2018-02-01
We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.
Citizen Sky, IYA 2009 and What's To Come
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Henden, A.
2010-01-01
Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky is going beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. During IYA 2009 the Citizen Sky team was fully assembled, the website was developed and put online, and the first of two participant workshops was held. However, Citizen Sky does not stop or even slow down with the conclusion of IYA 2009. The project will continue to grow in the coming years. New participants are being recruited and trained as the observing phase of the project continues, a second participant workshop is planned for 2010, and the data analysis phase of the project will begin in earnest.
The Submillimeter Array – current status and future plans
NASA Astrophysics Data System (ADS)
Blundell, Raymond
2018-01-01
The current SMA receiver systems were designed in the mid-1990s and have been operating for more than fifteen years. With regular upgrades to receivers, deployment of the SWARM correlator, expansion of the IF signal transport bandwidth via improvements to the analog IF signal processing hardware, and many other enhancements, the SMA currently greatly outperforms its original specifications in terms of sensitivity, instantaneous bandwidth, and availability of observing modes such as full-Stokes polarization and dual frequency operation.We have recently started to implement a three-year instrument upgrade plan, which we are calling the wSMA. The wSMA will offer even wider bandwidth operation than the current SMA and improved sensitivity. The major subsystems that will form the wSMA include significantly improved, dual polarization receiver cartridges housed in a new cryostat; local oscillator units incorporating modern mm-wave technology; an upgraded signal transmission system; and a further expansion of the SWARM correlator. The cryostat will be cooled by a low-maintenance pulse-tube cryocooler. Two dual-polarization receiver cartridges will cover approximately the same sky frequencies as the current receiver sets; the low-band receiver will be fed by an LO unit covering 210-270 GHz, and the high-band receiver will be fed by an LO covering 280-360 GHz. With a receiver IF band of 4-20 GHz, this will enable continuous sky frequency coverage from 190 GHz to 380 GHz.Details of the upgrade plans will be presented together with a discussion of scientific opportunities afforded by this upgrade, which, once implemented, will enable the SMA to continue to produce the highest quality science throughout the next decade.
Planck 2015 results: XV. Gravitational lensing
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-09-20
Here, we present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤more » L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8Ω 0.25 m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. Finally, we also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.« less
NASA Astrophysics Data System (ADS)
Pimenta, A. A.
2009-12-01
Using ground-based measurements we investigate the occurrence of medium-scale TIDs (MSTIDs) in the OI 630 nm nightglow emission all-sky images in the Brazilian low latitudes region related with midlatitude Spread F, during over two full solar cycles. The OI 630 nm images obtained during these periods show thermospheric dark band structures (MSTIDs) in low latitudes region propagating from southeast to northwest. These dark patches moved with average speed of about 50-200 m/s. Only during low solar activity period (LSA), ascending solar activity period (ASA) and descending solar activity period the DBS occurrences were observed in the OI630 nm nightglow emission all-sky images. However, during high solar activity (HAS) we didn’t observe the DBS in the all-sky images. In addition, ionospheric data over two stations in Brazil, one at the magnetic equator (São Luís) and the other close to the southern crest of the equatorial ionization anomaly (Cachoeira Paulista) were used to study this kind of structures during high and low solar activity periods. It should be pointed out that these thermospheric/ionospheric events are not related to geomagnetic disturbed conditions. In this work, we present and discuss this phenomenon in the Brazilian sector over two full solar cycles under different solar activity conditions. A possible mechanism for generation of these dark band structures is presented.
NASA Astrophysics Data System (ADS)
Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.
2011-08-01
Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel scale of 0.15'', we found that a homogeneous survey reaching a survey population of IAB = 25.6 (10σ) with a sky coverage of ~11 000 deg2 maximizes the weak lensing FoM. The effective number density of galaxies used for WL is then ~45 gal/arcmin2, which is at least a factor of two higher than ground-based surveys. Conclusions: This study demonstrates that a full account of the observational strategy is required to properly optimize the instrument parameters and maximize the FoM of the future weak-lensing space dark energy mission.
The Mission Operations System for Wide-field Infrared Survey Explorer (WISE)
NASA Technical Reports Server (NTRS)
Heinrichsen, Ingolf H.
2006-01-01
The goal of the Wide-field Infrared Survey Explorer (WISE) mission is to perform a highly sensitive all-sky survey in 4 wavebands from 3 to 25(mu)m. Launched on a Delta II rocket into a 500km Sun-synchronous orbit in June 2009, during its 7 months of operations, WISE will acquire about 50GBytes of raw science data every day, which will be down-linked via the TDRSS relay satellite system and processed into an astronomical catalogue and image atlas. The WISE mission operations system is being implemented in collaboration between UCLA, JPL and IPAC (Caltech). In this paper we describe the challenges to manage a high data rate, cryogenic, low earth-orbit mission; maintaining safe on-orbit operations, fast anomaly recoveries (mandated by the desire to provide complete sky coverage in a limited lifetime), production and dissemination of high quality science products, given the constraints imposed by funding profiles for small space missions.
VizieR Online Data Catalog: Rotation periods of asteroids using iPTF (Chang+, 2016)
NASA Astrophysics Data System (ADS)
Chang, C.-K.; Lin, H.-W.; Ip, W.-H.; Prince, T. A.; Kulkarni, S. R.; Levitan, D.; Laher, R.; Surace, J.
2017-01-01
To explore the transient and variable sky synoptically, the PTF/iPTF employs the Palomar 48-inch Oschin Schmidt Telescope to create a field of view of ~7.26deg2 and a pixel scale of 1.01". The available filters include the Mould-R band, with which most exposures were taken, Gunn-g', and two different Hα-bands. The exposure time is fixed at 60 seconds, which can reach a median limiting magnitude of R~21mag at the 5σ level. In order to look for large super-fast rotators, we conducted five asteroid rotation-period surveys during 2014 October 29-31 and November 10-13, and 2015 January 18-19, February 20-21 and 25-26. Each survey continuously scanned six consecutive PTF fields over the ecliptic plane in the R-band, with a cadence of 10min. We ended up with a total sky coverage of ~188deg2. (3 data files).
A survey for TNOs using the APS POSS I database
NASA Astrophysics Data System (ADS)
Rhoads, E.; Humphries, R.; Woodward, C.; Larsen, J.
2004-12-01
The digitized first epoch Palomar Observatory Sky Survey (POSS I) is an ideal and unused archive for the purpose of data mining Trans-Neptunian Objects (TNOs). When accounting for overlap in TNO phase space and the area of the plates covered by stars and galaxies, the effective sky coverage area for this search was 4931 square degrees for Plutinos, and 4992 square degrees for classical TNOs. Using constraints based on the properties of known TNOs, computer codes were used to separate TNO candidates from millions of stars and galaxies. Lists of possible TNO, Centaur, and asteroid candidates were created. The results of this survey yielded 17 reliable TNOs and TNO candidates, including Pluto, Quaoar, and Varuna. In addition to the TNOs, 28 Centaur and 31 Asteroid candidates were found. The TNO Quaoar was pre-covered, and the Main Belt Asteroid (395) Delia was also recovered. I would like to thank the Minnesota Space Grant Consortium for helping to fund my research.
ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements
NASA Astrophysics Data System (ADS)
Keihänen, E.; Reinecke, M.
2012-12-01
We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/
Global communication using a constellation of low earth meridian orbits
NASA Astrophysics Data System (ADS)
Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.
1993-07-01
The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.
Ships and Maritime Targets Observation Campaigns Using Available C- and X-Band SAR Satellite
NASA Astrophysics Data System (ADS)
Velotto, Domenico; Bentes, Carlos; Lehner, Susanne
2015-04-01
Obviously, radar resolution and swath width are two very important factors when it comes to synthetic aperture radar (SAR) maritime targets detections. The dilemma of using single polarization SAR imagery with higher resolution and coverage or quad- (or dual- polarimetric) imagery with its richness of information, is still unsolved when it comes to this application.In the framework of ESA project MARISS and EU project DOLPHIN, in situ campaigns aimed at solving this dilemma have been carried out. Single and multi- polarimetric SAR data acquired by TerraSAR-X, RADARSAT-2 and COSMO-SkyMed have been acquired with close time gaps and partial coverage overlap. In this way several moving and non-moving maritime targets have been imaged with different polarization, geometry and working frequency. Available ground truth reports provided by Automatic Identification System (AIS) data, nautical chart and wind farm location are used to validate the different types of maritime targets.
Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array
NASA Astrophysics Data System (ADS)
Eastwood, Michael W.; Hallinan, Gregg
2018-05-01
21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.
CFHT's SkyProbe: True Atmospheric Attenuation Measurement in the Telescope Field
NASA Astrophysics Data System (ADS)
Cuillandre, J.-C.; Magnier, E. A.; Isani, S.; Sabin, D.; Knight, W.; Kras, S.; Lai, K.
Developed at the Canada France Hawaii Telescope (CFHT), SkyProbe is a system that allows the direct measurement of the true attenuation by clouds. This measurement is performed approximately once per min, directly on the field viewed by the telescope. It has been possible to make this system relatively inexpensively due to low cost CCD cameras available on the amateur market. A crucial addition to this hardware is the recent availability of a full-sky photometry catalog at the appropriate depth: the Tycho catalog from the Hipparcos mission. A very important element in the SkyProbe data set creation is the automatic data analysis pipeline, Elixir, developed at CFHT for the improved operation of the CFHT wide-field imagers CFH12K and MegaCam. SkyProbe's FITS images are processed in real time, and the pipeline output (a zero point attenuation) provides the current sky transmission to the observers and aids immediate decision making. These measurements are also attached to the archived data, adding a key tool for future use by other astronomers. Specific features of the detector, such as intra pixel quantum efficiency variations, must be taken into consideration since the data are strongly undersampled.
Precision calculations of the cosmic shear power spectrum projection
NASA Astrophysics Data System (ADS)
Kilbinger, Martin; Heymans, Catherine; Asgari, Marika; Joudaki, Shahab; Schneider, Peter; Simon, Patrick; Van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Köhlinger, Fabian; Kuijken, Konrad; Viola, Massimo
2017-12-01
We compute the spherical-sky weak-lensing power spectrum of the shear and convergence. We discuss various approximations, such as flat-sky, and first- and second-order Limber equations for the projection. We find that the impact of adopting these approximations is negligible when constraining cosmological parameters from current weak-lensing surveys. This is demonstrated using data from the Canada-France-Hawaii Telescope Lensing Survey. We find that the reported tension with Planck cosmic microwave background temperature anisotropy results cannot be alleviated. For future large-scale surveys with unprecedented precision, we show that the spherical second-order Limber approximation will provide sufficient accuracy. In this case, the cosmic-shear power spectrum is shown to be in agreement with the full projection at the sub-percent level for ℓ > 3, with the corresponding errors an order of magnitude below cosmic variance for all ℓ. When computing the two-point shear correlation function, we show that the flat-sky fast Hankel transformation results in errors below two percent compared to the full spherical transformation. In the spirit of reproducible research, our numerical implementation of all approximations and the full projection are publicly available within the package NICAEA at http://www.cosmostat.org/software/nicaea.
NASA Technical Reports Server (NTRS)
Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra
2017-01-01
Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.
Selby, Peter; Brosky, Gerald; Oh, Paul; Raymond, Vincent; Arteaga, Carmen; Ranger, Suzanne
2014-05-07
Many smokers find the cost of smoking cessation medications a barrier. Financial coverage for these medications increases utilization of pharmacotherapies. This study assesses whether financial coverage increases the proportion of successful quitters. A pragmatic, open-label, randomized, controlled trial was conducted in 58 Canadian sites between March 2009 and September 2010. Smokers (≥10 cigarettes/day) without insurance coverage who were motivated to quit within 14 days were randomized (1:1) in a blinded manner to receive either full coverage eligibility for 26 weeks or no coverage. Pharmacotherapies covered were varenicline, bupropion, or nicotine patches/gum. Investigators/subjects were unblinded to study group assignment after randomization and prior to choosing a smoking cessation method(s). All subjects received brief smoking cessation counseling. The primary outcome measure was self-reported 7-day point prevalence of abstinence (PPA) at week 26. Of the 1380 randomized subjects (coverage, 696; no coverage, 684), 682 (98.0%) and 435 (63.6%), respectively, were dispensed at least one smoking cessation medication dose. The 7-day PPA at week 26 was higher in the full coverage versus no coverage group: 20.8% (n = 145) and 13.9% (n = 95), respectively; odds ratio (OR) = 1.64, 95% confidence interval (CI) 1.23-2.18; p = 0.001. Urine cotinine-confirmed 7-day PPA at week 26 was 15.7% (n = 109) and 10.1% (n = 69), respectively; OR = 1.68, 95% CI 1.21-2.33; p = 0.002. After pharmacotherapy, coverage eligibility was withdrawn from the full coverage group, continuous abstinence between weeks 26 and 52 was 6.6% (n = 46) and 5.6% (n = 38), in the full coverage and no coverage groups, respectively; OR = 1.19, 95% CI 0.76-1.87; p = 0.439. In this study, the adoption of a smoking cessation medication coverage drug policy was an effective intervention to improve 26-week quit rates in Canada. The advantages were lost once coverage was discontinued. Further study is required on the duration of coverage to prevent relapse to smoking. (clinicaltrials.gov identifier: NCT00818207; the study was sponsored by Pfizer Inc.).
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
Sparse estimation of model-based diffuse thermal dust emission
NASA Astrophysics Data System (ADS)
Irfan, Melis O.; Bobin, Jérôme
2018-03-01
Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.
Barrier Coverage for 3D Camera Sensor Networks
Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-01-01
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder’s face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks. PMID:28771167
Barrier Coverage for 3D Camera Sensor Networks.
Si, Pengju; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-08-03
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder's face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks.
VizieR Online Data Catalog: Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla+ 2005)
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Burton, W. B.; Hartmann, D.; Arnal, E. M.; Bajaja, E.; Morras, R.; Poeppel, W. G. L.
2005-07-01
The LAB survey contains the final data release of observations of 21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Cat. VIII/54) of the sky north of -30{deg} with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000A&AS..142...35A and Bajaja et al. 2005, Cat. VIII/75) of the sky south of -25{deg}. The angular resolution of the combined material is HPBW ~ 0.6{deg}. The LSR velocity coverage spans the interval -450 km/s to +400 km/s, at a resolution of 1.3km/s. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07-0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20-40 mK. It would be necessary to construct a telescope with a main beam efficiency of {eta}MB>99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic H I is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way H I survey to date, with the most extensive coverage both spatially and kinematically. The Survey is available as 3-D maps, with or without Hanning smoothing, covering the whole +/-458km/s or limited to +/-250km/s range. The resolution of the 3-D maps is 0.5{deg} in galactic longitude and latitude, and up to 1km/s in velocity. The survey exists also as (b,v) maps at longitude intervals stepped by 0.5{deg} -- these files supersedes the FITS files given in the Hartmann and Burton Atlas (Cat. VIII/54) (1 data file).
VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-11-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|<20{deg}, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).
BOOK REVIEW: Treasure-Hunting in Astronomical Plate Archives.
NASA Astrophysics Data System (ADS)
Kroll, Peter; La Dous, Constanze; Brauer, Hans-Juergen; Sterken, C.
This book consists of the proceedings of a conference on the exploration of the invaluable scientific treasure present in astronomical plate archives worldwide. The book incorporates fifty scientific papers covering almost 250 pages. There are several most useful papers, such as, for example, an introduction to the world's large plate archives that serves the purpose of a guide for the beginning user of plate archives. It includes a very useful list of twelve mayor archives with many details on their advantages (completeness, number of plates, classification system and homogeneity of time coverage) and their limitations (plate quality, access, electronic catalogues, photographic services, limiting magnitudes, search software and cost to the user). Other topics cover available contemporary digitization machines, the applications of commercial flatbed scanners, technical aspects of plate consulting, astrophysical applications and astrometric uses, data reduction, data archiving and retrieval, and strategies to find astrophysically useful information on plates. The astrophysical coverage is very broad: from solar-system bodies to variable stars, sky surveys and sky patrols covering the galactic and extragalactic domain and even gravitational lensing. The book concludes by an illuminating paper on ALADIN, the reference tool for identification of astronomical sources. This work can be considered as a kind of field guide, and is recommended reading for anyone who wishes to undertake small- or large-scale consulting of photographic plate material. A shortcoming of the proceedings is the fact that very few papers have abstracts. BOOK REVIEW: Treasure-Hunting in Astronomical Plate Archives. Proceedings of the international workshop held at Sonneberg Observatory, March 4-6, 1999. Peter Kroll, Constanze la Dous and Hans-Juergen Brauer (Eds.)
Testing the association between anomalous microwave emission and PAHs in the diffuse ISM
NASA Astrophysics Data System (ADS)
Berkeley, Matthew R.; Chuss, David; Kogut, Al
2018-01-01
Testing cosmic inflation is currently a primary focus of the Cosmology community. In order to verify the theory and to determine the energy scale of inflation, it is necessary to identify the characteristic B-mode polarization signal in the CMB. This signal, predicted by inflation theory, is expected to be very faint. It is therefore important to accurately characterize and remove foreground polarization components such as thermal dust and synchrotron emission.Some of these components have already been accurately characterized, but there are others that are not so well understood. In 1996, a new galactic foreground emission component was discovered. Dubbed 'anomalous microwave emission' (AME), this new foreground has yet to be identified. Though its physical origin remains uncertain, the leading hypothesis for the origin of this foreground proposes that the emission comes from rapidly rotating small dust grains called Polycyclic Aromatic Hydrocarbons (PAHs), or 'spinning dust'. PAHs are a family of hydrocarbon molecules with characteristic bending and stretching modes that have identifiable emission spectra in the mid-infrared region. The Wide-field Infrared Survey Explorer (WISE) is a satellite that was launched in 2010 into a polar orbit, enabling it to take images of the entire sky at four different mid-infrared wavelengths. These wavelengths cover the spectral region with the aforementioned PAH emission features in the mid-infrared. WISE archival data therefore makes it possible to construct a full-sky map of PAH emission.We present full sky maps using WISE data as a preliminary result towards creating a full sky PAH map.
LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.; Abbott, R.; Abernathy, M. R.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
The Potential for Collocated AGLP and ERBE data for Fire, Smoke, and Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Christropher, S. A.; Chou, J.
1997-01-01
One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burn- ing. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.
Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y.-D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W.-F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B.-B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H.-F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J.-L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T.-W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration
2016-07-01
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Christopher, S. A.; Chou, J.
1997-01-01
One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of tires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.
The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Christopher, S. A.; Chou, J.
1997-01-01
One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985. and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed,
ATLAS: Big Data in a Small Package
NASA Astrophysics Data System (ADS)
Denneau, Larry; Tonry, John
2015-08-01
For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.
Survey Strategy Optimization for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
De Bernardis, F.; Stevens, J. R.; Hasselfield, M.; Alonso, D.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Crowley, K. T.; Devlin, M.; Wollack, E. J.
2016-01-01
In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over approximately 2000 square degrees. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24-hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.
NASA Astrophysics Data System (ADS)
Kim, S.; Kim, H.; Choi, M.; Kim, K.
2016-12-01
Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.
A LEKID-based CMB instrument design for large-scale observations in Greenland
NASA Astrophysics Data System (ADS)
Araujo, D. C.; Ade, P. A. R.; Bond, J. R.; Bradford, K. J.; Chapman, D.; Che, G.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C. E.; Hillbrand, Seth N.; Johnson, B. R.; Jones, G.; Limon, Michele; Miller, A. D.; Mauskopf, P.; McCarrick, H.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, Joshua; Wehus, I. K.; Zmuidzinas, J.
2014-08-01
We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4 K by a closed-cycle 4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150 GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267 GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15 arcmin at 150 GHz) makes the instrument sensitive to 5 < ` < 1000 in the angular power spectra.
Mining the Kilo-Degree Survey for solar system objects
NASA Astrophysics Data System (ADS)
Mahlke, M.; Bouy, H.; Altieri, B.; Verdoes Kleijn, G.; Carry, B.; Bertin, E.; de Jong, J. T. A.; Kuijken, K.; McFarland, J.; Valentijn, E.
2018-02-01
Context. The search for minor bodies in the solar system promises insights into its formation history. Wide imaging surveys offer the opportunity to serendipitously discover and identify these traces of planetary formation and evolution. Aim. We aim to present a method to acquire position, photometry, and proper motion measurements of solar system objects (SSOs) in surveys using dithered image sequences. The application of this method on the Kilo-Degree Survey (KiDS) is demonstrated. Methods: Optical images of 346 deg2 fields of the sky are searched in up to four filters using the AstrOmatic software suite to reduce the pixel to catalog data. The SSOs within the acquired sources are selected based on a set of criteria depending on their number of observation, motion, and size. The Virtual Observatory SkyBoT tool is used to identify known objects. Results: We observed 20 221 SSO candidates, with an estimated false-positive content of less than 0.05%. Of these SSO candidates, 53.4% are identified by SkyBoT. KiDS can detect previously unknown SSOs because of its depth and coverage at high ecliptic latitude, including parts of the Southern Hemisphere. Thus we expect the large fraction of the 46.6% of unidentified objects to be truly new SSOs. Conclusions: Our method is applicable to a variety of dithered surveys such as DES, LSST, and Euclid. It offers a quick and easy-to-implement search for SSOs. SkyBoT can then be used to estimate the completeness of the recovered sample. The tables of raw data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A21
NASA Astrophysics Data System (ADS)
Okoh, Daniel; Rabiu, Babatunde; Shiokawa, Kazuo; Otsuka, Yuichi; Segun, Bolaji; Falayi, Elijah; Onwuneme, Sylvester; Kaka, Rafiat
2017-12-01
This is the first paper that reports the occurrence frequency of equatorial plasma bubbles and their dependences of local time, season, and geomagnetic activity based on airglow imaging observations at West Africa. The all-sky imager, situated in Abuja (Geographic: 8.99°N, 7.38°E; Geomagnetic: 1.60°S), has a 180° fisheye view covering almost the entire airspace of Nigeria. Plasma bubbles are observed for 70 nights of the 147 clear-sky nights from 9 June 2015 to 31 January 2017. Differences between nighttime and daytime ROTIs were also computed as a proxy of plasma bubbles using Global Navigation Satellite Systems (GNSS) receivers within the coverage of the all-sky imager. Most plasma bubble occurrences are found during equinoxes and least occurrences during solstices. The occurrence rate of plasma bubbles was highest around local midnight and lower for hours farther away. Most of the postmidnight plasma bubbles were observed around the months of December to March, a period that coincides with the harmattan period in Nigeria. The on/off status of plasma bubble in airglow and GNSS observations were in agreement for 67.2% of the total 768 h, while we suggest several reasons responsible for the remaining 32.8% when the airglow and GNSS bubble status are inconsistent. A majority of the plasma bubbles were observed under relatively quiet geomagnetic conditions (Dst ≥ -40 and Kp ≤ 3), but there was no significant pattern observed in the occurrence rate of plasma bubbles as a function of geomagnetic activity. We suggest that geomagnetic activities could have either suppressed or promoted the occurrence of plasma bubbles.
History of Hubble Space Telescope (HST)
1998-01-01
This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.
NASA Astrophysics Data System (ADS)
Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.
2016-01-01
This paper documents the complete modern Hawaiian navigational full-sky. Over eight years of field notes, observations, and interviews with cultural leaders, historians, and ho`okele wa`a (navigators) were used to construct and validate Kilohoku Ho`okele Wa`a, the Astronomy of the Hawaiian Navigators. In contrast to the various historical sky maps designed by different practitioners and local groups in pre-colonial times, this sky-map depicts the four whole-sky constellations used by present day wayfinders. Designed by a loosely bound group of cultural leaders and navigators as a tool to use in modern non-instrumental navigation, Kilohoku Ho`okele Wa`a is a pragmatic fusion of ancient Hawaiian tradition, traditions of greater Polynesia, and modern-day Indigenous cultural forces. Like a very small number of cultures who use the sky for non-instrumental navigation, the ho`okele wa`a conceive of each season's visible sky as a whole image, using a single constellation that stretches from the northern to the southern horizon as a tool that facilitates direction finding in skies that are often very cloudy, and that chunks the sky into sections that decrease the cognitive load placed on the navigator. Moving through the seasons, beginning in Winter, Na `Ohana Hoku `Eha (The Four Star Families) are Kekaomakali`I (The Bailer), Kaiwikuamo`o (The Backbone), Manaiakalani (The Fishhook), and Kalupekawelo (The Kite). The whole-sky character of each of the four "star families," combines with that star family's mo`olelo (purposeful story) to further facilitate navigation, employing the emotional component of moral and familial associations to enhance memorization and to provide wayfinders with encouragement on their long journeys.
NASA Astrophysics Data System (ADS)
Sunyaev, Rashid A.; Khatri, Rishi
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunyaev, Rashid A.; Khatri, Rishi, E-mail: sunyaev@mpa-garching.mpg.de, E-mail: khatri@mpa-garching.mpg.de
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μKmore » which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.« less
2006-08-01
constellation, SAR Bistatic for interferometry, L-band SAR data from Argentinean SAOCOM satellites, and optical imaging data from the French ‘ Pleiades ...a services federation (e.g. COSMO-SkyMed (SAR) and Pleiades (optical) constellation). Its main purpose is the elaboration of Programming Requests...on catalogue interoperability or on a federation of services (i.e. with French Pleiades optical satellites). The multi-mission objectives are
Estimating the Value of the Inclination Angle of the Lunar Plane to the Ecliptic Plane
ERIC Educational Resources Information Center
Isildak, R. Suat; Isik, Hakan; Küçüközer, H. Asuman
2018-01-01
Sky appears to our students as a vast volume surrounding the Earth. The most striking astronomical events that they can witness in the sky are lunar phases and eclipses. However, eclipses do not occur as often as full and new phases of the Moon. This difference is due to the fact that the orbital planes of the Moon and the Earth do not overlap.…
The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.
Cost effectiveness of full coverage of the medical management of smoking cessation in France.
Chevreul, Karine; Cadier, Benjamin; Durand-Zaleski, Isabelle; Chan, Elis; Thomas, Daniel
2014-05-01
To estimate the incremental cost effectiveness of full coverage of the medical management of smoking cessation from the perspective of statutory health insurance (SHI) in France. Cost-effectiveness analysis based on a Markov state-transition decision analytic model was used to compare full SHI coverage of smoking cessation and actual coverage based on an annual €50 lump sum per insured person among current French smokers aged 15-75 years. We used a scenario approach to take into account the many different behaviours of smokers and the likely variability of SHI policy choices in terms of participation rate and number and frequency of attempts covered. Drug treatments for smoking cessation combined with six medical consultations including individual counselling. The cost effectiveness of full coverage was expressed by the incremental cost-effectiveness ratio (ICER) in 2009 euros per life-year gained (LYG) at the lifetime horizon. The cost effectiveness per LYG for smokers ranged from €1786 to €2012, with an average value of €1911. The minimum value was very close to the maximum value with a difference of only €226. The cost-effectiveness ratio was only minimally sensitive to the participation rate, the number of attempts covered and the cessation rate. Compared to other health measures in primary and secondary prevention of cardiovascular disease already covered by SHI, full coverage of smoking cessation is the most cost-effective approach.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Coverage. 801.3 Section 801.3 Labor Regulations Relating to... POLYGRAPH PROTECTION ACT OF 1988 General § 801.3 Coverage. (a) The coverage of the Act extends to “any... coverage to be coextensive with the full scope of the Congressional power to regulate commerce. See, for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Coverage. 801.3 Section 801.3 Labor Regulations Relating to... POLYGRAPH PROTECTION ACT OF 1988 General § 801.3 Coverage. (a) The coverage of the Act extends to “any... coverage to be coextensive with the full scope of the Congressional power to regulate commerce. See, for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Coverage. 801.3 Section 801.3 Labor Regulations Relating to... POLYGRAPH PROTECTION ACT OF 1988 General § 801.3 Coverage. (a) The coverage of the Act extends to “any... coverage to be coextensive with the full scope of the Congressional power to regulate commerce. See, for...
Planck 2015 results. X. Diffuse component separation: Foreground maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Planck 2015 results: X. Diffuse component separation: Foreground maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Look, Kevin A; Kim, Nam Hyo; Arora, Prachi
2017-01-01
To evaluate the impact of the Affordable Care Act's (ACA) dependent coverage mandate on insurance coverage among young adults in metropolitan and nonmetropolitan areas. A cross-sectional analysis was conducted using data from 2006-2009 and 2011 waves of the Medical Expenditure Panel Survey. A difference-in-difference analysis was used to compare changes in full-year private health insurance coverage among young adults aged 19-25 years with an older cohort aged 27-34 years. Separate regressions were estimated for individuals in metropolitan and nonmetropolitan areas and were tested for a differential impact by area of residence. Full-year private health insurance coverage significantly increased by 9.2 percentage points for young adults compared to the older cohort after the ACA mandate (P = .00). When stratifying the regression model by residence area, insurance coverage among young adults significantly increased by 9.0 percentage points in metropolitan areas (P = .00) and 10.1 percentage points in nonmetropolitan areas (P = .03). These changes were not significantly different from each other (P = .82), which suggests the ACA mandate's effects were not statistically different by area of residence. Although young adults in metropolitan and nonmetropolitan areas experienced increased access to private health insurance following the ACA's dependent coverage mandate, it did not appear to directly impact rural-urban disparities in health insurance coverage. Despite residents in both areas gaining insurance coverage, over one-third of young adults still lacked access to full-year health insurance coverage. © 2016 National Rural Health Association.
Lakew, Yihunie; Bekele, Alemayhu; Biadgilign, Sibhatu
2015-07-30
Immunization remains one of the most important public health interventions to reduce child morbidity and mortality. The 2011 national demographic and health survey (DHS) indicated low full immunization coverage among children aged 12-23 months in Ethiopia. Factors contributing to the low coverage of immunization have been poorly understood. The aim of this study was to identify factors associated with full immunization coverage among children aged 12-23 months in Ethiopia. This study used the 2011 Ethiopian demographic and health survey data. The survey was cross sectional by design and used a multistage cluster sampling procedure. A total of 1,927 mothers with children of 12-23 months of age were extracted from the children's dataset. Mothers' self-reported data and observations of vaccination cards were used to determine vaccine coverage. An adjusted odds ratio (AOR) with 95% confidence intervals (CI) was used to outline the independent predictors. The prevalence of fully immunized children was 24.3%. Specific vaccination coverage for three doses of DPT, three doses of polio, measles and BCG were 36.5%, 44.3%, 55.7% and 66.3%, respectively. The multivariable analysis showed that sources of information from vaccination card [AOR 95% CI; 7.7 (5.95-10.06)], received postnatal check-up within two months after birth [AOR 95% CI; 1.8 (1.28-2.56)], women's awareness of community conversation program [AOR 95% CI; 1.9 (1.44-2.49)] and women in the rich wealth index [AOR 95% CI; 1.4 (1.06-1.94)] were the predictors of full immunization coverage. Women from Afar [AOR 95% CI; 0.07 (0.01-0.68)], Amhara [AOR 95% CI; 0.33 (0.13-0.81)], Oromiya [AOR 95% CI; 0.15 (0.06-0.37)], Somali [AOR 95% CI; 0.15 (0.04-0.55)] and Southern Nation and Nationalities People administrative regions [AOR 95% CI; 0.35 (0.14-0.87)] were less likely to fully vaccinate their children. The overall full immunization coverage in Ethiopia was considerably low as compared to the national target set (66%). Health service use and access to information on maternal and child health were found to predict full immunization coverage. Appropriate strategies should be devised to enhance health information and accessibility for full immunization coverage by addressing the variations among regions.
Preparatory Study for Constructing FAST, the World's Largest Single Dish
NASA Astrophysics Data System (ADS)
Peng, Bo; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Nan, Rendong
2009-08-01
A 500-m aperture spherical telescope (FAST) was funded by the National Development and Reform Commission of China (NDRC) in July 2007 and will be located in the unique Karst region, a sinkhole-like landform, in Guizhou province. FAST can be seen as a modified "Arecibo" type radio telescope using many innovative techniques, with as much as twice the collecting area and a wider sky coverage. FAST has, first, an active reflector, conforming to a paraboloid of revolution from a sphere in real time through actuated control, which enables the realization of wide bandwidth and full polarization capability by using standard feed design. Secondly, it has a light focus cabin suspension system, integrating optical, mechanical, and electronic technologies, reducing effectively the cost of the support structure and control system. With such a huge collecting area of more than 30 football fields, FAST will become the largest single dish ever built. Here we will summarize the FAST concept and the milestones achieved in experiments on its key technologies, i.e., site exploration, active reflector prototyping, focus cabin driving mechanism, measurement and control techniques, and the receiver layout. The Miyun FAST demonstrator also will be presented.
Status and new operation modes of the versatile VLT/NaCo
NASA Astrophysics Data System (ADS)
Girard, Julien H. V.; Kasper, Markus; Quanz, Sascha P.; Kenworthy, Matthew A.; Rengaswamy, Sridharan; Schödel, Rainer; Gallenne, Alexandre; Gillessen, Stefan; Huerta, Nicolas; Kervella, Pierre; Kornweibel, Nick; Lenzen, Rainer; Mérand, Antoine; Montagnier, Guillaume; O'Neal, Jared; Zins, Gérard
2010-07-01
This paper aims at giving an update on the most versatile Adaptive Optics fed instrument to date, the well known and successful NACO*. Although NACO is only scheduled for about two more years† at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE‡ and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more required for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.
High Altitude Observatory YBJ and ARGO Project
NASA Astrophysics Data System (ADS)
Tan, Y.; ARGO Collaboration
A 5800 m2 RPC (Resistive Plate Chamber) full coverage air shower array is under construction in the YangBaJing Cosmic Ray Observatory, Tibet of China, by the ChinaItaly ARGO Collaboration. YBJ is a large flat grassland with an area 10 × 70 km2 at 4300m altitude, about 90 north west from Lhasa. Its nearby power station, asphalt road to Lhasa, passing railway (will be constructed during the coming 5 years), optical fiber link to the INTERNET, rare snow and other favourable weather conditions are well suitable for setting an Astrophysical Observatory here. The installation of a large area carpet-like detector in this peculiar site will allow one to perform an all-sky and high duty cycle study of high energy gamma rays from 100GeV to 50 TeV as well as accurate measurements on UHE cosmic rays. To insure the stable and uniform working condition of RPCs, a 104 M2 carpet hall was constructed, the RPC installation have be started in it since last November. The natural distribution and daily variation of temperature in the hall, the data concerning the performances of the installed RPCs, have been measured, the results are presented. ce
The Canadian Hydrogen Intensity Mapping Experiment (CHIME)
NASA Astrophysics Data System (ADS)
Vanderlinde, Keith; Chime Collaboration
2014-04-01
Hydrogen Intensity (HI) mapping uses redshifted 21cm emission from neutral hydrogen as a 3D tracer of Large Scale Structure (LSS) in the Universe. Imprinted in the LSS is a remnant of the acoustic waves which propagated through the primordial plasma. This feature, the Baryon Acoustic Oscillation (BAO), has a characteristic scale of ~150 co-moving Mpc, which appears in the spatial correlation of LSS. By charting the evolution of this scale over cosmic time, we trace the expansion history of the Universe, constraining the Dark Energy equation of state as it becomes a significant component, particularly at redshifts poorly probed by current BAO surveys. In this talk I will introduce CHIME, a transit radio interferometer designed specifically for this purpose. CHIME is an ambitious new telescope, being built in British Columbia, Canada, and composed of five 20m x 100m parabolic reflectors which focus radiation in one direction (east-west) while interferometry is used to resolve beams in the other (north-south). Earth rotation sweeps them across the sky, resulting in complete daily coverage of the northern celestial hemisphere. Commissioning is underway on the 40 x 37m "Pathfinder" telescope, and the full sized 100m x 100m instrument is funded and under development.
Low photon-count tip-tilt sensor
NASA Astrophysics Data System (ADS)
Saathof, Rudolf; Schitter, Georg
2016-07-01
Due to the low photon-count of dark areas of the universe, signal strength of tip-tilt sensor is low, limiting sky-coverage of reliable tip-tilt measurements. This paper presents the low photon-count tip-tilt (LPC-TT) sensor, which potentially achieves improved signal strength. Its optical design spatially samples and integrates the scene. This increases the probability that several individual sources coincide on a detector segment. Laboratory experiments show feasibility of spatial sampling and integration and the ability to measure tilt angles. By simulation an improvement of the SNR of 10 dB compared to conventional tip-tilt sensors is shown.
A FORTRAN realization of the block adjustment of CCD frames
NASA Astrophysics Data System (ADS)
Yu, Yong; Tang, Zhenghong; Li, Jinling; Zhao, Ming
A FORTRAN version realization of the block adjustment (BA) of overlapping CCD frames is developed. The flowchart is introduced including (a) data collection, (b) preprocessing, and (c) BA and object positioning. The subroutines and their functions are also demonstrated. The program package is tested by simulated data with/without the application of white noises. It is also preliminarily applied to the reduction of optical positions of four extragalactic radio sources. The results show that because of the increase in the sky coverage and number of reference stars, the precision of deducted positions is improved compared with single plate adjustment.
Status of the GroundBIRD Telescope
NASA Astrophysics Data System (ADS)
Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.
2018-01-01
Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.
Global astrometry with the space interferometry mission
NASA Technical Reports Server (NTRS)
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
Scientific Goals and Objectives of the Probe of Inflation and Cosmic Origins
NASA Astrophysics Data System (ADS)
Wen, Qi; Hanany, Shaul; Young, Karl S.; PICO Team
2018-01-01
The Probe of Inflation and Cosmic Origins (PICO) is a space mission concept that is being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. PICO will conduct a polarimetric full sky survey in 21 frequency bands between 20 and 800 GHz with 70 times the sensitivity of the Planck satellite. Using the data from 8 redundant full sky surveys PICO will detect or place new limits on the energy scale of inflation and the physics of quantum gravity; it will determine the effective number of light degrees of freedom in the early universe and the sum of neutrino masses; it will measure the optical depth to reionization up to cosmic variance limits; it will provide a full sky catalog of thousands of strongly lensed high-z infrared sources, of proto clusters, and of low-z low-mass galaxies extending our understanding of structure formation to populations not yet observed; it will find tens of thousands of new clusters across cosmic time, information that will further constrain cosmological parameters; and it will make sensitive maps of the galactic magnetic field, which will clarify its role in the process of star formation.We present an overview of the mission’s scientific goals, its design, and the current status of the study.
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new 4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.
Takács, Péter; Barta, András; Pye, David; Horváth, Gábor
2017-10-20
When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.
Northern Sky Variability Survey: Public Data Release
NASA Astrophysics Data System (ADS)
Woźniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-04-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0° and -38° are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1 yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02 mag and position errors within 2". At Galactic latitudes |b|<20deg, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. Based on observations obtained with the ROTSE-I robotic telescope, which was operated at Los Alamos National Laboratory.
Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo
2013-07-01
but partly supported by AFOSR polarization funds); 6. Mr. Gavin Lommatsch – undergraduate student developing NIR polarimetry ; 7. Ms. Elizabeth...grant: 1. J. S. Tyo, D. B. Chenault, J. A. Shaw, D. H. Goldstein, “Techniques in Imaging Polarimetry ,” Chapter 18 in D. H. Goldstein, Polarized Light...A. Barta, J. Gal, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly skies and its use for polarimetric cloud detection
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
Ade, P. A. R.; Aghanim, N.; Argüeso, F.; ...
2016-09-20
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. Also, it consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilitiesmore » than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. Finally, the improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).« less
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Argüeso, F.
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. Also, it consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilitiesmore » than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. Finally, the improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).« less
48 CFR 9903.201-2 - Types of CAS coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... 9903.201-2 Section 9903.201-2 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-2 Types of CAS coverage. (a) Full... net CAS-covered awards during its preceding cost accounting period. (b) Modified coverage. (1...
Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism
NASA Astrophysics Data System (ADS)
Smirnov, O. M.
2011-03-01
Context. Since its formulation by Hamaker et al., the radio interferometer measurement equation (RIME) has provided a rigorous mathematical basis for the development of novel calibration methods and techniques, including various approaches to the problem of direction-dependent effects (DDEs). However, acceptance of the RIME in the radio astronomical community at large has been slow, which is partially due to the limited availability of software to exploit its power, and the sparsity of practical results. This needs to change urgently. Aims: This series of papers aims to place recent developments in the treatment of DDEs into one RIME-based mathematical framework, and to demonstrate the ease with which the various effects can be described and understood. It also aims to show the benefits of a RIME-based approach to calibration. Methods: Paper I re-derives the RIME from first principles, extends the formalism to the full-sky case, and incorporates DDEs. Paper II then uses the formalism to describe self-calibration, both with a full RIME, and with the approximate equations of older software packages, and shows how this is affected by DDEs. It also gives an overview of real-life DDEs and proposed methods of dealing with them. Finally, in Paper III some of these methods are exercised to achieve an extremely high-dynamic range calibration of WSRT observations of 3C 147 at 21 cm, with full treatment of DDEs. Results: The RIME formalism is extended to the full-sky case (Paper I), and is shown to be an elegant way of describing calibration and DDEs (Paper II). Applying this to WSRT data (Paper III) results in a noise-limited image of the field around 3C 147 with a very high dynamic range (1.6 million), and none of the off-axis artifacts that plague regular selfcal. The resulting differential gain solutions contain significant information on DDEs and errors in the sky model. Conclusions: The RIME is a powerful formalism for describing radio interferometry, and underpins the development of novel calibration methods, in particular those dealing with DDEs. One of these is the differential gains approach used for the 3C 147 reduction. Differential gains can eliminate DDE-related artifacts, and provide information for iterative improvements of sky models. Perhaps most importantly, sources as faint as 2 mJy have been shown to yield meaningful differential gain solutions, and thus can be used as potential calibration beacons in other DDE-related schemes.
NASA Astrophysics Data System (ADS)
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei
2017-11-01
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; ...
2017-11-14
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less
Time-Resolved Coadds and Forced Photometry of the WISE and NEOWISE-Reactivation Data
NASA Astrophysics Data System (ADS)
Schlegel, David
We propose to produce full-sky, time-resolved coadds of the images collected from the NASA WISE (Wide-field Infrared Survey Explorer) satellite, including the WISE, NEOWISE, and two years of the NEOWISE-Reactivation (NEOWISE-R) mission phases. Catalogs of forced photometry over the SDSS footprint will be generated at six epochs and for the full image stack. The images and catalogs will be suitable for stellar and extragalactic studies. The WISE satellite scans the sky such that each part of the sky is visited every six months, with 10 or more exposures per visit. We propose to coadd these 10 or more exposures to produce one coadd per visit that is, one coadd each six months. For most parts of the sky, there is one visit during the original WISE mission, one visit during NEOWISE, and then, after a 33-month gap, four more visits during the NEOWISE-R mission. These data, over a six-year baseline, are compelling both for studies of variability and of proper motion of nearby stars, and AGN and quasars at high redshift. Furthermore, the full image coadds will add considerable depth to the existing unWISE and AllWISE coadds at 3.4¼m and 4.6¼m, thereby playing a critical role in enabling target selection for next-generation massive redshift surveys. We will utilize our new data products to map quasar variability to the depths required for the future DESI dark energy experiment, and to discover high-proper motion objects in the solar neighborhood of the Milky Way to 1.4 magnitudes greater depth than previous searches.
The COSMO-SkyMed ground and ILS and OPS segments upgrades for full civilian capacity exploitation
NASA Astrophysics Data System (ADS)
Fasano, L.; De Luca, G. F.; Cardone, M.; Loizzo, R.; Sacco, P.; Daraio, M. G.
2015-10-01
COSMO-SkyMed (CSK), is an Earth Observation joint program between Agenzia Spaziale Italiana (Italian Space Agency, ASI) and Italian Ministry of Defense (It-MoD). It consists of a constellation of four X Band Synthetic Aperture Radar (SAR) whose first satellite of has been launched on June 2007. Today the full constellation is fully qualified and is in an operative phase. The COSMO-SkyMed System includes 3 Segments: the Space Segment, the Ground Segment and the Integrated Logistic Support and Operations Segment (ILS and OPS) As part of a more complex re-engineering process aimed to improve the expected constellation lifetime, to fully exploit several system capabilities, to manage the obsolescence, to reduce the maintenance costs and to exploit the entire constellation capability for Civilian users a series of activities have been performed. In the next months these activities are planned to be completed and start to be operational so that it will be possible the programming, planning, acquisition, raw processing and archiving of all the images that the constellation can acquire.
NASA Astrophysics Data System (ADS)
Aubé, M.; Simoneau, A.
2018-05-01
Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016-17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications. After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).
X-Shaped Bulge in the Milky Way
2016-07-19
In 2010, NASA's Wide-field Infrared Survey Explorer (WISE) mission observed the entire sky twice. Astronomers used these data to point out the X-shaped structure in the bulge of the Milky Way, contained in the small circle at center, as well as the inset image. The circled central portion covers roughly the area of sky that would be blocked by a basketball when held out at arm's length. Dustin Lang, an astronomer at the Dunlap Institute of the University of Toronto, used these data to make this map, which shows the full 360-degree panorama of the sky as seen by WISE. Lang collaborated with Melissa Ness, postdoctoral researcher at the Max Planck Institute for Astronomy in Germany, http://photojournal.jpl.nasa.gov/catalog/PIA20699
Changes in health insurance for US children and their parents: comparing 2003 to 2008.
Angier, Heather; DeVoe, Jennifer E; Tillotson, Carrie; Wallace, Lorraine
2013-01-01
Recent policy changes have affected access to health insurance for families in the United States. Private health insurance premiums have increased, and state Medicaid programs have cut back coverage for adults. Concurrently, the Children's Health Insurance Program has made public insurance available to more children. We aimed to better understand how child and parent health insurance coverage patterns may have changed as a result of these policies. We analyzed data from the nationally representative Medical Expenditure Panel Survey, comparing cohorts from 2003 and 2008. We assessed cross-sectional and full-year coverage patterns for child/parent pairs, stratified by income. We conducted chi-square tests to assess significant differences in coverage over time. Middle-income child/parent pairs had the most significant changes in their coverage patterns. For example, those with full-year health insurance coverage significantly decreased from 85.4% in 2003 to 80.6% in 2008. There was also an increase in uninsured middle-income child/parent pairs for the full year (5.6% in 2003 to 8.3% in 2008) and an increase in pairs who had a gap in coverage (9.7% in 2003 to 13.0% in 2008). The percentage of middle-income child/parent pairs who were lacking insurance, for part or all of the year, has risen, suggesting that these families may be caught between affording private coverage and being eligible for public coverage. Unless private coverage becomes more affordable, insurance instability among middle-income families may persist despite the passage of the Patient Protection and Affordable Care Act.
NASA Astrophysics Data System (ADS)
Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.
2014-12-01
The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.
News "Speed Dating" for Scientists and Journalists: Conveying geoscience news in haiku-short form
NASA Astrophysics Data System (ADS)
Dybas, C. L.
2006-12-01
As Rachel Carson wrote in her 1956 book, The Sense of Wonder, it's important for everyone to develop an appreciation of "land, sea and sky." One of the best ways of getting the word out to the public about these realms is through the media. How do scientists capture the interest of the press in a society with a seemingly shorter and shorter attention span? Studies show that as the amount of scientific jargon and number of complex concepts in a news story increase, "filter-feeding" by the public of that news declines. When scientific jargon/complex concepts are few, the public "consumes" much more news. These results also apply to news story headlines: shorter headlines get the most interest. Based on these findings, one organization has started an experiment in "scientific speed dating": giving presenters three minutes to discuss results. They may have discovered something: news coverage of the research has been excellent. In today's world, conveying news about the geosciences in haiku-short form may be the best way of relating the wonders of land, sea and sky.
Fly's Eye camera system: optical imaging using a hexapod platform
NASA Astrophysics Data System (ADS)
Jaskó, Attila; Pál, András.; Vida, Krisztián.; Mészáros, László; Csépány, Gergely; Mező, György
2014-07-01
The Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30° horizontal altitude with a cadence of ~3 min. Imaging is going to be performed by 19 wide-field cameras mounted on a hexapod platform resembling a fly's eye. Using a hexapod developed and built by our team allows us to create a highly fault-tolerant instrument that uses the sky as a reference to define its own tracking motion. The virtual axis of the platform is automatically aligned with the Earth's rotational axis; therefore the same mechanics can be used independently from the geographical location of the device. Its enclosure makes it capable of autonomous observing and withstanding harsh environmental conditions. We briefly introduce the electrical, mechanical and optical design concepts of the instrument and summarize our early results, focusing on sidereal tracking. Due to the hexapod design and hence the construction is independent from the actual location, it is considerably easier to build, install and operate a network of such devices around the world.
A Search for Nontoroidal Topological Lensing in the Sloan Digital Sky Survey Quasar Catalog
NASA Astrophysics Data System (ADS)
Fujii, Hirokazu; Yoshii, Yuzuru
2013-08-01
Flat space models with multiply connected topology, which have compact dimensions, are tested against the distribution of high-redshift (z >= 4) quasars of the Sloan Digital Sky Survey (SDSS). When the compact dimensions are smaller in size than the observed universe, topological lensing occurs, in which multiple images of single objects (ghost images) are observed. We improve on the recently introduced method to identify ghost images by means of four-point statistics. Our method is valid for any of the 17 multiply connected flat models, including nontoroidal ones that are compacted by screw motions or glide reflection. Applying the method to the data revealed one possible case of topological lensing caused by sixth-turn screw motion, however, it is consistent with the simply connected model by this test alone. Moreover, simulations suggest that we cannot exclude the other space models despite the absence of their signatures. This uncertainty mainly originates from the patchy coverage of SDSS in the south Galactic cap, and this situation will be improved by future wide-field spectroscopic surveys.
SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)
NASA Astrophysics Data System (ADS)
Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin
2017-02-01
With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z < 0.14 and coverage of at least 1.5 effective radii for a spatial resolution of 2.5 arcsec full width at half-maximum and field of view of > 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.
The THEMIS Array of Ground-based Observatories for the Study of Auroral Substorms
NASA Astrophysics Data System (ADS)
Mende, S. B.; Harris, S. E.; Frey, H. U.; Angelopoulos, V.; Russell, C. T.; Donovan, E.; Jackel, B.; Greffen, M.; Peticolas, L. M.
2008-12-01
The NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) project is intended to investigate magnetospheric substorm phenomena, which are the manifestations of a basic instability of the magnetosphere and a dominant mechanism of plasma transport and explosive energy release. The major controversy in substorm science is the uncertainty as to whether the instability is initiated near the Earth, or in the more distant >20 Re magnetic tail. THEMIS will discriminate between the two possibilities by using five in-situ satellites and ground-based all-sky imagers and magnetometers, and inferring the propagation direction by timing the observation of the substorm initiation at multiple locations in the magnetosphere. An array of stations, consisting of 20 all-sky imagers (ASIs) and 30-plus magnetometers, has been developed and deployed in the North American continent, from Alaska to Labrador, for the broad coverage of the nightside magnetosphere. Each ground-based observatory (GBO) contains a white light imager that takes auroral images at a 3-second repetition rate (“cadence”) and a magnetometer that records the 3 axis variation of the magnetic field at 2 Hz frequency. The stations return compressed images, “thumbnails,” to two central databases: one located at UC Berkeley and the other at the University of Calgary, Canada. The full images are recorded at each station on hard drives, and these devices are physically returned to the two data centers for data copying. All data are made available for public use by scientists in “browse products,” accessible by using internet browsers or in the form of downloadable CDF data files (the “browse products” are described in detail in a later section). Twenty all-sky imager stations are installed and running at the time of this publication. An example of a substorm was observed on the 23rd of December 2006, and from the THEMIS GBO data, we found that the substorm onset brightening of the equatorward arc was a gradual process (>27 seconds), with minimal morphology changes until the arc breaks up. The breakup was timed to the nearest frame (<3 s) and located to the nearest latitude degree at about ±3oE in longitude. The data also showed that a similar breakup occurred in Alaska ˜10 minutes later, highlighting the need for an array to distinguish prime onset.
The AKARI IRC asteroid flux catalogue: updated diameters and albedos
NASA Astrophysics Data System (ADS)
Alí-Lagoa, V.; Müller, T. G.; Usui, F.; Hasegawa, S.
2018-05-01
The AKARI IRC all-sky survey provided more than twenty thousand thermal infrared observations of over five thousand asteroids. Diameters and albedos were obtained by fitting an empirically calibrated version of the standard thermal model to these data. After the publication of the flux catalogue in October 2016, our aim here is to present the AKARI IRC all-sky survey data and discuss valuable scientific applications in the field of small body physical properties studies. As an example, we update the catalogue of asteroid diameters and albedos based on AKARI using the near-Earth asteroid thermal model (NEATM). We fit the NEATM to derive asteroid diameters and, whenever possible, infrared beaming parameters. We fit groups of observations taken for the same object at different epochs of the survey separately, so we compute more than one diameter for approximately half of the catalogue. We obtained a total of 8097 diameters and albedos for 5170 asteroids, and we fitted the beaming parameter for almost two thousand of them. When it was not possible to fit the beaming parameter, we used a straight line fit to our sample's beaming parameter-versus-phase angle plot to set the default value for each fit individually instead of using a single average value. Our diameters agree with stellar-occultation-based diameters well within the accuracy expected for the model. They also match the previous AKARI-based catalogue at phase angles lower than 50°, but we find a systematic deviation at higher phase angles, at which near-Earth and Mars-crossing asteroids were observed. The AKARI IRC All-sky survey is an essential source of information about asteroids, especially the large ones, since, it provides observations at different observation geometries, rotational coverages and aspect angles. For example, by comparing in more detail a few asteroids for which dimensions were derived from occultations, we discuss how the multiple observations per object may already provide three-dimensional information about elongated objects even based on an idealised model like the NEATM. Finally, we enumerate additional expected applications for more complex models, especially in combination with other catalogues. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A85
Dark Skies: Local Success, Global Challenge
NASA Astrophysics Data System (ADS)
Lockwood, G. W.
2009-01-01
The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.
Time-integrated Searches for Point-like Sources of Neutrinos with the 40-string IceCube Detector
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2011-05-01
We present the results of time-integrated searches for astrophysical neutrino sources in both the northern and southern skies. Data were collected using the partially completed IceCube detector in the 40-string configuration recorded between 2008 April 5 and 2009 May 20, totaling 375.5 days livetime. An unbinned maximum likelihood ratio method is used to search for astrophysical signals. The data sample contains 36,900 events: 14,121 from the northern sky, mostly muons induced by atmospheric neutrinos, and 22,779 from the southern sky, mostly high-energy atmospheric muons. The analysis includes searches for individual point sources and stacked searches for sources in a common class, sometimes including a spatial extent. While this analysis is sensitive to TeV-PeV energy neutrinos in the northern sky, it is primarily sensitive to neutrinos with energy greater than about 1 PeV in the southern sky. No evidence for a signal is found in any of the searches. Limits are set for neutrino fluxes from astrophysical sources over the entire sky and compared to predictions. The sensitivity is at least a factor of two better than previous searches (depending on declination), with 90% confidence level muon neutrino flux upper limits being between E 2 dΦ/dE ~ 2-200 × 10-12 TeV cm-2 s-1 in the northern sky and between 3-700 × 10-12 TeV cm-2 s-1 in the southern sky. The stacked source searches provide the best limits to specific source classes. The full IceCube detector is expected to improve the sensitivity to dΦ/dEvpropE -2 sources by another factor of two in the first year of operation.
NASA Astrophysics Data System (ADS)
Becker, Matthew R.
2013-10-01
I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Dung beetles use the Milky Way for orientation.
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J
2013-02-18
When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.
2015-12-01
The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.
NASA Astrophysics Data System (ADS)
Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.
2013-09-01
A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.
Evaluation of a vaccine passport to improve vaccine coverage in people living with HIV.
Chadwick, D R; Corbett, K; Mann, S; Teruzzi, B; Horner, S
2018-01-01
An increased risk of vaccine-preventable infections (VPIs) is seen in people living with HIV (PLWH), and current vaccine coverage and immunity is variable. Vaccine passports have the potential to improve vaccine coverage. The objective was to assess how successful a vaccine passport was in improving vaccine coverage in PLWH. Baseline immunity to VPIs was established in PLWH attending a single HIV clinic and vaccinations required were determined based on the BHIVA Vaccination Guidelines (2015). The passport was completed and the PLWH informed about additional vaccines they should obtain from primary care. After 6-9 months the passport was reviewed including confirmation if vaccines were given. PLWH satisfaction with the system was evaluated by a survey. Seventy-three PLWH provided sufficient data for analysis. At baseline significant proportions of PLWH were not immune/unvaccinated to the main VPIs, especially human papillomavirus, pneumococcus and measles. After the passport was applied immunity improved significantly (56% overall, p < 0.01) for most VPIs; however, full coverage was not achieved. The system was popular with PLWH. The passport was successful in increasing vaccination coverage although full or near-full coverage was not achieved. A more successful service would probably be achieved by commissioning English HIV clinics to provide all vaccines.
Predicting solar radiation based on available weather indicators
NASA Astrophysics Data System (ADS)
Sauer, Frank Joseph
Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.
Sodium Laser Guide Star Technique, Spectroscopy and Imaging with Adaptive Optics
NASA Astrophysics Data System (ADS)
Ge, Jian
A sodium laser guide star (LGS) adaptive optics (AO) system developed at Stewart Observatory is to be used at the 6.5m MMT. Annual measurements at Kitt Peak show that the mean mesospheric sodium column density varies from ~2×109cm-2 (summer) to ~5×109cm-2 (winter). The sodium column density also varies by a factor of two during a one hour period. The first simultaneous measurements of sodium LGS brightness, sodium column density and laser power were obtained. The absolute sodium return for a continuous wave circularly polarized beam is 1.2([/pm]0.3)× 106 photons s-1m-2W-1 for the sodium column density of 3.7×109cm-2. Theoretical studies demonstrate that the 6.5m MMT LGS AO can provide Strehl ratios better than 0.15 and about 50% flux concentration within 0.2'' aperture for 1-5.5μm under median seeing. This correction will be available for the full sky. Better Strehl and higher flux concentration can be achieved with natural guide stars, but limited sky coverage. The AO corrected field-of-view is about 60''. The Arizona IR Imager and Echelle Spectrograph (ARIES) was designed to match the 6.5m MMT AO. Detection limits of more than 2 magnitude fainter can be reached with the AO over without the AO. A pre-ARIES wide field near-IR camera was designed, built and tested. The camera provides 1'' images in the near-IR over an 8.5 × 8.5arcmin2 field. The 10-σ detection limit with one minute exposures is 17.9 mag. in the K band. A prototype very high resolution cross-dispersed optical echelle spectrograph was designed and built to match the Starfire Optical Range 1.5m AO images. Interstellar KI 7698A absorption lines have been detected in the spectra of αCyg and ζPer. The spectral resolution is 250.000. About 300A wavelengths were covered in a single exposure. Total detection efficiency of 1% has been achieved. For the first time, a near-single-mode fiber with 10μm core size was applied to transmit the Mt. Wilson 100inch AO corrected beams to a spectrograph. The coupling efficiency of the fiber reached up to 70%. Spectra of αOri were recorded. The spectral resolution is 200,000. The total wavelength coverage is about 650A per exposure.
1SXPS: A Deep Swift X-Ray Telescope Point Source Catalog with Light Curves and Spectra
NASA Technical Reports Server (NTRS)
Evans, P. A.; Osborne, J. P.; Beardmore, A. P.; Page, K. L.; Willingale, R.; Mountford, C. J.; Pagani, C.; Burrows, D. N.; Kennea, J. A.; Perri, M.;
2013-01-01
We present the 1SXPS (Swift-XRT point source) catalog of 151,524 X-ray point sources detected by the Swift-XRT in 8 yr of operation. The catalog covers 1905 sq deg distributed approximately uniformly on the sky. We analyze the data in two ways. First we consider all observations individually, for which we have a typical sensitivity of approximately 3 × 10(exp -13) erg cm(exp -2) s(exp -1) (0.3-10 keV). Then we co-add all data covering the same location on the sky: these images have a typical sensitivity of approximately 9 × 10(exp -14) erg cm(exp -2) s(exp -1) (0.3-10 keV). Our sky coverage is nearly 2.5 times that of 3XMM-DR4, although the catalog is a factor of approximately 1.5 less sensitive. The median position error is 5.5 (90% confidence), including systematics. Our source detection method improves on that used in previous X-ray Telescope (XRT) catalogs and we report greater than 68,000 new X-ray sources. The goals and observing strategy of the Swift satellite allow us to probe source variability on multiple timescales, and we find approximately 30,000 variable objects in our catalog. For every source we give positions, fluxes, time series (in four energy bands and two hardness ratios), estimates of the spectral properties, spectra and spectral fits for the brightest sources, and variability probabilities in multiple energy bands and timescales.
Localization and broadband follow-up of the gravitational-wave transient GW150914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
Localization and broadband follow-up of the gravitational-wave transient GW150914
Abbott, B. P.
2016-07-20
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
ATLAS: Big Data in a Small Package?
NASA Astrophysics Data System (ADS)
Denneau, Larry
2016-01-01
For even small astronomy projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (Tonry 2011) will survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards - two 0.5 m F/2.0 telescopes - each night the ATLAS system will measure nearly 109 astronomical sources to a photometric accuracy of <5%, totaling 1012 individual observations over its initial 3-year mission. This ever-growing dataset must be searched in real-time for moving objects and transients then archived for further analysis, and alerts for newly discovered near-Earth asteroids (NEAs) disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many `rifle shot' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of low-Earth orbit (LEO) and geosynchronous orbit (GEO) satellites ATLAS will see each night. Additional interrogation will identify interesting phenomena from millions of transient sources per night beyond the solar system. The data processing and storage requirements for ATLAS demand a `big data' approach typical of commercial internet enterprises. We describe our experience in deploying a nimble, scalable and reliable data processing infrastructure, and suggest ATLAS as steppingstone to data processing capability needed as we enter the era of LSST.
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Aylor, K.; Benson, B. A.
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
Hou, Z.; Aylor, K.; Benson, B. A.; ...
2018-01-17
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less
Quantized Advantages to a Proposed Satellite at L5 from Simulated Synoptic Magnetograms
NASA Astrophysics Data System (ADS)
Schwarz, A. M.; Petrie, G. J. D.
2017-12-01
The dependency the Earth and its inhabitants have on the Sun is delicate and complex and sometimes dangerous. At the NSO, we provide 24/7 coverage of the full-disk solar magnetic field used in solar forecasting, however this only includes data from the Sun's Earth facing side. Ideally we would like to have constant coverage of the entire solar surface, however we are limited in our solar viewing angle. Our project attempts to quantify the advantages of full-disk magnetograms from a proposed satellite at L5. With instrumentation at L5 we would have an additional 60 degrees of solar surface coverage not seen from Earth. These 60 degrees crucially contain the solar longitudes that are about to rotate towards Earth. Using a full-surface flux-transport model of the evolving solar photospheric field, I created a simulation of full-disk observations from Earth and L5. Using standard solar forecasting tools we quantify the relative accuracy of the Earth-Only and Earth plus L5 forecasts relative to the "ground truth" of the full surface field model, the ideal case. My results gauge exactly how much polar coverage is improved, contrast the spherical multipoles of each model, and use a Potential-Field Source-Surface (PFSS) magnetic field analysis model to find comparisons in the neutral lines and open field coverage.
NASA Technical Reports Server (NTRS)
Susskind, J.; Reuter, D.
1986-01-01
IR and microwave remote sensing data collected with the HIRS2 and MSU sensors on the NOAA polar-orbiting satellites were evaluated for their effectiveness as bases for determining the cloud cover and cloud physical characteristics. Techniques employed to adjust for day-night alterations in the radiance fields are described, along with computational procedures applied to compare scene pixel values with reference values for clear skies. Sample results are provided for the mean cloud coverage detected over South America and Africa June 1979, with attention given to concurrent surface pressure and cloud top pressure values.
Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.
2011-01-01
The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.
Batse/Sax and Batse/RXTE-ASM Joint Spectral Studies of GRBs
NASA Technical Reports Server (NTRS)
Paciesas, William S.
2002-01-01
We proposed to make joint spectral analysis of gamma-ray bursts (GRBs) in the BATSE data base that are located within the fields of view of either the BeppoSAX wide field cameras (WFCs) or the RXTE all-sky monitor (ASM). The very broad-band coverage obtained in this way would facilitate various studies of GRB spectra that are difficult to perform with BATSE data alone. Unfortunately, the termination of the CGRO mission in June 2000 was not anticipated at the time of the proposal, and the sample of common events turned out to be smaller than we would have liked.
Multiwavelength Challenges in the Fermi Era
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in terms of logistics and in terms of generating scientific interest.
ON THE GEOMETRY OF THE IBEX RIBBON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylla, Adama; Fichtner, Horst
2015-10-01
The Energetic Neutral Atom (ENA) full-sky maps obtained with the Interstellar Boundary Explorer (IBEX) show an unexpected bright narrow band of increased intensity. This so-called ENA ribbon results from charge exchange of interstellar neutral atoms with protons in the outer heliosphere or beyond. Among other hypotheses it has been argued that this ribbon may be related to a neutral density enhancement, or H-wave, in the local interstellar medium. Here we quantitatively demonstrate, on the basis of an analytical model of the principal large-scale heliospheric structure, that this scenario for the ribbon formation leads to results that are fully consistent withmore » the observed location of the ribbon in the full-sky maps at all energies detected with high-energy sensor IBEX-Hi.« less
Robust constraint on cosmic textures from the cosmic microwave background.
Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V
2012-06-15
Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.
Shared responsibility for employers regarding health coverage. Final regulations.
2014-02-12
This document contains final regulations providing guidance to employers that are subject to the shared responsibility provisions regarding employee health coverage under section 4980H of the Internal Revenue Code (Code), enacted by the Affordable Care Act. These regulations affect employers referred to as applicable large employers (generally meaning, for each year, employers that had 50 or more full-time employees, including full-time equivalent employees, during the prior year). Generally, under section 4980H an applicable large employer that, for a calendar month, fails to offer to its full-time employees health coverage that is affordable and provides minimum value may be subject to an assessable payment if a full-time employee enrolls for that month in a qualified health plan for which the employee receives a premium tax credit.
NASA Astrophysics Data System (ADS)
Honda, T.; Kotsuki, S.; Lien, G. Y.; Maejima, Y.; Okamoto, K.; Miyoshi, T.
2017-12-01
To capture the flood risk, it is essential to obtain accurate precipitation forecasts in terms of intensity, location, and timing. In this regard, data assimilation plays an important role to provide better initial conditions for precipitation forecasts. In particular, geostationary satellites are among the most important data sources because of their broad coverage and high observing frequency. Recently, third-generation geostationary satellites, Himawari-8/9 of the Japan Meteorological Agency (JMA) and GOES-16 of the National Oceanic and Atmosphere Administration (NOAA), were launched, and among them, Himawari-8 was the first and has been fully operated since July 2015. Himawari-8 is capable of every-10-minute full disk observation similarly to GOES-16 and allows to refresh precipitation and flood predictions as frequently as every 10 minutes. This has a potential advantage in capturing the flood risk associated with a sudden torrential rainfall much earlier. This study aims to demonstrate the advantage of frequent updates of precipitation and flood risk predictions by assimilating all-sky Himawari-8 infrared (IR) radiances. We use an advanced regional data assimilation system known as the SCALE-LETKF, composed of a regional numerical weather prediction (NWP) model (SCALE-RM) developed in RIKEN, Japan and the Local Ensemble Transform Kalman Filter (LETKF). We focus on a major disaster case in Japan known as September 2015 Kanto-Tohoku heavy rainfall in which a meridional precipitation band associated with a tropical cyclone induced a record-breaking rainfall and eventually caused a collapse of a Kinu River levee. By assimilating a moisture sensitive IR band (band 9, 6.9 µm) of Himawari-8 every 10 minutes into a 6-km mesh SCALE-LETKF, the heavy precipitation forecasts are greatly improved. We run a rainfall-runoff model using the improved precipitation forecasts and obtain high risk of floods predicted with longer lead times.
Prasad, Peeyush; Wijnholds, Stefan J
2013-06-13
The Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC) project aims to implement an all-sky monitor (ASM), using the low-frequency array (LOFAR) telescope. It will enable real-time, 24 × 7 monitoring for low-frequency radio transients over most of the sky locally visible to the LOFAR at time scales ranging from seconds to several days, and rapid triggering of follow-up observations with the full LOFAR on detection of potential transient candidates. These requirements pose several implementation challenges: imaging of an all-sky field of view, low latencies of processing, continuous availability and autonomous operation of the ASM. The first of these has already resulted in the correlator for the ASM being the largest in the world in terms of the number of input data streams. We have carried out test observations using existing LOFAR infrastructure, in order to quantify and constrain crucial instrumental design criteria for the ASM. In this study, we present an overview of the AARTFAAC data-processing pipeline and illustrate some of the aforementioned challenges by showing all-sky images obtained from one of the test observations. These results provide quantitative estimates of the capabilities of the instrument.
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2014-01-01
Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).
NASA Astrophysics Data System (ADS)
Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.
2018-02-01
We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yan -Chuan; Bernstein, Gary
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Database of extended radiation maps and its access system
NASA Astrophysics Data System (ADS)
Verkhodanov, O. V.; Naiden, Ya. V.; Chernenkov, V. N.; Verkhodanova, N. V.
2014-01-01
We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.
Polarization patterns of the twilight sky
NASA Astrophysics Data System (ADS)
Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit
2005-08-01
Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.
NASA Astrophysics Data System (ADS)
Becker, Matthew Rand
I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift- dependent shear signals including corrections to the Born approximation by using multiple- plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy ( ≲ 1%) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Citizen Sky, An Update on the AAVSO's New Citizen Science Project
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Henden, A.; Stencel, R.; Kloppenborg, B.
2011-01-01
Citizen Sky is a multi-year, NSF-funded, citizen science project focusing on the bright variable star, epsilon Aurigae. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. The first year of the project, 2009-10, was dedicated to developing project infrastructure, educating participants about epsilon Aurigae, and training these participants to observe the star and report their data. Looking forward, years two and three of the project will focus on assembling teams of participants to work on their own analysis and research. Results will be published in a special issue of the peer-reviewed Journal of the AAVSO. This project has been made possible by the National Science Foundation.
Advertising Citizen Science: A Trailer for the Citizen Sky Project
NASA Astrophysics Data System (ADS)
Wyatt, Ryan; Price, A.
2012-01-01
Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.
An efficient method for removing point sources from full-sky radio interferometric maps
NASA Astrophysics Data System (ADS)
Berger, Philippe; Oppermann, Niels; Pen, Ue-Li; Shaw, J. Richard
2017-12-01
A new generation of wide-field radio interferometers designed for 21-cm surveys is being built as drift scan instruments allowing them to observe large fractions of the sky. With large numbers of antennas and frequency channels, the enormous instantaneous data rates of these telescopes require novel, efficient, data management and analysis techniques. The m-mode formalism exploits the periodicity of such data with the sidereal day, combined with the assumption of statistical isotropy of the sky, to achieve large computational savings and render optimal analysis methods computationally tractable. We present an extension to that work that allows us to adopt a more realistic sky model and treat objects such as bright point sources. We develop a linear procedure for deconvolving maps, using a Wiener filter reconstruction technique, which simultaneously allows filtering of these unwanted components. We construct an algorithm, based on the Sherman-Morrison-Woodbury formula, to efficiently invert the data covariance matrix, as required for any optimal signal-to-noise ratio weighting. The performance of our algorithm is demonstrated using simulations of a cylindrical transit telescope.
Variable gamma-ray sky at 1 GeV
NASA Astrophysics Data System (ADS)
Pshirkov, M. S.; Rubtsov, G. I.
2013-01-01
We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10-6, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).
Cost variability of suggested generic treatment alternatives under the Medicare Part D benefit.
Patel, Rajul A; Walberg, Mark P; Tong, Emily; Tan, Florence; Rummel, Ashley E; Woelfel, Joseph A; Carr-Lopez, Sian M; Galal, Suzanne M
2014-03-01
The substitution of generic treatment alternatives for brand-name drugs is a strategy that can help lower Medicare beneficiary out-of-pocket costs. Beginning in 2011, Medicare beneficiaries reaching the coverage gap received a 50% discount on the full drug cost of brand-name medications and a 7% discount on generic medications filled during the gap. This discount will increase until 2020, when beneficiaries will be responsible for 25% of total drug costs during the coverage gap. To examine the cost variability of brand and generic drugs within 4 therapeutic classes before and during the coverage gap for each 2011 California stand-alone prescription drug plan (PDP) and prospective coverage gap costs in 2020 to determine the effects on beneficiary out-of-pocket drug costs. Equivalent doses of brand and generic drugs in the following 4 pharmacological classes were examined: angiotensin II receptor blockers (ARBs), bisphosphonates, HMG-CoA reductase inhibitors (statins), and proton pump inhibitors (PPIs). The full drug cost and patient copay/coinsurance amounts during initial coverage and the coverage gap of each drug was recorded based on information retrieved from the Medicare website. These drug cost data were recorded for 28 California PDPs. The highest cost difference between a brand medication and a Centers for Medicare Medicaid Services (CMS)-suggested generic treatment alternative varied between $110.53 and $195.49 at full cost and between $51.37 and $82.35 in the coverage gap. The lowest cost difference varied between $38.45 and $76.93 at full cost and between -$4.11 and $18.52 during the gap. Medicare beneficiaries can realize significant out-of-pocket cost savings for their drugs by taking CMS-suggested generic treatment alternatives. However, due to larger discounts on brand medications made available through recent changes reducing the coverage gap, the potential dollar savings by taking suggested generic treatment alternatives during the gap is less compelling and will decrease as subsidies increase.
Hubble Sees a Silver Needle in the Sky
2014-08-22
This stunning new image from the NASA/ESA Hubble Space Telescope shows part of the sky in the constellation of Canes Venatici (The Hunting Dogs). Although this region of the sky is not home to any stellar heavyweights, being mostly filled with stars of average brightness, it does contain five Messier objects and numerous intriguing galaxies — including NGC 5195, a small barred spiral galaxy considered to be one of the most beautiful galaxies visible, and its nearby interacting partner the Whirlpool Galaxy (heic0506a). The quirky Sunflower Galaxy is another notable galaxy in this constellation, and is one of the largest and brightest edge-on galaxies in our skies. Joining this host of characters is spiral galaxy NGC 4244, nicknamed the Silver Needle Galaxy, shown in this new image from Hubble. This galaxy spans some 65,000 light-years and lies around 13.5 million light-years away. It appears as a wafer-thin streak across the sky, with loosely wound spiral arms hidden from view as we observe the galaxy from the side. It is part of a group of galaxies known as the M94 Group. Numerous bright clumps of gas can be seen scattered across its length, along with dark dust lanes surrounding the galaxy’s core. NGC 4244 also has a bright star cluster at its center. Although we can make out the galaxy’s bright central region and star-spattered arms, we cannot see any more intricate structure due to the galaxy’s position; from Earth, we see it stretched out as a flattened streak across the sky. A number of different observations were pieced together to form this mosaic, and gaps in Hubble’s coverage have been filled in using ground-based data. The Hubble observations were taken as part of the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) survey, which is scanning nearby galaxies to explore how they and their stars formed to get a more complete view of the history of the Universe. European Space Agency Credit: NASA & ESA, Acknowledgement: Roelof de Jong NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
BurstCube: A CubeSat for Gravitational Wave Counterparts
NASA Astrophysics Data System (ADS)
Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila
2018-01-01
We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.
ELTs adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules
NASA Astrophysics Data System (ADS)
Neichel, B.; Conan, J.-M.; Fusco, T.; Gendron, E.; Puech, M.; Rousset, G.; Hammer, F.
2006-06-01
In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65μm) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of an extremely low SC. For the LGS approach, the option of low order correction with a faint NGS is discussed. We demonstrate that, this last solution allows the scientific requirements to be met together with a quasi full SC.
KELT RR Lyrae Variable Stars Observed by the NKU Schneider Observatory
NASA Astrophysics Data System (ADS)
De Lee, Nathan M.; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin
2016-01-01
In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-10 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 10,000+ epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up data taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, David R.; Cherinka, Brian; Yan, Renbin
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ~500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~100 million raw-frame spectra and ~10 millionmore » reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ~8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec -2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s -1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s -1.« less
NASA Technical Reports Server (NTRS)
Benford, Dominic J.
2010-01-01
The Wide-field Infrared Survey is a medium class Explorer mission that was launched onl4Dec 2009. WISE should detect hundreds of millions of stars and galaxies, including millions of ULIRGS and QSOs; hundreds of thousands of asteroids; and hundreds of cold brown dwarfs. The telescope cover was ejected on 29 Dec 2009 and the all-sky survey started on 14 Jan 2010. WISE takes more the 7000 framesets per day, with each frameset covering 0.6 square degrees in four bands centered at 3.4, 4.6, 12 and 22 microns. WISE is well-suited to the discovery of brown dwarfs, ultraluminous infrared galaxies, and near-Earth objects. With an angular resolution of 6 arcsecouds at 12 microns, a 5(sigma) point-source sensitivity of around 1 mJy at 12 microns and 6 mJy at 22 microns, and coverage of over 99% of the sky, WISE also provides a powerful database for the study of the dusty ISM in our own galaxy. A preliminary release of WISE data will be made available to the community 6 months after the end of the cryogenic survey, or about May 2011. The final data release will be 11 months later, about April 2012.
NASA Technical Reports Server (NTRS)
Racusin, J. L.; Burns, E.; Goldstein, A.; Connaughton, V.; Wilson-Hodge, C. A.; Jenke, P.; Blackburn, L.; Briggs, M. S.; Broida, J.; Camp, J.;
2017-01-01
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.
The USNO-UKIRT K-band Hemisphere Survey
NASA Astrophysics Data System (ADS)
Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther
2018-01-01
We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.
Zone of Avoidance Tully-Fisher Survey
NASA Astrophysics Data System (ADS)
Williams, Wendy; Woudt, Patrick; Kraan-Korteweg, Renee
2009-10-01
We propose to use the Parkes telescope to obtain narrowband HI spectra of a sample of galaxies in the Galactic Zone of Avoidance (ZOA). These observations, combined with high-quality near infrared photometry, will provide both the uniform coverage and accurate distance determinations (via the Tully-Fisher relation) required to map the peculiar velocity flow fields in the ZOA. The mass distribution in this region has a significant effect on the motion of the Local Group. Dynamically important structures, including the Great Attractor and the Local Void, are partially hidden behind our Galaxy. Even the most recent systematic all-sky surveys, such as the 2MASS Redshift Survey (2MRS; Huchra et al. 2005), undersample the ZOA due to stellar crowding and high dust extinction. While statistical reconstruction methods have been used to extrapolate the density field in the ZOA, they are unlikely to truely re?ect the velocity field (Loeb & Narayan 2008). Our project aims for the ?rst time to directly determine the velocity flow fields in this part of the sky. Our sample is taken from the Parkes HIZOA survey (Henning et al. 2005) and is unbiased with respect to extinction and star density.
Racusin, J. L.; Burns, E.; Goldstein, A.; ...
2017-01-19
Here, we present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper boundsmore » across large areas of the sky. Finally, due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less
Communicating awareness of light pollution with the schools in Nepal
NASA Astrophysics Data System (ADS)
Acharya, Jayanta
2015-08-01
Nepal is also highly polluted by the lights and other dusts partials, but lacks the formal education of light pollutions and effect of light for astronomy observations. When we get Sky Quality Meter (SQM) last year (2014) we have installed it in Kathmandu.This paper will highlight about installation SQM in Nepal, measurement of brightness of the night sky in magnitudes per square arc second. Research work of light pollution of Kathmandu will be more in focus. Highlight of the Astronomy programs by different Schools in Nepal along with the background of coverage of Astronomy education in the syllables of different education level. The various procedure , technique and idea used in providing the space education through different activities and program to school studentsThe paper will also deal with the Importance of light and use of artificial light. Beside it will also highlight the possibility of development of various observatories in Nepal because of its tremendous topography increasing the Astro tourism in Nepal.Hence the paper would focus on the light pollution of the city like Kathmandu and light system in Nepal and Astronomy education to its implementation along with its outreach to Nepalese society.
A new strategy for array optimization applied to Brazilian Decimetric Array
NASA Astrophysics Data System (ADS)
Faria, C.; Stephany, S.; Sawant, H. S.
Radio interferometric arrays measure the Fourier transform of the sky brightness distribution in a finite set of points that are determined by the cross-correlation of different pairs of antennas of the array The sky brightness distribution is reconstructed by the inverse Fourier transform of the sampled visibilities The quality of the reconstructed images strongly depends on the array configuration since it determines the sampling function and therefore the points in the Fourier Plane This work proposes a new optimization strategy for the array configuration that is based on the entropy of the distribution of the samples points in the Fourier plane A stochastic optimizer the Ant Colony Optimization employs entropy of the point distribution in the Fourier plane to iteratively refine the candidate solutions The proposed strategy was developed for the Brazilian Decimetric Array BDA a radio interferometric array that is currently being developed for solar observations at the Brazilian Institute for Space Research Configurations results corresponding to the Fourier plane coverage synthesized beam and side lobes levels are shown for an optimized BDA configuration obtained with the proposed strategy and compared to the results for a standard T array configuration that was originally proposed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotti, Aditya; Huffenberger, Kevin, E-mail: adityarotti@gmail.com, E-mail: khuffenberger@fsu.edu
Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B -modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B -mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is alsomore » a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B -modes, particularly in cases of limited frequency coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racusin, J. L.; Camp, J.; Singer, L.
2017-01-20
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds acrossmore » large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.
2003-01-01
We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.
48 CFR 9903.201-2 - Types of CAS coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... later award of a CAS-covered contract. Full coverage applies to contractor business units that— (1) Receive a single CAS-covered contract award of $50 million or more; or (2) Received $50 million or more in net CAS-covered awards during its preceding cost accounting period. (b) Modified coverage. (1...
48 CFR 9903.201-2 - Types of CAS coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... later award of a CAS-covered contract. Full coverage applies to contractor business units that— (1) Receive a single CAS-covered contract award of $50 million or more; or (2) Received $50 million or more in net CAS-covered awards during its preceding cost accounting period. (b) Modified coverage. (1...
Code of Federal Regulations, 2011 CFR
2011-10-01
... coverage. (1) If a State, local or private program provides for health insurance for the full-time... program provides health insurance coverage for the full-time participant, the sponsor must also continue... Selection and Treatment of Participants § 2540.220 Under what circumstances and subject to what conditions...
Code of Federal Regulations, 2010 CFR
2010-10-01
... coverage. (1) If a State, local or private program provides for health insurance for the full-time... program provides health insurance coverage for the full-time participant, the sponsor must also continue... Selection and Treatment of Participants § 2540.220 Under what circumstances and subject to what conditions...
5 CFR 875.405 - If I marry, may my new spouse apply for coverage?
Code of Federal Regulations, 2010 CFR
2010-01-01
... from the date of your marriage and will be subject to the underwriting requirements in force for the... abbreviated underwriting because of your marriage. You may apply for coverage along with your spouse, but full... with full underwriting at any time following the marriage. (b) The new spouse and other qualified...
Tracing Star Formation in the Outskirts of the Milky Way
NASA Astrophysics Data System (ADS)
Casetti, Dana
Discovery of the presence of young stars in the Leading Arm of the Magellanic Stream and in the periphery of the Large Magellanic Cloud (Casetti-Dinescu et al. 2014, Moni Bidin et al. 2017) poses a fundamental question as to how star formation can occur in intergalactic space within an environment of very low gas density. Recent models indicate that the hydrodynamical interaction with the gaseous component of the Milky Way may be of significant importance in shaping the Leading Arm of the Magellanic Stream; however models are still poorly constrained due to a lack of observational data. The existence of such stars is crucial as it informs on both star-formation and the Clouds' interaction with one another and with the Milky Way. Moreover, stars, as opposed to gas, provide secure distances to constrain the interactions. In the discovery of these young stars, the GALEX UV mission played the key role in selecting potential candidates. Together with infrared photometry from 2MASS and optical V from ground-based data, our team developed a method to select such candidates that were then followed up with spectroscopy (Casetti-Dinescu et al. 2012). This pilot study demonstrated that, with large sky coverage, our team could explore significant portions of the Magellanic Stream, whereas previously only regions adjacent to the Clouds had been studied. Still, the pilot study was limited to the southern sky (Dec. d -20°). Here, we propose to recreate a young-star candidate list using two completed NASA space missions: the recently updated GALEX (DR6plus7) and the infrared WISE missions. Together with optical photometry from Gaia DR1 (and/or PanSTARRS), we will increase the sample of candidate OB-type stars by exploring a volume of space over four times that of our previous, pilot study. The area coverage for the proposed new study will be the entire sky; previous spatial gaps in earlier versions of GALEX are now filled in, and the depth of the study will increase by 0.3 to 0.5 magnitudes due to use of AllWISE. By covering the entire sky, we will be able to explore the presence (or lack thereof) of such stars diametrically opposite to the LA, where it is inferred the Magellanic Stream is crossing the Galactic plane a second time, if the Clouds have had two pericenter passages about the Galaxy. Alternatively, we may find entirely new structure at the edge of the Galactic disk, related to interactions with other yet-unknown Milky-Way satellites, or due to ejection mechanisms from OB associations in the disk. Star-forming regions as informed from OB-type stars have been studied in our Galaxy and in external galaxies, in well-known gas-rich regions. The novelty of our study is that it is designed to find such stars in unexpected regions by exploring the entire sky. It is noted that within the time frame of this proposal, Gaia data release 2 will become available; therefore, with these candidates having already been identified, we will be able to further investigate their distances and kinematics. Our list of candidates will be made publicly available for follow-up spectroscopic studies.
NASA Astrophysics Data System (ADS)
Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Nédélec, Philippe; Aben, Ilse; Landgraf, Jochen
2017-05-01
We discuss the retrieval of carbon monoxide (CO) vertical column densities from clear-sky and cloud contaminated 2311-2338 nm reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from January 2003 until the end of the mission in April 2012. These data were processed with the Shortwave Infrared CO Retrieval algorithm (SICOR) that we developed for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that will be launched on ESA's Sentinel-5 Precursor (S5P) mission. This study complements previous work that was limited to clear-sky observations over land. Over the oceans, CO is estimated from cloudy-sky measurements only, which is an important addition to the SCIAMACHY clear-sky CO data set as shown by NDACC and TCCON measurements at coastal sites. For Ny-Ålesund, Lauder, Mauna Loa and Reunion, a validation of SCIAMACHY clear-sky retrievals is not meaningful because of the high retrieval noise and the few collocations at these sites. The situation improves significantly when considering cloudy-sky observations, where we find a low mean bias b = ±6. 0 ppb and a strong correlation between the validation and the SCIAMACHY results with a mean Pearson correlation coefficient r = 0. 7. Also for land observations, cloudy-sky CO retrievals present an interesting complement to the clear-sky data set. For example, at the cities Tehran and Beijing the agreement of SCIAMACHY clear-sky CO observations with MOZAIC/IAGOS airborne measurements is poor with a mean bias of b = 171. 2 ppb and 57.9 ppb because of local CO pollution, which cannot be captured by SCIAMACHY. For cloudy-sky retrievals, the validation improves significantly. Here the retrieved column is mainly sensitive to CO above the cloud and so not affected by the strong local surface emissions. Adjusting the MOZAIC/IAGOS measurements to the vertical sensitivity of the retrieval, the mean bias adds up to b = 52. 3 ppb and 5.0 ppb for Tehran and Beijing. At the less urbanised region around the airport Windhoek, local CO pollution is less prominent and so MOZAIC/IAGOS measurements agree well with SCIAMACHY clear-sky retrievals with a mean bias of b = 15. 5 ppb, but can be even further improved for cloudy SCIAMACHY observations with a mean bias of b = 0. 2 ppb. Overall the cloudy-sky CO retrievals from SCIAMACHY short-wave infrared measurements present a major extension of the clear-sky-only data set, which more than triples the amount of data and adds unique observations over the oceans. Moreover, the study represents the first application of the S5P algorithm for operational CO data processing on cloudy observations prior to the launch of the S5P mission.
NASA Astrophysics Data System (ADS)
Kesseli, Aurora Y.; West, Andrew A.; Veyette, Mark; Harrison, Brandon; Feldman, Dan; Bochanski, John J.
2017-06-01
We present a library of empirical stellar spectra created using spectra from the Sloan Digital Sky Survey’s Baryon Oscillation Spectroscopic Survey. The templates cover spectral types O5 through L3, are binned by metallicity from -2.0 dex through +1.0 dex, and are separated into main-sequence (dwarf) stars and giant stars. With recently developed M dwarf metallicity indicators, we are able to extend the metallicity bins down through the spectral subtype M8, making this the first empirical library with this degree of temperature and metallicity coverage. The wavelength coverage for the templates is from 3650 to 10200 Å at a resolution of better than R ˜ 2000. Using the templates, we identify trends in color space with metallicity and surface gravity, which will be useful for analyzing large data sets from upcoming missions like the Large Synoptic Survey Telescope. Along with the templates, we are releasing a code for automatically (and/or visually) identifying the spectral type and metallicity of a star.
Michelson-type Radio Interferometer for University Education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.
2013-01-01
Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesseli, Aurora Y.; West, Andrew A.; Veyette, Mark
We present a library of empirical stellar spectra created using spectra from the Sloan Digital Sky Survey’s Baryon Oscillation Spectroscopic Survey. The templates cover spectral types O5 through L3, are binned by metallicity from −2.0 dex through +1.0 dex, and are separated into main-sequence (dwarf) stars and giant stars. With recently developed M dwarf metallicity indicators, we are able to extend the metallicity bins down through the spectral subtype M8, making this the first empirical library with this degree of temperature and metallicity coverage. The wavelength coverage for the templates is from 3650 to 10200 Å at a resolution ofmore » better than R ∼ 2000. Using the templates, we identify trends in color space with metallicity and surface gravity, which will be useful for analyzing large data sets from upcoming missions like the Large Synoptic Survey Telescope. Along with the templates, we are releasing a code for automatically (and/or visually) identifying the spectral type and metallicity of a star.« less
VizieR Online Data Catalog: 05 through L3 empirical stellar spectra from SDSS (Kesseli+, 2017)
NASA Astrophysics Data System (ADS)
Kesseli, A. Y.; West, A. A.; Veyette, M.; Harrison, B.; Feldman, D.; Bochanski, J. J.
2017-08-01
We present a library of empirical stellar spectra created using spectra from the Sloan Digital Sky Survey's Baryon Oscillation Spectroscopic Survey. The templates cover spectral types O5 through L3, are binned by metallicity from -2.0dex through +1.0dex, and are separated into main-sequence (dwarf) stars and giant stars. With recently developed M dwarf metallicity indicators, we are able to extend the metallicity bins down through the spectral subtype M8, making this the first empirical library with this degree of temperature and metallicity coverage. The wavelength coverage for the templates is from 3650 to 10200Å at a resolution of better than R~2000. Using the templates, we identify trends in color space with metallicity and surface gravity, which will be useful for analyzing large data sets from upcoming missions like the Large Synoptic Survey Telescope. Along with the templates, we are releasing a code for automatically (and/or visually) identifying the spectral type and metallicity of a star. (3 data files).
Exploring cosmic origins with CORE: Cluster science
NASA Astrophysics Data System (ADS)
Melin, J.-B.; Bonaldi, A.; Remazeilles, M.; Hagstotz, S.; Diego, J. M.; Hernández-Monteagudo, C.; Génova-Santos, R. T.; Luzzi, G.; Martins, C. J. A. P.; Grandis, S.; Mohr, J. J.; Bartlett, J. G.; Delabrouille, J.; Ferraro, S.; Tramonte, D.; Rubiño-Martín, J. A.; Macìas-Pérez, J. F.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Basak, S.; Basu, K.; Battye, R. A.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Petris, M.; De Zotti, G.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Gerbino, M.; González-Nuevo, J.; Greenslade, J.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Maffei, B.; Martinez-Gonzalez, E.; Masi, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Roman, M.; Salvati, L.; Tartari, A.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Weller, J.; Young, K.; Zannoni, M.
2018-04-01
We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 Msolar) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0~ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 Msolar, for a 120 cm aperture telescope, and 1014 Msolar for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ~ 2‑3 × 1013 Msolar and detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020's for measuring the dark energy equation-of-state parameters w0 and wa (σw0=0.28, σwa=0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σ mν, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z)1‑β, with an uncertainty of σβ lesssim 2.7× 10‑3 at low redshift (z lesssim 1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE.
Hierarchical Merging and Large-Scale Structure Within the Horologium-Reticulum Supercluster
NASA Astrophysics Data System (ADS)
Fleenor, M. C.; Rose, J. A.
2003-12-01
The Horologium-Reticulum Supercluster (HRS) covers an area of more than 12 x 12 degrees on the sky centered at approximately α = 3h18m43s, δ = -50°01\\arcmin40\\arcsec. It is second only to the Shapley supercluster in terms of mass concentration in the local 300 Mpc. We have now obtained ˜1450 unpublished redshifts via multi-fiber spectroscopy in this area covering both global and localized regions. On a global scale, approximately 550 spectra of galaxies have been obtained using the six-degree field (6dF) instrument on the UK Schmidt Telescope at the Anglo Australian Observatory (25% coverage down to 17.5 BJ). Spectroscopic studies in the localized regions of the HRS were completed with the fibre optic coupled aperture plate system (FOCAP with 40\\arcmin FOV) on the Anglo-Australian Telescope (90% coverage down to 19.0 BJ). This increase of information doubles the amount of coverage compared to previous redshift data and provides a complementary picture of the area. With ˜3000 redshifts in this region, we are understanding the role of the supercluster environment in structure formation and evolution. Specifically, we are probing the dynamical and morphological characteristics of the HRS complex, comparing these with other known supercluster data for similarities, as well as evaluating the hierarchical merging scenario of structure formation as found in CDM N-body simulations.
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.
1980-01-01
The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.
Implementation of IAU Resolution 2009 B5, "in Defence of the night sky and the right to starlight"
NASA Astrophysics Data System (ADS)
Green, Richard F.; Walker, Constance Elaine
2015-08-01
IAU Resolution 2009 B5 calls on IAU members to protect the public`s right to an unpolluted night sky as well as the astronomical quality of the sky around major research observatories. The approach of Commission 50 - astronomical site protection - includes working with the lighting industry for appropriate products from rapidly evolving solid state technology, arming astronomers with training and materials for presentation, selective endorsement of key protection issues, cooperation with other IAU commissions for education and outreach with particular current attention to the International Year of Light, and provision of clear quantitative priorities for outdoor lighting standards. In 2012, these priorities were defined as full cut-off shielding, spectral management to minimize output shortward of 500 nm, and zone- and time-appropriate lighting levels. Revisiting the specifics of these priorities will be a topic for current discussion.
NASA Astrophysics Data System (ADS)
Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor
2017-09-01
According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ, the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ, this absolute value can either decrease or increase with increasing ρ. The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤ θ ≤ 40° and 2 oktas ≤ ρ ≤ 3 oktas.
COMPASS Final Report: Lunar Network Satellite-High Rate (LNS-HR)
NASA Technical Reports Server (NTRS)
oleson, Steven R.; McGuire, Melissa L.
2012-01-01
Two design options were explored to address the requirement to provide lunar piloted missions with continuous communications for outpost and sortie missions. Two unique orbits were assessed, along with the appropriate spacecraft (S/C) to address these requirements. Both constellations (with only two S/C each) provide full time coverage (24 hr/7 d) for a south polar base and also provide continuous 7 day coverage for sorties for specified sites and periodic windows. Thus a two-satellite system can provide full coverage for sorties for selected windows of opportunity without reconfiguring the constellation.
NASA Astrophysics Data System (ADS)
Civera Lorenzo, Tamara
2017-10-01
Brief presentation about the J-PLUS EDR data access web portal (http://archive.cefca.es/catalogues/jplus-edr) where the different services available to retrieve images and catalogues data have been presented.J-PLUS Early Data Release (EDR) archive includes two types of data: images and dual and single catalogue data which include parameters measured from images. J-PLUS web portal offers catalogue data and images through several different online data access tools or services each suited to a particular need. The different services offered are: Coverage map Sky navigator Object visualization Image search Cone search Object list search Virtual observatory services: Simple Cone Search Simple Image Access Protocol Simple Spectral Access Protocol Table Access Protocol
Recent Results from the 2015 flight of Spider
NASA Astrophysics Data System (ADS)
Jones, William C.
2016-06-01
Spider is a balloon borne mm-wave polarimeter designed to provide high fidelity measurements of the large scale polarization of the microwave sky. Spider flew a 17 day mission in January 2015, mapping roughly 10% of the full sky (4500 square degrees) in the southern Galactic hemisphere at each of 94 and 150 GHz. Spider achieved an instrumental sensitivity of 4 μ K_{CMB}√{s}, providing maps that exceed the sensitivity of the Planck data. We discuss these data, the current status of our science analysis, and our understanding of the Galacticforeground emission in this high latitude region.
2016-01-01
Objectives. This study evaluated the impact of private insurance coverage on the symptoms of depression, activities of daily living (ADLs), and instrumental activities of daily living (IADLs) in the years leading up to Medicare eligibility focusing on the transition from full-time work to early full retirement. Method. The Health and Retirement Study was used to (a) estimate 2-stage selection equations of (i) the transition to retirement and (ii) current insurance status, and (b) the impact of insurance coverage on health, net of endogeneity associated retirement and insurance coverage. Results. Employment-based insurance coverage was generally associated with better health. Moreover, being without employment-based insurance was particularly problematic during the transition to retirement. Non-group insurance only moderated the association between losing employment-based insurance and IADLs. Discussion. Results indicated that private insurance coverage is an important contextual factor for the health of early retirees. Those who maintain steady coverage tend to fare the best in retirement. This highlights the dynamic nature of changes in health in later life. PMID:25819976
Radio Source Contributions to the Microwave Sky
NASA Astrophysics Data System (ADS)
Boughn, S. P.; Partridge, R. B.
2008-03-01
Cross-correlations of the Wilkinson Microwave Anisotropy Probe (WMAP) full sky K-, Ka-, Q-, V-, and W-band maps with the 1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux map are used to constrain rms fluctuations due to unresolved microwave sources in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking account of only those fluctuations correlated with the 1.4 GHz radio source counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ˜2 μK for a solid angle of 1 deg2 assuming that the cross-correlations are dominated by clustering, and ˜1 μK if dominated by Poisson fluctuations. The correlated fluctuations at the other bands are consistent with a β = -2.1 ± 0.4 frequency spectrum. If microwave sources are distributed similarly in redshift to the radio and X-ray sources and are similarly clustered, then the implied total rms microwave fluctuations correspond to ˜5 μK. While this value should be considered no more than a plausible estimate, it is similar to that implied by the excess, small angular scale fluctuations observed in the Q band by WMAP and is consistent with estimates made by extrapolating low-frequency source counts.
benefits package for full- and part-time employees includes medical, dental, and vision coverage effective assignment of 12 months or longer are eligible for: Medical/Dental Insurance Vision Coverage Personal Time
Galbraith, Alison A; Wong, Sabrina T; Kim, Sue E; Newacheck, Paul W
2005-01-01
Objective To determine whether socioeconomic disparities exist in the financial burden of out-of-pocket (OOP) health care expenditures for families with children, and whether health insurance coverage decreases financial burden for low-income families. Data Source The Household Component of the 2001 Medical Expenditure Panel Survey. Study Design Cross-sectional family-level analysis. We used bivariate statistics to examine whether financial burden varied by poverty level. Multivariate regression models were used to assess whether family insurance coverage was associated with level of financial burden for low-income families. The main outcome was financial burden, defined as the proportion of family income spent on OOP health care expenditures, including premiums, for all family members. Data Collection/Extraction We aggregated annual OOP expenditures for all members of 4,531 families with a child <18 years old. Family insurance coverage was categorized as follows: (1) all members publicly insured all year, (2) all members privately insured all year, (3) all members uninsured all year, (4) partial coverage, or (5) mix of public and private with no uninsured periods. Principal Findings A regressive gradient was noted for financial burden across income groups, with families with incomes <100 percent of the Federal Poverty Level (FPL) spending a mean of $119.66 OOP per $1,000 of family income and families with incomes 100–199 percent FPL spending $66.30 OOP per $1,000, compared with $37.75 for families with incomes >400 percent FPL. For low-income families (<200 percent FPL), there was a 785 percent decrease in financial burden for those with full-year public coverage compared with those with full-year private insurance (p<.001). Conclusions Socioeconomic disparities exist in the financial burden of OOP health care expenditures for families with children. For low-income families, full-year public coverage provides significantly greater protection from financial burden than full-year private coverage. PMID:16336545
Galbraith, Alison A; Wong, Sabrina T; Kim, Sue E; Newacheck, Paul W
2005-12-01
To determine whether socioeconomic disparities exist in the financial burden of out-of-pocket (OOP) health care expenditures for families with children, and whether health insurance coverage decreases financial burden for low-income families. The Household Component of the 2001 Medical Expenditure Panel Survey. Cross-sectional family-level analysis. We used bivariate statistics to examine whether financial burden varied by poverty level. Multivariate regression models were used to assess whether family insurance coverage was associated with level of financial burden for low-income families. The main outcome was financial burden, defined as the proportion of family income spent on OOP health care expenditures, including premiums, for all family members. We aggregated annual OOP expenditures for all members of 4,531 families with a child <18 years old. Family insurance coverage was categorized as follows: (1) all members publicly insured all year, (2) all members privately insured all year, (3) all members uninsured all year, (4) partial coverage, or (5) mix of public and private with no uninsured periods. A regressive gradient was noted for financial burden across income groups, with families with incomes <100 percent of the Federal Poverty Level (FPL) spending a mean of 119.66 US dollars OOP per 1,000 US dollars of family income and families with incomes 100-199 percent FPL spending 66.30 US dollars OOP per 1,000 US dollars, compared with 37.75 US dollars for families with incomes >400 percent FPL. For low-income families (<200 percent FPL), there was a 785 percent decrease in financial burden for those with full-year public coverage compared with those with full-year private insurance (p < .001). Socioeconomic disparities exist in the financial burden of OOP health care expenditures for families with children. For low-income families, full-year public coverage provides significantly greater protection from financial burden than full-year private coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro
We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measuredmore » by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission.« less
Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders.
Zhang, Ying; Zhao, Huijie; Song, Ping; Shi, Shaoguang; Xu, Wujian; Liang, Xiao
2014-04-07
A ground-based full-sky imaging polarimeter based on liquid crystal variable retarders (LCVRs) is proposed in this paper. Our proposed method can be used to realize the rapid detection of the skylight polarization information with hemisphere field-of-view for the visual band. The characteristics of the incidence angle of light on the LCVR are investigated, based on the electrically controlled birefringence. Then, the imaging polarimeter with hemisphere field-of-view is designed. Furthermore, the polarization calibration method with the field-of-view multiplexing and piecewise linear fitting is proposed, based on the rotation symmetry of the polarimeter. The polarization calibration of the polarimeter is implemented with the hemisphere field-of-view. This imaging polarimeter is investigated by the experiment of detecting the skylight image. The consistency between the obtained experimental distribution of polarization angle with that due to Rayleigh scattering model is 90%, which confirms the effectivity of our proposed imaging polarimeter.
ISTP SBIR phase 1 Full-Sky Scanner: A feasibility study
NASA Technical Reports Server (NTRS)
1986-01-01
The objective was to develop a Full-Sky Sensor (FSS) to detect the Earth, Sun and Moon from a spinning spacecraft. The concept adopted has infinitely variable resolution. A high-speed search mode is implemented on the spacecraft. The advantages are: (1) a single sensor determines attitude parameters from Earth, Sun and Moon, thus eliminating instrument mounting errors; (2) the bias between the actual spacecraft spin axis and the intended spin axis can be determined; (3) cost is minimized; and (4) ground processing is straightforward. The FSS is a modification of an existing flight-proven sensor. Modifications to the electronics are necessary to accommodate the amplitude range and signal width range of the celestial bodies to be detected. Potential applications include ISTP missions, Multi-Spacecraft Satellite Program (MSSP), dual-spin spacecraft at any altitude, spinning spacecraft at any altitude, and orbit parameter determination for low-Earth orbits.
ISTP SBIR phase 1 Full-Sky Scanner: A feasibility study
NASA Astrophysics Data System (ADS)
1986-08-01
The objective was to develop a Full-Sky Sensor (FSS) to detect the Earth, Sun and Moon from a spinning spacecraft. The concept adopted has infinitely variable resolution. A high-speed search mode is implemented on the spacecraft. The advantages are: (1) a single sensor determines attitude parameters from Earth, Sun and Moon, thus eliminating instrument mounting errors; (2) the bias between the actual spacecraft spin axis and the intended spin axis can be determined; (3) cost is minimized; and (4) ground processing is straightforward. The FSS is a modification of an existing flight-proven sensor. Modifications to the electronics are necessary to accommodate the amplitude range and signal width range of the celestial bodies to be detected. Potential applications include ISTP missions, Multi-Spacecraft Satellite Program (MSSP), dual-spin spacecraft at any altitude, spinning spacecraft at any altitude, and orbit parameter determination for low-Earth orbits.
Datta, Anjan; Baidya, Subrata; Datta, Srabani; Mog, Chanda; Das, Shampa
2017-02-01
It is very important to analyze the factors which acts as obstacle in achieving 100% immunization among children. Lot Quality Assurance Sampling (LQAS) is one of the effective method to assess such barriers. To assess the full immunization coverage among 12 to 23-month old children of rural field practice area under Department of Community Medicine, Agartala Government Medical College and identify the factors for failure of full immunization. A community based cross-sectional study was conducted from November 2013 to October 2014 on children aged 12 to 23 months old of area under Mohanpur Community health centre. Using LQAS technique 330 samples were selected with multi-stage sampling, each sub-centre being one lot and two calculated to be the decision value. Data was collected using pre-designed pre-tested questionnaire during home visit and verifying immunization card and analysed by computer software SPSS version 21.0. The full immunization coverage among 12 to 23 months old children of Mohanpur area was found as 91.67%. Out of all the 22 sub-centres, 36.36% was found under performing as per pre-fixed criteria and the main reasons for failure of full immunization in those areas are unawareness of need of subsequent doses of vaccines and illness of the children. LQAS is an effective method to identify areas of under-performance even though overall full immunization coverage is high.
First EURONEAR NEA discoveries from La Palma using the INT
NASA Astrophysics Data System (ADS)
Vaduvescu, O.; Hudin, L.; Tudor, V.; Char, F.; Mocnik, T.; Kwiatkowski, T.; de Leon, J.; Cabrera-Lavers, A.; Alvarez, C.; Popescu, M.; Cornea, R.; Díaz Alfaro, M.; Ordonez-Etxeberria, I.; Kamiński, K.; Stecklum, B.; Verdes-Montenegro, L.; Sota, A.; Casanova, V.; Martin Ruiz, S.; Duffard, R.; Zamora, O.; Gomez-Jimenez, M.; Micheli, M.; Koschny, D.; Busch, M.; Knofel, A.; Schwab, E.; Negueruela, I.; Dhillon, V.; Sahman, D.; Marchant, J.; Génova-Santos, R.; Rubiño-Martín, J. A.; Riddick, F. C.; Mendez, J.; Lopez-Martinez, F.; Gänsicke, B. T.; Hollands, M.; Kong, A. K. H.; Jin, R.; Hidalgo, S.; Murabito, S.; Font, J.; Bereciartua, A.; Abe, L.; Bendjoya, P.; Rivet, J. P.; Vernet, D.; Mihalea, S.; Inceu, V.; Gajdos, S.; Veres, P.; Serra-Ricart, M.; Abreu Rodriguez, D.
2015-05-01
Since 2006, the European Near Earth Asteroids Research (EURONEAR) project has been contributing to the research of near-Earth asteroids (NEAs) within a European network. One of the main aims is the amelioration of the orbits of NEAs, and starting in 2014 February we focus on the recovery of one-opposition NEAs using the Isaac Newton Telescope (INT) in La Palma in override mode. Part of this NEA recovery project, since 2014 June EURONEAR serendipitously started to discover and secure the first NEAs from La Palma and using the INT, thanks to the teamwork including amateurs and students who promptly reduce the data, report discoveries and secure new objects recovered with the INT and few other telescopes from the EURONEAR network. Five NEAs were discovered with the INT, including 2014 LU14, 2014 NL52 (one very fast rotator), 2014 OL339 (the fourth known Earth quasi-satellite), 2014 SG143 (a quite large NEA), and 2014 VP. Another very fast moving NEA was discovered but was unfortunately lost due to lack of follow-up time. Additionally, another 14 NEA candidates were identified based on two models, all being rapidly followed-up using the INT and another 11 telescopes within the EURONEAR network. They include one object discovered by Pan-STARRS, two Mars crossers, two Hungarias, one Jupiter trojan, and other few inner main belt asteroids (MBAs). Using the INT and Sierra Nevada 1.5 m for photometry, then the Gran Telescopio de Canarias for spectroscopy, we derived the very rapid rotation of 2014 NL52, then its albedo, magnitude, size, and its spectral class. Based on the total sky coverage in dark conditions, we evaluate the actual survey discovery rate using 2-m class telescopes. One NEA is possible to be discovered randomly within minimum 2.8 deg2 and maximum 5.5 deg2. These findings update our past statistics, being based on double sky coverage and taking into account the recent increase in discovery.
C-BASS: The C-Band All Sky Survey
NASA Astrophysics Data System (ADS)
Pearson, Timothy J.; C-BASS Collaboration
2016-06-01
The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre Array project) in South Africa, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia.
NASA SETI microwave observing project: Sky Survey element
NASA Technical Reports Server (NTRS)
Klein, M. J.
1991-01-01
The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis algorithms. A high level description of the prototype hardware and software systems will be given and the current status of the system development will be reported.
Introduction: The Night Sky Back Home
NASA Astrophysics Data System (ADS)
Upgren, A. R.
2001-12-01
Light pollution is a proper and fitting subject of great concern to all astronomers. Back before 1988, when the International Dark-Sky Association was founded, astronomical concern centered around and was mostly restricted to the large southwestern mountaintop observatories. This is understandable since these largest telescopes demand the darkest possible skies. The IDA was promoted and organized with this goal in mind. Today the IDA numbers almost 8000 members and is dominated by environmentalists and lighting engineers as much as or more than professional astronomers. Amateur astronomers from skygazers to those with CCD's on their telescopes are now of great importance in the realm of light pollution awareness and control. They are busy in almost every state and province working to pass ordinances restricting the worst in outdoor lighting. For example. Connecticut, a state with little professional astronomical observation, has passed the first law to require FCO (full-cutoff shielding) on every new and renovated street and highway light in the state. The needs of astronomers in places like New England differ from those of Arizona, California, and Hawaii where LPS is much preferred to HPS illumination. In the lesser climates, FCO and lumen constraints are of much greater concern. Almost every state still has very dark sky areas, well worth preserving. It is of the greatest importance for amateurs and professionals to work together to preserve dark skies wherever they are found. Our profession needs for its continued health, places near population centers where the Milky Way can still be seen. Many future astronomers will be brought into the field by the sights of a dark sky. I encourage the AAS to become more active, individually and collectively, in the multitude of efforts now in progress across the continent.
Åkesson, Susanne; Odin, Catharina; Hegedüs, Ramón; Ilieva, Mihaela; Sjöholm, Christoffer; Farkas, Alexandra; Horváth, Gábor
2015-01-01
ABSTRACT Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90° or −90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. PMID:25505150
Quality and extent of locum tenens coverage in pediatric surgical practices.
Nolan, Tracy L; Kandel, Jessica J; Nakayama, Don K
2015-04-01
The prevalence and quality of locum tenens coverage in pediatric surgery have not been determined. An Internet-based survey of American Pediatric Surgical Association members was conducted: 1) practice description; 2) use and frequency of locum tenens coverage; 4) whether the surgeon provided such coverage; and 5) Likert scale responses (strongly disagree, disagree, neutral, agree, strongly agree) to statements addressing its acceptability and quality (two × five contingency table and χ(2) analyses, significance at P < 0.05). Three hundred sixteen of 1163 members (27.2% response rate) responded. One-fourth (24.1%) used a locum tenens regularly. Reasons were long-term inability to recruit a full-time surgeon (35.2%) and short-term vacancies (32.4%). One-fifth (20.4%) did locum tenens work; one-fourth (27.0%) plan to do so in the future. Two-thirds (64.2%) believe that surgical care in a locum tenens situation does not provide the same level of care as a full-time community-based surgeon. Most support locum tenens for short-term coverage (87.3%) and recruitment problems (72.1%), but not long-term vacancies (38.8%; P < 0.001) or permanent coverage (27.0%; P < 0.001). locum tenens coverage is an established feature of pediatric surgery. Most view it as a stopgap solution to the surgical workforce shortage.
KELT RR Lyrae Variable Stars Observed by NKU Schneider and Michigan State Observatories
NASA Astrophysics Data System (ADS)
De Lee, Nathan M.; Brueneman, Stacy; Hicks, Logan; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph; Paegert, Martin; Smith, Horace A.
2017-01-01
In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 70% of the entire sky, and has a long-time-baseline of up to 11 years with a very high cadence rate of less than 20 minutes. This translates to upwards of 11,000 epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up multi-color photometry taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We also have archival photometry of these stars from the Michigan State Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.
The Data Reduction Pipeline for The SDSS-IV Manga IFU Galaxy Survey
Law, David R.; Cherinka, Brian; Yan, Renbin; ...
2016-09-12
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ~500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~100 million raw-frame spectra and ~10 millionmore » reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ~8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec -2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s -1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s -1.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Shinya; Poli, Paul; John, Viju O.
2017-02-01
The near-global and all-sky coverage of satellite observations from microwave humidity sounders operating in the 183 GHz band complement radiosonde and aircraft observations and satellite infrared clear-sky observations. The Special Sensor Microwave Water Vapor Profiler (SSM/T-2) of the Defense Meteorological Satellite Program began operations late 1991. It has been followed by several other microwave humidity sounders, continuing today. However, expertise and accrued knowledge regarding the SSM/T-2 data record is limited because it has remained underused for climate applications and reanalyses. In this study, SSM/T-2 radiances are characterised using several global atmospheric reanalyses. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the first ECMWF reanalysis of the 20th-century (ERA-20C), and the Japanese 55-year Reanalysis (JRA-55) are projected into SSM/T-2 radiance space using a fast radiative transfer model. The present study confirms earlier indications that the polarisation state of SSM/T-2 antenna is horizontal (not vertical) in the limit of nadir viewing. The study also formulates several recommendations to improve use of the SSM/T-2 measurement data in future fundamental climate data records or reanalyses. Recommendations are (1) to correct geolocation errors, especially for DMSP 14; (2) to blacklist poor quality data identified in the paper; (3) to correct for inter-satellite biases, estimated here on the order of 1 K, by applying an inter-satellite recalibration or, for reanalysis, an automated (e.g., variational) bias correction; and (4) to improve precipitating cloud filtering or, for reanalysis, consider an all-sky assimilation scheme where radiative transfer simulations account for the scattering effect of hydrometeors.
`Orphan' afterglows in the Universal structured jet model for γ-ray bursts
NASA Astrophysics Data System (ADS)
Rossi, Elena M.; Perna, Rosalba; Daigne, Frédéric
2008-10-01
The paucity of reliable achromatic breaks in γ-ray burst afterglow light curves motivates independent measurements of the jet aperture. Serendipitous searches of afterglows, especially at radio wavelengths, have long been the classic alternative. These survey data have been interpreted assuming a uniformly emitting jet with sharp edges (`top-hat' jet), in that case the ratio of weakly relativistically beamed afterglows to GRBs scales with the jet solid angle. In this paper, we consider, instead, a very wide outflow with a luminosity that decreases across the emitting surface. In particular, we adopt the universal structured jet (USJ) model, which is an alternative to the top-hat model for the structure of the jet. However, the interpretation of the survey data is very different: in the USJ model, we only observe the emission within the jet aperture and the observed ratio of prompt emission rate to afterglow rate should solely depend on selection effects. We compute the number and rate of afterglows expected in all-sky snapshot observations as a function of the survey sensitivity. We find that the current (negative) results for OA searches are in agreement with our expectations. In radio and X-ray bands, this was mainly due to the low sensitivity of the surveys, while in the optical band the sky coverage was not sufficient. In general, we find that X-ray surveys are poor tools for OA searches, if the jet is structured. On the other hand, the Faint Images of the Radio Sky at Twenty-cm radio survey and future instruments like the Allen Telescope Array (in the radio band) and especially GAIA, Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope (in the optical band) will have chances to detect afterglows.
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.
2016-02-01
We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.
White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9
NASA Astrophysics Data System (ADS)
Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.
2014-06-01
We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.
The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results
NASA Astrophysics Data System (ADS)
Crass, Jonathan; King, David; MacKay, Craig
2014-08-01
Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.
THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, David R.; Cherinka, Brian; Yan, Renbin
2016-10-01
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec{sup 2} per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 millionmore » reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ = 23.5 AB arcsec{sup −2} in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s{sup −1} rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s{sup −1}.« less
The total satellite population of the Milky Way
NASA Astrophysics Data System (ADS)
Newton, Oliver; Cautun, Marius; Jenkins, Adrian; Frenk, Carlos S.; Helly, John C.
2018-05-01
The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial census of this population exists because of the flux limits and restricted sky coverage of existing Galactic surveys. We combine the sample of satellites recently discovered by the Dark Energy Survey (DES) survey with the satellites found in Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly half the sky) to estimate the total luminosity function of satellites down to MV = 0. We apply a new Bayesian inference method in which we assume that the radial distribution of satellites independently of absolute magnitude follows that of subhaloes selected according to their peak maximum circular velocity. We find that there should be at least 124^{+40}_{-27}(68% CL, statistical error) satellites brighter than MV = 0 within 300kpc of the Sun. As a result of our use of new data and better simulations, and a more robust statistical method, we infer a much smaller population of satellites than reported in previous studies using earlier SDSS data only; we also address an underestimation of the uncertainties in earlier work by accounting for stochastic effects. We find that the inferred number of faint satellites depends only weakly on the assumed mass of the MW halo and we provide scaling relations to extend our results to different assumed halo masses and outer radii. We predict that half of our estimated total satellite population of the MW should be detected by the Large Synoptic Survey Telescope (LSST). The code implementing our estimation method is available online.†
NASA Astrophysics Data System (ADS)
Shalygina, O. S.; Markiewicz, W. J.; Hviid, S. F.
2012-09-01
It is well known that the aerosol play a major role in the energy budget of the Martian atmosphere. The importance of the aerosols for the radiative loading of the atmosphere has hence, direct impact on the Martian present weather and its seasonal cycle as well as consequences for its long term climate. Very accurate models of the sky brightness are required to separate the atmospheric illumination from the spectrum of the Martian surface, and hence to understand the mineralogy of the surface rocks and soil. Such accurate models are only possible if the optical properties of the Martian aerosols are known. In this work we analyze the images of the brightness of the Martian sky at midday acquired from the surface of the Mars during the Mars Pathfinder mission. The Imager for Mars Pathfinder (IMP) obtained data in filters centered at 443.6, 481.0, 670.8, 896.1 and 965.3 nm. Useful data sets were returned on sols 27, 40, 56, 65, 68, 74 and 82. Although the coverage in scattering angles of this sequence is limited to about 100°, having the Sun near zenith minimizes multiple scattering. This property should help in accuracy of constraining the size distribution and material properties. The shape of the particles can be expected to be less well constrained, as scattering events at angles around 150° are only present through multiple scattering. Data from sol 56 (Figure 1) were fitted with multiple scattering radiative transfer calculations to extract the size distribution, optical properties, and shape of the aerosols suspended in the atmosphere [1].
The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey
NASA Astrophysics Data System (ADS)
Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D'Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai
2016-10-01
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 Å and an average footprint of ˜500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ˜100 million raw-frame spectra and ˜10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ˜8500 Å and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.
Unveiling high redshift structures with Planck
NASA Astrophysics Data System (ADS)
Welikala, Niraj
2012-07-01
The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.
NASA Astrophysics Data System (ADS)
Schillaci, Alessandro; D'Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia; Paiva Novaes, Camila; Gervasi, Massimo; Zannoni, Mario
2014-05-01
Context. Precision measurements of the Sunyaev-Zel'dovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage. Aims: We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optimized for measurements of faint brightness gradients at millimeter wavelengths. Methods: Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common-mode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background. Results: The instrument works in the range ~1-20 cm-1 (30-600 GHz), has a maximum spectral resolution 1 / (2 OPD) = 0.063 cm-1 (1.9 GHz), and an unvignetted throughput of 2.3 cm2sr. It occupies a volume of 0.7 × 0.7 × 0.33 m3 and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.
2011-11-25
This view from NASA Wide-field Infrared Survey Explorer takes in an area of the sky in the constellation of Scorpius surrounding Jabbah Arabic name means the forehead of the scorpion which is larger than a grid of eight by eight full moons.
Star Clusters Young and Old, Near and Far
2010-04-23
This image from NASA Wide-field Infrared Survey Explorer, or WISE, is a view of an area of the sky over 12 times the size of the full Moon on the border of the constellations Sagittarius and Corona Australis.
Calhoun, Lisa M.; van Eijk, Anna M.; Lindblade, Kim A.; Odhiambo, Frank O.; Wilson, Mark L.; Winterbauer, Elizabeth; Slutsker, Laurence; Hamel, Mary J.
2014-01-01
This study assesses full and timely vaccination coverage and factors associated with full vaccination in children ages 12–23 months in Gem, Nyanza Province, Kenya in 2003. A simple random sample of 1,769 households was selected, and guardians were invited to bring children under 5 years of age to participate in a survey. Full vaccination coverage was 31.1% among 244 children. Only 2.2% received all vaccinations in the target month for each vaccination. In multivariate logistic regression, children of mothers of higher parity (odds ratio [OR] = 0.27, 95% confidence interval [95% CI] = 0.13–0.65, P ≤ 0.01), children of mothers with lower maternal education (OR = 0.35, 95% CI = 0.13–0.97, P ≤ 0.05), or children in households with the spouse absent versus present (OR = 0.40, 95% CI = 0.17–0.91, P ≤ 0.05) were less likely to be fully vaccinated. These data serve as a baseline from which changes in vaccination coverage will be measured as interventions to improve vaccination timeliness are introduced. PMID:24343886
Calhoun, Lisa M; van Eijk, Anna M; Lindblade, Kim A; Odhiambo, Frank O; Wilson, Mark L; Winterbauer, Elizabeth; Slutsker, Laurence; Hamel, Mary J
2014-02-01
This study assesses full and timely vaccination coverage and factors associated with full vaccination in children ages 12-23 months in Gem, Nyanza Province, Kenya in 2003. A simple random sample of 1,769 households was selected, and guardians were invited to bring children under 5 years of age to participate in a survey. Full vaccination coverage was 31.1% among 244 children. Only 2.2% received all vaccinations in the target month for each vaccination. In multivariate logistic regression, children of mothers of higher parity (odds ratio [OR] = 0.27, 95% confidence interval [95% CI] = 0.13-0.65, P ≤ 0.01), children of mothers with lower maternal education (OR = 0.35, 95% CI = 0.13-0.97, P ≤ 0.05), or children in households with the spouse absent versus present (OR = 0.40, 95% CI = 0.17-0.91, P ≤ 0.05) were less likely to be fully vaccinated. These data serve as a baseline from which changes in vaccination coverage will be measured as interventions to improve vaccination timeliness are introduced.
Full-coverage film cooling. I - Comparison of heat transfer data for three injection angles
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1980-01-01
Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries; normal-, 30 deg slant-, and 30 deg x 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000.
Complete super-sample lensing covariance in the response approach
NASA Astrophysics Data System (ADS)
Barreira, Alexandre; Krause, Elisabeth; Schmidt, Fabian
2018-06-01
We derive the complete super-sample covariance (SSC) of the matter and weak lensing convergence power spectra using the power spectrum response formalism to accurately describe the coupling of super- to sub-survey modes. The SSC term is completely characterized by the survey window function, the nonlinear matter power spectrum and the full first-order nonlinear power spectrum response function, which describes the response to super-survey density and tidal field perturbations. Generalized separate universe simulations can efficiently measure these responses in the nonlinear regime of structure formation, which is necessary for lensing applications. We derive the lensing SSC formulae for two cases: one under the Limber and flat-sky approximations, and a more general one that goes beyond the Limber approximation in the super-survey mode and is valid for curved sky applications. Quantitatively, we find that for sky fractions fsky ≈ 0.3 and a single source redshift at zS=1, the use of the flat-sky and Limber approximation underestimates the total SSC contribution by ≈ 10%. The contribution from super-survey tidal fields to the lensing SSC, which has not been included in cosmological analyses so far, is shown to represent about 5% of the total lensing covariance on multipoles l1,l2 gtrsim 300. The SSC is the dominant off-diagonal contribution to the total lensing covariance, making it appropriate to include these tidal terms and beyond flat-sky/Limber corrections in cosmic shear analyses.
Multipole Vector Anomalies in the First-Year WMAP Data: A Cut-Sky Analysis
NASA Astrophysics Data System (ADS)
Bielewicz, P.; Eriksen, H. K.; Banday, A. J.; Górski, K. M.; Lilje, P. B.
2005-12-01
We apply the recently defined multipole vector framework to the frequency-specific first-year WMAP sky maps, estimating the low-l multipole coefficients from the high-latitude sky by means of a power equalization filter. While most previous analyses of this type have considered only heavily processed (and foreground-contaminated) full-sky maps, the present approach allows for greater control of residual foregrounds and therefore potentially also for cosmologically important conclusions. The low-l spherical harmonic coefficients and corresponding multipole vectors are tabulated for easy reference. Using this formalism, we reassess a set of earlier claims of both cosmological and noncosmological low-l correlations on the basis of multipole vectors. First, we show that the apparent l=3 and 8 correlation claimed by Copi and coworkers is present only in the heavily processed map produced by Tegmark and coworkers and must therefore be considered an artifact of that map. Second, the well-known quadrupole-octopole correlation is confirmed at the 99% significance level and shown to be robust with respect to frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-l alignment with respect to the ecliptic claimed by Schwarz and coworkers is nominally confirmed in this analysis, but also shown to be very dependent on severe a posteriori choices. Indeed, we show that given the peculiar quadrupole-octopole arrangement, finding such a strong alignment with the ecliptic is not unusual.
Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor
2017-09-01
According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ , the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ , this absolute value can either decrease or increase with increasing ρ . The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤ θ ≤ 40° and 2 oktas ≤ ρ ≤ 3 oktas.
Topical Coverage in Introductory Textbooks from the 1980s through the 2000s
ERIC Educational Resources Information Center
Griggs, Richard A.
2014-01-01
To determine how topical coverage in introductory textbooks may have changed from the 1980s to the present, the author examined topic coverage in full-length and brief introductory textbooks from this time period. Because 98% of the teachers use textbooks for the introductory course and the majority do not assign reading beyond the textbook, the…
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.
2017-12-01
The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements
NASA Astrophysics Data System (ADS)
Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.
2018-02-01
We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.
ScienceCast 156: Perseid Meteors vs the Supermoon
2014-07-28
Which is brighter--a flurry of Perseid fireballs or a supermoon? Sky watchers will find out this August when the biggest and brightest full Moon of 2014 arrives just in time for the peak of the annual Perseid meteor shower.
The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Gamma-ray Monitoring of Active Galactic Nuclei with HAWC
NASA Astrophysics Data System (ADS)
Lauer, Robert; HAWC Collaboration
2016-03-01
Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.
A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system
NASA Astrophysics Data System (ADS)
Wizinowich, Peter; Smith, Roger; Biasi, Roberto; Cetre, Sylvain; Dekany, Richard; Femenia-Castella, Bruno; Fucik, Jason; Hale, David; Neyman, Chris; Pescoller, Dietrich; Ragland, Sam; Stomski, Paul; Andrighettoni, Mario; Bartos, Randy; Bui, Khanh; Cooper, Andrew; Cromer, John; van Dam, Marcos; Hess, Michael; James, Ean; Lyke, Jim; Rodriguez, Hector; Stalcup, Thomas
2014-07-01
The sky coverage and performance of laser guide star (LGS) adaptive optics (AO) systems is limited by the natural guide star (NGS) used for low order correction. This limitation can be dramatically reduced by measuring the tip and tilt of the NGS in the near-infrared where the NGS is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We present the design of a near-infrared tip-tilt sensor that has recently been integrated with the Keck I telescope's LGS AO system along with some initial on-sky results. The implementation involved modifications to the AO bench, real-time control system, and higher level controls and operations software that will also be discussed. The tip-tilt sensor is a H2RG-based near-infrared camera with 0.05 arc second pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2×2 to 16×16 pixels, centered on an NGS anywhere in the 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beamsplitters located in front of the OSIRIS integral field spectrograph.
High Redshift QSOs in the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Venemans, B. P.
2007-12-01
In this proceeding, I will present the first results on our ongoing search for z⪆6 quasars in the UKIDSS Large Area Survey (LAS). The unique infrared sky coverage of the LAS combined with SDSS i and z observations allows us to efficiently search for high redshift quasars with minimal contamination from foreground objects, e.g. galactic cool stars. Analysis of 106 deg^2 of sky from UKIDSS Data Release 1 (DR1) has resulted in the discovery of ULAS J020332.38+001229.2, a luminous (J_{AB}=20.0, M_{1450}=-26.2) quasar at z=5.86. The quasar is not present in the SDSS DR5 catalogue and the continuum spectral index of α=-1.4 (F_{ν}∝ν^{α}) is redder than a composite of SDSS quasars at similar redshifts (α=-0.5). Although it is difficult to draw any strong conclusions regarding the space density of quasars from one object, the discovery of this quasar in ˜100 deg^2 in a complete sample within our selection criteria down to a median depth of Y_{AB}=20.4 (7σ) is consistent with existing SDSS results. Finally, I will present the expected number density of high redshift z>6.5 quasars using future infrared surveys with VISTA.
Stellar Activity in the Broadband Ultraviolet
NASA Astrophysics Data System (ADS)
Findeisen, K.; Hillenbrand, L.; Soderblom, D.
2011-07-01
The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using stars within 50 pc as a calibration sample representing the field and in selected nearby associations representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R'HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780 Å) excess flux is roughly proportional to R'HK. We also detect a correlation between near-UV (NUV, 1780-2830 Å) flux and activity or age, but the effect is much more subtle, particularly for stars older than ~0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when predicting UV flux, ~0.18 dex when predicting R'HK, and ~0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.
NASA Astrophysics Data System (ADS)
Rotti, Aditya; Huffenberger, Kevin
2016-09-01
Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B-modes, particularly in cases of limited frequency coverage.
NASA Astrophysics Data System (ADS)
Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John
2017-11-01
Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).
The Ringo2 Optical Polarisation Catalogue of 13 High-Energy Blazars
NASA Astrophysics Data System (ADS)
Barres de Almeida, Ulisses; Jermak, Helen; Mundell, Carole; Lindfors, Elina; Nilsson, Kari; Steele, Iain
2015-08-01
We present the findings of the Ringo2 3-year survey of 13 blazars (3 FSRQs and 10 BL Lacs) with regular coverage and reasonably fast cadence of one to three observations a week. Ringo2 was installed on the Liverpool Robotic Telescope (LT) on the Canary Island of La Palma between 2009 and 2012 and monitored thirteen high-energy-emitting blazars in the northern sky. The objects selected as well as the observational strategy were tuned to maximise the synergies with high-energy X- to gamma-ray observations. Therefore this sample stands out as a well-sampled, long-term view of high-energy AGN jets in polarised optical light. Over half of the sources exhibited an increase in optical flux during this period and almost a quarter were observed in outburst. We compare the optical data to gamma (Fermi/LAT) and X-ray data during these periods of outburst. In this talk we present the data obtained for all sources over the lifetime of Ringo2 with additional optical data from the KVA telescope and the SkyCamZ wide-field camera (on the LT), we explore the relationship between the change in polarisation angle as a function of time (dEVPA/dMJD), flux and polarisation degree along with cross correlation comparisons of optical and high-energy flux.
Gamma Ray Pulsars: Multiwavelength Observations
NASA Technical Reports Server (NTRS)
Thompson, David J.
2004-01-01
High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.
NASA Astrophysics Data System (ADS)
Moon, Dae-Sik; Kim, Sang Chul; Lee, Jae-Joon; Pak, Mina; Park, Hong Soo; He, Matthias Y.; Antoniadis, John; Ni, Yuan Qi; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Gonzalez, Santiago
2016-08-01
The Korea Microlensing Telescope Network (KMTNet) is a network of three new 1.6-m, wide-field telescopes spread over three different sites in Chile, South Africa and Australia. Each telescope is equipped with a four square degree wide-field CCD camera, making the KMTNet an ideal facility for discovering and monitoring early supernovae and other rapidly evolving optical transients by providing 24-hour continuous sky coverage. We describe our inaugurating program of observing supernovae and optical transients using about 20% of the KMTNet time in 2015-2019. Our early results include detection of infant supernovae, novae and peculiar transients as well as numerous variable stars and low surface brightness objects such as dwarf galaxies.
Discovery of KPS-1b, a Transiting Hot-Jupiter, with an Amateur Telescope Setup (Abstract)
NASA Astrophysics Data System (ADS)
Benni, P.; Burdanov, A.; Krushinsky, V.; Sokov, E.
2018-06-01
(Abstract only) Using readily available amateur equipment, a wide-field telescope (Celestron RASA, 279 mm f/2.2) coupled with a SBIG ST-8300M camera was set up at a private residence in a fairly light polluted suburban town thirty miles outside of Boston, Massachusetts. This telescope participated in the Kourovka Planet Search (KPS) prototype survey, along with a MASTER-II Ural wide field telescope near Yekaterinburg, Russia. One goal was to determine if higher resolution imaging ( 2 arcsec/pixel) with much lower sky coverage can practically detect exoplanet transits compared to the successful very wide-field exoplanet surveys (KELT, XO, WASP, HATnet, TrES, Qatar, etc.) which used an array of small aperture telescopes coupled to CCDs.
Mosaic of CCDs to Survey for Asteroids and Comets
NASA Technical Reports Server (NTRS)
McMillan, Robert S.
2002-01-01
Spacewatch searches for asteroids and comets ranging in location from near-Earth space to regions beyond the orbit of Neptune. We are studying Earth-approaching asteroids, main belt asteroids, comets, Centaurs, and TNOs, as well as the interrelationships of these classes and their bearing on the origin and evolution of the solar system. Spacewatch is described at http://www. lpl. arizona. edu/spacewatch/index.html. The Spacewatch Project has been discovering Earth-approaching asteroids (EAs) steadily and has used the results aggressively to estimate the statistical properties of the EA population. This grant funded Spacewatch to develop and implement a mosaic of CCD imaging detectors for the 0.9-m telescope, to increase that telescope's rate of coverage of sky area while preserving its limiting magnitude.
On-Board Switching and Routing Advanced Technology Study
NASA Technical Reports Server (NTRS)
Yegenoglu, F.; Inukai, T.; Kaplan, T.; Redman, W.; Mitchell, C.
1998-01-01
Future satellite communications is expected to be fully integrated into National and Global Information Infrastructures (NII/GII). These infrastructures will carry multi gigabit-per-second data rates, with integral switching and routing of constituent data elements. The satellite portion of these infrastructures must, therefore, be more than pipes through the sky. The satellite portion will also be required to perform very high speed routing and switching of these data elements to enable efficient broad area coverage to many home and corporate users. The technology to achieve the on-board switching and routing must be selected and developed specifically for satellite application within the next few years. This report presents evaluation of potential technologies for on-board switching and routing applications.
The role of retiree health insurance in the early retirement of public sector employees.
Shoven, John B; Slavov, Sita Nataraj
2014-12-01
Most government employees have access to retiree health coverage, which provides them with group health coverage even if they retire before Medicare eligibility. We study the impact of retiree health coverage on the labor supply of public sector workers between the ages of 55 and 64. We find that retiree health coverage raises the probability of stopping full time work by 4.3 percentage points (around 38 percent) over two years among public sector workers aged 55-59, and by 6.7 percentage points (around 26 percent) over two years among public sector workers aged 60-64. In the younger age group, retiree health insurance mostly seems to facilitate transitions to part-time work rather than full retirement. However, in the older age group, it increases the probability of stopping work entirely by 4.3 percentage points (around 22 percent). Copyright © 2014 Elsevier B.V. All rights reserved.
Instrumental Response Model and Detrending for the Dark Energy Camera
Bernstein, G. M.; Abbott, T. M. C.; Desai, S.; ...
2017-09-14
We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry withinmore » $$\\approx 2$$ mmag and $$\\approx 3$$ mas, respectively, of fundamental atmospheric and statistical limits. In conclusion, the DES techniques should be broadly applicable to wide-field imagers.« less
Instrumental Response Model and Detrending for the Dark Energy Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, G. M.; Abbott, T. M. C.; Desai, S.
We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry withinmore » $$\\approx 2$$ mmag and $$\\approx 3$$ mas, respectively, of fundamental atmospheric and statistical limits. In conclusion, the DES techniques should be broadly applicable to wide-field imagers.« less
Baidya, Subrata; Datta, Srabani; Mog, Chanda; Das, Shampa
2017-01-01
Introduction It is very important to analyze the factors which acts as obstacle in achieving 100% immunization among children. Lot Quality Assurance Sampling (LQAS) is one of the effective method to assess such barriers. Aim To assess the full immunization coverage among 12 to 23-month old children of rural field practice area under Department of Community Medicine, Agartala Government Medical College and identify the factors for failure of full immunization. Materials and Methods A community based cross-sectional study was conducted from November 2013 to October 2014 on children aged 12 to 23 months old of area under Mohanpur Community health centre. Using LQAS technique 330 samples were selected with multi-stage sampling, each sub-centre being one lot and two calculated to be the decision value. Data was collected using pre-designed pre-tested questionnaire during home visit and verifying immunization card and analysed by computer software SPSS version 21.0. Results The full immunization coverage among 12 to 23 months old children of Mohanpur area was found as 91.67%. Out of all the 22 sub-centres, 36.36% was found under performing as per pre-fixed criteria and the main reasons for failure of full immunization in those areas are unawareness of need of subsequent doses of vaccines and illness of the children. Conclusion LQAS is an effective method to identify areas of under-performance even though overall full immunization coverage is high. PMID:28384892
An evaluation of skylight polarization patterns for navigation.
Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen
2015-03-10
Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation.
An Evaluation of Skylight Polarization Patterns for Navigation
Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen
2015-01-01
Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation. PMID:25763652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chown, R.; et al.
We present three maps of the millimeter-wave sky created by combining data from the South Pole Telescope (SPT) and the Planck satellite. We use data from the SPT-SZ survey, a survey of 2540 deg$^2$ of the the sky with arcminute resolution in three bands centered at 95, 150, and 220 GHz, and the full-mission Planck temperature data in the 100, 143, and 217 GHz bands. A linear combination of the SPT-SZ and Planck data is computed in spherical harmonic space, with weights derived from the noise of both instruments. This weighting scheme results in Planck data providing most of themore » large-angular-scale information in the combined maps, with the smaller-scale information coming from SPT-SZ data. A number of tests have been done on the maps. We find their angular power spectra to agree very well with theoretically predicted spectra and previously published results.« less
NASA Technical Reports Server (NTRS)
Yavuzkurt, S.; Moffat, R. J.; Kays, W. M.
1979-01-01
Hydrodynamic measurements were made with a triaxial hot-wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30 degrees to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0.9 and M = 0.4. Profiles of the three main velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of the five locations down the test plate. A one-equation model of turbulence (using turbulent kinetic energy with an algebraic mixing length) was used in a two-dimensional computer program to predict the mean velocity and turbulent kinetic energy profiles in the recovery region. A new real-time hotwire scheme was developed to make measurements in the three-dimensional turbulent boundary layer over the full-coverage surface.
Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces
NASA Astrophysics Data System (ADS)
Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.
2018-03-01
For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.
Hill, Holly A; Elam-Evans, Laurie D; Yankey, David; Singleton, James A; Kolasa, Maureen
2015-08-28
The reduction in morbidity and mortality associated with vaccine-preventable diseases in the United States has been described as one of the 10 greatest public health achievements of the first decade of the 21st century. A recent analysis concluded that routine childhood vaccination will prevent 322 million cases of disease and about 732,000 early deaths among children born during 1994-2013, for a net societal cost savings of $1.38 trillion. The National Immunization Survey (NIS) has monitored vaccination coverage among U.S. children aged 19-35 months since 1994. This report presents national, regional, state, and selected local area vaccination coverage estimates for children born from January 2011 through May 2013, based on data from the 2014 NIS. For most vaccinations, there was no significant change in coverage between 2013 and 2014. The exception was hepatitis A vaccine (HepA), for which increases were observed in coverage with both ≥1 and ≥2 doses. As in previous years, <1% of children received no vaccinations. National coverage estimates indicate that the Healthy People 2020 target* of 90% was met for ≥3 doses of poliovirus vaccine (93.3%), ≥1 dose of measles, mumps, and rubella vaccine (MMR) (91.5%), ≥3 doses of hepatitis B vaccine (HepB) (91.6%), and ≥1 dose of varicella vaccine (91.0%). Coverage was below target for ≥4 doses of diphtheria, tetanus, and acellular pertussis vaccine (DTaP), the full series of Haemophilus influenzae type b (Hib) vaccine, hepatitis B (HepB) birth dose,† ≥4 doses pneumococcal conjugate vaccine (PCV), ≥2 doses of HepA, the full series of rotavirus vaccine, and the combined vaccine series.§ Examination of coverage by child's race/ethnicity revealed lower estimated coverage among non-Hispanic black children compared with non-Hispanic white children for several vaccinations, including DTaP, the full series of Hib, PCV, rotavirus vaccine, and the combined series. Children from households classified as below the federal poverty level had lower estimated coverage for almost all of the vaccinations assessed, compared with children living at or above the poverty level. Significant variation in coverage by state¶ was observed for several vaccinations, including HepB birth dose, HepA, and rotavirus. High vaccination coverage must be maintained across geographic and sociodemographic groups if progress in reducing the impact of vaccine-preventable diseases is to be sustained.
NASA Astrophysics Data System (ADS)
Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.
2018-03-01
We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.
GEO light imaging national testbed (GLINT) heliostat design and testing status
NASA Astrophysics Data System (ADS)
Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee
2002-01-01
The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.
Proposal for Definitive Survey for Fast Radio Bursts at the Allen Telescope Array
NASA Astrophysics Data System (ADS)
Harp, Gerald; Tarter, J. C.; Welch, W. J.; Allen Telescope Array Team
2014-01-01
The Allen Telescope Array, a 42-dish radio interferometer in Northern California is now being upgraded with new, more sensitive receivers covering 0.9-18 GHz continuously. Leveraging this frequency coverage and wide field of view, the ATA is a unique and ideal instrument for the discovery and characterization of fast radio bursts (FRBs, discovered at Parkes and Arecibo) and other short-time domain radio phenomena. The field of view (nearly 10 sq. deg. at 1 GHz) allows for a rapid search of 3π steradians with many lookbacks over a period of 2.5 years. The instantaneous wide-frequency range of the upgraded ATA receivers allows sensitive observations at 4 simultaneous frequency ranges (for example, 0.9 - 1.5 GHz, 1.6-2.2 GHz, 2.5-3.1 GHz, and 4.6-5.2 GHz, full Stokes); something not possible at any other major telescope. This enables very accurate dispersion measure and spectral index characterization of ms-timescale bursts (or other time-variable activity) with a localization accuracy ~20" for SNR > 10 (all FRBs discovered to date would meet this criterium). We discuss the new digital processing system required to perform this survey, with a plan to capture ~400 FRB events during the survey period of performance , based on current event-rate estimates of 10^4 events/sky/day.
The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field
NASA Astrophysics Data System (ADS)
Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.
2016-03-01
We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.
NASA Astrophysics Data System (ADS)
Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi
2017-07-01
Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.
The polarization compass dominates over idiothetic cues in path integration of desert ants.
Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard
2012-02-01
Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.
An XMM-Newton Science Archive for next decade, and its integration into ESASky
NASA Astrophysics Data System (ADS)
Loiseau, N.; Baines, D.; Rodriguez, P.; Salgado, J.; Sarmiento, M.; Colomo, E.; Merin, B.; Giordano, F.; Racero, E.; Migliari, S.
2016-06-01
We will present a roadmap for the next decade improvements of the XMM-Newton Science Archive (XSA), as planned for an always faster and more user friendly access to all XMM-Newton data. This plan includes the integration of the Upper Limit server, an interactive visualization of EPIC and RGS spectra, on-the-fly data analysis, among other advanced features. Within this philosophy XSA is also being integrated into ESASky, the science-driven discovery portal for all the ESA Astronomy Missions. A first public beta release of the ESASky service has been already released at the end of 2015. It is currently featuring an interface for exploration of the multi-wavelength sky and for single and/or multiple target searches of science-ready data. The system offers progressive multi-resolution all-sky projections of full mission datasets using a new generation of HEALPix projections called HiPS, developed at the CDS; detailed geometrical footprints to connect the all-sky mosaics to individual observations; and direct access to science-ready data at the underlying mission-specific science archives. New XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky, together with INTEGRAL, HST, Herschel, Planck and other future data.
GPS Eye-in-the-Sky Software Takes Closer Look Below
NASA Technical Reports Server (NTRS)
2006-01-01
At NASA, GPS is a vital resource for scientific research aimed at understanding and protecting Earth. The Agency employs the band of GPS satellites for such functions as mapping Earth s ionosphere and developing earthquake-prediction tools. Extending this worldly wisdom beyond Earth, NASA researchers are even discussing the possibility of developing global positioning satellites around Mars, in anticipation of future manned missions. Despite all of its terrestrial accomplishments, traditional GPS still has its limitations. The Space Agency is working to address these with many new advances, including a "Global Differential GPS" technology that instantaneously provides a position to within 4 inches horizontally and 8 inches vertically, anywhere on Earth. According to NASA's Jet Propulsion Laboratory, no other related system provides the same combination of accuracy and coverage. Furthermore, traditional GPS cannot communicate beyond latitudes of 75deg. That means that most of Greenland and Antarctica cannot receive GPS signals. The Global Differential GPS technology approaches this area of the world using several different GPS signals. These signals overlap to compensate for the gaps in coverage. Now, scientists working in the extreme northernmost and southernmost areas of the world can have access to the same GPS technology that other scientists around the world rely on.
The 2 Pi Charged Particles Analyzer: All-Sky Camera Concept and Development for Space Missions
NASA Technical Reports Server (NTRS)
Vaisberg, O.; Berthellier, J.-J.; Moore, T.; Avanov, L.; Leblanc, F.; Leblanc, F.; Moiseev, P.; Moiseenko, D.; Becker, J.; Collier, M.;
2016-01-01
Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2 electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.
The MIRAX Hard X-ray Transient Mission
NASA Astrophysics Data System (ADS)
Braga, João; Grindlay, Josh; Rothschild, Rick; Wilms, Joern; Remillard, Ron
2012-09-01
The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power (~1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO. The pointing directions will maximize the coverage of the Central Galactic Plane. The detectors are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 square cm effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA, including INPE(Brazil), UCSD, MIT, GSFC, Caltech and the Univ. of Erlangen-Nuremberg in Germany.
The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Daniel, M. K.; CTA Consortium
2015-04-01
The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.
NASA Astrophysics Data System (ADS)
Tang, Ronglin; Li, Zhao-Liang; Sun, Xiaomin; Bi, Yuyun
2017-01-01
Surface evapotranspiration (ET) is an important component of water and energy in land and atmospheric systems. This paper investigated whether using variable surface resistances in the reference ET estimates from the full-form Penman-Monteith (PM) equation could improve the upscaled daily ET estimates in the constant reference evaporative fraction (EFr, the ratio of actual to reference grass/alfalfa ET) method on clear-sky days using ground-based measurements. Half-hourly near-surface meteorological variables and eddy covariance (EC) system-measured latent heat flux data on clear-sky days were collected at two sites with different climatic conditions, namely, the subhumid Yucheng station in northern China and the arid Yingke site in northwestern China and were used as the model input and ground-truth, respectively. The results showed that using the Food and Agriculture Organization (FAO)-PM equation, the American Society of Civil Engineers-PM equation, and the full-form PM equation to estimate the reference ET in the constant EFr method produced progressively smaller upscaled daily ET at a given time from midmorning to midafternoon. Using all three PM equations produced the best results at noon at both sites regardless of whether the energy imbalance of the EC measurements was closed. When the EC measurements were not corrected for energy imbalance, using variable surface resistance in the full-form PM equation could improve the ET upscaling in the midafternoon, but worse results may occur in the midmorning to noon. Site-to-site and time-to-time variations were found in the performances of a given PM equation (with fixed or variable surface resistances) before and after the energy imbalance was closed.
Near-infrared Photometric Properties of 130,000 Quasars: An SDSS-UKIDSS-matched Catalog
NASA Astrophysics Data System (ADS)
Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P.
2011-04-01
We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg2. This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the ≈1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections and 42,133 objects have the full nine-band photometry. The majority (~85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is δR.A. = 0farcs1370 and δdecl. = 0farcs1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A.offset| = 0farcs025 and |decl.offset| = 0farcs040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of ≈53 deg-2 for K <= 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i ≈ 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z <~ 2.0, while at higher redshifts, the models generally appear to be bluer than the mean observed quasar colors. The gJK and giK color spaces are used to examine methods of differentiating between stars and (mid-redshift) quasars, the key to currently ongoing quasar surveys. Finally, we report on the NIR photometric properties of high, z > 4.6, and very high, z > 5.7, redshift previously discovered quasars.
NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS-UKIDSS-MATCHED CATALOG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P., E-mail: npross@lbl.gov
2011-04-15
We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg{sup 2}. This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the {approx}1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections andmore » 42,133 objects have the full nine-band photometry. The majority ({approx}85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is {delta}{sub R.A.} = 0.''1370 and {delta}{sub decl.} = 0.''1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A.{sub offset}| = 0.''025 and |decl.{sub offset}| = 0.''040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of {approx}53 deg{sup -2} for K {<=} 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i {approx} 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z {approx}< 2.0, while at higher redshifts, the models generally appear to be bluer than the mean observed quasar colors. The gJK and giK color spaces are used to examine methods of differentiating between stars and (mid-redshift) quasars, the key to currently ongoing quasar surveys. Finally, we report on the NIR photometric properties of high, z > 4.6, and very high, z > 5.7, redshift previously discovered quasars.« less
PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
André, Philippe; Baccigalupi, Carlo; Bielewicz, Pawel
2014-02-01
PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequencymore » bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 10{sup 6} clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than the temperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its interaction with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.« less
A new technique for measuring aerosols with moonlight observations and a sky background model
NASA Astrophysics Data System (ADS)
Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Szyszka, Ceszary; Unterguggenberger, Stefanie
2014-05-01
There have been an ample number of studies on aerosols in urban, daylight conditions, but few for remote, nocturnal aerosols. We have developed a new technique for investigating such aerosols using our sky background model and astronomical observations. With a dedicated observing proposal we have successfully tested this technique for nocturnal, remote aerosol studies. This technique relies on three requirements: (a) sky background model, (b) observations taken with scattered moonlight, and (c) spectrophotometric standard star observations for flux calibrations. The sky background model was developed for the European Southern Observatory and is optimized for the Very Large Telescope at Cerro Paranal in the Atacama desert in Chile. This is a remote location with almost no urban aerosols. It is well suited for studying remote background aerosols that are normally difficult to detect. Our sky background model has an uncertainty of around 20 percent and the scattered moonlight portion is even more accurate. The last two requirements are having astronomical observations with moonlight and of standard stars at different airmasses, all during the same night. We had a dedicated observing proposal at Cerro Paranal with the instrument X-Shooter to use as a case study for this method. X-Shooter is a medium resolution, echelle spectrograph which covers the wavelengths from 0.3 to 2.5 micrometers. We observed plain sky at six different distances (7, 13, 20, 45, 90, and 110 degrees) to the Moon for three different Moon phases (between full and half). Also direct observations of spectrophotometric standard stars were taken at two different airmasses for each night to measure the extinction curve via the Langley method. This is an ideal data set for testing this technique. The underlying assumption is that all components, other than the atmospheric conditions (specifically aerosols and airglow), can be calculated with the model for the given observing parameters. The scattered moonlight model is designed for the average atmospheric conditions at Cerro Paranal. The Mie scattering is calculated for the average distribution of aerosol particles, but this input can be modified. We can avoid the airglow emission lines, and near full Moon the airglow continuum can be ignored. In the case study, by comparing the scattered moonlight for the various angles and wavelengths along with the extinction curve from the standard stars, we can iteratively find the optimal aerosol size distribution for the time of observation. We will present this new technique, the results from this case study, and how it can be implemented for investigating aerosols using the X-Shooter archive and other astronomical archives.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
NASA Astrophysics Data System (ADS)
Khatri, Pradeep; Hayasaka, Tadahiro; Iwabuchi, Hironobu; Takamura, Tamio; Irie, Hitoshi; Nakajima, Takashi Y.; Letu, Husi; Kai, Qin
2017-04-01
Clouds are known to have profound impacts on atmospheric radiation and water budget, climate change, atmosphere-surface interaction, and so on. Cloud optical thickness (COT) and effective radius (Re) are two fundamental cloud parameters required to study clouds from climatological and hydrological point of view. Large spatial-temporal coverages of those cloud parameters from space observation have proved to be very useful for cloud research; however, validation of space-based products is still a challenging task due to lack of reliable data. Ground-based remote sensing instruments, such as sky radiometers distributed around the world through international observation networks of SKYNET (http://atmos2.cr.chiba-u.jp/skynet/) and AERONET (https://aeronet.gsfc.nasa.gov/) have a great potential to produce ground-truth cloud parameters at different parts of the globe to validate satellite products. Focusing to the sky radiometers of SKYNET and AERONET, a few cloud retrieval methods exists, but those methods have some difficulties to address the problem when cloud is optically thin. It is because the observed transmittances at two wavelengths can be originated from more than one set of COD and Re, and the choice of the most plausible set is difficult. At the same time, calibration issue, especially for the wavelength of near infrared (NIR) region, which is important to retrieve Re, is also a difficult task at present. As a result, instruments need to be calibrated at a high mountain or calibration terms need to be transferred from a standard instrument. Taking those points on account, we developed a new retrieval method emphasizing to overcome above-mentioned difficulties. We used observed transmittances of multiple wavelengths to overcome the first problem. We further proposed a method to obtain calibration constant of NIR wavelength channel using observation data. Our cloud retrieval method is found to produce relatively accurate COD and Re when validated them using data of a narrow field of view radiometer of collocated observation in one SKYNET site. Though the method is developed for the sky radiometer of SKYNET, it can be still used for the sky radiometer of AERONET and other instruments observing spectral zenith transmittances. The proposed retrieval method is then applied to retrieve cloud parameters at key sites of SKYNET within Japan, which are then used to validate cloud products obtained from space observations by MODIS sensors onboard TERRA/AQUA satellites and Himawari 8, a Japanese geostationary satellite. Our analyses suggest the underestimation (overestimation) of COD (Re) from space observations.
Courtemanche, Charles; Marton, James; Ukert, Benjamin; Yelowitz, Aaron; Zapata, Daniela
2017-01-01
The Affordable Care Act (ACA) aimed to achieve nearly universal health insurance coverage in the United States through a combination of insurance market reforms, mandates, subsidies, health insurance exchanges, and Medicaid expansions, most of which took effect in 2014. This paper estimates the causal effects of the ACA on health insurance coverage in 2014 using data from the American Community Survey. We utilize difference-in-difference-in-differences models that exploit cross-sectional variation in the intensity of treatment arising from state participation in the Medicaid expansion and local area pre-ACA uninsured rates. This strategy allows us to identify the effects of the ACA in both Medicaid expansion and non-expansion states. Our preferred specification suggests that, at the average pre-treatment uninsured rate, the full ACA increased the proportion of residents with insurance by 5.9 percentage points compared to 2.8 percentage points in states that did not expand Medicaid. Private insurance expansions from the ACA were due to increases in both employer-provided and non-group coverage. The coverage gains from the full ACA were largest for those without a college degree, non-whites, young adults, unmarried individuals, and those without children in the home. We find no evidence that the Medicaid expansion crowded out private coverage.
Agustín-Panadero, Rubén; Román-Rodriguez, Juan L.; Solá-Ruíz, María F.; Granell-Ruíz, María; Fons-Font, Antonio
2013-01-01
Objectives: To observe porcelain veneer behavior of zirconia and metal-ceramic full coverage crowns when subjected to compression testing, comparing zirconia cores to metal cores. Study Design: The porcelain fracture surfaces of 120 full coverage crowns (60 with a metal core and 60 with a zirconia core) subjected to static load (compression) testing were analyzed. Image analysis was performed using macroscopic processing with 8x and 12x enlargement. Five samples from each group were prepared and underwent scanning electron microscope (SEM) analysis in order to make a fractographic study of fracture propagation in the contact area and composition analysis in the most significant areas of the specimen. Results: Statistically significant differences in fracture type (cohesive or adhesive) were found between the metal-ceramic and zirconia groups: the incidence of adhesive fracture was seen to be greater in metal-ceramic groups (92%) and cohesive fracture was more frequent in zirconium oxide groups (72%). The fracture propagation pattern was on the periphery of the contact area in the full coverage crown restorations selected for fractographic study. Conclusions: The greater frequency of cohesive fracture in restorations with zirconia cores indicates that their behavior is inadequate compared to metal-ceramic restorations and that further research is needed to improve their clinical performance. Key words:Zirconia, zirconium oxide, fractography, composition, porcelain veneers, fracture, cohesive, adhesive. PMID:24455092
PRAXIS: a low background NIR spectrograph for fibre Bragg grating OH suppression
NASA Astrophysics Data System (ADS)
Horton, Anthony; Ellis, Simon; Lawrence, Jon; Bland-Hawthorn, Joss
2012-09-01
Fibre Bragg grating (FBG) OH suppression is capable of greatly reducing the bright sky background seen by near infrared spectrographs. By filtering out the airglow emission lines at high resolution before the light enters the spectrograph this technique prevents scattering from the emission lines into interline regions, thereby reducing the background at all wavelengths. In order to take full advantage of this sky background reduction the spectrograph must have very low instrumental backgrounds so that it remains sky noise limited. Both simulations and real world experience with the prototype GNOSIS system show that existing spectrographs, designed for higher sky background levels, will be unable to fully exploit the sky background reduction. We therefore propose PRAXIS, a spectrograph optimised specifically for this purpose. The PRAXIS concept is a fibre fed, fully cryogenic, fixed format spectrograph for the J and H-bands. Dark current will be minimised by using the best of the latest generation of NIR detectors while thermal backgrounds will be reduced by the use of a cryogenic fibre slit. Optimised spectral formats and the use of high throughput volume phase holographic gratings will further enhance sensitivity. Our proposal is for a modular system, incorporating exchangeable fore-optics units, integral field units and OH suppression units, to allow PRAXIS to operate as a visitor instrument on any large telescope and enable new developments in FBG OH suppression to be incorporated as they become available. As a high performance fibre fed spectrograph PRAXIS could also serve as a testbed for other astrophotonic technologies.
Stray light field dependence for large astronomical space telescopes
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Bowers, Charles W.
2017-09-01
Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mody, Krishnan; Hajian, Amir, E-mail: kmody@princeton.edu, E-mail: ahajian@cita.utoronto.ca
We present our measurement of the 'bulk flow' using the kinetic Sunyaev-Zel'dovich (kSZ) effect in the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. As the tracer of peculiar velocities, we use Planck Early Sunyaev-Zel'dovich Detected Cluster Catalog and a compilation of X-ray-detected galaxy cluster catalogs based on ROSAT All-Sky Survey. We build a full-sky kSZ template and fit it to the WMAP data in W band. Using a Wiener filter we maximize the signal-to-noise ratio of the kSZ cluster signal in the data. We find no significant detection of the bulk flow, and our results are consistent with the {Lambda}CDMmore » prediction.« less
Mapping the CMB with the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2007-01-01
The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.
Taking the Measure of the Universe: Cosmology from the WMAP Mission
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2006-01-01
The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. WMAP, part of NASA's Explorers program, was launched on June 30,2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Cornel1 University; University of Chicago; Brown University; University of British Columbia; University of Pennsylvania; and University of California, Los Angeles